Spatial Inefficiency of MaxWeight Scheduling

Peter van de Ven'2, Sem Borst!3, Lei Ying*

Abstract

MaxWeight scheduling has gained enormous popularity as a power-
ful paradigm for achieving queue stability and maximum throughput in
a wide variety of scenarios. The maximum-stability guarantees however
rely on the fundamental premise that the system consists of a fixed set
of flows with stationary ergodic traffic processes. In the present paper we
examine networks where the population of active flows varies over time,
as flows eventually end while new flows occasionally start. We show that
MaxWeight policies may fail to provide maximum stability due to per-
sistent inefficient spatial reuse. The intuitive explanation is that these
policies tend to serve flows with large backlogs, even when the result-
ing spatial reuse is not particularly efficient, and fail to exploit maximum
spatial reuse patterns involving flows with smaller backlogs. These results
indicate that instability of MaxWeight scheduling can occur due to spatial
inefficiency in networks with fixed transmission rates, which is fundamen-
tally different from the inability to fully exploit time-varying rates shown
in prior work. We discuss how the potential instability effects can be coun-
tered by spatial traffic aggregation, and describe some of the associated
challenges and performance trade-offs.

1 Introduction

MaxWeight scheduling has gained immense popularity as a powerful concept for
achieving maximum throughput and queue stability in a wide variety of scenar-
ios. In a seminal paper, Tassiulas & Ephremides [28] presented a MaxWeight
scheduling policy for throughput maximization in multi-hop wireless networks,
where only certain subsets of the links may be activated simultaneously due to
interference considerations, see also Kahale & Wright [6] for instance. In sub-
sequent work, Tassiulas & Ephremides [29] described a MaxWeight policy for
allocating a server among several parallel queues with time-varying connectivity.

Broadening the latter framework, MaxWeight-type policies were developed
for power control and scheduling of wireless channels with rate variations, see

IEindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2Eurandom, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3Bell Laboratories, Alcatel-Lucent, P.O. Box 636, Murray Hill, NJ 07974, USA

4Department of Electrical & Computer Engineering, Iowa State University, Ames, IA
50011, USA

for instance Andrews et al. [1], Eryilmaz et al. [3], Neely [17] and Neely et
al. [19]. Extending the scope further, Eryilmaz & Srikant [4], Neely et al. [18]
and Stolyar [25, 26] devised algorithms for joint congestion control, routing
and scheduling based on MaxWeight principles. The powerful properties of
MaxWeight-type policies have emerged as one of the central paradigms in the
broader realm of cross-layer control and resource allocation in wireless networks,
see Georgiadis et al. [5] for a comprehensive overview.

MaxWeight-type algorithms have also been proposed for throughput maxi-
mization in input-queued switches, where only certain subsets of input-output
pairs (e.g. matchings) may be simultaneously connected because of compatibil-
ity constraints, see for instance McKeown et al. [13, 14]. The book of Meyn [15]
contains extensive background material on MaxWeight policies. Crucial heavy-
traffic results for MaxWeight algorithms were obtained by Stolyar [24].

The distinguishing characteristic of MaxWeight policies is that the subset
of queues that are simultaneously served is selected so as to be of maximum
“weight” , hence the term “MaxWeight”. The weight of a queue is usually defined
as the current backlog or the product of the backlog and the feasible instanta-
neous service rate for that queue, if selected. The combinations of queues which
can be scheduled simultaneously are subject to certain constraints, based on for
example interference conditions. In a more general sense, MaxWeight policies
can be interpreted as selecting a service vector from a (possibly time-varying)
feasible region that maximizes the inner product with the backlog vector.

Under mild assumptions, MaxWeight-type algorithms have been shown to
provide maximum throughput, i.e., achieve queue stability whenever feasible to
do so at all. A particularly appealing feature is that MaxWeight policies only
need information on the current backlogs and instantaneous service rates, and
do not rely on any explicit knowledge of the rate distributions or the traffic
parameters. On the downside, finding the maximum-weight subset is often a
challenging problem and potentially NP-hard, which is exacerbated in a dis-
tributed setting, where message passing and exchange of backlog information
create a substantial communication overhead in addition to the computational
burden. This issue is especially pertinent as the maximum-weight problem gen-
erally needs to be solved at a very high pace, commensurate with the fast time
scale on which scheduling algorithms tend to operate. In order to address this
issue, Tassiulas [27], Eryilmaz et al. [3] and Chaporkar & Sarkar [2] showed
that randomized policies involve less stringent requirements and yet suffice for
achieving maximum stability. In addition, several authors have considered al-
gorithms that solve the maximum weight problem in some approximate sense,
and quantified the resulting penalty in guaranteed throughput, see for instance
Lin & Shroff [8], Sharma et al. [22, 23] and Wu & Srikant [31].

Under mild assumptions, MaxWeight-type policies have been shown to achieve
maximum stability. A fundamental premise however is that the system consists
of a fixed set of queues with stationary ergodic traffic processes. In reality, the
collection of active queues dynamically varies, as sessions eventually end, while
new sessions occasionally start. In many situations the assumption of a fixed set
of queues is still a reasonable modeling convention, since the scheduling actions

and packet-level queue dynamics tend to occur on a very fast time scale, on
which the population of active sessions evolves only slowly. In other cases, how-
ever, sessions may be relatively short-lived, and the above time scale separation
argument does not apply. The impact of flow-level dynamics over longer time
scales is particularly relevant in assessing stability properties, as the notion of
stability only has strict meaning over infinite time horizons.

Motivated by the above observations, [30] examined the stability properties
of MaxWeight scheduling policies in the presence of flow-level dynamics. It was
shown that these policies may fail to achieve maximum stability in wireless chan-
nels with time-varying transmission rates. The analysis in [30] also identified
algorithms that do provide maximum stability, but these were geared to yield
tractable behavior and required explicit knowledge of various system parame-
ters. Subsequent work [10, 11] proposed more practical scheduling algorithms
guaranteeing throughput optimality, and extended these to multi-channel sce-
narios. Sadiq & De Veciana [21] showed that a delay-driven (as opposed to
queue-based) version of MaxWeight scheduling does guarantee maximum sta-
bility in the presence of flow-level dynamics and rate variations. A somewhat
different manifestation of “queue instability” under MaxWeight policies for a
fixed set of heavy-tailed traffic sources was studied by Markakis et al. [12].

It is crucial to observe that the rate variations play a critical role in the
above-mentioned instability results. Intuitively speaking, MaxWeight policies
tend to give preferential treatment to flows with large backlogs, even when their
service rates are not particularly favorable, and thus fail to maximally exploit
the rate variations of flows with smaller backlogs. This raises the question
whether the rate variations are essential for the instability to occur. In the case
of a shared downlink, where only a single flow can be scheduled at a time, the
instability cannot occur in the absence of any rate variations, since this system
is work-conserving, and any non-idling scheduling strategy will in fact achieve
maximum stability.

The more challenging problem, however, arises in network settings as orig-
inally considered in [28] where certain subsets of the links can be activated
simultaneously subject to interference constraints. In the present paper we will
show that MaxWeight scheduling policies may fail to provide maximum stability
in such scenarios as well, even in the absence of any rate variations. Loosely
stated, MaxWeight policies tend to serve flows with large backlogs, even when
the resulting spatial reuse is not particularly efficient, and neglect to take advan-
tage of maximum spatial reuse patterns involving flows with smaller backlogs.
These results indicate that the instability of MaxWeight scheduling can occur
due to spatial inefficiency in networks with fixed transmission rates, which is
fundamentally different from the inability to fully exploit time-varying trans-
mission rates as in [30].

Note that the preferential treatment of flows with large backlogs in fact also
applies in the absence of any flow-level dynamics. In that case the phenomenon
cannot persist however since the flows with smaller backlogs will build larger
queues and gradually start improving the spatial efficiency, creating a counter-
acting force. In contrast, in the presence of flow-level dynamics, MaxWeight

policies may constantly get diverted to arriving flows, while neglecting the op-
portunity to exploit higher spatial reuse patterns involving a persistently grow-
ing number of flows with relatively small remaining backlogs, so the opposing
effect is never triggered.

It is worth observing that the possibly unbounded number of flow locations
greatly exacerbates the computational complexity of solving the maximum-
weight problem noted earlier. However, in the analysis we assume that the
maximum-weight problem itself is solved to optimality in each time slot. Thus
the instability of MaxWeight policies as discussed above is entirely disjoint from
the throughput penalty which may result from solving the maximum-weight
problem only approximately as considered for example in [8, 22, 23, 31]. It is
further worth drawing a distinction with the work of Lin et al. [9] and Moallemi
& Shah [16] showing the stability of joint scheduling and congestion control
algorithms in the presence of flow-level dynamics without relying on the con-
ventional simplifying time scale separation argument. The main difference with
the present paper lies in the fact that in these studies the set of flow routes is
fixed and that scheduling operates at a class level.

While the root cause for instability observed in this paper (flow-level dy-
namics) is the same as in [30], the way the presence of transient flows unhinges
the MaxWeight scheduling algorithm is completely different. Consequently, the
remedies for instability discussed in [10, 11, 21] cannot be directly applied in
the current setting, and the spatial inefficiency identified in this paper calls for
novel methods for stabilizing the system.

As we will show, the potential instability effects can be countered by imple-
menting a region-based version of MaxWeight scheduling. However, the identi-
fication of adequate regions is quite challenging, since the degree of traffic ag-
gregation involves a trade-off between scheduling complexity, spatial efficiency,
and network capacity. In particular, the suitable level of aggregation depends on
the spatial load profile, and seems difficult to determine without explicit knowl-
edge of the traffic parameters, thus detracting from one of the most appealing
features of MaxWeight scheduling mentioned earlier.

The remainder of the paper is organized as follows. In Section 2 we provide
a detailed model description, and in Section 3 we demonstrate the potential
instability of MaxWeight scheduling through several examples. In Section 4
we examine the performance of region-based scheduling in two-dimensional net-
works with an arbitrary spatial traffic density. Section 5 offers some concluding
remarks.

2 Model description

We consider a time-slotted wireless system on some space S. Traffic consists of
finite-sized flows that enter the system at random, and leave once fully served.
Each arriving flow is associated with a certain location in S and a finite size,
as will be further described for specific model instances later. In each time
slot, a centralized scheduler selects a subset of flows for transmission. In the

present paper we assume for simplicity that the total size of a flow is known
upon arrival, and no further traffic will arrive into that flow. Most of the results
can be extended to a setting with gradual traffic.

A subset of points in S is said to be feasible if flows in these locations can be
scheduled simultaneously. The function F'(-) indicates whether or not a subset
of points is feasible, i.e., given n flows with distinct locations P;,..., P, € S,
F{P1,...,P,}) equals 1 if these flows can be scheduled simultaneously and is 0
otherwise. Flows in the same location can never be scheduled simultaneously.
A prototypical scenario would be that F({Py,...,P,}) =1 if and ouly if | P, —
Pj|| > d for all ¢ # j, which corresponds to a so-called protocol model with
reuse distance d. However, the feasibility function could also be based on SINR
constraints for example.

In each time slot a certain subset of flows gets selected for service, as governed
by the applicable scheduling strategy, subject to the feasibility constraints. Each
time a flow gets scheduled, its residual size is reduced by 1, and a flow leaves
the system once it has been served to completion i.e., its size reaches 0. The
subset of flows selected by the scheduling strategy may depend on the locations
P;(t) and residual sizes Q;(t), i € I(t), with I(¢) indexing the flows present in
time slot ¢. In particular, the MaxWeight scheduling strategy selects a feasible
subset of flows J*(t) C I(t), F'(J*(t)) = 1, of maximum aggregate residual size,
Le., Zje]*(t) Q;(t) = ng(lt?%%):l Zje.l Q;(1).

Besides notational convenience, the main reason for assuming unit transmis-
sion rates in the above model description is to stress the fact that the instability
phenomena demonstrated in later sections result from persistent spatial ineffi-
ciency rather than rate heterogeneity. Possible rate heterogeneity will induce
priorities among flows, which may exacerbate the spatial inefficiency and render
the system even more prone to potential instability effects.

3 Instability of MaxWeight Scheduling

In this section we present several illustrative examples where the MaxWeight
scheduling strategy fails to achieve maximum stability.

Example 1. We first consider a network with three regions as shown in Fig-
ure 1. Transmissions in region 2 interfere with transmissions in both region 1
and region 8, and transmissions in regions 1 and 3 do not interfere with each
other. Flows arrive at region @ at a rate \; (per time slot) and have initial
size B;. Denote by p; = NME{B;} the traffic intensity at region i. We assume
that

pr+p2<landps+p2 <1,

or equivalently,
p2 < 1 —max{p1,ps}. (1)

It is easily seen that the latter condition is necessary for stability to be achievable,
and in fact also sufficient under mild independence assumptions. A scheduling

strategy that can stabilize the network when (1) holds is as follows. At each time
slot, schedule a flow in region 2 with probability ps+€, or schedule a flow in both
regions 1 and 3, with probability max{p1, p3} + €, where € = w

Now suppose By = 1, and recall that the MaxWeight scheduling stmtegy as
defined in the general network model of the previous section selects a set of flows
with mazimum aggregate residual size. Thus the MazWeight strategy will never
schedule a flow in region 2 as long as a flow with a residual size of 2 or larger is
present in region 1 or region 3. Hence the scheduling of flows of residual size 2
or larger in region 1 and region 3 is independent from each other. Also, the
fraction of time that a flow of residual size 2 or larger gets scheduled in region i,
is Mi(E{B;} — 1) = p; — \i. It follows that the fraction of time that a flow in
region 2 gets scheduled, is bounded from above by

(I —p1+)1 —p3s+ A3).

Thus a necessary condition for MaxWeight scheduling to achieve stability is
p2 < (1=p1+XA1)(1—ps+A3). When the \;’s (i = 1,3) are small and the E{B;}’s
(i = 1,3) are large, the latter condition ‘approaches’ ps < (1—p1)(1—p3), which
is a more stringent inequality than the sufficient condition (1). O

region 3

region 1

region 2

Figure 1: An example of a spatial ad hoc wireless network where MaxWeight
scheduling is not throughput-optimal.

In the above example, the stabilizing strategy either schedules both region 1
and region 3, or schedules region 2. The MaxWeight policy, however, tends to
serve flows with large backlogs, so flows in regions 1 and 3 are served with pri-
ority when their residual sizes are greater than or equal to 2. Consequently, the
MaxWeight policy schedules a flow in region 1 (region 3) even when region 3 (re-
gion 1) is empty, which leads to inefficient spatial reuse. Thus, the MaxWeight
policy fails to achieve maximum stability.

Example 1 illustrates the spatial inefficiency of MaxWeight scheduling by
carefully constructing the regions where flows arrive. Next we present a less
restrictive example where we consider a one-dimensional space (a ring) with

uniformly distributed arrival locations. We assume that all flows are of the same
size, and we will show that even in this uniform traffic scenario, MaxWeight
scheduling fails to achieve throughput optimality.

Example 2. Let N > 1 and consider a ring with unit circumference and reuse
distance d = 2(N +1)/((2N + 3)(3N + 2)), partitioned into (2N + 3)(3N + 2)
intervals of equal size, see Figure 2. In each time slot, either exactly (2N +
3) flows arrive with probability a, each of size B = 2, at locations uniformly
distributed in the intervals M + j(3N 4+ 2), j = 1,2,...,(2N + 3), where M is
uniformly distributed on 1,2, ...,3N+2, or no flows arrive at all with probability
1—a.

d=4/25

Figure 2: A ring with unit circumference, reuse distance d = 4/25, partitioned
into 25 intervals of equal size (N = 1)

Consider a strategy that generates a random variable L uniformly distributed
onl,2,...,2N+3, and then selects an arbitrary flow for service from each of the
intervals L+i1(2N+3),i=0,1,...,3N + 1, if available. Note that the strategy
respects the reuse distance, and achieves stability as long as the aggregate traffic
intensity in each interval, 2a/(3N + 2), is less than the fraction of time slots
that each interval gets selected for service, 1/(2N + 3), or equivalently, if a <
a(N) = (3N + 2)/(4N + 6). Note that a(N) — 3/4 as N — oo. Also, the
maximum size of a feasible subset of points is M (N) = LWJ, and the
total traffic intensity equals p = 2a(2N + 3), so the necessary condition p < M
for stability takes the form

o (2N + 3)(3N +2)
a <b(N) = 2(2N+3){ 2(N + 1) J

Observe that b(N) — 3/4 as N — oo, and thus the above-described strategy in
fact achieves mazimum stability for large values of N.

It is easily verified that in each time slot with arriving flows, the MaxWeight
strategy selects all 2N + 3 of them for service, while in a time slot without any

arrivals, it can serve at most 3N + 2 traffic units, so the expected total number
of traffic units served per time slot is bounded from above by a(2N + 3) + (1 —
a)(3N +2). As a necessary condition in order for the MaxWeight strategy to be
stable, the latter number must be larger than the total traffic intensity 2a(2N+3),
which entails a < a™W(N) = (3N +2)/(5N + 5). Note that ™"V (N) < a(N),
with strictly inequality for all N > 2, and that a™WV (N) — 3/5 as N — oc.

We conclude that for a € (aMW(N),a(N)), the MazWeight strategy fails
to achieve stability, although there exists a strategy that does provide stability.
For large values of N the MaxWeight strategy is only able to sustain at most a
fraction 4/5 of the maximum throughput. O

In the above example MaxWeight scheduling always selected newly arrived
flows for transmission, even when it could have chosen a schedule that allowed
for better spatial reuse. This persistent inefficiency then leads to instability. As
we will see below, this behavior occurs for more general traffic patterns as well.

The locations of arriving flows in Example 2 are uniformly distributed, but
highly correlated. When the flow locations are independent, the behavior is
more complex, and stability is more difficult to establish. We therefore proceed
with a simulation experiment where we assume that the locations of arriving
flows are independent. As we show in the next example, the MaxWeight strategy
again fails to achieve throughput optimality.

Example 3. Consider a ring network where the total number of arriving flows is
geometrically distributed with parameter p = 0.45 and mean o = 1;% ~ 1.22, so
p = oE{B} = 2.44. We assume that the locations of the flows are independent
and uniformly distributed along the ring. The reuse distance is d = 0.3, and
hence the mazimal number of flows that can be scheduled simultaneously equals
M = 3.

We compare the performance of MaxWeight scheduling with that of a ran-
domized interval-based scheduling strategy. We divide the ring into 42 intervals
of length 1/42. We consider 42 schedules wy = {k,k + 14,k + 28} (modulo 42),
and choose in each time slot one of these schedules uniformly at random.

We simulate the network 1000 slots, for both MaxzWeight scheduling and the
randomized strateqy. Figure 3 shows the total number of flows present over time
for MaxWeight scheduling (gray) and the randomized strategy (black). Under
MaxWeight scheduling the number of flows grows unbounded, suggesting insta-
bility. In contrast, the number of flows settles around a relatively low level for
the randomized strategy. O

4 Stability of region-based scheduling

In the previous section we demonstrated the spatial inefficiency of MaxWeight
scheduling. This raises the question of finding scheduling algorithms that can
be used to stabilize spatial networks with flow-level dynamics. For the single-
channel case with flow-level dynamics it was recently shown that maximum
stability can be achieved by scheduling according to the feasible transmission

1 flows

1000

800+

600

400+

200+

I I I I I tlme
200 400 600 800 1000

Figure 3: Evolution of the total number of flows for MaxWeight scheduling
(gray) and an interval-based randomized scheduler (black), respectively.

rate [10, 11] or according to the product of feasible transmission rate and the
delay [21]. Tt is not clear whether these policies are throughput-optimal in the
spatial setting, or how they may need be modified to provide maximum stability.
Both schedulers have to find a maximum (weighted) independent set over all
flows in each time slot, and since the number of flows is unbounded, so is the
scheduling complexity. In this section we present a class of policies that do have
bounded complexity.

Consider a two-dimensional network with an arbitrary spatial traffic density.
We assume that the space S is bounded, and without loss of generality we may
suppose that location coordinates are scaled such that S is contained in the unit
square [0, 1]%. The number of arriving flows, their locations, and their sizes are
independent and identically distributed across time slots. The location of an
arbitrary arriving flow is governed by some spatial measure A on [0,1]2, with
AMz,y) = 0 for all (z,y) € S, i.e., the expected number of arriving flows per
time slot in a region R C S is f(z,y)eR Az,y) dedy. Let the positive random
variable B represent the size of an arbitrary flow.

4.1 Two special cases

The above general network setting includes the three-region network and the
ring topology with uniform traffic density discussed in Section 3. Before pre-
senting results on the stability of general spatial networks with flow-level dy-
namics, let us first consider maximal stable policies for these two special cases.
For the three-region network, an alternative view of the network is to consider

each region as a single node. The three-region network can then be seen as a
classic three-node network, where packets belonging to various flows are con-
tinuously injected into each node. It is easily verified that in this case the
MaxWeight strategy that schedules according to the aggregate backlog at each
node is throughput-optimal.

Now consider the ring network with uniform spatial traffic density a. Taking
a similar approach as for the three-region network, instead of scheduling flows,
we divide the ring into intervals and schedule these intervals instead. As we
will show in the following proposition, for the right choice of intervals the ring
network can be stabilized using such interval-based scheduling.

Proposition 1. Consider a ring with unit circumference, uniform spatial traffic
density, and a translation-invariant feasibility function, and denote by M the
mazimum number of flows that can be scheduled simultaneously. Then there
exists an interval-based scheduling strategy that achieves stability for any load
p:=oE{B} < M.

Proof. Let P = {P1,..., Py} C [0,1] denote a feasible maximum-size set and
assume that there exist some € > 0 such that for any B e [P;, P; + €), the set
P = {Pl,...,pM} is feasible as well. We choose K;, i = 1,2,...,M and K
be integers such that each interval [P;, P; + €) contains the points K;/K and
(K;+1)/K,i=1,2,...,M. We partition the ring into K intervals, each of
size 1/K. Now consider a cyclic scheduling strategy which in time slot tK + u,
u=1,...,K,t=0,1,..., serves the intervals [(K; + u)/K,(K; + 1+ u)/K],
i = 1,..., M by selecting an arbitrary flow from each of these intervals, if
available. Note that any set of flows thus selected is allowed since the feasibility
function is translation-invariant. Also, each interval is allowed to be served a
fraction of the time M /K and has aggregate traffic intensity p/K. Hence, the
strategy achieves stability for any p < M. O

Note that Proposition 1 assumes a general interference model, so it includes
the model with reuse distance discussed in Examples 2 and 3 as a special case.
Consider the case where the reuse distance is d, and assume 1/d is not an integer.
Then M = |1/d| and ¢ = 1/M — d. It is easy to verify that given the reuse
distance d, the necessary condition for p to be supportable is p < |1/d| and that
the scheduling algorithm presented in the proof can stabilize any p < |1/d]. In
general, the required granularity of the partitioning depends on the feasibility
function through €, but not on the traffic intensity.

4.2 General networks

The examples in section 4.1 indicate that in the presence of flow-level dynamics
we should aggregate over several nearby flows, rather than schedule based on
individual flows. This suggests a region-based scheduling algorithm where the
space is partitioned into a finite number of regions. In each time slot, the
algorithm selects a subset of non-interfering regions and then schedules a flow
in each selected region.

10

Naturally, such partitioning would reduce the flexibility of the scheduler since
the region-based feasibility constraints are more stringent than the original con-
straints. Region-based scheduling is nevertheless useful because, in contrast to
the partition-free system, throughput-optimal schedulers are available in this
case. For example, since the partitioned system behaves as a network with a fi-
nite number of persistent queues, it is well-known that region-based MaxWeight
scheduling (i.e., MaxWeight scheduling based on the aggregate backlog of all
flows in a region) is throughput-optimal within the class of schedulers that sat-
isfy the more rigid feasibility constraints of the partitioned system. We are inter-
ested in how the capacity region of the partitioned system relates to the capacity
region under the original reuse constraints. As we will see, this depends on the
granularity of the partitioning. Note that region-based MaxWeight scheduling
limits the scheduling complexity, as the number of regions is fixed.

We continue to consider a specific form of region-based scheduling referred
to as K-partition, where the area [0, 1]? is partitioned into K? square cells of
size 1/K?, for some K € N. The cells are denoted Ry, = [(k — 1)/ K, k/K] x
[(1-1)/K,l/K], k,l =1,..., K. The 4-partition is illustrated in Figure 4.

R1,4 R4’4

R1 1 R4,1

Figure 4: The 4-partition, where the unit square is divided into 16 cells.

Under K-partition, a set of cells Ry, 1,, Rk, iss- - - Rk, 1, 15 said to be feasi-
ble if for any P; € Ry, .1,, ¢ = 1,...,n, the set of points P = {Py, Ps,..., Py} is
feasible. For convenience, we henceforth assume that the feasibility function is
governed by a protocol model with reuse distance d. Denote by (d) all feasible
sets of points, and let Q(K,d) C {0,1}¥ ’ represent the collection of all feasible
subsets of cells. So for w € Q(K,d) we have that wi; = 1 if Ry is contained in
the schedule w, and wy; = 0 otherwise. We focus on square regions for conve-
nience, but we expect that for other types of regions the same qualitative results
hold .

Under K-partition, scheduling is confined to subsets of flows that belong to
a feasible subset of cells, which restricts beyond the original reuse constraint and
guarantees feasibility. The aggregate arrival rate of flows into the cell Ry is
given by Ap,; = f(;c,y)eRk.l Az, y) dzdy. The capacity region for such a system

11

is well-known:
C(K,d) ={X : M\ E{B} € conv.hull(Q(K,d))}.

Let C(d) denote the capacity region under the original reuse constraint, then
for any K > 1 we have that C(K,d) C C(d). As K increases, the granularity
of the partitioning becomes finer, and it is intuitive that C(K,d) converges to
C(d) in a certain sense. This is formalized in the following theorem, where we
show that for any arrival density function A € C(d) (under certain assumptions)
there exists a K such that A is contained in C(K, d).

Before stating our main result on the stability of region-based scheduling,
we first present the following lemmas.

Lemma 1. Letd >0 and K € N, K > 2v/2/d, then
C(d) CC(K,d —2V2/K).

The proof of Lemma 1 is presented in Appendix A.1.
Let w € Q(K,d), L < K and denote by w™) the vector w restricted to the
entries wy;, k,0 =1,2,..., L. Then the following lemma holds.

Lemma 2. Letd >0, K € N and set

K(d—2\/§/K)J*1

h:KL d 2)

Then w € Q(K,d) = w /M € Q(k/h, d).

Lemma 2 states that if w is a feasible set of cells under K-partition and reuse
distance d — 2v/2/K, then it is a feasible set of cells under (K/h)-partition and
reuse distance d as well. The proof of the lemma is presented in Appendix A.2.

We are now in position the prove our main result. An arrival density function
A is said to be smooth if it is

e uniformly lower bounded, i.e., there exists a x(©) > 0 such that Az, y) >
&) for all (z,y) € S;

e differentiable, with a uniformly upper bounded first-order partial deriva-
tive, i.e., there exists a k1) < oo such that w < kM) and %Z’y) <

€T
xM for all (z,y) € S.

Theorem 1. Let A be a smooth arrival density function such that (1+€)A € C(d)
for some € > 0. Then there exists a K = K(\) such that A € C(K,d).

The idea behind the proof of Theorem 1 is as follows. By Lemma 1 we
know that for any given arrival density function within the capacity region
C(d), the system can be stabilized by a randomized region-based algorithm
under K-partition and reduced reuse distance d — 2v/2 /K that selects schedule
w € QK,d — 2v/2/K) with a certain probability 7(w). In order to turn this

12

mechanism into a scheduler that is feasible for reuse distance d, we scale the
entire system by a factor h~!, and by Lemma 2 we know that our randomized
scheduler is now valid for reuse distance d. This is illustrated in Figure 5 for the
8-partition. Certain cells in the scaled system are located outside of the unit
square, and scheduling them does not result in flows being served. However,
by choosing K sufficiently large we can make this throughput loss arbitrarily
small, thus stabilizing the system.

v

8-partition 6-partition

Figure 5: Constructing a 6-partition from the original 8-partition.

The proof of Theorem 1 is presented in Appendix A.3.

Theorem 1 states that every smooth arrival process can be stabilized by K-
partition, by choosing the granularity of the partitioning sufficiently fine. The
required value of K depends on the arrival density A, but only through the
parameters k(). How to choose a stabilizing value of K given the (), and
whether Theorem 1 can be extended to more general arrival densities is subject
for further research.

While we have demonstrated in Theorem 1 that the capacity region C(K, d)
of the partitioned system approaches C(d) as K increases, it can be shown
that they never coincide. In particular, we next establish a negative result
which states that for any given K-partition, one can construct an arrival density
function A such that A € C(d), but (3 +€) A & C(K,d) for any € > 0. In other
words, any given K-partition may result in a 50% throughput loss for certain
arrival density functions. Given a fixed K-partition, the idea behind this result
is to find a set of points that can be scheduled simultaneously, but the related
cells can not.

Proposition 2. Let K € IN, then there exists an arriwal density function A
such that A € C(d), but (3 +€) A & C(K,d) for any e > 0.

Proof. Assume that Kd is not an integer, and consider the set of points

P={(kG,IG) : k,1=1,2,...,|1/G]},

13

with G = (d 4 [Kd]/K)/2. We further define an arrival density function

(&,9)€P

It is readily seen that P is a feasible set of points under the original reuse con-
straint d, so \ € C(d). On the other hand, under K-partition, the point (kG,IG)
belongs to cell Ryrxq),ifxa)- Thus the cell containing the point (kG,IG) inter-
feres with the cell containing the point (K'G,I'G) if |k — k'| + |l —I'| < 1, which
implies that (% + €) A € C(K,d) for any € > 0. O

To illustrate Proposition 2, consider the 9-partition shown in Figure 6 and
assume the reuse distance is d = 0.35. It is easy to verify that the set of all
points shown in the figure is a feasible subset according to the original reuse
constraints, but the related cells are not interference-free. For example, cell Rq 1
interferes with cell R5 1. Consequently, under region-based scheduling either all
black points or all gray points can be scheduled at any time, but bot both. Now
assume flows of size B = 1 uniformly arrive at the nine locations only at rate «
(flows per location per time slot). A region-based scheduling strategy can only
support any o < 1/2, while any « < 1 is within the network throughput region.

() (@) @
@ @
[@) o

Figure 6: The 9-partition with reuse distance d = 0.35.

Proposition 2 establishes a negative result, in that no given region-based
strategy can be expected to perform well for arbitrary spatial arrival densities.
Note that the traffic pattern used in this counterexample is a discrete distribu-
tion which only injects traffic into the system at a finite number of locations.
The question whether a universally stabilizing partitioning does exist when we
restrict ourselves to a certain class of continuous arrival densities (e.g., smooth
density functions) remains open.

14

5 Conclusion

We have demonstrated that MaxWeight policies may fail to provide maximum
stability in the presence of flow-level dynamics due to persistent spatial inef-
ficiency. The intuitive explanation is that these policies tend to serve flows
with large backlogs, even when the resulting spatial reuse is not particularly
efficient, and neglect to select maximum spatial reuse patterns involving flows
with smaller backlogs.

We showed that the potential instability issues can be countered by traffic
aggregation with sufficiently fine spatial granularity and adopting a region-based
version of MaxWeight scheduling. A surprising fact is that the region-based
approach involves a discretization with arrivals at a finite set of queues, which
closely ‘approximates’ the arrivals in a continuum of locations as the spatial
granularity increases, and yet the stability condition is markedly different. Even
more remarkably, the set of admissible scheduling decisions is limited by the
discretization, but the stability region for the MaxWeight strategy can be larger,
i.e., constraining the set of feasible scheduling options can in fact expand the
stability region. The complexity of region-based scheduling does not depend
on the number of flows, in contrast to direct implementations of the algorithms
in [10, 11, 21].

Finding the right granularity of the regions is non-trivial since the degree of
traffic aggregation involves a trade-off between scheduling complexity, spatial
efficiency, and network capacity. Determining the suitable level of aggregation
without explicit knowledge of the traffic parameters remains as a challenging
problem for further research.

A Remaining proofs

A.1 Proof of Lemma 1

Proof. Let A € C(d), P = {P1,Ps,...,P,} € Q(d) and K > 2/2/d. We will
show that, with k;,{; such that P; € Ry, ;,, 2 =1,...,n it holds that

{(k1,10), (ks la), oy (ks 1)} € QUK d — 2v2/K). (3)

That is, the points in P belong to a feasible set of cells under K-partition with a
reduced reuse distance d—2+v/2 /K. Consequently, any set of flows simultaneously
scheduled under this strategy are located in a feasible set of cells under K-
partition and reuse distance d — 2v/2/K. Therefore this strategy is a legitimate
region-based scheduling under K-partition with reuse distance d—2v/2 /K, which
means \ € C(K,d — 2v2/K).

We now prove (3). Let 4,5 € {1,2,...,n}, i # j, and consider any two points

15

Qi S Rk7,,l7, and Qj S Rijj. Then

1Qi — Qill =Qi — Pi + P, — P; + P — Q|
2P = Pil| = 1P = Qill = [P — Qs

>d —2V2/K.

So no two points Q; € Ry, 1, and Q; € Ry, 1, are within distance d — 2\/§/K7
i # j, and thus the subset of cells {(k1,!1), (k2,12),..., (kn,ln)} belongs to
QK,d—2V2/K).

O

A.2 Proof of Lemma 2
Proof. Let w € Q(K,d — 2v/2/K), and denote for k,1=1,2,..., K/h,

7~?flc,l = {(:c,y) € [0, 1]2 t(z/h,y/h) € Rk’l} ’

the cells of size (h/K)? under (K/h)-partition. Consider two points (z1,y1) €
ﬁkl,ll and (z2,y2) € 7%2,12, with (k1,01), (k2,l2) € w. It follows from the
definition of Q(K,d — 2VK) that ||(z1/h,y1/h) — (x2/h,y2/h)| > d — 2v/2/K,
which implies ||(z1,y1) — (%2, y2)|| > h(d — 2/2/K) > d, completing the proof.

o

A.3 Proof of Theorem 1

Proof. Let A be a smooth arrival density function such that (1 + e)A € C(d)
for some ¢ > 0. Lemma 1 then implies that for any K > 2v/2/d, (1 + €)X €
C(K,d — 2v/2/K), ie., there exists m(w) > 0, w € QK,d — 2v/2/K) with
ZweQ(K,d—2\/§/K) 7m(w) = 1, such that

(14 MyE{B} < o := > (W) whi (4)
weQ(K,d—2v2/K)

forall k,1=1,2,..., K.

Now consider a randomized scheduling strategy which serves the set of cells
in w € QK,d— 2v2/K) with probability 7(w). Let h as in (2), and denote
by 7@;6,1 the cells under K/h partition. By Lemma 2 we know that any set
w € QK,d - 2v/2/K) is valid under K/h partition and reuse distance d, and
7~€k,l is served a fraction of time oy, ;.

Since the arrival density function A is smooth, A(hz, hy) should be close to
A(z,y) when h is close to 1. Specifically, it may be shown by the mean value
theorem that

Aha, hy) < Mz, y) + 20 (h — 1),

16

The arrival intensity S‘k,l of cell 7~€k7l can be bounded as
Mot = ~ Az,y)dady = h? Ahzx, hy) dzdy.
Rt R,
< h2/ (A, y) + 26M (b — 1)) dady. (5)
R,

Now choose K large enough (and hence h small enough) such that 2™ (h —

1)< GK(O)/Q and h2 < 1irt;2’ then

h? /R (A, y) + 2k (h — 1)) dzdy
k,l

<49 [Mwy)dedy =1+ 9N (6)
R,
Combining (4)-(6) yields A\yE{B} < oy, for all k,l = 1,...,K/h, i.e., X\ €
C(K/h,d). O
References

[1] D.M. Andrews, K. Kumaran, K. Ramanan, A.L. Stolyar, R. Vijayakumar,
P.A. Whiting (2004). Scheduling in a queueing system with asynchronously
varying service rates. Prob. Eng. Inf. Sc. 18, 191-217.

[2] P. Chaporkar, S. Sarkar (2006). Stable scheduling policies for maximizing
throughput in generalized constrained queueing. In: Proc. Infocom 2006.

[3] A. Eryilmaz, R. Srikant, J.R. Perkins (2005). Stable scheduling policies for
fading wireless channels. IEEE/ACM Trans. Netw. 13 (2), 411-424.

[4] A.Eryilmaz, R. Srikant (2005). Fair resource allocation in wireless networks
using queue-length-based scheduling and congestion control. In: Proc. In-
focom 2005, 1794-1803.

[5] L. Georgiadis, M.J. Neely, L. Tassiulas (2006). Resource allocation and
cross-layer control in wireless networks. Found. Trends Netw. 1, 1-144.

[6] N. Kahale, P.E. Wright (1997). Dynamic global packet routing in wireless
networks. In: Proc. Infocom 97, 1416-1423.

[7] I. Keslassy, R. Zhang-Shen, N. McKeown (2003). Maximum size matching
is unstable for any packet switch. HPNG Technical Report TR03-HPNG-
03010.

[8] X. Lin, N.B. Shroff (2005). The impact of imperfect scheduling on cross-
layer rate control in wireless networks. In: Proc. Infocom 2005, 1804—1814.

17

[9] X. Lin, N.B. Shroff, R. Srikant (2008). On the connection-level stability of
congestion-controlled communication networks. IEEE Trans. Inf. Theory
54, 2317-2338.

[10] S. Liu, L. Ying, R. Srikant (2010). Throughput-optimal opportunistic
scheduling in the presence of flow-level dynamics. In: Proc. Infocom 2010,

[11] S. Liu, L. Ying, R. Srikant (2010). Scheduling in multichannel wireless
networks with flow-level dynamics. In: Proc. ACM SIGMETRICS 2010,
191-202.

[12] M.G. Markakis, E.H. Modiano, J.N. Tsitsiklis (2009). Scheduling policies
for single-hop networks with heavy-tailed traffic. In: Proc. 47th Annual
Allerton Conf. Commun., Control, Comp., Monticello IL.

[13] N. McKeown, V. Anantharam, J.C. Walrand (1996). Achieving 100%
throughput in an input-queued switch. In: Proc. Infocom ’96, 296-302.

[14] N. McKeown, A. Mekkittikul, V. Anantharam, J.C. Walrand (1999).
Achieving 100% throughput in an input-queued switch. IEEE Trans. Com-
mun. 47 (8), 1260-1267.

[15] S.P. Meyn (2007). Control Techniques for Complex Networks, Cambridge
University Press.

[16] C. Moallemi, D. Shah (2010). On the flow-level dynamics of a packet-
switched network. In: Proc. ACM SIGMETRICS 2010, 83-94.

[17] M.J. Neely (2005). Energy optimal control for time-varying wireless net-
works. In: Proc. Infocom 2005, 572-583.

[18] M.J. Neely, E. Modiano, C.-P. Li (2005). Fairness and optimal stochastic
control for heterogeneous networks. In: Proc. Infocom 2005, 396-4009.

[19] M.J. Neely, E. Modiano, C.E. Rohrs (2005). Dynamic power allocation and
routing for time-varying wireless networks. IEEE J. Sel. Areas Commun.
23, 89-103.

[20] A. Proutiere, Y. Yi, M. Chiang (2008). Throughput of random access with-
out message passing. In: Proc. CISS 2008

[21] B. Sadiq, G. de Veciana (2009). Throughput optimality of delay-driven
MaxWeight scheduler for a wireless system with flow dynamics. In: Proc.
47th Annual Allerton Conf. Commun., Control, Comp..

[22] G. Sharma, R.R. Mazumdar, N.B. Shroff (2006). On the complexity of
scheduling in wireless networks. In: Proc. MobiCom ’06, 227-238.

[23] G. Sharma, N.B. Shroff, R.R. Mazumdar (2007). Joint congestion control
and distributed scheduling for throughput guarantees in wireless networks.
In: Proc. Infocom 2007, 2072-2080.

18

[24]

[25]

[26]

[27]

28]

AL. Stolyar (2004). MaxWeight scheduling in a generalized switch: state
space collapse and workload minimization in heavy traffic. Ann. Appl. Prob.
14, 1-53.

A.L. Stolyar (2005). Maximizing queueing network utility subject to sta-
bility: greedy primal dual algorithm. Queueing Systems 50, 401-457.

A.L. Stolyar (2006). Greedy primal-dual algorithm for dynamic resource
allocation in complex networks. Queueing Systems 54, 203-220.

L. Tassiulas (1998). Linear complexity algorithms for maximum throughput
in radio networks and input queued switches. In: Proc. Infocom ’98, 533—
539.

L. Tassiulas, A. Ephremides (1992). Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in mul-
tihop radio networks. IEEE Trans. Aut. Contr. 37, 1936-1948.

L. Tassiulas, A. Ephremides (1993). Dynamic server allocation to parallel
queues with randomly varying connectivity. IEEE Trans. Inf. Theory 39,
466-478.

P.M. van de Ven, S.C. Borst, V. Shneer (2009). Instability of MaxWeight
scheduling algorithms. In: Proc. Infocom 2009, 1701-1709.

X. Wu, R. Srikant (2006). Scheduling efficiency of distributed greedy
scheduling algorithms in wireless networks. In: Proc. Infocom 2006.

19

