
EURANDOM PREPRINT SERIES
2011-021

Instability of MaxWeight Scheduling Algorithms

P.M. van de Ven, S. Borst, S. Shneer
ISSN 1389-2355

1

Instability of MaxWeight Scheduling Algorithms∗

Peter van de Ven1,2, Sem Borst1,3, Seva Shneer1,2

1Department of Mathematics & Computer Science

Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2EURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3Bell Laboratories, Alcatel-Lucent

P.O. Box 636, Murray Hill, NJ 07974, USA

April 25, 2011

Abstract

MaxWeight scheduling algorithms provide an effective mechanism for achieving queue sta-

bility and guaranteeing maximum throughput in a wide variety of scenarios. The maximum-

stability guarantees however rely on the fundamental premise that the system consists of a

fixed set of sessions with stationary ergodic traffic processes. In the present paper we examine

a scenario where the population of active sessions varies over time, as sessions eventually end

while new sessions occasionally start. We identify a simple necessary and sufficient condi-

tion for stability, and show that MaxWeight policies may fail to provide maximum stability.

The intuitive explanation is that these policies tend to give preferential treatment to flows

with large backlogs, so that the rate variations of flows with smaller backlogs are not fully

exploited. In the usual framework with a fixed collection of flows, the latter phenomenon

cannot persist since the flows with smaller backlogs will build larger queues and gradually

start receiving more service. With a dynamic population of flows, however, MaxWeight poli-

cies may constantly get diverted to arriving flows, while neglecting the rate variations of a

persistently growing number of flows in progress with relatively small remaining backlogs. We

also perform extensive simulation experiments to corroborate the analytical findings.

1 Introduction

MaxWeight-type scheduling algorithms provide an effective mechanism for achieving maximum
throughput and guaranteeing queue stability in a wide variety of scenarios. In a seminal paper,
Tassiulas & Ephremides [23] presented a MaxWeight scheduling policy for throughput maximiza-
tion in multi-hop wireless networks, where only certain subsets of the links may be simultaneously
activated due to interference considerations, see also Kahale & Wright [7] for instance. In sub-
sequent work, Tassiulas & Ephremides [24] described a MaxWeight policy for allocating a server
among several parallel queues with time-varying connectivity.

Broadening the latter framework, MaxWeight-type policies were developed for power control
and scheduling of shared wireless downlink channels with rate variations, see for instance Andrews
et al. [2], Neely [13] and Neely et al. [15, 16]. Extending the scope further, Eryilmaz & Srikant [4],
Neely et al. [14] and Stolyar [20, 21] devised algorithms for joint congestion control, routing and

∗The work was financially supported by the EC under project number FP6-IST-034413.

1

scheduling based on MaxWeight principles. The powerful properties of MaxWeight-type policies
have emerged as one the central paradigms in the broader realm of cross-layer control and resource
allocation in wireless networks, see Georgiadis et al. [6] for a comprehensive overview.

MaxWeight-type algorithms have also been proposed for throughput maximization in input-
queued switches, where only certain subsets of input-output pairs (e.g. matchings) may be simul-
taneously connected because of compatibility constraints, see for instance McKeown et al. [10].
The book of Meyn [11] contains extensive background material on MaxWeight policies. Crucial
heavy-traffic results for MaxWeight algorithms were obtained by Stolyar [19].

The distinguishing characteristic of MaxWeight policies is that the subset of queues that are
simultaneously served is selected so as to be of maximum ‘weight’, hence the term ‘MaxWeight’.
The weight of a queue is usually defined as the current backlog or the product of the backlog
and the feasible instantaneous service rate for that queue, if selected. In multi-hop settings, the
backlog differential is typically used, i.e., the difference in backlog with a downstream queue, giving
rise to so-called back-pressure mechanisms. The combinations of queues which can be scheduled
simultaneously are subject to certain constraints, based on for example interference conditions. In
a more general sense, MaxWeight policies can be interpreted as selecting a service vector from a
(possibly time-varying) feasible region that maximizes the inner product with the backlog vector.

Under mild assumptions, MaxWeight-type algorithms have been shown to provide maximum
throughput, i.e., achieve queue stability whenever feasible to do so at all. A particularly appealing
feature is that MaxWeight policies only need information on the current backlogs and instantaneous
service rates, and do not rely on any explicit knowledge of the rate distributions or the traffic
parameters. On the downside, finding the maximum weight subset is often a challenging problem
and potentially NP-hard, which is exacerbated in a distributed setting, where message passing and
exchange of backlog information create a substantial communication overhead in addition to the
computational burden. This issue is especially pertinent as the maximum weight problem generally
needs to be solved at a very high pace, commensurate with the fast time scale on which scheduling
algorithms tend to operate. In order to address this issue, Tassiulas [22], Eryilmaz et al. [5] and
Chaporkar & Sarkar [3] showed that randomized policies involve less stringent requirements and yet
suffice for achieving maximum stability. In addition, several authors have considered algorithms
that solve the maximum weight problem in some approximate sense, and quantified the resulting
penalty in guaranteed throughput, see for instance Lin & Shroff [8], Sharma et al. [17, 18] and Wu
& Srikant [25, 26].

As mentioned above, MaxWeight-type policies have been shown to achieve maximum stability
under fairly mild assumptions. A fundamental premise however is that the system consists of a
fixed set of queues with stationary ergodic traffic processes. In reality, the collection of active
queues dynamically varies, as sessions eventually end, while new sessions occasionally start. In
many situations the assumption of a fixed set of queues is still a reasonable modeling convention,
since the scheduling actions and packet-level queue dynamics tend to occur on a very fast time scale,
on which the population of active sessions evolves only slowly. In other cases, however, sessions
may be relatively short-lived, and the above time scale separation argument does not apply. The
impact of flow-level dynamics over longer time scales is particularly relevant in assessing stability
properties, as the notion of stability only has strict meaning over infinite time horizons.

Motivated by the above observations, we examine in the present paper the stability proper-
ties of MaxWeight scheduling policies in a scenario with flow-level dynamics. For transparency,
we focus on a point-to-point shared wireless downlink channel with rate variations, and do not
consider multi-hop scenarios. We will show that MaxWeight scheduling policies may fail to pro-
vide maximum stability in the presence of flow-level dynamics. The intuitive explanation is that
MaxWeight policies tend to give preferential treatment to flows with large backlogs, even when
their service rates are not particularly favorable, and thus the rate variations of flows with smaller
backlogs are not fully exploited. Note that the preferential treatment in fact also applies in the
absence of any flow-level dynamics. In that case the phenomenon cannot persist however since
the flows with smaller backlogs will build larger queues and gradually start receiving more service,
creating a counteracting force. In contrast, in the presence of flow-level dynamics, MaxWeight
policies may constantly get diverted to arriving flows, while neglecting the rate variations of a

2

persistently growing number of flows in progress with relatively small remaining backlogs, so the
opposing effect is never triggered.

It is worth observing that the instability of MaxWeight policies is fundamentally different from
the instability of the Proportional Fair scheduling strategy demonstrated by Andrews [1]. The
latter phenomenon is an illustration of the fact that utility-based scheduling strategies (which do
not consider backlog information) may generally fail to achieve packet-level stability, even in the
absence of any flow-level dynamics.

It is further worth drawing a distinction with the result in Lin et al. [9] showing the stability of
joint scheduling and congestion control algorithms in the presence of flow-level dynamics without
relying on the conventional simplifying time scale separation argument. The main difference with
the present paper lies in the additional congestion control and the absence of rate variations in [9].
Inspection of the results in the present paper suggests that conventional forms of congestion control
would not prevent the kind of instability phenomenon that we observe. In other words, the root
cause for the instability appears not to be the lack of congestion control, but the fact that the
rate variations are not maximally exploited in the presence of flow-level dynamics.

The remainder of the paper is organized as follows. In Section 2 we present a detailed model
description. In Section 3 we derive a simple necessary and sufficient condition for stability in
the presence of flow-level dynamics. Section 4 establishes that the MaxWeight policy may fail
to provide maximum stability by treating specific model instances where the latter necessary
and sufficient condition is satisfied, yet MaxWeight scheduling does not keep the system stable.
In Section 5 extensive simulation results are provided to confirm the analytical findings and to
demonstrate that the instability may also occur in more complex scenarios which do not lend
themselves to an analytical treatment. In Section 6 we make some concluding remarks.

2 Model description

We consider a single wireless link shared by K classes of flows. The system operates in a time-
slotted fashion, and in each time slot at most one of the flows can be scheduled for transmission.

Denote by Ak(t) the number of class-k flows starting in time slot t. We assume that Ak(1), Ak(2), . . .
are i.i.d. copies of some random variable Ak with mean αk < ∞.

Each of the flows generates some finite random amount of traffic. We distinguish between two
scenarios for the traffic influx of the various flows: (i) instantaneous traffic bursts; and (ii) gradual
traffic streams.

In case (i) each flow generates an instantaneous traffic burst upon arrival to the system. Denote
by Bki the size of the burst of the i-th class-k flow (in bits). We assume that Bk1, Bk2, . . . are
i.i.d. copies of some integer random variable Bk with E{Bk} < ∞.

In case (ii), each flow starts a random finite activity period upon arrival to the system, during
which it produces a gradual stream of traffic. Denote by Dki the duration of the activity period of
the i-th class-k flow (in slots). We assume that Dk1, Dk2, . . . are i.i.d. copies of some integer random
variable Dk with E{Dk} < ∞. Denote by Fki(t) the amount of traffic in bits generated by the i-th
class-k flow in time slot t. For notational convenience, we define Fki(t) for all t, but its value is
only relevant if the i-th class-k flow is active. We assume that Fki(1), Fki(2), . . . are i.i.d. copies of
some integer random variable Fk with E{Fk} < ∞, and that the traffic processes are independent

among the various flows. Denote by Bki :=
Ski+Dki−1
∑

t=Ski

Fki(t) the total amount of traffic generated

by the i-th class-k flow, with Ski denoting its arrival time. By the above assumptions, Bk1, Bk2, . . .
are i.i.d. copies of an integer random variable Bk with mean E{Bk} = E{Dk}E{Fk} < ∞.

Note that scenario (i) may be interpreted as a special case of scenario (ii) with Dk ≡ 1 and
Fk ≡ Bk. For economy of notation, however, it is useful to classify scenario (i) as a separate case.
In both scenarios, traffic may only start to be served in the next slot after it arrives. Flows leave
the system as soon as all their bits have been transmitted (and no further bits are due to arrive in
the case of gradual traffic streams). During the period between its arrival and departure, a flow
is said to be present.

3

The feasible transmission rates of the various flows vary over time as a result of fading. Denote
by Rki(t) the feasible transmission rate (in bits) of the i-th class-k flow if selected for transmission
in time slot t. For notational convenience, we define Rki(t) for all t, but its value is only relevant if
the i-th class-k flow is actually present in the system. We assume that Rki(1), Rki(2), . . . are i.i.d.
copies of some integer, positive random variable Rk, and that the feasible transmission rates are
independent among the various flows. Define Rmax

k := sup{r : P{Rk = r} > 0} as the maximum
possible value of the transmission rate of class-k flows (possibly Rmax

k = ∞).

Define ρk := αkτk, and ρ :=
∑K

k=1 ρk, with τk := E{⌈Bk/Rmax
k ⌉} when Rmax

k < ∞ and τk := 1
when Rmax

k = ∞. Thus τk represents the expected number of slots required for the service of a
class-k flow when served at rate Rmax

k .

3 Necessary and sufficient stability condition

In this section we first establish a simple necessary condition for stability to be achievable, and
then proceed to show that this is in fact also (nearly) sufficient. The system is said to be stable
if it empties infinitely often.

Proposition 3.1 The condition ρ ≤ 1 is necessary for stability to be achievable.

Proof. The expected number of slots required for the service of an arbitrary class-k flow is
bounded from below by τk. Thus the rate at which class-k work enters the system is bounded
from below by ρk = αkτk, and the total rate at which work arrives is bounded from below by
ρ =

∑K
k=1 ρk. The latter quantity may not exceed one in order for stability to be achievable. 2

We proceed to show that the above condition is also (nearly) sufficient for stability to be
achievable. This may be intuitively explained as follows. With a dynamic population of flows,
there will always be a flow that has the maximum possible feasible rate with high probability
when there are sufficiently many flows present in the system. In other words, whenever a flow gets
selected for transmission, it can be served at the maximum possible rate with high probability.
Thus the expected number of slots required for the service of an arbitrary class-k flow can be
brought arbitrarily close to τk, so that the system can be stabilized for values of ρ arbitrarily close
to 1.

Evidently, the above explanation only provides heuristic arguments and does not account
for several subtle yet critical issues. However, the intuitive insight offers useful guidance for the
construction of a Lyapunov function which serves as the basis of a rigorous proof of the propositions
presented below.

We will distinguish between the two traffic scenarios described in the previous section. As
mentioned earlier, the scenario with instantaneous traffic bursts may be interpreted as a special
case of that with gradual traffic streams. For transparency, however, we provide a separate treat-
ment which introduces the key concepts while avoiding some of the additional complexity that
arises in the general case. The proofs for both cases can be found in the appendix.

Proposition 3.2 For any ρ < 1, there exists a scheduling strategy that achieves stability in case
of instantaneous traffic.

Proposition 3.3 For any ρ < 1, there exists a scheduling strategy that achieves stability in case
of gradual traffic.

Remark 3.1 It is worth emphasizing that the scheduling strategies considered in the proofs of
Propositions 3.2 and 3.3 mainly serve to prove that ρ < 1 is sufficient for the existence of a stable
strategy, and are therefore specifically designed for that purpose. The strategies may not be ideal
for practical purposes as they may not provide particularly good performance, especially at lower
loads. They also involve knowledge of various parameter values, which may be hard to obtain
and is not used by the MaxWeight policy. (While the latter may be considered ‘unfair’, observe
that in the standard case with a fixed set of flows no amount of additional information can help to

4

achieve better stability performance than the MaxWeight policy provides.) The fact that for gradual
traffic the scheduling strategy assumes prior knowledge of the duration of the activity period further
adds to this. The design and analysis of suitable scheduling algorithms which guarantee maximum
stability in the presence of flow dynamics while requiring minimum information and providing good
performance across a wide range of loads, remains a challenging subject for further research.

4 Instability of MaxWeight scheduling

In this section we establish that MaxWeight scheduling may fail to provide maximum stability.
Specifically, we analyze two model instances where the sufficient condition stated in the previous
section is satisfied, yet the MaxWeight strategy does not keep the system stable. For the sake
of tractability, we focus on relatively simple models with instantaneous traffic and just a single
class of flows. In the next section we present extensive simulation results to demonstrate that
the instability may also occur in more complex scenarios with gradual traffic that do not lend
themselves easily to an analytical treatment.

4.1 Scenario I

Flows start according to a Bernoulli process, i.e., in each time slot either a flow starts with
probability α or no flow starts with probability 1 − α, independent from slot to slot. The service
requirement of each flow is a constant B = 2D+1 for some integer D ≥ 1. The feasible transmission
rate of a flow is either D + 1 with probability p or 2D + 1 with probability 1− p, 0 < p < 1. The
feasible transmission rates are independent across time and among different flows.

Proposition 3.2 states that ρ = α < 1 is a sufficient condition for stability to be achievable. We
now show that the MaxWeight scheduling strategy fails to achieve stability for ρ = α > 1/(1+ p).
The reason for the potential instability may be explained as follows. When a flow starts, the
MaxWeight strategy will immediately serve it in the next slot, regardless of whether it has feasible
rate D + 1 or 2D + 1. To see that, observe that older flows present in the system will necessarily
be of size D, and have no chance to be selected in competition with a new flow of size 2D + 1.
In case the new flow has feasible rate D + 1, it will require an additional slot at some later point
for the service to be completed. In other words, the MaxWeight strategy ‘wastes’ a second slot on
the service of flows whose initial feasible rate is D + 1, whereas a single slot would suffice under a
more cautious strategy. More specifically, since the expected number of slots required per flow is
1 + p, it follows that α > 1/(1 + p) precludes stability.

Remark 4.1 We can extend the example of instability to a slightly more general setting. Consider,
as in the situation described above, a system with a single class of flows. Flows start according to
a Bernoulli process, i.e., in each time slot either a flow starts with probability α or no flow starts
with probability 1 − α, independent from slot to slot. The service requirement of each flow is a
constant B. In addition to Rmax, we also introduce Rmin = min{i : P{R = i} > 0}. Assume now
that feasible service rates are such that

(B − Rmin) · Rmax < B · Rmin.

It is easy to see that this condition implies that a flow entering the system will immediately
get scheduled. Hence, the average number of slots required for the service of an arbitrary flow is
bounded from below by

1 +

Rmax
∑

i=1

⌈

B − i

Rmax

⌉

P{R = i}. (1)

Thus, stability is precluded if

α

(

1 +

Rmax
∑

i=1

⌈

B − i

Rmax

⌉

P{R = i}

)

> 1.

5

Note that the quantity in (1) is strictly smaller than ⌈B/Rmax⌉, provided that Rmin < Rmax.

4.2 Scenario II

We discuss a second scenario where the MaxWeight strategy fails to achieve maximum stability.
As before, flows start according to a Bernoulli process, i.e., in each time slot either a flow starts
with probability α or no flow starts with probability 1 − α, independent from slot to slot. The
service requirement of each flow is a constant B. For convenience, we assume B = 8D for some
integer D ≥ 1. The feasible transmission rate of a flow is either 1 with probability p or 2 with
probability 1 − p, 0 < p < 1. The feasible transmission rates are independent across time and
among different flows. In this case, Proposition 3.2 states that stability can be achieved as long
as ρ = 4αD < 1.

Let Ni(t) denote the number of flows of size i at time t. It may be shown that for ρ ≤ 1, the
process (N3D+1(t), N3D+2(t), . . . , NB(t)) of flows of size 3D + 1 or greater is ‘stable’. This makes
sense since large flows receive priority, and the onset of instability manifests itself in the growth
of the number of small flows. It then follows that the system spends a non-negligible fraction of
time in states where all flows of size 3D + 1 or greater have rate 1 and there is at least one flow
of size greater than 6D + 1. In these states, the MaxWeight strategy will serve a flow at rate 1.
Similar to the previous scenario, this means that the fraction of time that transmission rate 1 is
used, does not approach 0 as ρ → 1, and instability follows.

5 Numerical experiments

In this section we present simulation results that confirm the instability of MaxWeight scheduling,
as well as clarify the nature of the instability. All simulations consist of a single run of 105 time
slots. In each slot, a new flow starts with probability α.

The first scenario we consider is Scenario II from Section 4, with D = 2. Figure 1 shows
the number of bits in the system, plotted for various values of α. Although the condition α < 1
ensures the existence of a stable scheduling strategy in this scenario, it is easily seen that this is
not sufficient for the MaxWeight policy to achieve stability.

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

6
x 10

4

time

bi

ts

α = 0.75
α = 0.8
α = 0.85
α = 0.92
α = 0.98
α = 1.1

Figure 1: The number of bits in the system plotted against time under MaxWeight scheduling,
for various values of α.

From this point on, we consider gradual traffic. During the activity period of a flow, each slot
a single bit enters. The length of this period is geometrically distributed with parameter p. In
Figure 2, three two-class scenarios are presented. Flows belong to either of the classes with equal
probability, and the transmission rates are geometrically distributed with parameter q. Hence,
Rmax = ∞, and the necessary stability condition found in Proposition 3.1 simplifies to α < 1. Be-
sides the sample path for MaxWeight scheduling, we also plot the behavior of MaxRate scheduling,

6

a somewhat simpler version of the algorithm used in Propositions 3.2 and 3.3, in which the flow
with the highest rate is scheduled. In each of these figures, MaxRate scheduling provides stability,
whereas MaxWeight scheduling fails to do so. Note that although the MaxWeight scheduling pol-
icy is unstable in the cases presented, it is still possible for particular classes of flows to be stable.
This is in contrast to MaxWeight scheduling in the static scenario.

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

time

bi

ts

MaxWeight class 1
MaxWeight class 2
MaxRate class 1
MaxRate class 2

(a) p1 = p2 = 1/4, q1 = 1/2, q2 = 1/4, α = 0.93.

0 2 4 6 8 10

x 10
4

0

2000

4000

6000

8000

10000

12000

time

bi

ts

MaxWeight class 1
MaxWeight class 2
MaxRate class 1
MaxRate class 2

(b) p1 = 1/4, p2 = 1/2, q1 = q2 = 1/2, α = 0.95.

0 2 4 6 8 10

x 10
4

0

2000

4000

6000

8000

10000

12000

time

bi

ts

MaxWeight class 1
MaxWeight class 2
MaxRate class 1
MaxRate class 2

(c) p1 = 1/4, p2 = 1/2, q1 = 1/4, q2 = 1/2, α = 0.95.

Figure 2: The number of bits in the system of both classes plotted against time for various
parameters.

Figure 3 displays the number of bits over time in a single-class scenario when the transmission
rates can assume only two possible values.

Figure 4 contains a similar scenario, but with the transmission rates geometrically distributed
with parameter q, so Rmax = ∞. This figure again demonstrates that MaxWeight fails to provide
maximum stability.

6 Conclusion

We studied the performance of MaxWeight scheduling in a setting where flow dynamics are taken
into consideration. We determined an explicit necessary condition for stability, and devised a sim-
ple policy to show that this condition in fact is also (nearly) sufficient for stability. Two illustrative
examples were provided of scenarios where MaxWeight scheduling fails to attain stability under
this condition.

The analytical results are supported and complemented by simulation experiments for more
involved scenarios. The simulations compare the MaxWeight scheduling strategy to the MaxRate

7

0 2 4 6 8 10

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

time

bi

ts

MaxWeight
MaxRate

(a) p = 0.25, R = 1, 2 w.p. 1/2, α = 0.43.

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

time

bi

ts

MaxWeight
MaxRate

(b) p = 0.05, R = 5, 10 w.p. 1/2, α = 0.4.

0 2 4 6 8 10

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

16000

time

bi

ts

MaxWeight
MaxRate

(c) p = 0.25, R = 1, 4 w.p. 9/10, 1/10, α = 0.65.

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

time

bi

ts

MaxWeight
MaxRate

(d) p = 0.05, R = 5, 20 w.p. 9/10, 1/10, α = 0.64.

Figure 3: The number of bits in the system plotted against time for various parameters.

policy, and confirm the instability of the MaxWeight strategy.
It is worth recalling that although the policies that we constructed in the proofs of Proposi-

tions 3.2 and 3.3 achieve maximum stability, they may not be ideal for practical purposes and may
not provide particularly good delay performance, especially at lower loads. Moreover, the policies
require knowledge of various parameter values which may be difficult to obtain in practical situa-
tions and is not used by the MaxWeight policy. (While the latter may be considered ‘unfair’, note
however that in the standard case with a fixed set of flows no amount of additional information
can help to achieve better stability performance than the MaxWeight policy provides.) The design
and analysis of suitable scheduling algorithms which guarantee maximum stability in the presence
of flow dynamics remains a challenging subject for further research.

Proof of Proposition 3.2. We first introduce several constants that will be used. Let
ǫ := 1

2 (1 − ρ)/(K + 1) > 0. Denote θk := [P{Rk > 0}]−1 < ∞, let Lk := min{l :
∑∞

i=l+1 iP{Bk =
i} ≤ ǫ/(αkθk)}, and observe that Lk < ∞ since E{Bk} < ∞. Define Zk = min{Rmax

k , αkE{Bk}/ǫ}.
Note that αkE{⌈Bk/Zk⌉} ≤ ρk + ǫ.

We consider a scheduling strategy with the following property: it serves a class-k flow that
either (i) has a feasible transmission rate Zk or higher or (ii) has a residual size Lk or larger and
a positive feasible transmission rate, whenever possible. Ties are broken arbitrarily. Let us say
that in time slot t a flow of class k(t) with a residual size of l(t) bits is served at rate r(t), with
the convention that k(t) = l(t) = r(t) = 0 in case no flow gets scheduled in time slot t at all.

In order to describe the evolution of the system over time, we introduce the process N(t) =
(N1(t), . . . , NK(t)), with Nk(t) = (Nk

1 (t), Nk
2 (t), . . .) and Nk

l (t) representing the number of class-k
flows in the system with a residual size of l bits at the beginning of slot t.

8

0 2 4 6 8 10

x 10
4

0

2000

4000

6000

8000

10000

12000

time

bi

ts

MaxWeight
MaxRate

(a) p = 0.25, q = 0.2, α = 0.95.

0 2 4 6 8 10

x 10
4

0

2

4

6

8

10

12

14
x 10

4

time

bi

ts

MaxWeight
MaxRate

(b) p = 0.05, q = 0.2, α = 0.9.

0 2 4 6 8 10

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

time

bi

ts

MaxWeight
MaxRate

(c) p = 0.25, q = 0.05, α = 0.99.

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

6

7

8

9
x 10

4

time

bi

ts

MaxWeight
MaxRate

(d) p = 0.05, q = 0.05, α = 0.95.

Figure 4: The number of bits in the system plotted against time for various parameters.

Observe that

Nk
l (t + 1) =Nk

l (t) + Ak
l (t) − I{k(t)=k,l(t)=l}

+ I{k(t)=k,l(t)=l+r(t)},

with Ak
l (t) denoting the number of class-k flows arriving at time t with a size of exactly l bits. It

is easily verified that the process N(t) is a Markov chain.
Define the Lyapunov function:

V (n) :=

K
∑

k=1

(

Lk
∑

i=1

nk
i

⌈

i

Zk

⌉

+ θk

∞
∑

i=Lk+1

ink
i

)

,

with n = (n1, . . . , nK) and nk = (nk
1 , nk

2 , . . .).
The above function provides a measure for the total amount of work in the system in terms

of the total number of slots required for the service of all currently present flows, assuming that
class-k flows of residual size no larger than Lk are always served at rate Zk, while class-k flows of
residual size of at most Lk are served at rate θ−1

k = P{Rk > 0}.
We can write the drift as

V (N(t + 1)) − V (N(t)) =

K
∑

k=1

Ik(t) − D(t),

9

with

Ik(t) :=

Lk
∑

i=1

Ak
i (t)

⌈

i

Zk

⌉

+ θk

∞
∑

i=Lk+1

iAk
i (t),

reflecting the increase in the workload due to the arrival of class-k flows, and

D(t) :=

⌈

l(t)

Zk(t)

⌉

I{1≤l(t)≤Lk(t)} + θk(t)l(t)I{l(t)>Lk(t)}

−

⌈

l(t) − r(t)

Zk(t)

⌉

I{1≤l(t)−r(t)≤Lk(t)}

− θk(t)(l(t) − r(t))I{l(t)−r(t)>Lk(t)}

representing the decrease in the workload due to the service of flows.
The conditional drift may then be written as:

E{V (N(t + 1)) − V (N(t)) | N(t) = n}

=

K
∑

k=1

E{Ik(t)} − E{D(t) | N(t) = n}. (2)

We first derive an upper bound for E{Ik(t)}.

E{Ik(t)}

=

Lk
∑

i=1

⌈

i

Zk

⌉

E{Ak
i (t)} + θk

∞
∑

i=Lk+1

iE{Ak
i (t)}

=αk

(

Lk
∑

i=1

⌈

i

Zk

⌉

P{Bk = i} + θk

∞
∑

i=Lk+1

iP{Bk = i}

)

=αk

(

E{

⌈

Bk

Zk

⌉

} + θk

∞
∑

i=Lk+1

(i −

⌈

i

Zk

⌉

/θk)P{Bk = i}

)

≤ρk + 2ǫ. (3)

We now turn to a lower bound for E{D(t) | N(t) = n}. Note that

D(t) ≥I{1≤l(t)≤Lk(t),r(t)≥Zk(t)} + θk(t)I{l(t)>Lk(t),r(t)>0}

=I{1≤l(t)≤Lk(t),r(t)≥Zk(t)}

+ [P{Rk(t) > 0}]−1I{l(t)>Lk(t),r(t)>0}.

Now, let Esmall(t) be the event that there is at least one class-k flow in time slot t of residual
size no larger than Lk with feasible transmission rate Zk or higher. Let Elarge(t) be the event
that there is at least one class-k flow in time slot t of residual size Lk +1 or larger with a non-zero
feasible transmission rate.

Note that

I{l(t)>Lk(t),r(t)>0}

=I{l(t)≥Lk(t)+1,r(t)>0,Esmall(t)} + I{l(t)>Lk(t),r(t)>0,Ēsmall(t)}

=I{l(t)>Lk(t),r(t)>0,Esmall(t)} + I{Elarge(t),Ēsmall(t)}.

Further observe

I{l(t)≤Lk(t),r(t)≥Zk(t)} + I{l(t)>Lk(t),E
small(t)}

=I{Esmall(t)} = 1 − I{Ēsmall(t)}.

10

We deduce that

D(t) ≥ 1 − I{Ēsmall(t)} + [P{Rk(t) > 0}]−1I{Elarge(t),Ēsmall(t)}.

Thus,

E{D(t)|N(t) = n}

=1 − P{Ēsmall(t)|N(t) = n} + [P{Rk(t) > 0}]−1

· P{Elarge(t), Ēsmall(t)|N(t) = n}

=1 − P{Ēsmall(t)|N(t) = n}

· (1 − [P{Rk(t) > 0}]−1
P{Elarge(t)|N(t) = n}).

Let sk :=
∑∞

i=Lk
nk

i . If
∑K

k=1 sk > 0, then P{Elarge(t)|N(t) = n} ≥ mink=1,...,K P{Rk > 0},

so that [P{Rk(t) > 0}]−1
P{Elarge(t)|N(t) = n} ≥ 1.

If
∑K

k=1 nk ≥ Nǫ,η, then P{Ēsmall(t)|N(t) = n} ≤ (1 − η)Nǫ,η ≤ ǫ.
Define

C = {n|

K
∑

k=1

nk < Nǫ,η and

K
∑

k=1

sk = 0}.

Then we obtain that
E{D(t) | N(t) = n} ≥ 1 − ǫ (4)

for any x /∈ C.
Combining Equations (2), (3), and (4),

E{V (N(t + 1)) − V (N(t)) | N(t) = n} ≤ −ǫ,

for any n /∈ C. In addition, it is easily verified that E{V (N(t+1))|N(t) = m} < ∞ for any m ∈ C.
Inspection of the Foster-Lyapunov drift criteria then shows that the set C is visited infinitely

often [12]. Since C is finite and the all-empty state is reachable from any state in C, if we addi-
tionally assume the scheduling strategy to be non-idling, it follows that the system must empty
infinitely often. 2

Remark .1 If Bk has finite support, i.e., Bmax
k := sup{b : P{Bk = b} > 0} < ∞, then the above

proof may be considerably simplified by taking Lk = Bmax
k and dropping all the terms involving

Nk
l , l ≥ Bmax

k + 1.

Proof of Proposition 3.3. We introduce several constants that will be used. Let ǫ :=
1
2 (1 − ρ)/(K + 2) > 0 and define θk, Lk and Zk as in the proof of Proposition 3.2. In addition

to that, define σk := αkE{Dk}, σ :=
∑K

k=1 σk, δ = ǫ/σ, and Ω = (1 − ǫ)/δ. Finally, let Mk :=
min{m :

∑∞
j=m+1 jP{Dk = j} ≤ σk/(αkΩ)}, and observe that Mk < ∞ since E{Dk} < ∞.

We consider a scheduling strategy with the following property: it serves an inactive class-k
flow that either (i) has a feasible transmission rate Zk or higher; or (ii) has a residual size greater
than Lk and a positive feasible transmission rate, whenever possible. Let us say that in time slot t
a flow of class k(t) with a residual size of l(t) bits is served at rate r(t), with the convention that
k(t) = l(t) = r(t) = 0 in case no flow gets scheduled in time slot t at all.

In order to describe the evolution of the system over time, we introduce N(t) = (N1(t), . . . , NK(t)),
with Nk(t) = (Nk

1 (t), Qk
1(t), Nk

2 (t), Qk
2(t), . . .), Qk

l (t) = (Qk
l1(t), Q

k
l2(t), . . .), Nk

l (t) representing
the number of inactive class-k flows in the system at the beginning of slot t with a residual size
of l bits, and Qk

lm(t) the number of class-k flows in the system at time t with a residual activity
period of length m and a total size of l bits.

11

Observe that

Nk
l (t + 1) =Nk

l (t) + Qk
l1(t) − I{k(t)=k,l(t)=l}

+ I{k(t)=k,l(t)=l+r(t)},

and
Qk

lm(t + 1) = Qk
lm+1(t) + Ak

lm(t),

with Ak
lm(t) denoting the number of class-k flows arriving at time t with an activity period of

length m and a size of exactly l bits. It is easily verified that the process N(t) is a Markov chain.
Define the Lyapunov function:

V (n) :=

K
∑

k=1

δ

Mk
∑

j=1

jqk
∗j + δΩ

∞
∑

j=Mk+1

jqk
∗j

+

Lk
∑

i=1

(qk
i∗ + nk

i)

⌈

i

Zk

⌉

+ θk

∞
∑

i=Lk+1

i(qk
i∗ + nk

i)

)

,

with n = (n1, . . . , nK), nk = (nk
1 , qk

1 , nk
2 , qk

2 , . . .), qk
l = (qk

l1, q
k
l2, . . .), qk

l∗ =
∑∞

j=1 qk
lj , qk

∗m =
∑∞

i=1 qk
im. The above function provides a measure for the total workload and weighted aggregate

residual lifetime of all the flows present in the system.
Note that

V (N(t + 1)) − V (N(t)) =

K
∑

k=1

Ik(t) + δ

K
∑

k=1

Jk(t)

− δ

K
∑

k=1

Ek(t) − D(t), (5)

with

Ik(t) :=

(

Lk
∑

i=1

Ak
i∗(t)

⌈

i

Zk

⌉

+ θk

∞
∑

i=Lk+1

iAk
i∗(t)

)

,

reflecting the increase in the workload due to the arrival of class-k flows,

Jk(t) :=

Mk
∑

j=1

jAk
∗j(t) + Ω

∞
∑

j=Mk+1

jAk
∗j(t),

with Ak
i∗(t) :=

∑∞
j=1 Ak

ij(t), Ak
∗j(t) :=

∑∞
i=1 Ak

ij(t), representing the increase in the aggregate
residual lifetime due to the arrival of class-k flows,

D(t) :=⌈
l(t)

Zk(t)
⌉I{1≤l(t)≤Lk(t)} + θk(t)l(t)I{l(t)>Lk(t)}

− ⌈
l(t) − r(t)

Zk(t)
⌉I{1≤l(t)−r(t)≤Lk(t)}

− θk(t)(l(t) − r(t))I{l(t)−r(t)>Lk(t)}

capturing the decrease in the workload due to the service of inactive flows, and

Ek(t) :=

Mk
∑

j=1

Qk
∗j(t) + Ω

∞
∑

j=Mk+1

Qk
∗j(t)

12

corresponding to the decrease in the aggregate residual lifetime due to the aging of active class-k
flows.

The conditional drift may then be written as:

E{V (N(t + 1)) − V (N(t)) | N(t) = n}

=

K
∑

k=1

E{Ik(t)} + δ

K
∑

k=1

E{Jk(t)}

− δ

K
∑

k=1

E{Ek(t) | N(t) = n} − E{D(t) | N(t) = n}.

As the arrival process of new flows is the same in both settings, we conclude from Equation (3)
that

E{Ik(t)} ≤ ρk + 2ǫ. (6)

Next we establish an upper bound for E{Jk(t)}.

E{Jk(t)}

=

Mk
∑

j=1

jE{Ak
∗j(t)} + Ω

∞
∑

j=Mk+1

jE{Ak
∗j(t)}

=αk

Mk
∑

j=1

jP{Dk = j} + Ω

∞
∑

j=Mk+1

jP{Dk = j}

=αk

E{Dk} + Ω

∞
∑

j=Mk+1

j(1 − 1/Ω)P{Dk = j}

≤2σk. (7)

We proceed with a lower bound for E{Ek(t)|N(t) = n}.

E{Ek(t)|N(t) = n} =

Mk
∑

j=1

qk
∗j + Ω

∞
∑

j=Mk+1

qk
∗j . (8)

Thus E{Ek(t)|N(t) = n} ≥ Ω whenever qk :=
∑Mk

j=1 qk
∗j ≥ Ω or s′k :=

∑∞
j=Mk+1 qk

∗j ≥ 1.
We turn to a lower bound for E{D(t) | N(t) = n}. Define

C = {n|

K
∑

k=1

nk < Nǫ,η and

K
∑

k=1

sk = 0}.

Using similar arguments as in the previous proof, we then obtain

E{D(t) | N(t) = n} ≥ 1 − ǫ (9)

for any n /∈ C.
Define the set

Ĉ ={n|

K
∑

k=1

nk ≤ Nǫ,η and

K
∑

k=1

sk = 0

and

K
∑

k=1

qk ≤ Ω and

K
∑

k=1

s′k = 0}.

13

Suppose n /∈ Ĉ. Then either
∑K

k=1 qk > Ω or
∑K

k=1 s′k ≥ 1 or n /∈ C.
If n /∈ C, then the conditional drift is bounded from above by

ρ + 2Kǫ + 2δσ − 1 + ǫ = ρ + (2K + 3)ǫ − 1 = −ǫ.

If
∑K

k=1 qk > Ω or
∑K

k=1 s′k ≥ 1, then the conditional drift is bounded from above by

ρ + 2Kǫ + 2δσ − δΩ = ρ + (2K + 3)ǫ − 1 = −ǫ.

Combining Equations (5)-(9),

E{V (N(t + 1)) − V (N(t)) | N(t) = n} ≤ −ǫ,

for any n /∈ Ĉ. In addition, it is easily verified that E{V (N(t+1))|N(t) = m} < ∞ for any m ∈ Ĉ.
Inspection of the Foster-Lyapunov drift criteria then shows that the set Ĉ is visited infinitely

often [12]. Since Ĉ is finite, and the all-empty state is reachable from any state in Ĉ, if we addi-
tionally assume the scheduling strategy to be non-idling, it follows that the system must empty
infinitely often. 2

References

[1] D.M. Andrews (2004). Instability of the Proportional Fair scheduling algorithm for HDR.
IEEE Trans. Wireless Commun. 3, 1422–1426.

[2] D.M. Andrews, K. Kumaran, K. Ramanan, A.L. Stolyar, R. Vijayakumar, P.A. Whiting
(2004). Scheduling in a queueing system with asynchronously varying service rates. Prob.
Eng. Inf. Sc. 18, 191–217.

[3] P. Chaporkar, S. Sarkar (2006). Stable scheduling policies for maximizing throughput in
generalized constrained queueing. In: Proc. Infocom 2006.

[4] A. Eryilmaz, R. Srikant (2005). Fair resource allocation in wireless networks using queue-
length-based scheduling and congestion control. In: Proc. Infocom 2005, 1794–1803.

[5] A. Eryilmaz, R. Srikant, J. Perkins (2005). Stable scheduling policies for fading wireless
channels. IEEE/ACM Trans. Netw. 13, 411–424.

[6] L. Georgiadis, M.J. Neely, L. Tassiulas (2006). Resource allocation and cross-layer control in
wireless networks. Found. Trends Netw. 1, 1–144.

[7] N. Kahale, P.E. Wright (1997). Dynamic global packet routing in wireless networks. In: Proc.
Infocom ’97, 1416–1423.

[8] X. Lin, N.B. Shroff (2005). The impact of imperfect scheduling on cross-layer rate control in
wireless networks. In: Proc. Infocom 2005.

[9] X. Lin, N.B. Shroff, R. Srikant (2008). On the connection-level stability of congestion-
controlled communication networks. IEEE Trans. Inf. Theory 54, 2317–2338.

[10] N. McKeown, V. Anantharam, J.C. Walrand (1996). Achieving 100% throughput in an input-
queued switch. In: Proc. Infocom ’96, 296–302.

[11] S.P. Meyn (2007). Control Techniques for Complex Networks, Cambridge University Press.

[12] S.P. Meyn, R.L. Tweedie (1993). Markov Chains and Stochastic Stability, Springer Verlag.

[13] M.J. Neely (2005). Energy optimal control for time-varying wireless networks. In: Proc. In-
focom 2005, 572–583.

14

[14] M.J. Neely, E. Modiano, C.-P. Li (2005). Fairness and optimal stochastic control for hetero-
geneous networks. In: Proc. Infocom 2005.

[15] M.J. Neely, E. Modiano, C.E. Rohrs (2002). Power and server allocation in a multi-beam
satellite with time-varying channels. In: Proc. Infocom 2002, 1451–1460.

[16] M.J. Neely, E. Modiano, C.E. Rohrs (2005). Dynamic power allocation and routing for time-
varying wireless networks. IEEE J. Sel. Areas Commun. 23, 89–103.

[17] G. Sharma, R.R. Mazumdar, N.B. Shroff (2006). On the complexity of scheduling in wireless
networks. In: Proc. MobiCom ’06, 227–238.

[18] G. Sharma, N.B. Shroff, R.R. Mazumdar (2007). Joint congestion control and distributed
scheduling for throughput guarantees in wireless networks. In: Proc. Infocom 2007.

[19] A.L. Stolyar (2004). MaxWeight scheduling in a generalized switch: state space collapse and
workload minimization in heavy traffic. Ann. Appl. Prob. 14, 1–53.

[20] A.L. Stolyar (2005). Maximizing queueing network utility subject to stability: greedy primal
dual algorithm. Queueing Systems 50, 401–457.

[21] A.L. Stolyar (2006). Greedy primal-dual algorithm for dynamic resource allocation in complex
networks. Queueing Systems 54, 203–220.

[22] L. Tassiulas (1998). Linear complexity algorithms for maximum throughput in radio networks
and input queued switches. In: Proc. Infocom ’98, 533–539.

[23] L. Tassiulas, A. Ephremides (1992). Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Aut.
Contr. 37, 1936–1948.

[24] L. Tassiulas, A. Ephremides (1993). Dynamic server allocation to parallel queues with ran-
domly varying connectivity. IEEE Trans. Inf. Theory 39, 466–478.

[25] X. Wu, R. Srikant (2005). Regulated maximal matching: a distributed scheduling algorithm
for multi-hop wireless networks with node-exclusive spectrum sharing. In: Proc. 44th IEEE
CDC-ECC.

[26] X. Wu, R. Srikant (2006). Scheduling efficiency of distributed greedy scheduling algorithms
in wireless networks. In: Proc. Infocom 2006.

15

