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Abstract

Random-access algorithms such as the Carrier-Sense Multiple-Access
(CSMA) protocol provide a popular mechanism for distributed medium
access control in large-scale wireless networks. In recent years, fairly
tractable models have been shown to yield remarkably accurate through-
put estimates for CSMA networks. These models typically assume that
both the transmission durations and the back-off periods are exponen-
tially distributed. We show that the stationary distribution of the system
is in fact insensitive with respect to the transmission durations and the
back-off times.

These models primarily pertain to a saturated scenario where nodes
always have packets to transmit. In reality however, the buffers may
occasionally be empty as packets are randomly generated and transmitted
over time. The resulting interplay between the activity states and the
buffer contents gives rise to quite complicated queueing dynamics, and
even establishing the stability criteria is usually a serious challenge. We
explicitly identify the stability conditions in a few relevant scenarios, and
illustrate the difficulties arising in other cases.

1 Introduction

Emerging wireless mesh networks typically lack any centralized control entity
for regulating access and coordinating transmissions. Instead, these networks
vitally rely on the individual nodes to operate autonomously and to efficiently
share the medium in a distributed fashion. This requires the nodes to sched-
ule their individual transmissions and decide on the use of a shared medium
based on knowledge that is locally available or only involves limited exchange
of information. A popular mechanism for distributed medium access control
is provided by the Carrier-Sense Multiple-Access (CSMA) protocol, various in-
carnations of which are implemented in IEEE 802.11 networks. In the CSMA
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protocol each node attempts to access the medium after a certain back-off time,
but nodes that sense activity of interfering nodes freeze their back-off timer until
the medium is sensed idle.

While the CSMA protocol is fairly easy to understand at a local level, the
interaction among interfering nodes gives rise to quite intricate behavior and
complex throughput characteristics on a macroscopic scale. In recent years
relatively parsimonious models have emerged that provide a useful tool in eval-
uating the throughput characteristics of CSMA-like networks. These models
essentially assume that the interference constraints can be represented by a
general conflict graph, and that the various nodes activate asynchronously at
exponential rates whenever none of their neighbors are active. Such models
were first pursued in the context of IEEE 802.11 systems by Wang & Kar [31],
and further studied in that setting in [8, 9, 10], with several extensions and
refinements in [7, 12, 24]. These models in fact long pre-date the IEEE 802.11
standard and were already considered in the 1980’s [4, 5, 16, 19]. The model has
strong connections with Markov random fields and migration processes, and can
under certain assumptions be interpreted as a special instance of a loss network
[15, 17, 18, 28, 32].

Although the representation of the IEEE 802.11 back-off mechanism in
the above-mentioned models is far less detailed than in the landmark work of
Bianchi [2], the general interference graph offers greater versatility and covers a
broad range of topologies. Experimental results in [21] demonstrate that these
models, while idealized, provide throughput estimates that match remarkably
well with measurements in actual IEEE 802.11 systems.

The above-mentioned CSMA models typically assume that both the trans-
mission durations and the back-off periods are exponentially distributed, in
which case the model reduces to a loss network. As the relationship with loss
networks suggests, it is easily verified that the stationary distribution of the
joint activity process is in fact insensitive with respect to the distribution of
the transmission times, i.e., holds for any distribution with the same mean. In
contrast, loss networks are generally not insensitive with respect to the interar-
rival time distribution. So the impact of the distribution of the back-off periods
is far less obvious, and it might seem that no insensitivity property should be
expected to hold. However, closer inspection reveals that the strict equivalence
with loss networks relies on the back-off periods being exponentially distributed.
In order to see that, observe that in loss networks the arrival process is not af-
fected by the occupancy state, whereas in the CSMA model the back-off process
of a node is suspended when that node is active, and is possibly frozen by the
activity of neighboring nodes. In case the back-off periods are exponentially
distributed, back-off freezing does not affect the activity process, so the CSMA
model is equivalent to a loss network. For generally distributed back-off periods
this distinction does become relevant, and no direct analogy with loss networks
applies. As we will show in the present paper, this difference plays a crucial
role, and it turns out that the stationary distribution of the joint activity pro-
cess in the CSMA network is insensitive with respect to the distribution of the
back-off periods as well. This holds for any interference graph, and irrespective
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of whether or not the back-off process of a node is frozen by the activity of its
neighbors.

The above-mentioned references further primarily focus on a saturated sce-
nario where nodes always have packets pending for transmission. The through-
put characteristics in such scenarios provide useful first-order estimates of the
system performance. In reality however, buffer contents fluctuate as packets are
accumulated and flushed over time, giving rise to queueing dynamics. In par-
ticular, the buffers may empty from time to time, and nodes will refrain from
competition for the medium during these periods. The resulting interaction
between the activity states and the buffer contents of the various nodes gives
rise to quite intricate behavior. In particular, the queueing dynamics entail
high-dimensional stochastic processes with infinite state spaces, which gener-
ally do not admit closed-form expressions for the stationary distribution. Even
just establishing the existence of a stationary distribution, i.e., obtaining the
stability conditions, is generally a challenging problem, and often is about as
hard as determining the entire joint distribution of the buffer contents. In the
present paper, we will identify necessary and sufficient conditions for stability
in a complete interference graph, and illustrate the difficulties that arise for
general interference graphs.

The above discussion pertains to the case where the mean back-off times
and the activation rates are assumed to be fixed. When the activation rates
are allowed to be adapted, there are simple necessary and sufficient conditions
for stability to be achievable. Several authors have proposed clever backlog-
based algorithms for adapting activation rates that achieve stability whenever
feasible to do so at all [13, 14, 22, 23, 26, 27]. The case of fixed activation rates
is nevertheless relevant, since in practice the adaptation of back-off parameters
involves a wide range of non-trivial implementation issues (finite-range precision,
communication overhead, information exchange), and hence it is important to
gain insight in the achievable performance of non-adaptive algorithms.

The paper is organized as follows. In Section 2 we present a detailed model
description and establish the insensitivity result for the stationary distribution
of the model under saturated conditions. It is proved that the stationary dis-
tribution is insensitive with respect to both the transmission durations and
back-off periods, regardless of whether or not the back-off process of a node is
frozen while its neighbors are active. We then turn to a non-saturated scenario,
and derive stability conditions for several cases of interest. Section 3 presents
a necessary stability condition for general interference graphs. In Section 4 the
stability region is characterized for full interference graphs, while Section 5 illus-
trates the difficulties that arise for partial interference graphs. In Section 6 we
make some concluding remarks and identify various topics for future research.

2 Insensitivity of the saturated model

We consider a network of several nodes sharing a wireless medium according
to a CSMA-type protocol. The network is described by an undirected graph
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(V, E) where the set of vertices V = {1, . . . , N} represents the various nodes
of the network and the set of edges E ⊆ V × V indicates which pairs of nodes
interfere. In other words, nodes that are neighbors in the interference graph are
prevented from simultaneous activity, and thus the independent sets correspond
to the feasible joint activity states. A node is said to be blocked whenever the
node itself or any of its neighbors is active, and unblocked otherwise.

In this section we consider a scenario where nodes are saturated, i.e., always
have packets to transmit. The transmission times of node i are independent and
generally distributed with mean 1/µi. After each transmission, a node starts a
back-off period. The back-off periods of node i are independent and generally
distributed with mean 1/νi. For compactness, denote σi = νi/µi.

When a node is in back-off, it becomes blocked when any of its neighbors ac-
tivate. We distinguish two scenarios, depending on whether or not the back-off
period is frozen in that case. In case the back-off period is frozen, it is resumed
as soon as the node becomes unblocked again. When the back-off period of a
node ends, it is unblocked and will start a transmission. In case the back-off
does not get frozen, the back-off period may end while the node is blocked, in
which case the node simply starts a new back-off period. Under the distribu-
tional assumptions below, the probability of the back-off periods of two nodes
ending simultaneously is equal to 0. Note that in case the back-off periods are
exponentially distributed, it does not matter whether or not the back-off periods
are frozen when a node becomes blocked, nor does it matter whether they are
resumed or resampled when a node becomes unblocked again. Equivalently, we
could then think of the potential activation epochs of a node as occurring ac-
cording to a Poisson process, and actual transmission periods starting whenever
a potential activation event occurs while the node is unblocked.

Define Ω ⊆ {0, 1}N as the set of all feasible joint activity states of the
network, i.e., the incidence vectors of the independent sets of the interference
graph. Let X(t) ∈ Ω represent the activity state of the network at time t,
with Xi(t) indicating whether node i is active at time t or not. Denote by
π(x) = limt→∞ P{X(t) = x} the limiting probability that the joint activity
state is x ∈ Ω.

We assume all back-off times and transmission durations to have phase-type
distributions, and are interested in the limiting distribution of the Markov pro-
cess that keeps track of the phase of each node. Using this limiting distribution,
and the fact that phase-type distribution are dense in the space of all proba-
bility distributions with positive support, we will show that π is insensitive to
the distributions of the back-off times and the transmission durations, and only
depends on these distributions through the σi.

Let the back-off process of node i have a phase-type distribution with mi +1
phases, where states 1, . . . , mi are transient, and state mi +1 is absorbing. The
corresponding starting probabilities are α1, . . . , αmi+1, and the transition rates
are given by qkl. Similarly, the transmission times of node i have a phase-type
distribution with ni+1 phases (with state ni+1 absorbing), starting probabilities
γ1, . . . , γni+1 and transition rates rkl. Note that αmi+1 (γni+1) represents the
probability of a back-off period (transmission) of zero length.
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Let βk, k = 1, . . . , mi, represent the fraction of time that the back-off process
of a node is in phase k, and let ηk, k = 1, . . . , ni, represent the fraction of time
that the transmission process of a node is in phase k. The fractions βk and ηk

follow from the equations (8) and (9) in Section 7. We study the Markov process
that keeps track of the activity of all nodes. Let ω = (ω1, . . . , ωN ) denote the
state of the system. We use the convention that ωi = −k when node i is in back-
off phase k, and ωi = k when node i is in the k-th transmission phase. So ωi

assumes values in Ωi = {−mi, . . . ,−1}∪{1, . . . , ni}, and the state space ΩPH of
the Markov process of the joint activity state satisfies ΩPH ⊆ Ω1×· · ·×ΩN . The
limiting distribution πPH of this Markov process has the following product-form
solution:

Lemma 1. Let the back-off times and transmission durations have a phase-type
distribution. Then, regardless of back-off freezing,

πPH(ω) = Z−1
∏

i:ωi≤−1

β−ωi

∏

i:ωi≥1

σiηωi
, ω ∈ ΩPH, (1)

where Z is the normalization constant.

The proof of Lemma 1 is presented in Section 7.2. In this proof we treat the
freezing and non-freezing systems in parallel, and we demonstrate that freezing
indeed has no impact on the stationary distribution.

Using Lemma 1 we can now show that the node activity is insensitive to the
distributions of the back-off times and transmission durations.

Theorem 1. Let the back-off times and transmission durations have a phase-
type distribution. Then, regardless of back-off freezing,

π(x) = Z−1
N
∏

i=1

σxi

i , x ∈ Ω, (2)

where Z is the normalization constant.

Proof. Denote by ΩPH(x) the set of all states ω ∈ ΩPH that correspond to x ∈ Ω,
i.e.,

ΩPH(x) = {ω ∈ ΩPH | ∀i : ωi ≤ −1 if xi = 0, ωi ≥ 1 if xi = 1}.

Then

π(x) =
∑

ω∈ΩPH(x)

πPH(ω) = Z−1
∑

ω∈ΩPH(x)

∏

i:ωi≤−1

βωi

∏

i:ωi≥1

σiηωi
= Z−1

N
∏

i=1

σxi

i ,

as
∑

k βk = 1 and
∑

k ηk = 1.

The result in Theorem 1 is well known for exponentially distributed back-
off periods, and follows in that case from the connection with loss networks.
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For generally distributed back-off periods and back-off freezing, partial proof
arguments are presented in [21]. In the case without back-off freezing, the
insensitivity result may be directly proven by representing the dynamics as
those observed in an Engset network as considered in [3], Section 5.3. The
Engset network is constructed from the interference graph (V, E): the links
in the Engset network are of unit capacity and correspond to the undirected
edges in the graph. Each node i ∈ V is then represented as a customer in the
Engset network which, when active, simultaneously uses links {i, j} for all j
such that {i, j} ∈ E. Each customer alternates between active and inactive
phases. Finally, without back-off freezing, a customer who wishes to become
active, is blocked if one of the required links is occupied (i.e., the corresponding
node has an active neighbor), in which case the customer starts a new inactivity
period (back-off). This corresponds to the so-called jump-over retrial behavior
considered in [3], and insensitivity follows. In the case of back-off freezing, it does
not seem possible to apply such a representation, and our proof of insensitivity
is new.

3 A necessary stability condition

In the previous section, we considered a scenario with saturated nodes that
always have packets to transmit. We now turn to a scenario where packets are
generated over time and buffers may occasionally be empty. Specifically, packets
arrive at node i according to a renewal process with mean interarrival time
1/λi. Nodes compete for access to the medium as before, with the modification
that when unblocked nodes have no packets to transmit at the time a back-
off period ends, they simply start a new back-off period. Once a packet has
been transmitted, it leaves the system. The results in this section are valid
irrespective of whether or not the back-off process is frozen.

Denote by ρi = λi/µi the traffic intensity at node i, so ρi is the fraction
of time that this node has to be active in order to sustain the arrival rate λi.
Define θi as the throughput of node i, i.e., the expected number of transmissions
per unit of time, and denote by τi the fraction of time that node i is active, so
θi = µiτi. Denote by τ∗

i =
∑

x∈Ω:xi=1 π(x) and θ∗i = µiτ
∗
i the fraction of time

node i is active and throughput of node i, respectively, in the regime where all
nodes are saturated. We have by definition θi ≤ λi, with equality when node i
is stable.

The next proposition provides a simple necessary condition for stability.

Proposition 1. If λi > θ∗i for all i = 1, . . . , N , then all the nodes are unstable.

Proof. We will show that all the nodes are unstable in the sense that each of the
associated queues only empties finitely often, but it can in fact be established
that the queue of node i grows in a linear manner at rate λi − θ∗i in the long
run. For convenience, we restrict the proof to a Poisson arrival process, but the
arguments extend to general renewal arrival processes.
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The key observation is that once a queue empties, with non-zero probability
the system may enter a state with all queues non-empty. Since all queues have
positive drift in saturated conditions, all queues remain non-empty with non-
zero probability. Thus, every time a queue empties, it may never do so again
with probability bounded away from zero, and hence the queue will only empty
finitely often.

In order to formalize the above observation, let Qj(t) be the number of
packets pending for transmission or in the process of being transmitted at node j
at time t. Let Ti,n be the time that the queue of node i empties for the n-th
time. Let Ui,n := inf{t ≥ Ti,n : Qj(t) ≥ 1 for all j = 1, . . . , N} be the first time
after Ti,n when all queues are non-empty. It is easily verified that there exists
b1 > 0 such that P {Ui,n < Ti,n+1} > b1 for all n.

Let Aj(s, t) be the number of packet arrivals at node j during the time
interval [s, t] and Bj(s, t) the number of packet transmissions at node j during
the time interval [s, t], so

Qj(t) = Qj(s) + Aj(s, t) − Bj(s, t). (3)

Moreover, denote by B∗
j (Ui,n, t) the number of packet transmissions at node j

during the time interval [Ui,n, t] in a modified version of the network where the
various nodes are in the exact same state at time Ui,n and are all assumed to
be saturated from that time onward. Define

Vi,j,n := sup{t : Qj(s) ≥ 1 ∀s ∈ [Ui,n, t]},
Wi,j,n := sup{t : Aj(Ui,n, s) − B∗

j (Ui,n, s) ≥ 0 ∀s ∈ [Ui,n, t]},

and denote Vi,n := minj=1,...,N Vi,j,n and Wi,n := minj=1,...,N Wi,j,n.
By definition, Qj(t) ≥ 1 for all t ∈ [Ui,n, Vi,n], j = 1, . . . , N . Thus for all

nodes j we have Bj(Ui,n, t) = B∗
j (Ui,n, t) for all t ∈ [Ui,n, Vi,n]. From (3) with

s = Ui,n we see

Qj(t) ≥ 1+Aj(Ui,n, t)−Bj(Ui,n, t) = 1+Aj(Ui,n, t)−B∗
j (Ui,n, t), t ∈ [Ui,n, Vi,n],

so Vi,n ≥ Wi,n. Since 1
t E {Aj(Ui,n, Ui,n + t)} = λj > θ∗j = limt→∞

1
t E

{

B∗
j (Ui,n, Ui,n + t)

}

,
it follows that there exists b2 > 0 such that P {Vi,n = ∞} ≥ P {Wi,n = ∞} > b2

for all n.
In conclusion, the probability that the queue of node i never empties again

after it has emptied for the n-th time, is bounded from below by b = b1b2 > 0.
Thus, the total expected number of times that the queue of node i empties is
bounded from above by

∑∞
n=0(1− b)n = 1/b, which means that it only empties

finitely often with probability 1.

Proposition 1 establishes a connection between the throughput in the satu-
rated model and stability in the non-saturated model. Recall that the saturation
throughput follows directly from θ∗i = µi

∑

x∈Ω:xi=1 π(x), with π(·) the limiting
distribution in Theorem 1.

It might seem natural that a dual property to Proposition 1 holds as well,
i.e., all the nodes are stable if λi < θ∗i for all i = 1, . . . , N . It is indeed the case
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that at least one of the nodes must be stable, as otherwise the network behaves
as in the saturated regime, and each node i would have a throughput θi = θ∗i .
This contradicts the fact that θi ≤ λi < θ∗i for all nodes. However, it is not the
case in general that all the nodes are stable if λi < θ∗i for all i = 1, . . . , N . In
order to see that, we next consider an illustrative example.

3.1 Example: ring topology

Consider a 4-node ring topology, i.e., N = 4 and E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}.
Suppose that νi ≡ ν and µi ≡ 1, so that θ∗i ≡ θ∗ = ν(1 + ν)/(1 + 4ν + 2ν2).
Also, let λ1 = λ2 = λ3 ≡ λ < θ∗, and λ4 = 0. Assume that the arrival pro-
cesses are Poisson and that the back-off periods and transmission durations are
exponentially distributed.

First observe that both nodes 1 and 3 must be stable. In case either of these
nodes were unstable, the fraction of time it would be active is bounded from
below by

(1− τ2)
ν

1 + ν
≥ (1− λ)

ν

1 + ν
≥

(

1− ν(1 + ν)

1 + 4ν + 2ν2

) ν

1 + ν
>

ν(1 + ν)

1 + 4ν + 2ν2
> λ,

which yields a contradiction.
A ‘busy period’ of node 2 is said to begin when node 2 starts a transmission

after at least one transmission of nodes 1 and/or 3 and to end when node 2 com-
pletes a transmission which is followed by at least one transmission of nodes 1
and/or 3. The time period U between two successive busy periods of node 2
is referred to as an ‘idle period’ of node 2. Denote by V the amount of time
from the start of a busy period of node 2 until the first packet arrival at node 1
or 3 and by W the possible remaining transmission time of node 2 after V . The
number of further transmissions of node 2 after W during that busy period is
bounded from above by a geometrically distributed random variable with pa-
rameter 1/2. Thus the total amount of time T that node 2 is active during the
busy period satisfies E {T} ≤ E {V } + E {W} + 1 ≤ 1

2λ + 2. Now distinguish
two cases: (i) E {U} ≥ E {T}+ 1; and (ii) E {U} ≤ E {T}+ 1, and denote by Z
the amount of time that node 2 is idle during the busy period. In case (i), we
have

τ2 =
E {T} − E {Z}

E {T } + E {U} + E {Z} ≤ E {T}
E {T} + E {U} ≤

1
2λ + 2
1
λ + 5

=
1 + 4λ

2 + 10λ
.

It is easily verified that the latter upper bound is less than λ when λ > (1 +√
11)/10, and thus node 2 must be unstable when λ > (1 +

√
11)/10.

In case (ii), note that by the time the last transmission of either node 1 or
node 3 during an idle period of node 2 ends, one of these two has been inactive
for at least an expected amount of time 1. Thus the fraction of time υ that
either nodes 1 and 2 or nodes 2 and 3 are inactive, is bounded from below as

υ ≥ 1 + E {Z}
E {T} + E {U} + E {Z} ≥ 1

E {T} + E {U} ≥ 1
1
λ + 5

=
λ

1 + 5λ
,
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where the second inequality follows from the fact that E {T} + E {U} ≥ 1.
Denote by υ12 and υ23 the fraction of time that nodes 1 and 2 are inactive, and
the fraction of time that nodes 2 and 3 are inactive, respectively. Then

min{τ1+τ2, τ2+τ3} = min{1−υ12, 1−υ23} = 1−max{υ12, υ23} ≤ 1−1

2
(υ12+υ23) ≤ 1−1

2
υ ≤ 2 + 9λ

2 + 10λ
.

It is easily verified that the latter upper bound is less than 2λ when λ > (5 +√
185)/40. Since nodes 1 and 3 are stable, it follows that node 2 must be

unstable when λ > (5 +
√

185)/40.
We conclude that in either case node 2 is unstable when λ > (5+

√
185)/40 <

0.47, regardless of the value of ν. However, θ∗ approaches 1/2 for ν sufficiently
large, and hence the condition λ < θ∗ is not sufficient for stability.

Figure 1 shows the stability region (obtained by simulation) of the 4-node
ring network as a function of λ2 and λ4, for µ = 1 and ν = 10. For arrival
rates outside of the area demarcated by the solid line, at least one node is
unstable. The area enclosed by the dashed line represents all rates such that
max{λ2, λ4} < θ∗ = 110/241 ≈ 0.456. We compare λ1 = λ3 = 0.3 (Figure 1(a))
and λ1 = λ3 = 0.45 (Figure 1(b)), so in both cases we have max{λ1, λ3} < θ∗.
In Figure 1(a) we see that max{λ2, λ4} < θ∗ is sufficient for stability. However,
we see from Figure 1(b) that as λ1 and λ3 increase, the stability region decreases
in size and no longer includes all max{λ2, λ4} < θ∗.

Observe that the range of values of λ2 that stabilize the system grows with
λ4, so nodes 2 and 4 benefit from each other’s activity. This was already hinted
at in the above instability example, where it was shown that node 2 may become
unstable when node 4 is removed from the network. Indeed, increasing activity
from nodes 2 and 4 forces nodes 1 and 3 to operate in a more efficient fashion,
i.e., simultaneous activity, thus increasing spatial reuse.

4 Stability for full interference graphs

In Section 3 we saw that although necessary stability conditions can be obtained
by considering the saturated model, the case of a ring network already gives
rise to intricate stability conditions. The case of a full interference graph is
considerably simpler, and the stability conditions can be explicitly derived, as
is shown next. In the remainder, we restrict ourselves to the case of back-off
freezing.

We assume that all nodes mutually interfere, so at most one node can be
active at any time. Without loss of generality assume that the nodes are ordered
such that

λ1

ν1
≤ λ2

ν2
≤ · · · ≤ λN

νN
.

Denote

τ̂i =
σi

1 +
∑N

j=i σj

(

1 −
i−1
∑

j=1

ρj

)

.
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λ2

λ4

(a) λ1 = λ3 = 0.3

λ2

λ4

(b) λ1 = λ3 = 0.45

Figure 1: The stability region of a 4-node ring network.

These τ̂i may be interpreted as the fraction of time that node i is active, assum-
ing that nodes 1, . . . , i− 1 are all stable, while nodes i, . . . , N are all saturated.
Also, define imax = max{i ∈ {1, . . . , N} : ρi < τ̂i}, with the convention that
imax = 0 when ρi > τ̂i for all i = 1, . . . , N , and assume ρimax+1 > τ̂imax+1 in
case imax < N . The interpretation of τ̂i suggests that node imax is the stable
node with the highest index, as will be shown in the following theorem.

Theorem 2. Nodes 1, . . . , imax are stable, while nodes imax + 1, . . . , N are un-
stable.

Proof. For compactness, denote by τ0 the fraction of time that all nodes are
inactive. As noted in Section 3, we have that θi ≤ λi, with equality when
node i is stable, and thus τi ≤ ρi, with equality when node i is stable. In view
of the back-off freezing, the back-off process of node i is only running when all
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nodes are inactive, and hence we have τ0 = γi/νi, with γi the expected number of
back-offs of node i per unit of time. (Without back-off freezing, this relationship
still holds for exponential back-off time distributions, but for general back-off
time distributions there does not seem to be a simple connection between γi

and τ0 in that case.) By definition, the probability that node i has a packet
to transmit when a back-off period ends, equals pi = θi/γi. Combining these
two relationships, we obtain the identity θi = piνiτ0 and thus τi = piσiτ0. In
particular, τi = σiτ0 when node i is unstable. Hence ρi ≤ σiτ0, i.e., λi ≤ νiτ0,
when node i is stable, while ρi ≥ σiτ0, i.e., λi ≥ νiτ0 when node i is unstable.
It follows that the set of stable nodes is of the form {1, . . . , i∗} for some i∗ ∈
{0, . . . , N}. It remains to be shown that i∗ = imax.

First observe that
∑N

i=0 τi = 1, τi = ρi for all i = 1, . . . , i∗, and τi = σiτ0 for
all i = i∗ + 1, . . . , N . This yields

τ0 =
1

1 +
∑N

j=i∗+1 σj

(

1 −
i∗

∑

i=1

ρi

)

.

Further observe the equivalence relation

ρi >
σi

1 +
∑N

j=i σj

(

1 −
i−1
∑

j=1

ρj

)

⇐⇒ ρi + ρi

N
∑

j=i

σj > σi − σi

i−1
∑

j=1

ρj

⇐⇒ ρi + ρi

N
∑

j=i+1

σj > σi − σi

i
∑

j=1

ρj ⇐⇒ ρi >
σi

1 +
∑N

j=i+1 σj

(

1 −
i

∑

j=1

ρj

)

.

Since the nodes are indexed such that ρi/σi = λi/νi ≤ ρi+1/σi+1 = λi+1/νi+1,
we obtain the property

ρi > τ̂i =⇒ ρi+1 > τ̂i+1. (4)

Now suppose that 0 ≤ i∗ < imax. The fact that node i∗ + 1 ≤ N is unstable
means that

ρi∗+1 > τi∗+1 = σi∗+1τ0 =
σi∗+1

1 +
∑N

j=i∗+1 σj

(

1 −
i∗

∑

i=1

ρi

)

= τ̂i∗+1.

Property (4) then implies that ρi > τ̂i for all i = i∗+1, . . . , N , which contradicts
imax ≥ i∗ + 1, and hence we must have i∗ ≥ imax.

The fact that node i∗ is stable means that

ρi∗ = τi∗ ≤ σi∗τ0 =
σi∗

1 +
∑N

j=i∗+1 σj

(

1 −
i∗

∑

i=1

ρi

)

.

Property (4) then implies that

ρi∗ ≤ σi∗

1 +
∑N

j=i∗ σj

(

1 −
i∗−1
∑

i=1

ρi

)

= τ̂i∗ ,

and hence we must have imax ≥ i∗.

11



The result in Theorem 2 in fact holds for any stationary traffic process as
long as the service is infinitely divisible, with the ρi values representing the
mean amount of traffic generated per time unit as measured in units of trans-
mission time. It is worth observing that the form of the stability conditions
is rather reminiscent of those for polling systems with ki-limited or Weighted
Fair Queueing (WFQ) service disciplines [11] and Generalized Processor Sharing
(GPS) queues [6, 20].

Noting that imax = N if and only if ρi < τ̂i for all i = 1, . . . , N , Theorem 2
in particular gives the following necessary and sufficient condition for all nodes
to be stable.

Corollary 1. All nodes are stable if and only if ρi < τ̂i for all i = 1, . . . , N .

The explicit and relatively simple form of the stability condition established
in Corollary 1 is highly remarkable as it starkly contrasts with those for slotted
Aloha systems, which even for a complete interference graph with three or more
nodes have remained largely elusive, see for instance [1, 29, 30] for bounds and
partial results.

The next result shows that for full interference graphs, the dual property of
Proposition 1 does hold (which in general is not the case; see Section 3.1).

Corollary 2. All nodes are stable if λi < θ∗i for all i = 1, . . . , N .

Proof. For full interference graphs we have that τ∗
i = σi/(1 +

∑N
i=1 σi). Note

that λi < θ∗i for all i = 1, . . . , N implies ρN < τ∗
N and τ∗

N = (1 − τ∗
1 − · · · −

τ∗
N−1)

σN

1+σN
< (1 − ρ1 − · · · − ρN−1)

σN

1+σN
= τ̂N . This yields imax = N , which

completes the proof.

We conclude this section by two further consequences of Theorem 2 that are
helpful when only the total load

∑N
i=1 ρi is known. Denote σmin = mini=1,...,N σi

and σmax = maxi=1,...,N σi.

Corollary 3. All nodes are stable if
∑N

i=1 ρi < σmin

1+σmin
. This condition is sharp

in the sense that if ρ1 = · · · = ρN−1 = 0 and σN = σmin, then ρN < σmin

1+σmin
is

necessary for node N to be stable.

Corollary 4. At least one node is unstable if
∑N

i=1 ρi > σmax

1/N+σmax
. This con-

dition is sharp in the sense that if ρ1 = · · · = ρN = ρ and σ1 = · · · = σN = σ,
then ρ < σ

1+Nσ is sufficient for all nodes to be stable.

5 Partial interference graphs

In Section 4 we focused on the case of a full interference graph, and derived
explicit necessary and sufficient conditions for stability. In this section we al-
low for partial interference graphs, and will show that in general the stability
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conditions cannot be represented in such an explicit form. In particular, we
illustrate the difficulties that arise in star topologies, and then argue that all
(non-complete) graphs contain such a star topology as an induced subgraph.

5.1 Star topologies

Consider a star topology, where the leaf nodes 1, . . . , N − 1 all interfere with
the root node N , but not with each other, i.e., E = {1, . . . , N − 1}× {N}. The
stability region may then be characterized by:

ρi < (1 − ρN )
σi

1 + σi
, i = 1, . . . , N − 1, (5)

and
ρN < τ̂N , (6)

with τ̂N representing the fraction of time that node N would be active if it were
saturated.

By definition, inequality (6) is necessary and sufficient for the root node N to
be stable, and given that node N is stable, the inequalities (5) are necessary and
sufficient for all the leaf nodes 1, . . . , N−1 to be stable as well. The boundary of
the stability region consists of a total of N segments, with N−1 linear segments
defined by the inequalities (5), where the corresponding leaf node is critically
loaded, and 1 segment which is not likely to be linear in general, described by
the inequality (6), where the root node is critically loaded.

There does not seem to be a closed-form expression available for τ̂N in gen-
eral, in fact not even for N = 3, so that the inequality (6) is not so explicit.
The next lemma however provides a useful closed-form lower bound for τ̂N .

Corollary 5. Assuming exponential back-off times and transmission durations,
we have τ̂N ≥ τ∗

N , with

τ∗
N =

σN

σN +
∏N−1

i=1 (1 + σi)
.

Proof. Noting that the star topology is a bipartite graph, the statement of
the corollary follows directly from Proposition 2 (presented in Section 7), with
V1 = {N} and V2 = {1, . . . , N − 1}.

Corollary 5 implies that as long as ρN < τ∗
N , the root node N is guaranteed

to be stable, and thus the conditions (5) are necessary and sufficient for all the
leaf nodes 1, . . . , N − 1 to be stable as well. Noting that τ∗

i = (1− τ∗
N) σi

1+σi
, the

inequalities (5) may be expressed as

ρi

τ∗
i

<
1 − ρN

1 − τ∗
N

, i = 1, . . . , N − 1,

or

max
i=1,...,N−1

ρi

τ∗
i

<
1 − ρN

1 − τ∗
N

,

13



or

max
i=1,...,N−1

ρi(1 + σi)

σi
< 1 − ρN .

Thus simple necessary and sufficient conditions for stability arise when the
traffic load of the root node N is sufficiently low, in particular when the ratio
of the traffic load ρN to the saturated throughput τ∗

N is relatively low com-
pared to that of the leaf nodes 1, . . . , N − 1. Specifically, suppose that ρN

τ∗

N

≤
maxi=1,...,N−1

ρi

τ∗

i

, and let jmax = argmaxj=1,...,N−1
ρj

τ∗

j

. Then
ρjmax

τ∗

jmax

< 1 − ρN

is a simple necessary and sufficient condition for stability of all nodes. In or-
der to prove that, it suffices to show that the latter condition implies that
ρN < τ∗

N . Suppose that is not the case, then maxi=1,...,N−1
ρi

τ∗

i

≥ 1, so the con-

dition maxi=1,...,N−1
ρi

τ∗

i

< 1−ρN

1−τ∗

N

implies 1−ρN

1−τ∗

N

> 1, i.e., ρN < τ∗
N . In particular,

if ρN

τ∗

N

= maxi=1,...,N−1
ρi

τ∗

i

, then ρN < τ∗
N is a simple necessary and sufficient

condition for the stability of all nodes.

A further observation is that ρi < τ∗
i , i = 1, . . . , N , is a sufficient condition

for all nodes 1, . . . , N to be stable. It might seem that this is a trivial fact,
which in fact should hold for any interference graph, but that is not the case
as was illustrated in the counterexample in Section 3.1. However, an explicit
formulation of the necessary and sufficient stability condition for star networks
stays beyond our reach, as τ̂N in (6) is seemingly untractable.

5.2 Stability conditions for general graphs

The fact that an explicit condition for stability in the star network appears
elusive, illustrates the difficulty of obtaining the stability condition for general
networks. Indeed, an explicit characterization of the stability region is difficult
for any network that is not a complete graph, for which the stability condition
was explicitly obtained in Theorem 2.

(a) A 7-node complete
graph

(b) A 7-node graph con-
taining a 3-node star sub-
graph

Figure 2: A complete graph and a 3-node star subgraph.
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One way to argue this is to show that any network is either a complete
graph or contains a 3-node star network as a subgraph. In order to see that,
we may focus on a connected graph. Consider an arbitrary node in the graph,
say node 1, as well as the set C1 of all of its neighbors. If one of the nodes in
the set C1 has a neighbor that is not node 1 or in the set C1, then this induces
a 3-node star network. Otherwise, node 1 along with the nodes in the set C1

make up the entire graph (since the graph is connected). If the nodes in the
set C1 are not fully connected, then this induces a 3-node star network again.
Otherwise, node 1 along with the nodes in the set C1 are fully connected, and
the graph is complete. This argument is illustrated in Figure 2.

Hence, the fact that the 3-node star network (for which the stability condi-
tion does not seem to admit an explicit characterization) is contained in every
non-complete network, provides strong indication of the hardness of the problem
of determining the stability region for general networks. That is, characterizing
the set of traffic vectors (ρ1, . . . , ρN) for which the system is stable is challenging
for given activation rates ν1, . . . , νN .

In contrast, determining whether there exist activation rates ν1, . . . , νN for
which the system is stable for a given traffic vector (ρ1, . . . , ρN ) is relatively
easy. Specifically, in case of a star topology, such activation rates exist if and
only if ρN + maxi=1,...,N−1 ρi < 1. In general, such activation rates exist if and
only if the traffic vector (ρ1, . . . , ρN ) belongs to the interior of conv(Ω). The
latter property in fact serves as the basis for various adaptive strategies that
achieve stability whenever feasible at all [13, 14, 22, 23, 26, 27].

6 Conclusion

We examined the insensitivity and stability of CSMA networks. We proved that
when all nodes are saturated, the stationary distribution of these networks is
insensitive to the distribution of both the transmission durations and the back-
off times. The insensitivity holds irrespective of whether or not an active node
freezes the back-off process of neighboring nodes.

We then turned to a situation where nodes are subject to packet dynamics,
and established a simple necessary condition for stability for general interference
graphs. Explicit necessary and sufficient stability conditions were derived for
the case of complete interference graphs. Moreover, we illustrated the difficulty
of deriving similar conditions for partial interference graphs.

In the above analysis, we have used a continuous-time model to capture
CSMA dynamics. In practice however, time is slotted and back-off periods are
expressed in numbers of slots. As a consequence, neighboring nodes may start
transmitting simultaneously, leading to a collision. Extending our results to
the case where collisions may occur is difficult. In the saturated scenario how-
ever, if we assume that when two nodes are involved in a collision, they start
and end the corresponding transmissions at the same epochs, then insensitiv-
ity can be shown using the Engset network representation (see the discussion
following Theorem 1) only in the case without back-off freezing. It remains un-
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clear whether insensitivity holds when time is slotted in the case with back-off
freezing. Regarding stability issues, adding collisions greatly complicates the
analysis even in the case of networks with full interference (similar to the clas-
sical problem of deriving network stability conditions under Aloha protocols).
In Section 4, the absence of collisions simplifies the stability analysis, because
in this case, packets are successfully being transmitted whenever the medium is
busy.

7 Auxiliary results and remaining proofs

7.1 A stochastic comparison result

Consider a bipartite graph such that V = V1 ∪ V2, with V1 ∩ V2 = ∅ and E ⊆
V1 × V2. We will show that in the situation where all the nodes are saturated,
the thoughputs of the nodes in V1 and V2 are lower and higher respectively,
then in case only the nodes in V1 are saturated. Let V1 ⊆ {1, . . . , N} and define
θi(V1) as the throughput of node i in the modified version of the network where
the nodes in V1 are saturated.

Proposition 2. Assuming exponential back-off times and transmission dura-
tions, we have θi(V1) ≥ θ∗i for all i ∈ V1 and θi(V1) ≤ θ∗i for all i ∈ V2.

Proof. The proof relies on stochastic coupling [25]. Let Nλ
i (t), i ∈ V2, Nµ

i (t),
i = 1, . . . , N , and Nν

i (t), i = 1, . . . , N , be independent Poisson processes of rates
λi, µi, and νi, respectively. We will use these Poisson processes to construct
processes X(t) = (X1(t), . . . , XN(t)) and Y (t) = (Yi(t))i∈V2

, representing the
activity process and the queue length process in the scenario where the nodes
i ∈ V1 are saturated, and X∗(t) = (X∗

1 (t), . . . , X∗
N(t)) representing the activity

process in case all the nodes are saturated. We assume that Xi(0) ≥ X∗
i (0)

for all i ∈ V1 and Xi(0) ≤ X∗
i (0) for all i ∈ V2, and allow Yi(0), i ∈ V2, to be

arbitrary. We will prove that Xi(t) ≥ X∗
i (t) for all i ∈ V1 and Xi(t) ≤ X∗

i (t)
for all i ∈ V2. Since the stationary distribution of the processes X(t) and X∗(t)
does not depend on the initial state, and θi(V1) = µiE {Xi} = µiP {Xi = 1} and
θ∗i = µiE {X∗

i } = µiP {X∗
i = 1}, the statement of the proposition then follows.

In order to prove the above inequalities, we will use induction. Let t be a
time epoch at which an event occurs in one of the Poisson processes. We will
show that if the inequalities hold at time t−, that they then continue to hold
at time t+. We distinguish three cases, depending on in which of the various
Poisson processes the event occurs.

We first consider an event in the process Nλ
i (t), reflecting a packet arrival

at one of the non-saturated nodes i ∈ V2. In that case, we set Yi(t
+) = Yi(t

−)+
1. Note that the values of Xi(t) and X∗

i (t) are not affected, and hence the
inequalities trivially continue to be valid. Second, we consider an event in the
process Nµ

i (t), corresponding to a potential transmission completion at node i.
In that case, we set Xi(t

+) = X∗
i (t+) = 0, and in case i ∈ V2,

Yi(t
+) = Yi(t

−) − Xi(t
−), (7)

16



reflecting a potential packet departure. Since Xi(t
+) = X∗

i (t+) = 0, the in-
equalities remain trivially satisfied. Third, we consider an event in the process
Nν

i (t), corresponding to a potential activation at node i. In that case we set
X∗

i (t+) = 1 if X∗
j (t−) = 0 for all j ∈ Ci, with Ci representing the set of neigh-

bors of node i. Moreover, in case i ∈ V1, we set Xi(t
+) = 1 if Xj(t

−) = 0 for
all j ∈ Ci, while in case i ∈ V2, we set Xi(t

+) = 1 if Yi(t
−) ≥ 1 and Xj(t

−) = 0
for all j ∈ Ci.

The fact that for i ∈ V1, Ci ⊆ V2, and Xj(t
−) ≤ X∗

j (t−) for all j ∈ V2

implies that X∗
i (t+) = 1 forces Xi(t

+) = 1. Likewise, the fact that for i ∈ V2,
Ci ⊆ V1, and Xj(t

−) ≥ X∗
j (t−) for all j ∈ V1 implies that Xi(t

+) = 1 forces
X∗

i (t+) = 1. Hence, the inequalities continue to hold. Also, note that Xi(t) = 0
whenever Yi(t) = 0, or equivalently, Xi(t) = 1 can only occur when Yi(t) ≥ 1,
so that (7) leaves Yi(t) ≥ 0 for all t ≥ 0.

It is easily verified that viewed in isolation, the processes X(t) and Y (t) as
constructed above obey the same statistical laws as the activity process and
the queue length process in the scenario where the nodes i ∈ V1 are saturated,
while the process X∗(t) is governed by the same statistical laws as the activity
process in case all the nodes are saturated.

7.2 Proof Lemma 1

Proof. We have that

βu

(

qu,mi+1

(

1− αu

1 − αmi+1

)

+

mi
∑

l=1
l 6=u

qu,l

)

=

mi
∑

l=1
l 6=u

βl

(

ql,u+ql,mi+1
αu

1 − αmi+1

)

, (8)

with
∑mi

u=1 βu = 1, and

ηu

(

ru,ni+1

(

1 − γu

1 − γni+1

)

+

ni
∑

l=1
l 6=u

ru,l

)

=

ni
∑

l=1
l 6=u

ηl

(

rl,u + rl,ni+1
γu

1 − γni+1

)

, (9)

with
∑ni

u=1 ηu = 1. It is readily seen that

νi = (1 − αmi+1
)−1

mi
∑

u=1

βuqu,mi+1, (10)

µi = (1 − γni+1
)−1

ni
∑

u=1

ηuru,ni+1. (11)

In order to show that the πPH in (1) is indeed the limiting distribution of the
Markov process of interest, it suffices to show that πPH satisfies the global
balance equations of this process. However, rather than doing this directly, we
study for each node i the partial balance equations that equate the rate into
and out of a state by changes to this node only. As the global balance equations
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can be obtained by summing these partial balance equations over all nodes, it
is sufficient to show that πPH satisfies all partial balance equations.

Let Ci denote the set of neighbors of node i, and define C+
i = Ci ∪ {i}. Let

T i
k(ω) denote the operator that changes the i-th component of ω to k, while

leaving intact the other components. When node i is inactive and unblocked we
see the following transitions to node i (irrespective of freezing)

πPH(ω)

(

qωi,mi+1

(

1 − αωi
γni+1

1 − αmi+1γni+1

)

+

mi
∑

k=1
k 6=ωi

qωi,k

)

=

ni
∑

k=1

πPH(T i
k(ω))rk,ni+1

αωi

1 − αmi+1γni+1

+

mi
∑

k=1
k 6=ωi

πPH(T i
−k(ω))

(

qk,ωi
+ qk,mi+1

αωi
γni+1

1 − αmi+1γni+1

)

, ∀ω s.t. ωj ≤ −1 ∀j ∈ C+
i .

(12)

If node i is active we have (irrespective of freezing)

πPH(ω)

(

rωi,ni+1

(

1 − αmi+1γωi

1 − αmi+1γni+1

)

+

ni
∑

k=1
k 6=ωi

rωi,k

)

=

mi
∑

k=1

πPH(T i
−k(ω))qk,mi+1

γωi

1 − αmi+1γni+1

+

ni
∑

k=1
k 6=ωi

πPH(T i
k(ω))

(

rk,ωi
+ rk,ni+1

αmi+1γωi

1 − αmi+1γni+1

)

, ∀ω s.t. ωi ≥ 1. (13)

The final balance equation concerns all states where node i is inactive, but at
least one of its neighbors is active, so node i is blocked. The case of back-off
freezing yields a trivial partial balance equation, as in this case no such state
can be entered or exited due to changes in the state of node i. On the other
hand, when the back-off process of blocked nodes is not frozen, the state can
change due to a transition within the back-off process of node i:

πPH(ω)

(

qωi,mi+1

(

1 − αωi

1 − αmi+1

)

+

mi
∑

k=1
k 6=ωi

qωi,k

)

=

mi
∑

k=1
k 6=ωi

πPH(T i
−k(ω))

(

qk,ωi
+ qk,mi+1

αωi

1 − αmi+1

)

, ∀ω s.t. ωi ≤ −1, ∃j ∈ Ci : ωj ≥ 1.

(14)

We now proceed to show that πPH from (1) indeed satisfies (12)-(14). Sub-
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stituting πPH into (12), and canceling common terms yields

βωi

(

qωi,mi+1

(

1 − αωi
γni+1

1 − αmi+1γni+1

)

+

mi
∑

k=1
k 6=ωi

qωi,k

)

=

mi
∑

k=1
k 6=ωi

βk

(

qk,ωi
+ qk,mi+1

αωi
γni+1

1 − αmi+1γni+1

)

+ σi

ni
∑

k=1

ηkrk,ni+1
αωi

1 − αmi+1γni+1
.

By (11), and adding βωi
qωi,mi+1

(

αωi
γni+1

1−αmi+1γni+1
− αωi

1−αmi+1

)

on both sides, we

have

βωi

(

qωi,mi+1

(

1 − αωi

1 − αmi+1

)

+

mi
∑

k=1
k 6=ωi

qωi,k

)

=

mi
∑

k=1
k 6=ωi

βkqk,ωi

+

mi
∑

k=1

βkqk,mi+1
αωi

γni+1

1 − αmi+1γni+1
+ νi

αωi
(1 − γni+1)

1 − αmi+1γni+1
− βωi

qωi,mi+1
αωi

1 − αmi+1
.

By (10) and rearranging on both sides we get

βωi

(

qωi,mi+1

(

1 − αωi

1 − αmi+1

)

+

mi
∑

k=1
k 6=ωi

qωi,k

)

=

mi
∑

k=1
k 6=ωi

βk

(

qk,ωi
+ qk,mi+1

αωi

1 − αmi+1

)

+ νi
αωi

γni+1(1 − αmi+1)

1 − αmi+1γni+1
+ νi

αωi
(1 − γni+1)

1 − αmi+1γni+1
− νi

αωi

1 − αmi+1
(1 − αmi+1).

Canceling the remaining terms we get (8), so πPH indeed satisfies (12).
Substituting πPH into (13), and canceling common terms yields

σiηωi

(

rωi,ni+1

(

1 − αmi+1γωi

1 − αmi+1γni+1

)

+

ni
∑

k=1
k 6=ωi

rωi,k

)

=

mi
∑

k=1

βkqk,mi+1
γωi

1 − αmi+1γni+1
+ σi

ni
∑

k=1
k 6=ωi

ηk

(

rk,ωi
+ rk,ni+1

αmi+1γωi

1 − αmi+1γni+1

)

.

By (10), and adding σiηωi
rωi,ni+1

(

αmi+1γωi

1−αmi+1γni+1
− γωi

1−γni+1

)

on both sides, we

have

σiηωi

(

rωi,ni+1

(

1 − γωi

1 − γni+1

)

+

ni
∑

k=1
k 6=ωi

rωi,k

)

= νi
γωi

(1 − αmi+1)

1 − αmi+1γni+1
+ σi

ni
∑

k=1
k 6=ωi

ηkrk,ωi
+ σi

αmi+1γωi

1 − αmi+1γni+1

ni
∑

k=1

ηkrk,ni+1 − σiηωi
rk,ni+1

γωi

1 − γni+1
.
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By (11) and rearranging both sides we get

σiηωi

(

rωi,ni+1

(

1 − γωi

1 − γni+1

)

+

ni
∑

k=1
k 6=ωi

rωi,k

)

= σi

ni
∑

k=1
k 6=ωi

ηk

(

rk,ωi
+ rk,ni+1

γωi

1 − γni+1

)

+ νi
γωi

(1 − αmi+1)

1 − αmi+1γni+1
+ νi

αmi+1γωi
(1 − γni+1)

1 − αmi+1γni+1
− νi

γωi

1 − γni+1
(1 − γni+1).

Canceling the remaining terms we get (9), so πPH indeed satisfies (13).
Thirdly, πPH trivially satisfies (14), as substitution of πPH into this equation

immediately gives (8).
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