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Abstract

Random-access networks may exhibit severe unfairness in throughput,

in the sense that some nodes receive consistently higher throughput than

others. Recent studies show that this unfairness is due to local differences

in the neighborhood structure: nodes with fewer neighbors receive better

access. We study the unfairness in saturated linear networks, and adapt

the random-access CSMA protocol to remove the unfairness completely,

by choosing the activation rates of nodes as a specific function of the

number of neighbors. We then investigate the consequences of this choice

of activation rates on the network-average saturated throughput, and we

show that these rates perform well in non-saturated settings.

1 Introduction

Random-access protocols such as CSMA [15] have gained much popularity for
their ability to regulate the access of network nodes to a shared medium in a
fully distributed fashion, and are for example used in the IEEE 802.11 standard.
A major drawback of these protocols, however, is that they can exhibit severe
unfairness, in the sense that some of the nodes get starved, while others receive
good access. We propose a way of compensating for the possible unfairness
by enhancing the random-access protocols with local information about the
immediate neighborhood of nodes.

Unfairness in wireless networks is an active topic of research. Wang and
Kar [22] considered three nodes on a line that only block their direct neighbors,
and showed that the middle node is starved when the activation rates of all three
nodes increase. Such unfairness has been studied for more general networks
by Durvy, Dousse and Thiran [6, 7] and Denteneer, Borst, Van de Ven and
Hiertz [4]. We study a similar model as in [6, 7, 4], i.e., a network with n
nodes on a line, in which active nodes block a certain subset of other nodes. In
particular, unblocked nodes become active, and active nodes deactivate, after
exponential times, and an active node blocks the first β nodes on both sides.
We say that nodes that might block each other are neighbors.
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To deal with the unfairness, we shall modify the model in [6, 7, 4] in one
important way: instead of letting nodes activate at the same rate, we allow
for node-specific activation rates. By choosing the activation rate νi of node
i as a particular function of the number of its neighbors, we can guarantee
that all nodes in the network have the same throughput, completely removing
the unfairness. Our main contribution is that we prove that this fair choice of
activation rates ν∗

i , takes on the extremely simple form

ν∗
i = α(1 + α)γ(i)−γ(1) (1)

with γ(i) the number of neighbors of node i, and α any positive constant. These
node-dependent activation rates are still in line with the distributed nature of
the random-access protocol, as ν∗

i only requires the number of neighbors, which
a node can obtain locally by sensing its direct environment. By choosing the
activation rates according to (1) we essentially ensure long-term fairness. The
first result in this direction is due to Kelly [13], who considered a tree network
(of which the linear network is a special case) with nearest-neighbor blocking
(β = 1). The results in this paper are only for linear networks, although the
Markov random field approach from [13] allows us to extend our results to
various other topologies, see Section 6.

In the classical models the activation rates (back-off times) are assumed
to be equal, and fixed over time. In our model we allow different, but fixed,
activation rates. When the activation rates are allowed to be adapted over
time, there are simple necessary and sufficient conditions for stability to be
achievable. Several authors have proposed clever backlog-based algorithms for
adapting activation rates that achieve stability whenever it is feasible to do so
at all [10, 12, 11, 16, 17, 19].

The paper is structured as follows. In Section 2 we introduce the linear
network in more detail. In Section 3 we study some of the key features of the
unfairness that arises when all nodes have equal activation rates. In Section 4
we prove that the activation rates in (1) yield equal throughputs. In Section 5
we investigate the impact of the rates in (1) on the network-average throughput.
Section 6 presents some conclusions and further research directions.

2 Model description

We consider n nodes on a line, and assume that all nodes are saturated (have an
infinite supply of packets available for transmission). A transmitting node blocks
the first β nodes on both sides. When node i is blocked, it remains silent until
all nodes within distance β are inactive, at which point it tries to activate after
an exponentially distributed (back-off) time with mean 1/νi. Node i activates
if it is still unblocked when the back-off timer runs out. If a node finds itself
blocked when the back-off timer expires, it waits until all neighboring nodes are
inactive once more and then repeats the back-off procedure. Without loss of
generality, we assume that transmissions last for an exponentially distributed
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time with unit mean. Under these assumptions, the n-dimensional process that
describes the activity of nodes is a continuous-time Markov process.

Each state of the Markov process is described as

ω = (ω1, . . . , ωn) ∈ {0, 1}n,

where ωi = 1 when node i is active. Let Ω ⊆ {0, 1}n be the set of all feasible
states. Call ω ∈ Ω feasible if no two 1’s in ω are β positions or less apart,
i.e., ωiωk = 0 if 1 ≤ |i − k| ≤ β.

The Markov process that describes the activity of nodes is then fully specified
by the state space Ω and the transition rates

r(ω, ω′) =







νi if ω′ = ω + ei,
1 if ω′ = ω − ei,
0 otherwise.

(2)

Here ei denotes the vector with all zeros except for a 1 at position i.
Alternatively, we can express the set of feasible states as all states that satisfy

a certain system of linear equations. Let A be an (n−β)×n matrix where each
row contains β + 1 consecutive 1’s, in the following way:

A =















1 1 . . . 1 0 . . . 0 0
0 1 1 . . . 1 0 . . . 0

. . .
. . .

...
0 . . . 0 1 1 . . . 1 0
0 0 . . . 0 1 1 . . . 1















. (3)

Now we can write the state space as Ω = {ω ∈ {0, 1}n | Aω ≤ C}, where
C is the all-1 vector (of size n − β). This characterization has a natural in-
terpretation as a set of capacity constraints, and nodes can activate only when
enough capacity is available. We allocate unit capacity to each node, and use
the convention that whenever a node is active it uses its own capacity, as well
as the capacity of all its neighbors to the left. The ith row of A thus represents
the capacity required when node i is active. The constraints that arise from the
first β nodes on the line are redundant, and ignoring these leads to the matrix
A in (3).

From the description of the state space as a set of capacity constraints, it is
clear that our model belongs to the general class of loss networks, see Kelly [14].
Loss networks are known to be reversible, and possess product-form solutions.
For our Markov process, this product-form solution is given by the stationary
measure π on Ω for which

π(ω) =

{

Z−1
n

∏n
i=1 νωi

i if ω ∈ Ω,
0 otherwise,

(4)

and where Zn is the normalization constant that makes π a probability measure.
This result is well known in the context of wireless networks, see e.g. [2, 4, 6, 22].
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Our main concern is with the long-term behavior of nodes, characterized by
their throughputs. A common throughput-degrading phenomenon in wireless
networks is collisions, which may occur when multiple nearby nodes transmit
simultaneously, causing these transmissions to fail. However, we assume that the
blocking range β is large enough to rule out collisions, so any activity of a node
contributes to its throughput. Although a model without collisions might seem
limited, numerous simulation studies show that choosing the blocking range just
large enough to preclude collisions gives very good performance, see e.g. [9, 21,
24, 26]. In fact, [20] shows that this choice is throughput-optimal when the
activation rates are sufficiently large. We study the throughput vector θ =
(θ1, . . . , θn), where θi represents the fraction of time node i is active. Denote
the total number of feasible states by K, let Ω = {Ω1, . . . , ΩK}, and introduce
the n × K incidence matrix X such that Xik = 1 when the ith element in the
state Ωk equals 1. Then

θ = X · Π, (5)

with Π = (π(Ω1), . . . , π(ΩK)).
By exploiting the structure of the network, we can construct alternative

expressions for the throughput in (5). Specifically, we shall make use of the
observation that if node i is active, nodes to the left of i behave independently
from nodes to the right of i. This leads to the following theorem.

Theorem 1. Define the sequence (Zi)
∞
i=−∞ such that Zi = 1 for i ≤ 0, and

Zi = 1 + ν1 + · · · + νi, i = 1, 2, . . . , β + 1, (6)

Zi = Zi−1 + νiZi−β−1, i = β + 2, β + 3, . . . . (7)

Let the vector of activation rates ν = (ν1, . . . , νn) be symmetric, i.e., νi =
νn+1−i, i = 1, . . . , n. Then

θi = νi
Zi−β−1Zn−i−β

Zn
, i = 1, . . . , n. (8)

Proof. By conditioning on whether node i is active, we can decompose the
activity of the network into two parts, separated by this active node (see [2],
Equation (15)),

θi = νi
Z1:i−β−1Zi+β+1:n

Z1:n
, (9)

where Zi:j is the normalization constant of a network consisting only of nodes
i, . . . , j. For simplicity we denote Zi := Z1:i, and the symmetry of ν implies

Zi:n = Z1:n−i+1. (10)

Substituting (10) into (9) yields the expression for θi in (8). By conditioning
on the activity of node i, we immediately get the recursion relation (7).
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3 Unfairness

We now venture deeper into the problem of unfairness, and assume for now
that all nodes have equal activation rates νi = σ. As observed by Durvy et
al. [6] and Denteneer et al. [4], the throughput distribution in this case is highly
unfair, in the sense that some nodes have a larger throughput than others. This
unfairness can be explained by the node-in-the-middle phenomenon discussed
for example in Wang and Kar [22] and Garetto, Salonidis and Knightly [8] for
the case n = 3, β = 1: the middle node is in an unfavorable position as it has to
wait for both outer nodes to deactivate, whereas these outer nodes only compete
for transmission with the middle node.
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Figure 1: The per-node throughput for β = 1 and various values of n and σ

In order to compute the throughput in (8), we need to compute the Zi

from (6) and (7). When all nodes have equal activation rate σ, the generat-
ing function GZ(x) of the Zi is given by (see Van de Ven, Janssen and Van
Leeuwaarden [20])

GZ(x) =

∞
∑

i=0

Zix
i =

x − 1 + σxβ+1 − σx

(x − 1)(1 − x − σxβ+1)
. (11)

Let λ0, . . . , λβ denote the β + 1 roots of

λβ+1 − λβ − σ = 0. (12)

These roots can be shown to be distinct, and from Rouché’s theorem it follows
that there exists a unique positive real root λ0 such that λ0 > |λj |, j = 1, . . . , β.
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We can obtain the Zi by applying partial fraction expansion to (11), which gives
([20], Proposition 1)

Zi =

β
∑

j=0

cjλ
i
j , i = 0, 1, . . . . (13)

Of course, in this particular case of equal σ, the Zi satisfy a homogeneous recur-
sion equation per (7) and hence it is no surprise that they have the form (13).
The cj follow from (6) and their particular form is given in [20] as

cj =
λβ+1

j

(β + 1)λj − β
. (14)

Moreover,
Zi = c0λ

i
0 (1 + o(1)) , i → ∞, (15)

and we shall use this asymptotic relation at several places, see (17) and (59).
For ease of presentation, we restrict ourselves to β = 1 in the remainder of

this section. Figures 1(a)-1(d) show the per-node throughput for various values
of n and σ. All figures display a similar pattern, with the outer nodes having
the highest throughput. Moreover, all figures are symmetric, and exhibit some
form of oscillatory behavior. These observations are formalized in the following
result.

Proposition 1. For νi = σ > 0, i = 1, . . . , n and β = 1, the throughput has
the following properties:
(i) Symmetric: θi = θn−i+1, i = 1, 2, . . . , n.
(ii) Alternating and converging: (−1)i(θi+1 − θi) is positive and decreasing for
i = 1, 2, . . . , ⌊n/2⌋.

Proposition 1 is proven in A.
In Figure 1 we see that for β = 1, the largest difference in throughput is

between nodes 1 and 2. Proposition 1(ii) confirms that this is the most unfair
situation, and it persists even in larger networks where the node-in-the-middle
problem is mitigated by the activity of the remaining nodes. In fact, for large
networks we have the following result.

Proposition 2. For νi = σ > 0, i = 1, . . . , n and β = 1, we have

θ1

θ2
∼ λ0 =

1 +
√

1 + 4σ

2
, n → ∞. (16)

Proof. We have from (8) that θ1 = Zn−2/Zn and θ2 = Zn−3/Zn. Using (15) we
obtain

θ1

θ2
∼ λ0, n → ∞. (17)

For β = 1 we can explicitly solve (12) to obtain θ1/θ2 ∼ λ0 = 1
2 (1 +

√
1 + 4σ).
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We note that for β = 1, the Zi satisfy a three-term recursion reminiscent of
that satisfied by the Chebyshev polynomials Un of the second kind. Accordingly,
we have

Zi = (−σ)
1
2
(i+1)Ui+1(

√

−1/4σ) =

⌊ i+1

2
⌋

∑

j=0

(

i + 1 − j

j

)

σj . (18)

The latter expression can be interpreted as the summation over all possible
combinations of nodes that can be active simultaneously.

Figure 1 shows another interesting property of this network. Increasing σ
leads in many cases to a higher throughput for each of the nodes. However, we
also observe that there exists a critical value σ∗, such that at least one of the
throughputs θi decreases as σ increases beyond σ∗. The characterization of this
critical value is a possible topic for future research.

Results similar to those presented in this section can be obtained for β ≥ 2.
As an example, Figures 2(a)-2(b) show the per-node throughput for n = 9 and
β = 2, 3. Both figures exhibit similar oscillatory behavior as observed for β = 1,
although the oscillation period increases with β.
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Figure 2: The per-node throughput for n = 9 and various values of β and σ

4 Fairness

In this section we present a way to completely remove the unfairness that was
discussed in Section 3. In order to do so, we choose node-dependent activation
rates νi such that all nodes have equal throughput (θ1 = θ2 = · · · = θn).
From (4) and (5) we see that in order to meet this objective we have to solve
a system of n nonlinear equations. It seems that in general this system cannot
be solved directly. We therefore choose a more indirect approach, and we first
consider two special cases that can be solved explicitly. The insight obtained
from these exact solutions is then used to guess the general solution to the
system of nonlinear equations.
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The first case is when β = n − 2, so that all but the two outer nodes will
block the entire network.

Proposition 3. For linear networks with three or more nodes, and β = n − 2,
setting ν1 = νn = α and νi = α(1+α) for all other nodes yields equal throughputs

θi =
α

1 + (n − 1)α
, i = 1, . . . , n. (19)

Proof. From (8) we see that

θ1 = Z−1
n ν1(1 + νn), (20)

θi = Z−1
n νi, i = 2, 3, . . . , n − 1, (21)

θn = Z−1
n νn(1 + ν1). (22)

The inherent symmetry of the model allows us to set ν1 = νn. Moreover, for
the throughput of the other nodes to be equal, we require ν2 = · · · = νn−1 =
ν1(1 + ν1). If we set ν1 = α, and substitute this into (20)-(22), we get a
throughput of

θi = Z−1
n α(1 + α). (23)

The normalization constant Zn can be determined by summing over all feasible
states:

Zn = 1 +

n
∑

i=1

νi + ν1νn = 1 + (n − 2)α(1 + α) + 2α + α2

= (1 + α)(1 + (n − 1)α). (24)

Substituting (24) into (23) yields (19).

The case n = 5, β = 3 of Proposition 3 was considered in [4]. The second
special case corresponds to n = 2(β + 1), so that a node blocks at least half of
the network.

Proposition 4. For linear networks with n = 2m nodes, m ∈ N, and β = m−1,
setting νi = α(1 + α)i−1 for i = 1, . . . , m yields equal throughputs

θi =
α

1 + mα
, i = 1, . . . , n. (25)

Proof. To achieve equal throughputs, we see from (4) and (5) that for the case
at hand we should solve the system of equations

ν1 + ν1(νm+1 + · · · + νn) = ν2 + ν2(νm+2 + · · · + νn)

= ν3 + ν3(νm+3 + · · · + νn)

...

= νm + νmνn. (26)
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Indeed, the throughput of node i can be written as a sum over all states in
which node i is active. Using symmetry, (26) can be written as

ν1 + ν1(ν1 + · · · + νm) = ν2 + ν2(ν1 + · · · + νm−1)

= ν3 + ν3(ν1 + · · · + νm−2)

...

= νm + νmν1. (27)

Let ν1 = α > 0. The solution of (27) is easily seen to be

νi = α(1 + α)i−1, i = 1, . . . , m, (28)

and hence
θi = Z−1

n α(1 + α)m. (29)

Summing over all possible states yields

Zn = 1 +
n

∑

i=1

νi +
m

∑

i=1

νi

n
∑

j=i+m

νj

= 1 +

m
∑

i=1

νi +

m
∑

i=1

νi(1 + ν1 + · · · + νm−i−1)

= 1 + ((1 + α)m − 1) + mα(1 + α)m

= (1 + mα)(1 + α)m. (30)

Substituting (30) into (29) gives (25).

It is clear that the complexity of the system of equations governed by (5)
reduces considerably for the choices of β discussed in Propositions 3 and 4.
For general β this system remains rather complicated. However, we can use
Propositions 3 and 4 to make an educated guess about the general solution.
First observe that the fair activation rates in Propositions 3 and 4 only depend
on the number of neighbors (nodes within β hops) that each node has. Denote
by γ(i) the number of neighbors of node i, let α > 0, and choose activation rates
ν∗

i as in (1). We see that this choice is consistent with the fair activation rates
in Propositions 3 and 4. We now show that ν∗

i indeed achieves fairness for all β.
To this end, we first show that when the activation rates are chosen according
to (1), the recursive relations (6) and (7) for the normalization constant Zi have
a closed-form solution.

Lemma 1. Let α > 0 and choose ν∗
i as in (1). Then

Zi = (1 + α)i, i = 1, 2, . . . , n − β. (31)

Proof. Substituting (31) into (6) gives, for i ≤ β + 1,

Zi = 1 + α + α(1 + α) + · · · + α(1 + α)i−1 = (1 + α)i. (32)
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Substituting (31) into (7) gives

Zi = (1 + α)i−1 + α(1 + α)β(1 + α)i−β−1 = (1 + α)i, (33)

for i ≥ β + 2.

With Lemma 1 we are now in position to prove our main result.

Theorem 2. Let α > 0, β ≤ n − 1 and choose ν∗
i as in (1). Then

θi =
α

1 + (1 + β)α
, i = 1, . . . , n. (34)

Proof. To prove this result we substitute the normalization constants from
Lemma 1 into the expression for the throughput in (8). We distinguish be-
tween different values of i.

For i ≥ β + 1 and i ≤ n − β we see that ν∗
i = α(1 + α)β and

Zi−β−1 = (1 + α)i−β−1, Zn−i−β = (1 + α)n−i−β . (35)

Similarly, for i ≥ β + 1 and i ≥ n − β + 1 we have ν∗
i = α(1 + α)n−i and

Zi−β−1 = (1 + α)i−β−1, Zn−i−β = 1. (36)

For i ≤ β and i ≤ n − β we have ν∗
i = α(1 + α)i−1 and

Zi−β−1 = 1, Zn−i−β = (1 + α)n−i−β . (37)

Finally, for i ≤ β and i ≥ n − β + 1 we have ν∗
i = α(1 + α)n−β−1 and

Zi−β−1 = 1, Zn−i−β = 1. (38)

Substituting (35)-(38) into (8) yields

θi = Z−1
n α(1 + α)n−β−1. (39)

We next consider the normalization constant. Let m such that n = β + m,
then by (7),

Zn = Zn−1 + ν∗
nZn−β−1, (40)

which gives upon iteration

Zn = Zn−β +

β
∑

i=1

ν∗
n+1−iZn−β−i. (41)

Substituting (31) into (41) yields

Zn = (1 + α)n−β +

min{m,β}
∑

i=1

α(1 + α)i−1(1 + α)n−β−i +

β
∑

i=m+1

α(1 + α)n−β−i

= (1 + α)n−β−1(1 + (β + 1)α). (42)

Combining (42) and (39) leads to (34).
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To better understand why the rates (1) only depend on the number of neigh-
bors of each node, we study the rates in the two limiting regimes of light traffic
(α ↓ 0) and heavy traffic (α → ∞). First rewrite (1) as

ν∗
i = α

γ(i)−γ(1)
∑

j=0

(

γ(i) − γ(1)

j

)

αj , i = 1, . . . , n. (43)

When α is small, nodes activate slowly, and few nodes will be active simul-
taneously. In fact, the Markov process spends most of its time in states with
at most one active node, and node interaction (blocking) is negligible. This is
reflected in the light-traffic activation rates that follow immediately from (43):

ν∗
i = α + (γ(i) − γ(1))α2 + O(α3), α ↓ 0. (44)

Hence, for small α, ν∗
i ≈ α, which is the same for all nodes. Indeed, if at

most one node is active (as is the case for α small), there is no blocking, and
therefore no need to discriminate between nodes. As α increases, states with two
active nodes are increasingly likely, and nodes may now block their neighbors
(all nodes within distance β). This is accounted for in the activation rate by the
term (γ(i) − γ(1))α2, which is linear in the number of neighbors. Thus in light
traffic, only the number of neighbors is of importance, rather than the structure
of the entire network. This reasoning extends to more general networks.

Next, we consider large activation rates, and we compare the equal rates (all
nodes activate with rate σ → ∞) with the fair rates (1) (with α → ∞). In
both cases, nodes activate almost instantaneously when they get the chance to
do so, i.e., when all neighbors are inactive. Consequently, the only states that
have positive limiting probability are those consisting of maximal independent
sets of active nodes. The distribution according to which these maximal states
occur depends on the choice of activation rates.

First consider the case of equal activation rates νi = σ, i = 1, . . . , n. We have
seen in Section 3 that this creates unfairness, and that the unfairness increases
with σ. In particular, we see from (4) that the only states that have positive
probability for σ → ∞ are those of maximum size, i.e., states with ⌈n/(β + 1)⌉
active nodes. Thus, for σ → ∞,

π(ω) =

{ 1
|M| if ω ∈ M,

0 otherwise,
(45)

with M ⊂ Ω the set of states of maximum size and |M| the cardinality of
this set. The throughput of each node is thus determined by the number of
maximum states it is contained in, which is not necessarily the same for all
nodes.

For the fair activation rates (43), we see that

ν∗
i = αγ(i)−γ(1)+1 + O(αγ(i)−γ(1)), α → ∞. (46)

So the activation rate of a node is characterized by the leading exponent γ(i)−
γ(1) + 1, and the limiting probability of a state is determined by the sum

11



of these exponents over all active nodes. In fact, the only states that have
positive limiting probability for α → ∞ are those that maximize the sum of
the exponents of α over all active nodes. It turns out that there are β + 1 such
states, with active nodes {i, i+ (β + 1), . . . , i + (β +1)τi}, i = 1, . . . , β + 1, with
τi = (⌈n+1−i

β+1 ⌉ − 1). Each such state has limiting probability

π(ω) = Z−1
n

τi
∏

j=0

νi+(β+1)j = Z−1
n (αn−β +O(αn−β−1)) =

1

β + 1
, α → ∞, (47)

because Zn = (β + 1)αn−β + O(αn−β−1), as α → ∞. Contrary to the case of
equal rates, we see that each node appears in exactly one state with positive
limiting probability. This explains the equal throughputs in heavy traffic.

This result strongly depends on the structure of the network, as the maximal
independent sets may change drastically with the addition or the removal of even
a single node. As a result, the simple, locally determined heavy-traffic activation
rates (46) may only hold for linear networks.

5 Network-average throughput

The fair rates ν∗
i in (1) are designed to remove the unfairness that arises when

all nodes have equal activation rates σ. In order to compare the two schemes,
we want to set their respective parameters α and σ such that the average per-
node throughputs are equal. In a network with νi = σ > 0, i = 1, . . . , n, write
Zi(σ) and θi(σ) for the normalization constant of a network with i nodes, and
the throughput of node i, respectively. Let θ̄n(σ) := n−1

∑n
i=1 θi(σ) denote the

average per-node throughput in a network with n nodes.
In Section 4 we showed that all nodes have equal throughput α/(1+α(β+1))

when using the fair activation rates. When all nodes have equal activation rates,
a closed-form expression for the throughput does not seem available. However,
we can express the average throughput in terms of the normalization constant
Zn.

Proposition 5. Let νi = σ, i = 1, . . . , n. The average per-node throughput is
given by

θ̄n(σ) =
σ

nZn(σ)

dZn(σ)

dσ
. (48)

Proof. We have from (8) with νi = σ that

θ̄n(σ) =
σ

nZn

n
∑

i=1

Zi−β−1Zn−i−β . (49)

We compute, using the definition of Zi in Theorem 1,

∞
∑

n=1

(

n
∑

i=1

Zi−β−1Zn−i−β

)

xn = x
(xβ − 1

x − 1
+ xβGZ(x)

)2

, (50)
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with GZ(x) the generating function (11). Some rewriting then gives

∞
∑

n=1

(

n
∑

i=1

Zi−β−1Zn−i−β

)

xn =
x

(1 − x − σxβ+1)2
. (51)

On the other hand, we compute that

d

dσ

[

GZ(x)
]

=
x

(1 − x − σxβ+1)2
(52)

and the result follows.

By Proposition 5 and the partial fraction expansion (13) of Zi, we can express
the average per-node throughput in terms of the roots λ0, . . . , λβ of (12).

Proposition 6. Let νi = σ, i = 1, . . . , n. The average per-node throughput is
given by

θ̄n(σ) =
σ

n

P

Q
, (53)

where

P =

β
∑

j=0

λn+1
j

(β + 1)λj − β

(

n + β + 1

(β + 1)λj − β
− (β + 1)λj

((β + 1)λj − β)2

)

, Q =

β
∑

j=0

λn+β+1
j

(β + 1)λj − β
.

(54)

Proof. By (13) and (14) we have

Zn(σ) =

β
∑

j=0

λn+β+1
j

(β + 1)λj − β
, (55)

where λj are the (β +1) roots λ of (12). By implicit differentiation of (12) with
respect to σ we find

dλj

dσ
=

1

λβ−1
j

1

(β + 1)λj − β
. (56)

Then from (55) and (56) we get

dZn(σ)

dσ
=

β
∑

j=0

(

(n + β + 1)λn+β
j

(β + 1)λj − β
−

(β + 1)λn+β+1
j

((β + 1)λj − β)2

)

dλj

dσ

=

β
∑

j=0

λn+1
j

(β + 1)λj − β

(

n + β + 1

(β + 1)λj − β
− (β + 1)λj

((β + 1)λj − β)2

)

. (57)

The result follows from substituting (55) and (57) into (48).

When the network grows large (n → ∞) the root of largest modulus, λ0,
becomes dominant, and (53)-(54) simplifies.
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Corollary 1. Let νi = σ, i = 1, . . . , n. The limiting average per-node through-
put θ̄(σ) := limn→∞ θ̄n(σ) is given by

θ̄(σ) =
λ0 − 1

(β + 1)λ0 − β
. (58)

Proof. We have, as n → ∞,

P =
λn+1

0

(β + 1)λ0 − β

n

(β + 1)λ0 − β
(1 + o(1)), Q =

λn+β+1
0

(β + 1)λ0 − β
(1 + o(1)).

(59)
Hence

θ̄n(σ) =
σ

n

P

Q
=

σλ−β
0

(β + 1)λ0 − β
(1 + o(1)), (60)

and the result follows as σλ−β
0 = λ0 − 1 by (12).

The limiting expression (58) occurs in a variety of contexts in [7, 20, 18, 1, 25].
When βσ → ∞, the throughput (58) simplifies even further.

Corollary 2. Let νi = σ, i = 1, . . . , n and let n → ∞. The limiting average
throughput satisfies

θ̄(σ) =
1

β + 1
(1 + o(1)), βσ → ∞. (61)

Proof. By rewriting (58) we have

θ̄(σ) =
1

β + 1

1

1 + 1
(β+1)(λ0−1)

. (62)

Consequently, for θ̄(σ) = 1
β+1 (1 + o(1)) to hold, it is necessary and sufficient

that (β + 1)(λ0 − 1) → ∞. Recall from (12) that λ0 is such that

λβ
0 (λ0 − 1) = σ. (63)

Let M > 0 be some positive constant, and assume that βσ ≤ M . Then

βλβ
0 (λ0 − 1) = βσ ≤ M, (64)

and so β(λ0−1) ≤ M . Conversely, assume that β(λ0−1) ≤ K for some positive
constant K > 0. Then

βσ = β(λ0 − 1)λβ
0 ≤ β(λ0 − 1)exp(β(λ0 − 1)) ≤ KeK . (65)

Hence
β(λ0 − 1) bounded ⇔ βσ bounded. (66)

It follows that a sufficient condition for (β+1)(λ0−1) → ∞ is that βσ → ∞.

14



Corollary 2 implies for β fixed and σ → ∞ that θ̄(σ) → 1
β+1 . Thus for

n → ∞, both the equal and fair activation rates can achieve the maximum
throughput by letting σ → ∞ and α → ∞, respectively. This can be explained
by the observation that for both sets of activation rates, the system spends
almost all the time in maximum-size independent sets of active nodes, thus
maximizing spatial reuse.

Next, we fix σ > 0 and search for α = αn(σ) such that

θ̄n(σ) =
α

1 + α(β + 1)
, (67)

so the network-average throughput is identical for the fair rates and equal rates.
For α(σ) := limn→∞ αn(σ) we can make this comparison explicit. By equat-
ing (34) and (58) and solving for α, we have α(σ) = λ0 − 1.

It is intuitively clear that imposing fairness may compromise the throughput.
From (34) it is seen that the fair per-node throughputs are bounded above by

1
β+1 , and that this upper bound can be approached arbitrarily closely by letting
α → ∞. Corollary 1 shows that, as n → ∞, the average throughputs in the
fair case and unfair case are equal when α is taken to be λ0 − 1. The maximum
activation rate in this limiting case equals

ν∗
max = α(1 + α)β = νi, β + 1 ≤ i ≤ n − β (68)

as is seen from (1). This maximum equals σ by (63) since 1 + α = λ0. Hence,
as n → ∞, the fair case achieves the same average throughput with activation
rates that are less than or equal to those in the unfair case. The situation is
considerably more complicated when we keep n bounded. Then it may well occur
that θ̄n(σ) exceeds 1

β+1 , which is the upper bound for the throughput achievable

by the fair scheme. In Figure 3 we have plotted curves α = αn(σ), for the case
that n = 10 and various values of β in the range 0 ≤ σ ≤ 20. The occurrence
of the asymptotes for the curves with β = 2, 5 shows that θ̄n(σ) > 1

β+1 when
σ is to the right of the asymptote. In the cases that β = 1, 4, 9, there are
no asymptotes, which can be explained by the observation made in Section 4
that a system operating with equal rates σ → ∞ has at all times ⌈ n

β+1⌉ nodes
activated. When n

β+1 is integer, the resulting average throughput does not

exceed the upper bound 1
β+1 , and no asymptote occurs.

6 Conclusions and outlook

In this paper we studied the unfairness in linear random-access networks. We
proposed node-specific activation rates (1) as a function of the number of neigh-
bors, and showed that these rates provide equal throughput for all nodes. The
rate of a node increases with its number of neighbors. Intuitively, this structure
can be explained by the observation that, as the number of neighbors increases,
a node needs a higher activation rate to retain its throughput. Consequently,
the rates (1), which are exact in linear networks, might serve as a heuristic in
more complex networks.
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Figure 3: αn(σ) plotted against σ for various values of β and n = 10

Finding exact expressions for the activation rates that provide strict fairness
for networks beyond the linear network is challenging. Kelly [13] obtained results
for trees with β = 1, and finds that rates such as in (1), where nodes on the
leaves of the tree have lower rates than those in the stem of the tree, provide
strict fairness. For such trees, it seems possible to extend Kelly’s result to the
β-hop blocking situation. Also other regular topologies such as certain grids
appear to admit similar analysis.

Regular networks like grids or trees may not always be a good representation
of topologies encountered in practice, which in general are less structured. The
results obtained in this paper, however, rely heavily on the diagonal structure
of the capacity matrix A in (3), which only exists for certain well-structured
networks. For more general networks, and hence more general matrices A, the
objective of equal througputs boils down to solving the system of nonlinear
equations that follows from (5). In fact, (5) can be described in terms of the
mapping (with ν = (ν1, . . . , νn) ∈ (0,∞)n)

ν 7→ θ(ν) = X · Π,

with θ(ν) ∈ (0,∞)n. It can be shown that the mapping θ is globally invertible
on its range, and that η(ν) = Zn(ν)θ(ν) is globally invertible on (0,∞)n. Thus,
given a vector c ∈ (0,∞)n, there is a unique ν = ν(c) ∈ (0,∞)n such that
η(ν) = c. When c(s) = s(1, 1, . . . , 1)t this corresponds to all nodes having equal
throughput θi(s) = s/Zn(ν(c(s))). See [3] for a preliminary analysis in terms
of fixed-point equations. The full analysis is rather involved and will appear
elsewhere.

Throughout this paper we have assumed all nodes to be saturated, and we
derived fair activation rates that give equal throughput to all nodes. Alter-
natively, we may consider a model where packets arrive over time, and nodes
may not always have packets to transmit. An active node transmits one packet,
which takes an exponential time with mean 1. After finishing this transmission,
the node has to compete for access again. The dynamics are the same as in the
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saturated scenario, except that when a node has no packets for transmission,
it will remain inactive until it receives a new packet. We argue that the fair
activation rates also perform well in such unsaturated settings.

rrr

(a) per-node arrivals

r

(b) arrivals at node 1

Figure 4: Two unsaturated models

First consider the network in Figure 4(a), where packets arrive at each node
according to an independent Poisson process with rate r, and leave the system
once transmitted. Nodes activate according to the fair activation rates (1) with
parameter α > 0. This model reduces to the saturated model when r → ∞.
Simulations suggest that the system is stable whenever r < α/(1 + α(β + 1)),
the saturation throughput.

Next, consider the network in Figure 4(b), where packets arrive at node 1
according to a Poisson process with rate r, and are routed along nodes 2, . . . , n.
When node n finishes a transmission, the corresponding packet exits the system.
The throughput of node n is of special interest, as it represents the end-to-end
throughput of the network, that is, the rate at which packets leave the net-
work. If θn = r, the system will eventually empty. If θn < r, packets arrive
at a higher rate than the network can sustain, and packets will accumulate at
certain bottleneck nodes. Figure 5 shows simulation results for the end-to-end
throughput of this network, plotted against the arrival rate r for n = 5, β = 1.
The thick, gray line corresponds to the network where all nodes have equal ac-
tivation rate σ = 6, and the black line shows the throughput of a network with
fair activation rates (1) and α = 11.68. The values of σ and α are chosen such
that the average per-node throughput is equal for both activation schemes, as
prescribed by (67). The network with equal activation rates performs poorly.
When the arrival rate grows beyond a certain threshold, node 2 saturates and
the throughput drops, see e.g. Xu and Saadawi [23] and Dousse [5]. The network
with fair rates, on the other hand, can sustain higher arrival rates and experi-
ences no throughput drop when in overload. In fact, the end-to-end throughput
approaches the per-node throughput in the corresponding saturated network
(indicated by the dashed horizontal line). So the network again appears stable
whenever r < α/(1 + α(β + 1)).

To describe the state of the above non-saturated networks we have to take
into account the queue length at each node, as well as node activity. The stochas-
tic processes that describe both the activity of nodes and their queue lengths,
are once again Markov processes, but do not have the appealing product-form
stationary distribution encountered in the saturated network. In fact, these
Markov processes appear rather intractable, and even proving the stability con-
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r

θ5

Figure 5: The end-to-end throughput of a network with equal activation rates
(thick, gray) and fair activation rates (black), plotted against the arrival rate
at node 1

ditions remains an open problem.

A Proof of Proposition 1

We first establish an auxiliary result. Define a(i, l, n) as the number of states
in which exactly l nodes are active, including node i. For successive nodes, the
following relations hold.

Lemma 2. For n ∈ N, i ≤
⌈

n
2

⌉

− 1,

a(i, l, n) = a(i + 1, l, n), l ≤ i, (69)

a(i, l, n) > a(i + 1, l, n), i odd, i < l ≤ ⌈n/2⌉ , (70)

a(i, l, n) < a(i + 1, l, n), i even, i < l ≤ ⌈n/2⌉ . (71)

Proof. The proof is by induction on i. Conditioning on activity of node 1 and
node n yields the relations

a(i, l, n) = a(i − 2, l − 1, n − 2) + a(i − 1, l, n− 1), (72)

a(i, l, n) = a(i, l − 1, n − 2) + a(i, l, n − 1), (73)

with boundary conditions

a(0, l, n) = 0 for all n and l;

a(1, l, n) = 1 for l > 0 and all n;

a(1, l, n) = 0 for l ≤ 0 and all n.

Hence, the initialization step of the induction is

a(0, l, n) < a(1, l, n), 0 < l < ⌈n/2⌉ ,

a(0, l, n) = a(1, l, n), l ≤ 0.
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Consider odd i ≤ ⌈n/2⌉ − 2, let i + 1 < l < ⌈n/2⌉, and assume a(i, l, n) >
a(i + 1, l, n). Using (72) and (73) we get

a(i + 1, l, n) = a(i + 1, l − 1, n − 2) + a(i + 1, l, n− 1)

< a(i, l − 1, n − 2) + a(i + 1, l, n− 1) = a(i + 2, l, n).

This proves assertion (70). Assertions (69) and (71) can be proved in a similar
manner.

We now use Lemma 2 to prove Proposition 1.

Proof. (Proposition 1) Assertion (i) can be shown by rewriting the throughput
as follows:

θi = Z−1
n

∑

l

a(i, l, n)σl = Z−1
n

∑

l

a(n − i + 1, l, n)σl = θn−i+1. (74)

To prove assertion(ii) we first show that (−1)i(θi+1 − θi) is positive. That is,

(−1)i(θi+1 − θi) = (−1)iZ−1
n

∑

l

(a(i + 1, l, n)− a(i, l, n))σl

= (−1)iZ−1
n

⌊n/2⌋
∑

l=i+1

(a(i + 1, l, n) − a(i, l, n))σl > 0, (75)

where the inequality follows from Lemma 2. Using (75), Proposition 1(ii) follows
from

(−1)i(θi+1 − θi) = (−1)i
(

θi+1 − Z−1
n

∑

l

a(i, l, n)σl
)

= (−1)i
(

θi+1 − Z−1
n

∑

l

(a(i, l − 1, n − 2) + a(i, l, n − 1))σl
)

> (−1)i
(

θi+1 − Z−1
n

∑

l

(a(i, l − 1, n − 2) + a(i + 1, l, n− 1))σl
)

= (−1)i
(

θi+1 − Z−1
n

∑

l

a(i + 2, l, n)σl
)

= (−1)i+1(θi+2 − θi+1).

This completes the proof.
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