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Abstract

We derive a new “Wiener-Hopf identity” for a class of preemptive-resume queueing systems,
with batch arrivals and catastrophes that, whenever they occur, eliminate multiple customers
present in the system. These processes are quite general, as they can be used to approximate
Lévy processes, diffusion processes, and certain types of growth-collapse processes: thus, all
of the processes mentioned above also satisfy this type of Wiener-Hopf identity. In the Lévy
case, this identity simplifies to the well-known Wiener-Hopf factorization. We also show how
the ideas can be used to derive transforms for some well-known state-dependent/inhomogeneous
birth-death processes and diffusion processes.
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1 Introduction

The Wiener-Hopf factorization is a classical result in both the theory of random walks and the theory
of Lévy processes. One useful aspect of this factorization is that it gives much-needed insight into
the time-dependent behavior of both a random walk and a Lévy process, reflected at a fixed level.
These processes appear naturally in many areas of applied probability theory: hence, not only is the
Wiener-Hopf factorization interesting in itself, it is also highly useful.

This paper presents a study of the Wiener-Hopf factorization, from a queueing perspective.
Indeed, we will show that a certain type of production system that processes work under the Last-
Come-First-Served preemptive-resume discipline also satisfies the classical Wiener-Hopf factoriza-
tion. In addition, we will show that the one-sided reflected version of such a production system
satisfies another type of factorization that is very much analogous to the Wiener-Hopf factorization
of the original production system. This factorization, for some specific special cases, has appeared
in the literature as a transform factorization, but we are not aware of a reference that successfully
identifies each of the factors found in the transform with its corresponding random variable.

We also show that a very general type of identity can be derived for production systems with state-
dependent arrivals and services: we refer to this identity as the Wiener-Hopf identity, which is the
main result of this paper. When the process is no longer state-dependent, our identity immediately
simplifies to the classical Wiener-Hopf factorization. While our identity, in its most general form, is
not a true factorization, it can still play a valuable role towards computing many time-dependent
quantities of interest, for a wide variety of production systems. Furthermore, our class of production
systems can be used to approximate many classical types of Markov processes found in the literature,
such as Lévy processes, diffusion processes, and Markovian Growth-Collapse models: hence, even
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though our production systems may appear, at first glance, to be rather unorthodox, they can be
used to approximate many types of stochastic processes that play prominent roles in the literature.
To demonstrate how our identity can be useful in a state-dependent setting, we will use it to derive
quantities which help describe the time-dependent behavior of some specific types of birth-death
processes and diffusion processes.

We also feel that our proof technique should be of some interest to the applied probability com-
munity. The overall approach towards proving the Wiener-Hopf identity is to first use a basic
sample-path argument to derive an infinite system of equations, and then argue that at most one
probability mass function may be a solution to such a system. In the continuous-time setting, Palm
measures are used to derive the system of equations: however, only their basic properties are used,
and the argument should be relatively simple to follow for those who are not aware of the theory
of Palm distributions. We also note that proving this identity in this manner does not make use
of increasing or decreasing ladder height random variables, contrary to the other standard proofs
of the Wiener-Hopf factorization that have appeared in the literature for random walks and Lévy
processes.

This type of proof can be simplified considerably, when it is used to establish the Wiener-Hopf
factorization for a random walk. In this case, Palm measures are no longer needed, and neither is the
strong Markov property. Hence, we show here that it is possible to prove the classical independence
property found in the Wiener-Hopf factorization for random walks, without having to introduce the
notions of stopping times and the strong Markov property. This could be especially interesting to
instructors that wish to introduce students to the Wiener-Hopf factorization at a relatively early
moment in a course on applied stochastic processes.

Our proof seems to be similar in flavor to the older approaches toward proving the Wiener-
Hopf factorization. In the works of Percheskii and Rogozin [36] and Gusak and Korolyuk [27], the
factorization is first established for a special type of stochastic process, and then limiting arguments
are used to extend the factorization result to an arbitrary Lévy process. Neither of these works,
however, takes advantage of a discrete-state approximation, and this is what allows us to give a proof
that both minimizes the mathematical machinery involved, and shows how the factorization result
extends to more general settings. A discussion on the history of the Wiener-Hopf factorization, along
with related results, can be found in the recent paper of Kuznetsov [30].

The outline of this paper is as follows. Section 2 introduces our production system, which we
refer to as a Preemptive-Resume Production system, or PRP system. In Section 3, we establish the
main result, which is a Wiener-Hopf identity for a PRP system. Section 4 illustrates how our class of
PRP systems can be sufficiently scaled, so that they can be used to approximate an arbitrary Lévy
process, in a manner so that our Wiener-Hopf identity for the PRP system can successfully carry
over to the classical Lévy setting. Section 5 shows how the proof technique simplifies, when used to
derive the Wiener-Hopf identity for random walks. In Section 6, we illustrate how the Wiener-Hopf
identity may be used to study the time-dependent behavior of birth-death processes and diffusions.
The necessary facts from the theory of Palm distributions are included, for the reader’s convenience,
in an appendix.

2 Preemptive-Resume Production systems

We now define what we refer to as a Preemptive-Resume Production system, or PRP system. We
assume that at time zero there are a countably infinite number of customers present, which are
labeled 0,−1,−2,−3, . . .. The system then begins, at time zero, to process the work of the customer
that possesses the highest label, or number, which at time zero is customer 0. Moreover, at all
times, the server always devotes its full attention to the customer that has the highest label. All
customers possess a random amount of work, which has distribution function S, and the amount of
work possessed by a given customer is independent of the amounts of work of all other customers that
will visit, or have visited the system. We are interested in studying the process Q := {Q(t); t ≥ 0},
where Q(t) represents the label of the customer being served by the server at time t.

The dynamics of this system are as follows. We assume that single customers arrive to the system
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according to a modulated Poisson process A0 := {A0(t); t ≥ 0}, with rate function λ0,Q(t−), so that
the rate is dependent on the current level of the PRP system. Each customer brings with it to the
system a random amount of work, which again has distribution function S. Furthermore, we also
allow the same type of customers to arrive in batches, where batches arrive according to a modulated
Poisson process A1 with rate λ1,Q(t−). The distribution of the number of customers found in a batch
is dependent on the highest-labeled customer present in the system, immediately before the batch
arrival. The labels of each customer in the new batch are assigned in the following manner: suppose
for instance that a batch arrives at time t, and finds that Q(t−) = n. Each of the customers in
the batch are then given the labels n+ 1, n+ 2, and so on, until each newly arriving customer has
a label. The server then immediately begins to process the work of the customer with the highest
label, and will not return to customer n until all higher-labeled customers have left the system.
Once the server returns to customer n, it resumes working at the point where it previously left-off.
Therefore, the server processes work in a Last-Come-First-Served Preemptive-Resume manner. We
assume that the rate at which the server processes work also depends on Q, in that at time t, the
service rate is µQ(t−) > 0.

We further assume that catastrophes occur according to a modulated Poisson process D :=
{D(t); t ≥ 0}, with rate δQ(t−). At the time of a catastrophe, a random number of customers are
removed from the system: in particular, if Q(t−) = n, and a catastrophe occurs at time t, which
eliminates k customers, then customers n, n− 1, n− 2, . . . , n− k+ 1 are immediately removed from
the system, and at time t the server begins to process the remaining amount of work possessed by
customer n − k, and so Q(t) = n − k. We assume that the distribution function of the number of
removals at time t depends on Q(t−), so that the downward jump distribution of the process may
depend on the level of the process, immediately before a jump.

This type of model can be used to approximate the sample paths of many types of Markov
processes of interest. For instance, we will show that Lévy processes can be approximated by
PRP systems. Also, the paths of Markovian growth-collapse processes can be approximated. Such
growth-collapse processes are fairly prominent in many studies in applied probability, particularly
in the TCP literature: examples include Guillemin et al. [26], Boxma et al. [11], and Löpker and
van Leeuwaarden [32]. It is also interesting to realize that this model is a more general version of
a continuous-time Markov chain on the integers. Hence, many types of diffusion processes may be
approximated by PRP systems as well.

3 A useful system of equations

In this section, we will show that PRP systems exhibit a variant of the Wiener-Hopf factorization,
which we will refer to as the “Wiener-Hopf identity”. The key to deriving our result is to understand
conditional probabilities of the form

P

(
Q(eq) = k + l | inf

0≤s≤eq
Q(s) = l

)
for integers k, l, where k ≥ 0, and where eq is an exponential random variable with rate q > 0, which
is independent of the PRP system Q.

Throughout this section, we will work with a collection of random variables τm,k(s), where

τm,k(s) = inf{t ≥ s : Q(t) < k}

under the condition that Q(s) = m. Usage of such notation is mainly due to visual appeal, along
with our desire to save space: throughout, we could easily replace statements involving τm,k(s) with
statements containing infu∈[s,t]Q(u).

We begin by first presenting the following identity, which is satisfied by the sample paths of our
PRP system: for each t ≥ 0, we see that for any two integers k, l with k ≥ 1,

1(Q(t) ≥ k + l, inf
0≤u≤t

Q(u) = l) =
∫ t

0

1(Q(s−) = k − 1 + l, inf
0≤u≤s

Q(u) = l)1(τk+l,k+l(s) > t)A0,k−1+l(ds)
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+
k−1∑
j=0

∞∑
m=k

∫ t

0

1(Q(s−) = j + l, inf
0≤u<s

Q(u) = l)1(τm+l,k+l(s) > t)A1,j+l,m+l(ds) (1)

where A0,k+l is a Poisson process with rate λ0,k+l, and A1,j+l,m+l is a Poisson process with rate
λ1,j+lP (Z1,j+l = m+ l − (j + l)), with Z1,j+l representing an arbitrary jump size from state j + l.
Here, we are making heavy use of a classical thinning property of Poisson processes, in that a Poisson
process can always be expressed in terms of an independent sum of other Poisson processes. In fact,
the arrival process of our PRP system is actually governed by an infinite collection of Poisson
processes, where at each moment of time only a finite subset of them are active, and this finite
subset depends on the current state of the PRP system. This type of modeling trick may seem a bit
artificial, but it can be quite useful: a nice example of its use in Markov chain theory can be found
in Chapter 9 of Brémaud [13], and another application of this idea can be found in [19].

The identity (1) says that, in order for Q(t) ≥ k + l, exactly one of two things must happen:
if the infimum of the process over [0, t] is l, either (i) there exists a time point s ≤ t such that
Q(s−) = k−1+ l, Q(s) = k+ l (due to the arrival of a customer from A0 at time s), and the process
stays at or above level k + l in [s, t], or (ii) there exists a time point s ≤ t such that, due to a batch
of customers arriving at time s (which is contributed by A1), the process crosses level k+ l, reaching
some level at or above k + l at time s, and stays at or above k + l during [s, t].

After taking expected values of both sides of (1), we get

P (Q(t) ≥ k + l, inf
0≤u≤t

Q(u) = l) = E

[∫ t

0

1(Q(s−) = k − 1 + l, inf
0≤u<s

Q(u) = l)1(τk+l,k+l(s) > t)A0,k−1+l(ds)
]

+
k−1∑
j=0

∞∑
m=k

E

[∫ t

0

1(Q(s−) = j + l, inf
0≤u<s

Q(u) = l)1(τm+l,k+l(s) > t)A1,j+l,m+l(ds)
]
. (2)

We can use the Campbell-Mecke formula to evaluate the expected values found on the right-hand
side of Equation (2). Notice first that

E

[∫ t

0

1(Q(s−) = k − 1 + l, inf
0≤u<s

Q(u) = l)1(τk+l,k+l(s) > t)A0,k−1+l(ds)
]

= λ0,k−1

∫ t

0

Ps(Q(s−) = k − 1 + l, inf
0≤u<s

Q(u) = l, τk+l,k+l(s) > t)ds,

where P represents the Palm kernel induced by A0,k−1+l. Furthermore, since the server processes
work in a preemptive-resume manner, we can also use the Campbell-Mecke formula to establish that

Ps(τk+l,k+l(s) > t,Q(s−) = k − 1 + l, inf
0≤u<s

Q(u) = l)

= P (τk+l,k+l > t− s)Ps(Q(s−) = k − 1 + l, inf
0≤u<s

Q(u) = l)

where τk+l,k+l
d= τk+l,k+l(0), assuming that at time 0 the process has just made an upward transition

into state k + l. Moreover, if we let {Ft; t ≥ 0} represent the minimal filtration induced by Q and
our Poisson processes, we see that the event {Q(s−) = k − 1 + l, inf0≤u<sQ(u) = l} ∈ Fs−, and so
by Proposition A.1 (see the Appendix) we find that

Ps(Q(s−) = k − 1 + l, inf
0≤u<s

Q(u) = l) = P (Q(s) = k − 1 + l, inf
0≤u≤s

Q(u) = l).

An analogous argument can be used to evaluate the second type of expectation found in (2). Plugging
these expressions into (2) gives

P (Q(t) ≥ k + l, inf
0≤u≤t

Q(u) = l) = λ0,k−1+l

∫ t

0

P (Q(s) = k − 1 + l, inf
0≤u≤s

Q(u) = l)P (τk+l,k+l > t− s)ds

+
k−1∑
j=0

∞∑
m=k

λ1,j+lP (Z1,j+l = m− j)
∫ t

0

P (τm+l,k+l > t− s)P (Q(s−) = j + l, inf
0≤u≤s

Q(u) = l)ds. (3)
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After integrating both sides of (3) with respect to an exponential density with rate q > 0, we get

P (Q(eq) ≥ k + l, inf
0≤u≤eq

Q(u) = l) = λ0,k−1+l
(1− φk+l,k+l(q))

q
P (Q(eq) = k − 1 + l, inf

0≤u≤eq
Q(u) = l)

+
k−1∑
j=0

∞∑
m=k

λ1,j+lP (Z1,j+l = m− j) (1− φm+l,k+l(q))
q

P (Q(eq) = j + l, inf
0≤u≤eq

Q(u) = l)

where φm+l,k+l represents the Laplace-Stieltjes transform of τm+l,k+l(0) (with Q(0) = m+l). Notice
that we can also rewrite this equality in the following way: by dividing by P (inf0≤u≤eq Q(u) = l),
we get

P (Q(eq) ≥ k + l | inf
0≤u≤eq

Q(u) = l) = λ0,k−1+l
(1− φk+l,k+l(q))

q
P (Q(eq) = k − 1 + l | inf

0≤u≤eq
Q(u) = l)

+
k−1∑
j=0

∞∑
m=k

λ1,j+lP (Z1,n = m− j) (1− φm+l,k+l(q))
q

P (Q(eq) = j + l | inf
0≤u≤eq

Q(u) = l). (4)

The reader should also notice how the LCFS preemptive-resume discipline is used to derive
Equality (3). Indeed, Ps(τm+l,k+l(s) > t− s | Q(s−) = k − 1 + l, inf0≤u<sQ(u) = l) is equal to the
amount of time it takes our production system, starting at level m+ l with new customers, to drop
below level k + l.

This fact follows from the semi-regenerative properties exhibited by our production system at
arrival times: it is this semi-regenerative feature of preemptive-resume systems that makes them
highly tractable, when compared to queues that operate under other types of service disciplines.
Readers wishing to learn more about the LCFS preemptive-resume discipline are referred to the work
of Núñez-Queija [34], which also mentions many other useful references on the LCFS preemptive-
resume discipline. An especially notable demonstration of how the LCFS discipline can be used to
prove other results in queueing can be found in the work of Fuhrmann and Cooper [23]: their result
also establishes a factorization, in that it shows that important classes of queueing systems with
vacations have stationary distributions that can be factorized in a very useful manner. Indeed, one
could consider our work to be another example of an instance where the LCFS discipline can be
used to prove a result that, at first glance, appears to have little to do with this discipline.

The next observation we make is crucial, and is stated in the form of a lemma.

Lemma 3.1 The set of equations generated by (4) has a unique probability measure among its set
of solutions.

Proof This follows from the fact that for a fixed integer l, the equations given by (4) can now be
iteratively solved, if we also make use of the fact that

∞∑
k=0

P (Q(eq) = k + l | inf
0≤u≤eq

Q(u) = l) = 1.

Indeed, notice that

1− P (Q(eq) = l | inf
0≤u≤eq

Q(u) = l) = P (Q(eq) ≥ l + 1 | inf
0≤u≤eq

Q(s) = l)

= λ0,l
(1− φl+1,l+1(q))

q
P (Q(eq) = l | inf

0≤u≤eq
Q(u) = l)

+
∞∑
m=1

λ1,lP (Z1,l = m)
(1− φm+l,1+l(q))

q
P (Q(eq) = l | inf

0≤u≤eq
Q(u) = l)

which allows us to determine P (Q(eq) = l | inf0≤u≤eq Q(u) = l), and all other probabilities can
be determined in a similar, iterative manner. Hence, there is a unique probability measure on the
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integers that satisfies these equations. ♦

We will now introduce, for a fixed integer l, a new process Ql := {Ql(t); t ≥ 0}, where Ql(0) = l.
This process behaves in the same way as the original process Q, except that it never drops to a level
lower than l. In particular, if the process is currently at a level k, it makes upward transitions in the
same way as the original process Q, but potential downward jumps from k to any level lower than l
are instead to level l. Notice that in the case where the arrival rates and the jump distributions are
not state-dependent, Ql is merely the reflection of Q, with a reflecting barrier at level l.

The reason why we are interested inQl is that its sample paths also satisfy the system of equations
given by (4). In particular, we can perform the same type of analysis as above to show that

P (Ql(eq) ≥ k + l) = λ0,k+l−1
1− φk+l,k+l(q)

q
P (Ql(eq) = k + l − 1)

+
k−1∑
j=0

∞∑
m=k

λ1,l+jP (Z1,l+j = m− j)1− φm+l,k+l(q)
q

P (Ql(eq) = l + j).

Therefore, since Lemma 3.1 tells us that there is a unique probability mass function on the set
{l, l + 1, l + 2, . . .} which satisfies these equations, we conclude that the “Wiener-Hopf identity”
holds, which is the main result of our paper.

Theorem 3.1 (Wiener-Hopf identity) For any two integers k, l, where k ≥ 0 and l ≤ 0,

P (Ql(eq) = k + l) = P (Q(eq) = k + l | inf
0≤u≤eq

Q(u) = l)

= P (Q(eq)− inf
0≤u≤eq

Q(u) = k | inf
0≤u≤eq

Q(u) = l).

Remark We believe that there are two very interesting aspects of this proof. First, this argument
makes heavy use of the fact that the state space of our process forms a lattice on the real line.
The fact allows us to derive an infinite system of linear equations, and then conclude that only
one probability measure can be a solution to such a system. Second, notice also that our proof of
this identity makes virtually no use of ascending and descending ladder epochs. These epochs will,
however, come into play when we show that inf0≤s≤eq Q(s) is infinitely divisible, in the case where
the jump distribution of Q is not state-dependent.

3.1 Infinite divisibility

Proposition 3.1 inf0≤s≤eq Q(s) is an infinitely divisible random variable.

Proof If we let ψ(q) denote the Laplace-Stieltjes transform of the busy period of the model of
Section 3 (induced by one customer), and let {Uk}k≥1 denote a sequence of i.i.d. random variables,
with U1 being equal in distribution to the number of customers in a batch departing immediately
at the end of an arbitrary busy period (i.e. U represents the undershoot), then it is not difficult to
see that

P ( inf
0≤u≤eq

Q(u) = 0) = 1− ψ(q)

P ( inf
0≤u≤eq

Q(u) = −1) = ψ(q)P (U = 1)(1− ψ(q))

P ( inf
0≤u≤eq

Q(u) = −2) = (ψ(q))P (U = 2)(1− ψ(q)) + ψ(q)P (U = 1)ψ(q)P (U = 1)(1− ψ(q))

and so on. To see this, note that for the event {inf0≤u≤eq Q(u) = −1} to occur, customer 0 must
leave before time eq, and when he leaves, no other customers leave with him. Moreover, at this
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departure time, both the system and eq regenerate, since eq is exponential, and customer −1 has
not received any attention from the server. Hence, conditional on only customer 0 leaving, the
probability that customer −1 does not leave before time eq is just 1−ψ(q). The other probabilities
can be computed in an analogous manner, by considering all possible scenarios at each busy period
completion instant contained in [0, eq].

In general, for each k ≥ 0,

P ( inf
0≤u≤eq

Q(u) = −k) =
k∑
j=1

(1− ψ(q))ψ(q)j
∑

ri≥1,r1+...+rj=k

j∏
l=1

P (U = rl).

However, after some thought, it is easy to see that this expression tells us that

P

(
inf

0≤u≤eq
Q(u) = −k

)
= P (

N∑
j=1

Uj = k)

where P (N = n) = (1 − ψ(q))ψ(q)n, for n ≥ 0, and N is independent of the sequence {Ui}i≥1.
Moreover,

∑N
j=1 Uj is an infinitely divisible random variable: this can be observed via elementary

arguments, but to save space we will simply refer the interested reader to Chapter 2 of Steutel [38]. ♦

The reader should also observe that we are now making use of descending ladder height epochs
to establish that inf0≤u≤eq Q(u) is infinitely divisible.

This argument, of course, does not allow us to conclude that Q(eq)− inf0≤s≤eq Q(s) is infinitely
divisible: however, if Q is also a Lévy process, we can use a duality argument (see e.g. Chapter 3 of
[31]) to conclude that

Q(eq)− inf
0≤u≤eq

Q(u) d= sup
0≤u≤eq

Q(u)

and similar techniques can be used to establish the fact that this random variable is infinitely divisible
as well.

3.2 A new type of factorization

We will now show that the process {Q0(t); t ≥ 0} also exhibits a very interesting variant of our
Wiener-Hopf identity. Suppose that, at time zero, Q0(0) = n0 ≥ 0, for some nonnegative integer n0.
Notice that a sample-path identity that is completely analogous to (1) can be established for Q0:
for each l ≥ 0, k ≥ 1,

1(Q0(t) ≥ k + l, inf
0≤u≤t

Q0(u) = l) =
∫ t

0

1(Q0(s−) = k − 1 + l, inf
0≤u≤s

Q0(u) = l)1(τk+l,k+l(s) > t)A0,k−1+l(ds)

+
k−1∑
j=0

∞∑
m=k

∫ t

0

1(Q0(s−) = j + l, inf
0≤u<s

Q0(u) = l)1(τm+l,k+l(s) > t)A1,j+l,m+l(ds). (5)

After taking expectations of both sides of (5), integrating with respect to an exponential density
with rate q > 0, and conditioning, we may conclude that

P (Q0(eq) ≥ k + l | inf
0≤u≤eq

Q0(u) = l) = λ0,k−1+l
(1− φk+l,k+l(q))

q
P (Q0(eq) = k − 1 + l | inf

0≤u≤eq
Q0(u) = l)

+
k−1∑
j=0

∞∑
m=k

λ1,j+lP (Z1,j+l = m− j) (1− φm+l,k+l(q))
q

P (Q0(eq) = j + l | inf
0≤u≤eq

Q0(u) = l). (6)
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For our fixed l, we notice that the equations that form system (4) are the same as the equations
found in (6). Hence, we see from Lemma 3.1 that, by uniqueness, it must be the case that

P (Q(eq) ≥ k + l | inf
0≤u≤eq

Q(u) = l) = P (Q0(eq) ≥ k + l | inf
0≤u≤eq

Q0(u) = l).

This results in the following theorem.

Theorem 3.2 Suppose Q is a PRP system with Q(0) = n0, and let Q0 be the reflected version of
Q at level zero, with Q0(0) = n0. Then for each integer l ≥ 0, and each integer k ≥ 1,

P (Q(eq)− inf
0≤u≤eq

Q(u) = k | inf
0≤u≤eq

Q(u) = l) = P (Q0(eq)− inf
0≤u≤eq

Q0(u) = k | inf
0≤u≤eq

Q0(u) = l).

3.3 State-independent jumps

Two interesting factorization results can be derived, when the jump sizes of both Q and Q0 are
state-independent. What is especially interesting about this result is the following: suppose that the
arrival rates, service rates and jump distributions are not dependent on the level of the Q process.
Then, for each k ≥ 0 and l, P (Ql(eq) = k + l) = P (Q0(eq) = k), and since Q0 is the reflection of Q
at level 0, we also find that

Q0(eq)
d= Q(eq)− inf

0≤u≤eq
Q(u).

Hence, Theorem 3.1 tells us that

P (Q(eq)− inf
0≤u≤eq

Q(u) = k) = P (Q(eq)− inf
0≤u≤eq

Q(u) = k | inf
0≤u≤eq

Q(u) = l).

In other words, the Wiener-Hopf factorization holds for our PRP system. We state this in the form
of a corollary.

Corollary 3.1 Suppose that {Q(t); t ≥ 0} represents a PRP system, with state-independent jumps,
and let eq be an exponential random variable with rate q > 0, independent of Q. Then for each
ω ∈ R,

E0[eiωQ(eq)] = E0[eiω inf0≤u≤eq Q(u)]E0[eiω(Q(eq)−inf0≤u≤eq Q(u))].

Here, we let Px represent a probability measure, under the condition that our process starts at level
x.

This factorization has been well-known for Lévy processes since the late 60’s, due to Percheskii
and Rogozin [36], and the first probabilistic proof of this result was given in Greenwood and Pitman
[25].

Moreover, we can also conclude from Theorem 3.2 that for l ≥ 0,

P (Q0(eq)− inf
0≤u≤eq

Q0(u) = k | inf
0≤u≤eq

Q0(u) = l) = P (Q(eq)− inf
0≤u≤eq

Q(u) = k)

= P (Q0(eq)− inf
0≤u≤eq

Q0(u) = k)

where the second equality follows from the simple fact that the reflection of Q0 at level 0 is equal in
distribution to the reflection of Q at level 0. Hence, we see that Q0(eq)− inf0≤u≤eq Q0(u) is actually
independent of inf0≤u≤eq Q0(u), which gives us another interesting corollary.

Corollary 3.2 Suppose that {Q0(t); t ≥ 0} is a reflected version of our PRP system, reflected at 0.
Then for each ω ∈ R, and each integer n0 ≥ 0,

En0 [eiωQ0(eq)] = En0 [eiω inf0≤u≤eq Q0(u)]E0[eiωQ0(eq)].
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Such a factorization result is useful when we are interested in studying processes that start in
an arbitrary initial state. The classical Wiener-Hopf factorization tells us that, since inf0≤u≤eq Q(u)
is independent of Q(eq) − inf0≤u≤eq Q(u), we can use information about the transforms of Q(eq)
and inf0≤u≤eq Q(u) to derive the transform of Q(eq) − inf0≤u≤eq Q(u), which represents the distri-
bution of the reflected process, starting in level zero. Theorem 3.2 can then be used to find the
distribution of the reflected process, starting in any initial state, since it is clearly equal in distribu-
tion to a convolution of the reflected PRP system starting in level zero, and a truncated version of
inf0≤u≤eq Q(u).

More remarks will be made about both of these factorizations in the next section, within the
context of Lévy processes.

4 Connections to Lévy processes

In this section, we will show how our PRP systems can be used to approximate the sample paths of
Lévy processes consisting of a Brownian part and a compound Poisson part. Once this approximation
procedure has been established, we will be able to show how the Wiener-Hopf identity for PRP
systems carries over flawlessly to this special type of Lévy process. Next, the well-established
methods of deriving the Lévy-Khintchine representation of Lévy processes will be used to show how
the Wiener-Hopf factorization for an arbitrary Lévy process also follows from our results.

4.1 Lévy processes

We begin with a quick definition of a Lévy process. We say that X := {X(t); t ≥ 0} is a Lévy process
if (i) X(0) = 0, (ii) X has stationary increments, in that for 0 ≤ s ≤ t, X(t) − X(s) d= X(t − s),
and (iii) X has independent increments, in that for 0 < t1 < t2 < . . . < tn, the increments X(t1),
X(t2)−X(t1), . . . , X(tn)−X(tn−1) are all independent of one another.

Notice that these properties imply that X(t) is an infinitely divisible random variable, for each
t ≥ 0. Moreover, the process X can be sufficiently characterized by the characteristic triple (θ, σ, ν),
where θ ∈ R, σ > 0, and ν is a measure on R \ {0} such that∫

R
(1 ∧ x2)ν(dx) <∞. (7)

In particular, we can say that

E[e−iωX(t)] = e−tΨ(ω)

where

Ψ(ω) = −iθω +
σ2ω2

2

+ ν(R \ (−1, 1))
∫
|x|≥1

(1− eiωx)
1

ν(R \ (−1, 1))
ν(dx)

+
∫

0<|x|<1

(1− eiωx + iωx)ν(dx).

Here Ψ is referred to as the characteristic exponent of the Lévy process X. This exponent illustrates
that this process consists of an independent sum of three processes: (i) a Brownian motion with
drift θ and diffusion coefficient σ2, (ii) a compound Poisson process with arrival rate ν(R \ (−1, 1))
and jump sizes having distribution ν(dx)/(ν(R \ (−1, 1))), and (iii) a third process, which can
be interpreted as a countable sum of independent compound Poisson processes with drift. This
expression for Ψ is classical, and is known as the Lévy-Khintchine representation: we refer readers
that are not familiar with this representation to Chapter 2 of Kyprianou [31].
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4.2 Our approximations

When using PRP systems to approximate Lévy processes that consist of a Brownian part and a
compound Poisson part, three types of PRP systems will be relevant:

• If our underlying Lévy process has a Brownian component, our approximation will be a
diffusion-scaled PRP system, with exponential services.

• If our underlying Lévy process does not have a Brownian component, but it has negative drift,
our approximation will be a fluid-scaled PRP system, with exponential services.

• Finally, if the underlying Lévy process does not have a Brownian component, and has positive
drift, then the service times of each customer will be infinite, so the only way a customer can
leave the PRP system is through a catastrophic event (i.e. a “large” downward jump). This
approximation is analogous to the non-Brownian negative-drift case, in that a fluid scaling is
used here as well.

Once we have established the Wiener-Hopf factorization for these processes, the factorization
will follow for an arbitrary Lévy process: this extension depends on the arguments used to derive
the Lévy-Itô decomposition for a Lévy process, as we will explain below.

4.2.1 The Brownian case

We begin by reviewing some classical concepts from heavy-traffic theory. This theory will show
us exactly how to approximate a Brownian motion with drift θ and diffusion coefficient σ2, with a
scaled difference of Poisson processes. In other words, this theory illustrates how a Brownian motion
can be thought of as a pathwise limit of a sequence of PRP systems. Readers who wish to consult
a recent textbook treatment on the subject are referred to Chapters 5 and 6 of Chen and Yao [14].

Suppose {An0 (t); t ≥ 0} and {Sn0 (t); t ≥ 0} represent two independent Poisson processes, with
rates λ∗n := nσ2λn/2 and µ∗n := nσ2µn/2, respectively. It is well-known (e.g. [14, 39]) that, from
the Functional Central Limit Theorem, the entire process

An0 (t)− λ∗nt√
n

converges weakly as n→∞ (under the usual Skorohod J1 topology) to a driftless Brownian motion,
with diffusion coefficient σ2/2. Similarly, the process

Sn0 (t)− µ∗nt√
n

converges weakly as n→∞ to the same type of Brownian motion.
If we now impose the following heavy-traffic condition, in that

lim
n→∞

√
n(λn − µn) =

2θ
σ2

then it follows from these observations that the process

Bn0 (t) =
An0 (t)− Sn0 (t)√

n

converges to a Brownian motion, with drift θ and diffusion coefficient σ2. In our heavy-traffic
assumption, we will also assume that µn → µ, and quite often µ = 1. Thus, the heavy-traffic
assumption says that, as n gets large, the system (if stable) becomes more and more congested, and
the rate at which it does this is on the order of the square root of n.
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A similar approximation scheme can be used to approximate an independent sum of a Brownian
motion, and a compound Poisson process. A compound Poisson process is a process {C1(t); t ≥ 0},
which has jumps at Poisson times: in particular,

C1(t) =
A1(t)∑
k=1

Zk

where A1(·) is a Poisson process with rate γ, and {Zk; k ≥ 1} is an i.i.d. sequence of jumps, which
is independent of all other random elements. Here, the support of the distribution of the jumps is
arbitrary, and could include both positive and negative values.

It is easy to see how to approximate C1 with a discrete process: just let Zn,k = inf{j ∈ Z : j√
n
>

Zk}. Thus, the process

Cn1 (t) =
1√
n

A1(t)∑
k=1

Zn,k

converges uniformly on compact sets to C1, as n→∞. We use
√
n as our scaling factor, so that it

matches the space-scaling factor found in our approximation of Brownian motion.
Due to the independence of Bn0 and Cn1 , we can again apply a continuous mapping argument to

conclude that Xn := Bn0 + Cn1 converges weakly (under the Skorohod metric) to a Lévy process X,
which consists of both a Brownian motion with drift θ and diffusion coefficient σ2, and a compound
Poisson process with jumps that occur at rate γ, and jump sizes that have distribution P (Z1 ∈ dx).

It is not difficult to see that the Bn0 + Cn1 process is just a scaled PRP system, where single
customers arrive according to the Poisson process An0 , and each brings an exponentially distributed
amount of work. Moreover, positive jumps of the Cn1 process correspond to batch arrivals, and
negative jumps of the Cn1 process correspond to catastrophes.

4.2.2 The compound Poisson with negative drift case, without a Brownian part

We will now assume that our Lévy process X is of the form

X(t) = C1(t)− θt,

where θ > 0, and C1 is again a compound Poisson process with jumps {Zk; k ≥ 0} that occur
according to a Poisson process A1.

To derive a sequence of PRP systems whose sample paths converge in a suitable manner to
the sample paths of X, we will make use of a classical fluid scaling result. Suppose {D(t); t ≥ 0}
represents a Poisson process with rate θ > 0. Define, for each n ≥ 1, and each t ≥ 0

Dn,∗(t) =
1
n
D(nt).

It is well-known that D(t)/t → θ as t → ∞, with probability one. Moreover, it is also well-known
how this result can be used to establish the fact that, as n → ∞, Dn,∗ converges uniformly, on
compact sets, to the function θt. We can also derive a simple approximation for C1, under a similar
scaling: just let, for each n ≥ 1, t ≥ 0,

Cn,∗1 (t) =
1
n

A1(t)∑
k=1

Z∗n,k,

where Z∗n,k = inf{j ∈ Z : j
n > Zk}. Under these assumptions, we see that the sequence of stochastic

processes Xn,∗ = Cn,∗1 − Dn,∗ converges uniformly on compact sets to X. Moreover, Xn,∗ can be
interpreted as a PRP system, with exponential services. In this case, negative jumps from the Cn,∗1

process correspond to catastrophes, positive jumps from Cn,∗1 correspond to batch arrivals, and the
jumps from Dn,∗ correspond to times of service completion.
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Remark This type of approximation scheme is different from what was used in Fralix [20], where
similar ideas were used to derive expressions for the time-dependent moments of the M/G/1 work-
load. In [20], the workload process was approximated with a sequence of PRP systems, with batch
arrivals, and deterministic services. We could have used a similar kind of approximation for this
case as well in this paper.

4.2.3 The compound Poisson with positive drift case, without a Brownian part

This case is analogous to the previous one, in that we can again use a fluid scaling result to ap-
proximate a positive drift θ. Again, let {D(t); t ≥ 0} denote a Poisson process with rate θ, and
define Dn,∗ and Cn,∗1 in precisely the same way as in the PRP approximation for compound Poisson
processes with negative drift. Thus, Xn,∗ := Dn,∗ + Cn,∗1 converges uniformly on compact sets
to a compound Poisson process X with positive, deterministic drift θ, and jumps that occur at a
Poisson rate γ, and have distribution P (Z1 ∈ dx). Moreover, each Xn,∗ is also a PRP system: here,
customers arrive with infinite amounts of work, and are removed by negative jumps in the Cn,∗1

model. These negative jumps correspond to catastrophes, the positive jumps of the Cn,∗1 correspond
to batch arrivals, and the small jumps from the Dn,∗ process correspond to single arrivals, which
arrive more and more frequently as n gets large.

4.2.4 An arbitrary Lévy process

Again, suppose that X is a Lévy process with characteristic exponent given by (8). The Lévy-Itô
decomposition says that X can be expressed as the sum of three independent Lévy processes X(1),
X(2) and X(3), where X(1) is a Brownian motion with characteristic exponent

Ψ1(ω) = −iθω +
σ2ω2

2
,

X(2) is a compound Poisson process with characteristic exponent

Ψ2(ω) = ν(R \ (−1, 1))
∫
|x|≥1

(1− eiωx)
1

ν(R \ (−1, 1))
ν(dx),

and X(3) is a limit of a countable sum of “compensated” compound Poisson processes: X(3) has
characteristic exponent

Ψ3(ω) =
∫

0<|x|<1

(1− eiωx + iωx)ν(dx).

To show how our Wiener-Hopf factorization for PRP systems implies the well-known factorization
for Lévy processes, we will first have to understand precisely how X(3) is constructed. Recall that,
in the proof of the Lévy-Itô decomposition (see pg. 50 of [31], the proof of part (i) of Theorem 2.10),
it is shown that X(3) is the L2 limit of a sequence of compound Poisson processes X(3)

n , for n ≥ 1,
where X(3)

n has Lévy exponent∫
2−(n+1)≤|x|<1

(1− eiωx + iωx)ν(dx)

in the sense that for each t ≥ 0,

lim
n→∞

E

(
sup

0≤s≤t
(X(3) −X(3)

n )2

)
= 0.

Thus, it immediately follows that if Xn represents a Lévy process with Lévy exponent

Ψn(ω) = −iθω +
σ2ω2

2
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+ ν(R \ (−1, 1))
∫
|x|≥1

(1− eiωx)
1

ν(R \ (−1, 1))
ν(dx)

+
∫

2−(n+1)<|x|<1

(1− eiωx + iωx)ν(dx),

then, for each t ≥ 0,

lim
n→∞

E

(
sup

0≤s≤t
(Xn(s)−X(s))2

)
= 0.

This implies that, for each t, as n→∞,

sup
0≤s≤t

Xn(s)⇒ sup
0≤s≤t

X(s),

where ⇒ denotes convergence in distribution (a simple proof of this follows from first establishing
the fact that they converge in L2). Thus, by the Lévy continuity theorem (see e.g. Theorem 5.3 of
Kallenberg [29]), it follows that as n→∞,

sup
0≤s≤eq

Xn(s)⇒ sup
0≤s≤eq

X(s).

Showing the corresponding convergence of the infimum follows from the elementary fact that, for
each t,

inf
0≤s≤t

Xn(s)− inf
0≤s≤t

X(s) = sup
0≤s≤t

−X(s)− sup
0≤s≤t

−Xn(s)

and so ∣∣∣∣ inf
0≤s≤t

Xn(s)− inf
0≤s≤t

(X(s))
∣∣∣∣ =

∣∣∣∣ sup
0≤s≤t

−X(s)− sup
0≤s≤t

−Xn(s)
∣∣∣∣

≤ sup
0≤s≤t

|Xn(s)−X(s)|.

Finally, we have that for each t, Xn(t) converges in L2 to X(t), which also implies convergence
in distribution. These are the crucial observations that we will need for proving the Wiener-Hopf
factorization, as we will now show.

4.3 The Wiener-Hopf factorization

We are now ready to see how the Wiener-Hopf factorization for Lévy processes follows as a conse-
quence of the Wiener-Hopf identity for PRP systems, whose arrival rates, service rates, and jump
distributions do not, at any time, depend on the level of the process.

4.3.1 The classical case

We begin with establishing the well-known version of the Wiener-Hopf factorization, for Lévy pro-
cesses.

Theorem 4.1 Suppose X is a Lévy process, and let eq be an exponential random variable, indepen-
dent of X, with rate q > 0. Then inf0≤s≤eq X(s) and X(eq)− inf0≤s≤eq X(s) are independent.

Proof Suppose first that X̃ is a Lévy process that consists of only a Brownian component and a
compound Poisson component. Hence, there exists a sequence of PRP systems {X̃n}n≥1, such that
X̃n converges uniformly on compact sets to X̃. The reader should also notice that each X̃n process
is also a Lévy process. Moreover, Corollary 3.1 showed that the Wiener-Hopf factorization is valid
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for each PRP system with state-independent jumps, and so from the Lévy continuity theorem, we
deduce for each ω ∈ R that

E[eiωX̃(eq)] = lim
n→∞

E[eiωX̃n(eq)]

= lim
n→∞

E[eiω sup0≤s≤eq X̃n(s)]E[eiω inf0≤s≤eq X̃n(s)]

= E[eiω sup0≤s≤eq X̃(s)]E[eiω inf0≤s≤eq X̃(s)].

Thus, the Wiener-Hopf factorization holds for all Lévy processes that consist of only a Brownian
motion and a compound Poisson part. Using this result, in conjunction with the proof of the Lévy-
Itô decomposition, verifies that the Wiener-Hopf factorization holds for an arbitrary Lévy process. ♦

Finally, as a consequence of what was previously discussed at the end of Section 4, we can use
these techniques to show that both inf0≤s≤eq X(s) and X(eq) − inf0≤s≤eq X(s) are each infinitely
divisible, which is again well-known.

4.3.2 The reflected case

We now show how to use Corollary 3.2 to deduce an analogous factorization for Lévy processes.

Theorem 4.2 Suppose X represents a Lévy process, and let eq be an exponential random variable
with rate q > 0, which is independent of X. Moreover, let R := {R(t); t ≥ 0} represent the reflection
of X, with a reflected barrier at state zero. Then, assuming X(0) = x ≥ 0,

Ex[eiωR(eq)] = E0[eiωR(eq)]Ex[eiω inf0≤u≤eq R(u)].

Proof The proof of this result is completely analogous to the proof of Theorem 4.1. First, we estab-
lish that it holds for a Lévy process X that consists of only a Brownian and compound Poisson part.
The general statement then again follows as before, from the proof of the Lévy-Itô decomposition. ♦

This factorization result, for Lévy processes, does not seem to be explicitly known, however direct
computations of Ex[eiωR(eq)] have appeared in the literature in some instances.

For example, it is not hard to see that inf0≤s≤eq R(s) is equal in distribution to (x+inf0≤s≤eq X(s))∨
0 (here X(0) = 0). Hence, if X is spectrally positive, − inf0≤s≤eq X(s) is just an exponential random
variable, and so (x+ inf0≤s≤eq X(s))∨ 0 will have a tractable transform. The original Wiener-Hopf
factorization can then be used to compute the transform of R(eq) − inf0≤s≤eq R(s). Thus, we can
use this factorization to easily derive the transform for the reflected process, starting in any state
x ≥ 0. We emphasize though that these transforms are already known in the spectrally positive
case: see e.g. Bingham [10], Bekker et al. [9], or Chapter 9, Theorem 3.10 of Asmussen [6]; but what
is interesting is that the transform expressions given in these references do not immediately suggest
that such a factorization is possible.

Having said this, there are references in the literature that make heavy use of factorizing the
transform of R(eq), starting at an arbitrary initial level x ≥ 0. Indeed, both Theorem 9.1 of [1], which
holds when X is a Brownian motion, and Theorem 2.1 of [3], which holds when X is the difference
of two Poisson processes (the free process of an M/M/1 queue), are special cases of Theorem 4.2.
The authors of [1, 3] proved both of these results by taking the known transform of the reflected
version, and showing through algebraic manipulations that the transform can be factored into the
product of two other transforms, where one represents the reflection, starting in state 0.

These transforms were then used in Abate and Whitt [1, 3] to show how the moments of the
reflected process at time t, i.e. E[R(t)n | R(0) = 0], for both Brownian motion and the M/M/1
queue, can be expressed in terms of cumulative distribution functions associated with the busy
period. They also discuss how to use the factorization to compute analogous forms for E[R(t) |
R(0) = x], for any arbitrary x ≥ 0. A similar technique is also used in [3] to compute P (R(t) =
j | R(0) = 0): there they emphasize that it is not immediately obvious how one can use their
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factorization to compute P (R(t) = j | R(0) = i) for any arbitrary i, j ≥ 0. Later, in [4], the authors
succeeded in performing this computation, by applying another technique. However, now that we
have successfully identified both of the random variables present in the factorization, we can use an
inversion approach analogous to that found in [3] to derive expressions for P (R(t) = j | R(0) = i),
which match those found in [4]. Readers wishing to read more about such ideas should consult [19].

We would also like to refer the reader to the interesting Lemma 5.1 and Example 3 of Palmowski
and Vlasiou [35]. There they give a proof of Theorem 4.2, which is obtained through the use of
duality arguments, along with the well-known Wiener-Hopf factorization for Lévy processes, without
reflection. Their result actually pertains to the stationary distribution of a reflected Lévy process
that experiences a state-dependent transition at random, Erlang-distributed locations, but it is not
difficult to see that the ideas used to derive this stationary distribution can also be used to derive
the distribution of the reflected process at an independent exponential time. Indeed, Equation 5.2
of [35] gives the Laplace-Stieltjes transform of R(eq), given R(0) = B (which is random), and what
is interesting about this expression is that it has already been factored. Technically, this equation
is only valid for a reflected spectrally positive Lévy process, but the arguments given in Example 3
of [35] also establish the factorization, in the general case.

5 Random Walks

The purpose of this section is to illustrate the simplicity of our approach, when it is used to derive
the classical Wiener-Hopf factorization for random walks. Indeed, the general Wiener-Hopf identity
that we established within the context of PRP systems also appears within the context of random
walks, as we will now show.

Suppose {Zn}n≥1 represents a sequence of random variables, which are defined as follows. Set
S0 = s ∈ Z, and let S1 = s + Z1, where the distribution of Z1 depends on s. Moreover, set
S2 = S1 +Z2, and assume that the distribution of Z2 depends on S1. In general, for each n ≥ 0, we
set Sn+1 = Sn + Zn+1, where the distribution of Zn+1 depends on Sn.

To emphasize the dependence of the distribution of Zn+1 on Sn, we will write Z(s) as the
distribution of Zn+1, given Sn = s.

Notice that the Z terms used in this section are very much analogous to the Z terms used in
the PRP section: in both cases, they represent the sizes of jumps, and these jumps are allowed to
depend on the current level.

We also let Sl := {Sln}n≥0 represent our state-dependent random walk, with reflection at level
l. This type of process is the random-walk analogue to the Ql process that was defined in Section
3, where l was our reflecting barrier. Again, Sl jumps upward in a manner that is exactly the same
as S does, but potential downward jumps from an arbitrary level k to any level lower than l are
instead made to level l.

We are now ready to state our main result of this section.

Theorem 5.1 Suppose Gp represents a geometric random variable on {0, 1, 2, 3, . . .}, independent
of our random walk S. Furthermore, suppose that S0 = s ∈ Z. Then for each l ≤ s, k ≥ 0,

P (SGp = k + l | inf
0≤n≤Gp

Sn = l) = P (SlGp = k + l).

Proof Notice that

1(Sn ≥ k + l, inf
0≤u≤n

Su = l) =
k−1∑
j=0

n∑
t=1

∞∑
m=k

1(St−1 = j + l, inf
0≤u≤t−1

Su = l, Zt(k + l) = m− j, τm+l,k+l(t) > n),

where τm+l,k+l(t) = inf{n > t : Wn < k + l}, under Wt = m + l. We can proceed in precisely the
same manner as before: after taking expectations of both sides, we find that

P (Sn ≥ k + l, inf
0≤u≤n

Su = l) =
k−1∑
j=0

n∑
t=1

∞∑
m=k

P (τm+l,k+l > n− t)P (Z(k + l) = m− j)P (St−1 = j + l, inf
0≤u≤t−1

Su = l),
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where again, we interpret τm+l,k+l to be τm+l,k+l(0). Finally, if we now multiply both sides of
this equality by (1 − p)pn, and then sum over all possible n, we conclude, after some algebra and
conditioning, that for each k ≥ 1,

P (SGp ≥ k + l | inf
0≤u≤Gp

Su = l) =
k−1∑
j=0

P (SGp = j + l | inf
0≤u≤Gp

Su = l)
∞∑
m=k

p(1− E[pτm+l,k+l ])
1− p

P (Z(k + l) = m− j).

Due to the fact that
∞∑
k=0

P (SGp = k + l | inf
0≤u≤Gp

Su = l) = 1,

we deduce that this system of equations has only one solution that is a probability mass function.
Since we can use the same type of techniques to conclude that P (SlGp = k+ l) satisfies precisely the
same system of equations, we can again conclude that

P (SGp = k + l | inf
0≤n≤Gp

Sn = l) = P (SlGp = k + l)

and this completes the proof. ♦
The analogous Wiener-Hopf identity for the reflected random walk can also be derived in an analo-
gous manner: we leave the details to the interested reader.

We feel that this argument possesses many interesting qualities. Firstly, just as in the analogous
proof for the PRP systems, increasing or decreasing ladder heights are not used in order to establish
the Wiener-Hopf identity. Secondly, notice that no use is made of stopping times, or the strong
Markov property: only the Markov property is used to derive our system of equations. Finally,
Palm measures are not needed in this setting either, simply because we are working in discrete-time.

If we now suppose that the {Zn}n≥1 sequence is i.i.d., our identity again reduces to the classical
Wiener-Hopf factorization, for integer-valued random walks. Moreover, by an obvious scaling argu-
ment, the Wiener-Hopf factorization for an arbitrary random walk also follows as a consequence of
the Wiener-Hopf factorization for integer-valued random variables.

6 Applications to birth-death processses, and diffusions

Our Wiener-Hopf identity, in its most general form, allows for the jumps of our PRP system to be
state-dependent. Hence, if we assume that customers with label m bring with them an exponential
amount of work with rate 1, which is processed at rate µm, we find that our PRP system is just a
continuous-time Markov chain on the integers. Moreover, if customers arrive one-at-a-time to the
system, and no catastrophes occur, we may further claim that our PRP system is actually a birth-
death process on the integers. Thus, our Wiener-Hopf identity is valid for birth-death processes;
this fact will be thoroughly exploited throughout our calculations.

6.1 Birth-death processes

Suppose that Q := {Q(t); t ≥ 0} represents a birth-death process on the integers, with birth rates
{λn}n∈Z and death rates {µn}n∈Z. Moreover, let eq represent an exponential random variable with
rate q > 0, independent of Q. Throughout, we will assume that Q is ergodic, and we will let π
represent its stationary distribution.

We begin by showing how our Wiener-Hopf identity can be used to derive expressions for the
probability mass function ofQ(eq). What makes this approach interesting is that the expressions that
we derive are amenable to continuous-mapping arguments: this implies that analogous expressions
can also be derived for any diffusion process, assuming that the diffusion is the weak limit of a
sequence of properly scaled birth-death processes.
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6.1.1 Some initial calculations

By Corollary 4.1.1 of Abate and Whitt [3], we can make use of the reversibility of birth-death
processes to say that for each n ∈ Z,

P0(Q(eq) = n) =
πnEn[e−qτ0 ]∑
k∈Z πkEk[e−qτ0 ]

where Pn is meant to represent the conditional probability that Q(0) = n. Hence, we find that
there is a very nice relationship between the probability mass function of Q(eq), and the hitting
time distribution of Q. We should also mention here that an analogous expression actually holds in
the case where the birth-death process is not ergodic: see [19] for details.

However, suppose that we are interested in computing the pmf of Q(eq), when Q(0) = n0 6= 0.
While the same method will tell us that

Pn0(Q(eq) = n) =
πnEn[e−qτn0 ]∑
j∈Z πjEj [e

−qτn0 ]

we must be careful: how do we know that En[e−qτn0 ] is tractable? This is a very legitimate question,
as there are many instances where En[e−qτn0 ] will be tractable for some choices of n0, but not for
others. In such an instance, we refer to state n0 as a reference point: the reference point is the
point that we would like to appear in the hitting-time Laplace-Stieltjes transforms found in our
probability mass function for Q(eq). Fortunately, the Wiener-Hopf identity allows us to derive
computable expressions, since it allows us to use whatever reference point we’d like, for each initial
value.

Our next example illustrates how the Wiener-Hopf identity can be useful towards deriving the
pmf of Q(eq), when Q(t) represents the number of customers present in an M/M/s queueing system
at time t. The reader will clearly see that this identity plays a large role in the calculations: in
essence, it allows us to express M/M/s quantities in terms of simple quantities that are associated
with simpler systems, namely the M/M/1 queue and the M/M/∞ queue.

6.1.2 The M/M/s queue

Recall that the M/M/s queue is a birth-death process on {0, 1, 2, . . .} with birth rates λn = λ, for
n ≥ 0, and death rates µn = min{n, s}µ, for n ≥ 1. A classical reference on the time-dependent
behavior of the M/M/s queue is Saaty [37], which makes use of the classical approach found in
Bailey [8].

From what we have already seen in [3], we find that if Q(0) = s, then for each n ≥ 0,

Ps(Q(eq) = n) =
πnEn[e−qτs ]∑
j≥0 πjEj [e−qτs ]

.

We now aim to derive an expression for the pmf of Q(eq) that contains Laplace-Stieltjes transforms of
the hitting time τs, for every feasible initial condition. To see why the appearance of this particular
hitting-time transform is desirable, notice that if k < s, Ek[e−qτs ] is the Laplace-Stieltjes transform
of the amount of time it takes our M/M/s process to go from level k to level s, but this is the same
as the Laplace-Stieltjes transform of the amount of time it takes us to go from k to s in an M/M/∞
queue, with arrival rate λ and service rate µ. Similarly, for k > s, Ek[e−qτs ] is just the LST of the
amount of time it takes us to go from level k to level s in an M/M/1 queue, with arrival rate λ
and service rate sµ. Hence, all of the terms in our expression for Ps(Q(eq) = k) can theoretically be
derived from two simpler models, the M/M/1 queue and the M/M/∞ queue.

Indeed, for k > s, we already have a closed-form expression for Ek[e−qτs ]: letting ψ(q) =
Es+1[e−qτs ] be the busy period of an M/M/1 queue with arrival rate λ and service rate sµ, we see
that

Ek[e−qτs ] = ψ(q)k−s.
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Hence, we will focus on the case where k < s. Letting {QM/M/∞(t); t ≥ 0} represent the queue-
length process of an M/M/∞ queue (including the customers in service), we can follow a classical
argument found in Darling and Siegert [17] to find that

Pk(QM/M/∞(eq) = s) = Pk(QM/M/∞(eq) = s, τs ≤ eq)
= Ps(QM/M/∞(eq) = s)Ek[e−qτs ]

which shows that

Ek[e−qτs ] =
Pk(QM/M/∞(eq) = s)
Ps(QM/M/∞(eq) = s)

.

Hence, we see that our LST of interest can in fact be computed.
To compute Pk(QM/M/∞(eq) = s), we will need to make use of the following known lemma. This

was also observed in Flajolet and Guillemin [18], but we repeat it here for convenience.

Lemma 6.1 For a positive real number q,∫ ∞
0

qe−(qt+ρ(1−e−µt))dt = M

(
1,
q

µ
+ 1,−ρ

)
where M is Kummer’s function, i.e.

M(a, b, z) =
∞∑
n=0

(a)nzn

(b)nn!

with (a)0 = 1, and for n ≥ 1, (a)n = (a)(a+ 1) · · · (a+ n− 1).

Proof Applying partial integration gives∫ ∞
0

e−ρ(1−e
−µt)qe−qtdt = 1− ρµ

∫ ∞
0

e−(q+µ)te−ρ(1−e
−µt)dt.

After further applying partial integration infinitely many more times, we arrive at the result. ♦

Lemma 6.2 For each k ≤ s,

Pk(QM/M/∞(eq) = s) =
k∑
j=0

k+s−2j∑
m=0

(
k

j

)(
k + s− 2j

m

)
(ρ)s−j(−1)m

(s− j)!
q

q + (j +m)µ
M

(
1,
q

µ
+ j +m+ 1,−ρ

)
.

Proof This identity can be derived from the known fact that, at a fixed time t ≥ 0, Q(t) is the
convolution of a binomial random variable with parameters (k, e−µt) and a Poisson random variable
with parameter ρ(1 − e−µt). The result then follows by integrating the pmf of Q(t), and applying
Lemma 6.1. ♦
From this lemma, we can now conclude that the Laplace-Stieltjes transform Ek[e−qτs ] can be ex-
pressed as a ratio of two such sums. In other words, we may state the following lemma.

Lemma 6.3 For each k ≤ s, we see that

Ek[e−qτs ] =

∑k
j=0

∑k+s−2j
m=0

(
k
j

)(
k+s−2j

m

) (ρ)s−j(−1)m

(s−j)!
q

q+(j+m)µM
(

1, qµ + j +m+ 1,−ρ
)

∑s
j=0

∑2(s−j)
m=0

(
s
j

)(
2(s−j)
m

) (ρ)s−j(−1)m

(s−j)!
q

q+(j+m)µM
(

1, qµ + j +m+ 1,−ρ
) .
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Our next step is to use the Wiener-Hopf identity to compute probabilities of the form Pk(Q(eq) =
n), for arbitrary k, n ≥ 0. Notice that we already have a nice expression for such a pmf, when k = s.
Case 1: k > s, n ≤ s. Notice that

Pk(Q(eq) = n) = Pk(Q(eq) = n, τs ≤ eq)
= Pk(Q(eq) = n | τs ≤ eq)Ek[e−qτs ]
= Ps(Q(eq) = n)Ek[e−qτs ]

and so we conclude that, from our previous calculations, this probability is already tractable.
Case 2: k > s, n > s. This case is much more interesting. Now, it is possible for our process to go
from k to n, without ever reaching level s in [0, eq]. Proceeding in the same manner as in Case 1,
we find that

Pk(Q(eq) = n) = Pk(Q(eq) = n, τs ≤ eq) + Pk(Q(eq) = n, τs > eq)

= Ps(Q(eq) = n)Ek[e−qτs ] +
min{n,k}∑
l=s+1

Pk(Q(eq) = n | inf
0≤u≤eq

Q(u) = l)Pk( inf
0≤u≤eq

Q(u) = l).

However, notice that

Pk( inf
0≤u≤eq

Q(u) = l) = Pk(τl ≤ eq)− Pk(τl−1 ≤ eq)

= Ek[e−qτl ]− Ek[e−qτl−1 ]
= ψ(q)k−l − ψ(q)k−l+1

and, furthermore, we find from the Wiener-Hopf identity that, conditional on inf0≤u≤eq Q(u) = l, Q
behaves as an M/M/1 queue on [0, eq] with arrival rate λ and service rate sµ. Hence, we can also
say that

Pl(Q(eq) = n | inf
0≤u≤eq

Q(u) = l) =
(

1− λψ(q)
sµ

)(
λψ(q)
sµ

)n−l
.

Case 3: 0 ≤ k < s, n ≥ s. This case is analogous to Case 1: by following the same techniques, we
find that

Pk(Q(eq) = n) = Ps(Q(eq) = n)Ek[e−qτs ].

Now we can use Lemma 6.3 to express Ek[e−qτs ] in terms of Kummer functions.
Case 4: 0 ≤ k < s, n < s. As expected, this case is analogous to Case 2, but the expression in this
case is more complicated than the other expressions. Here

Pk(Q(eq) = n) = Pk(Q(eq) = n, τs ≤ eq) + Pk(Q(eq) = n, τs > eq)

= Ps(Q(eq) = n)Ek[e−qτs ] +
s−1∑

l=max{k,n}

Pk(Q(eq) = n | sup
0≤u≤eq

Q(u) = l)Pk( sup
0≤u≤eq

Q(u) = l).

However, we can again observe that

Pk( sup
0≤u≤eq

Q(u) = l) = Ek[e−qτl ]− Ek[e−qτl+1 ]

and conditional on sup0≤u≤eq Q(u) = l, we observe from our Wiener-Hopf identity that Q behaves
as an M/M/l/l queue on [0, eq], starting at level l. Hence, we see that

Pk(Q(u) = n | sup
0≤u≤eq

Q(u) = l) =
ρn

n!En[e−qτl ]∑l
j=0

ρj

j!Ej [e
−qτl ]

.

Hence, the entire pmf of Q(eq) can be expressed in terms of Kummer functions.
There is an important lesson to be learned from our calculations of the pmf of Q(eq). We have

shown that, through a proper choice of initial point and reference point, our probability mass function
of Q(eq) can be expressed in terms of quantities related to three simpler models: the M/M/1 queue,
the M/M/l/l queue, and the M/M/∞ queue.
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6.1.3 The M/M/s/K queue

This technique can also be used to derive the pmf of Q(eq), when {Q(t); t ≥ 0} represents the queue-
length process of an M/M/s/K queueing system, where s represents the number of servers and K
the total system capacity, which is a bound on the number of customers that can be in the system at
any given time. By choosing our reference point to be s, we see that this model can be expressed in
terms of three simpler models: the M/M/∞ queue, the M/M/l/l queue, and the M/M/1/(K − s)
queue.

The relevant hitting-time transforms for the M/M/1/(K − s) queue can be derived from the
M/M/1 queue, since we can use the pmf of an M/M/1 queue at an exponential time to derive
the LST of the time it takes us to go from level j1 to level j2 in an M/M/1 queue, when j1 < j2.
Such a result can then be used to derive all of the corresponding hitting-time transforms for an
M/M/1/(K − s) queue. Once this has been observed, the Wiener-Hopf identity can be used to
derive the pmf of Q(eq) for the M/M/s/K queue, in a manner analogous to what was done above
for the M/M/s queue.

6.1.4 Time-dependent moments

It is possible to make use of the Wiener-Hopf identity to derive the moments of Q(eq) as well. To
illustrate the main idea, we first suppose that {Q(t); t ≥ 0} represents an M/M/1 queue-length
process, with arrival rate λ and service rate µ. It has been shown in Abate and Whitt [2] that, for
each t ≥ 0,

E[Q(t) | Q(0) = 0] =
ρ

1− ρ
P (Rτ ≤ t)

where τ represents the busy period of an M/M/1 queue, and Rτ represents the residual busy period,
i.e. for each t > 0,

P (Rτ > t) =
1

E[τ ]

∫ ∞
t

P (τ > x)dx.

Letting eq be an exponential r.v. with rate q > 0, independent of Q, gives

E[Q(eq) | Q(0) = 0] =
ρ

1− ρ
E[e−qRτ ]

=
ρ

1− ρ
1− E[e−qτ ]

qE[τ ]

=
λ(1− E[e−qτ ])

q

which implies that the first moment of Q(eq) is tractable, assuming we start in state 0.
The Wiener-Hopf identity can be used in many ways to compute the first moment of Q(eq), for

any initial condition. One possible procedure is the following. Suppose that Q(0) = n0 ≥ 0. Then

E[Q(eq) | Q(0) = n0] = E[Q(eq) | inf
0≤s≤eq

Q(s) = 0, Q(0) = n0]P ( inf
0≤s≤eq

Q(s) = 0 | Q(0) = n0)

+
n0∑
k=1

E[Q(eq) | inf
0≤s≤eq

Q(s) = k,Q(0) = n0]P ( inf
0≤s≤eq

Q(s) = k | Q(0) = n0)

= E[Q(eq) | Q(0) = 0]P ( inf
0≤s≤eq

Q(s) = 0 | Q(0) = n0)

+
n0∑
k=1

(E[Q(eq) | Q(0) = 0] + k)P ( inf
0≤s≤eq

Q(s) = k | Q(0) = n0)

= E[Q(eq) | Q(0) = 0] +
n0∑
k=1

kP ( inf
0≤s≤eq

Q(s) = k | Q(0) = n0)
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=
λ(1− E[e−qτ ])

q
+

n0∑
k=1

kψ(q)n0−k(1− ψ(q)).

The important step to understand in this derivation is the second equality: if inf0≤s≤eq Q(s) = k,
we can say from the Wiener-Hopf identity that Q(eq) is equal in distribution to an M/M/1 queue
on the states {k, k+ 1, k+ 2, . . .} with arrival rate λ and service rate µ. This result agrees with the
result given in [3], and also in [21]. With a bit of patience, higher moments can also be computed
through the use of this approach.

An analogous procedure can be used to compute the moments of Q(eq), for more complicated
processes. Suppose now that {Q(t); t ≥ 0} represents the queue-length process of an M/M/s queue,
with arrival rate λ and service rate µ, and s servers. While the transient moments of the M/M/s
queue have been studied in Marcellán and Pérez [33], the point here is to show how to construct the
moments from simpler birth-death processes.

The key to computing the moments of Q(eq) for an arbitrary initial condition is to first compute
the moments, while assuming that Q(0) = s, since we will want to again use s as a reference point
when we apply the Wiener-Hopf identity. Again, since Q is a reversible process, we can say that

E[Q(eq) | Q(0) = s] = π0

s−1∑
k=0

kEk[e−qτs ]
ρk

k!
+ sπ0

ρs

s!
+ π0

ρs

s!

∞∑
k=s+1

kEk[e−qτs ](ρ/s)k−s.

There are a few observations here that are worth noting. First, notice that the term

π0

s∑
k=0

kEk[e−qτs ]
ρk

k!
= P (Q(∞) ≤ s)Es[QM/M/s/s(eq)]

where QM/M/s/s represents an M/M/s/s loss model with arrival rate λ, service rate µ, and s servers,
and this is a known expected value; see Abate and Whitt [5] for details. Second, we see that

π0
ρs

s!

∞∑
k=s+1

kEk[e−qτs ](ρ/s)k−s = π0
ρs

s!

∞∑
k=s+1

(k − s)Ek[e−qτs ](ρ/s)k−s

+ π0
ρs

s!

∞∑
k=s+1

sEk[e−qτs ](ρ/s)k−s

= P (Q(∞) ≥ s)E0[QM/M/1(eq)] + sP (Q(∞) ≥ s)P0(Q(eq) ≥ 1)

where QM/M/1 represents an M/M/1 queue with arrival rate λ and service rate sµ. Thus, we
conclude that E[Q(eq) | Q(0) = s] is a quantity that can be computed.

To get E[Q(eq) | Q(0) = i] for an arbitrary i ≥ 0, we now invoke the Wiener-Hopf identity.
Suppose first that i < s. Then

E[Q(eq) | Q(0) = i] =
s−1∑
j=i

E[Q(eq) | sup
0≤s≤eq

Q(s) = j,Q(0) = i]P ( sup
0≤s≤eq

Q(s) = j | Q(0) = i)

+ E[Q(eq) | Q(0) = s]P (τs ≤ eq)

and we observe from the Wiener-Hopf identity that, conditional on sup0≤s≤eq Q(s) = j, Q(eq)
behaves as an M/M/j/j queue on {0, 1, 2, . . . , j}, which means that

E[Q(eq) | sup
0≤s≤eq

Q(s) = j,Q(0) = i] = E[QM/M/j/j(eq) | QM/M/j/j(0) = j].

All of the other terms in the sum are, for similar reasons, also tractable. A similar argument can be
used to derive E[Q(eq) | Q(0) = i] for i > s; we omit the details.

We also point out that a similar argument can be used to derive moment expressions for the
M/M/s queue with exponential reneging, i.e. the M/M/s −M queue, which is the model studied
in Garnett et al. [24]. Such moments would be decomposed into components from an M/M/s/s
queue, and a M/M/1−M queue, and the M/M/1−M queue moments have recently been studied
in [22].
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6.2 Diffusion processes

Our goal is now to show how the results derived above for birth-death processes can be used to
establish similar expressions for diffusion processes. We shall do so for the case of regulated Brownian
motion

6.2.1 Regulated Brownian motion

Suppose that {B(t); t ≥ 0} represents a Brownian motion, with drift µ = −1 and volatility σ2 = 1.
We are interested in understanding the time-dependent behavior of {R(t); t ≥ 0}, where

R(t) = B(t)− inf
0≤u≤t

B(u)

i.e. R is the one-sided reflection of B. Granted, since B is a Lévy process, we can already use
the Wiener-Hopf factorization to derive the Laplace-Stieltjes transform of R(eq). However, we will
instead be interested in showing how our Wiener-Hopf identity can also be used to derive the
probability density function of R(eq).

To derive this pdf, we will need to know a bit about the distribution of the hitting times associated
with a Brownian motion. Following the classical argument of applying the optional sampling theorem
to the Wald martingale, we see that

Ex[e−qτ0 ] = e−(−1+
√

1+2q)x.

Moreover, R has a unique stationary distribution π, where π(dx) = 2e−2xdx.
We will now compute the density of R(eq), given R(0) = x0: we denote this density at the point

x as fR(eq)(x;x0). Again, we will need to break the calculation up into cases. Considering first the
case where x > x0, we may use our Wiener-Hopf identity, along with a weak-convergence argument
to find that

Px0(R(eq) > x) = Ex0 [e−qτ0 ]

∫∞
x
Ey[e−qτ0 ]π(dy)∫∞

0
Ey[e−qτ0 ]π(dy)

+
∫ x0

0

∫∞
x
Ey[e−qτ0 ]π(dy)∫∞

z
Ey[e−qτ0 ]π(dy)

dP ( inf
0≤u≤eq

R(u) ≤ z).

For x ≥ 0, we can use our expressions for both the hitting-time LST and the stationary distribution
to show that ∫ ∞

x

Ey[e−qτ0 ]π(dy) =
∫ ∞
x

e−(−1+
√

1+2q)y2e−2ydy

=
2

1 +
√

1 + 2q
e−(1+

√
1+2q)x.

Also, for 0 < z < x0,

Px0( inf
0≤u≤eq

R(u) ≤ z) = Px0(τz ≤ eq)

= Ex0 [e−qτz ]
= Ex0−z[e

−qτ0 ]

= e−(−1+
√

1+2q)(x0−z)

so for positive z, we find that the density of inf0≤u≤eq R(u) is just

dP ( inf
0≤u≤eq

R(u) ≤ z) = (−1 +
√

1 + 2q)e−(−1+
√

1+2q)x0e(−1+
√

1+2q)zdz.
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Plugging everything in, we can now say that

Px0(R(eq) > x) = e−(−1+
√

1+2q)x0e−(1+
√

1+2q)x

+
∫ x0

0

e−(1+
√

1+2q)xe(1+
√

1+2q)z(−1 +
√

1 + 2q)e−(−1+
√

1+2q)x0e(−1+
√

1+2q)zdz

= e−(−1+
√

1+2q)x0e−(1+
√

1+2q)x

[
1 +

(−1 +
√

1 + 2q)
2
√

1 + 2q

[
e2
√

1+2qx0 − 1
]]

and so after taking derivatives and multiplying by (−1), we find that the transient density of R(eq),
for x > x0, is just

fR(eq)(x;x0) = (1 +
√

1 + 2q)e−(−1+
√

1+2q)x0e−(1+
√

1+2q)x

+
q√

1 + 2q
e−(−1+

√
1+2q)x0e−(1+

√
1+2q)x

[
e2
√

1+2qx0 − 1
]
.

We will now focus on computing fR(eq)(x;x0), for x < x0. After applying our weak-convergence
results, we see that

Px0(R(eq) > x) = 1− Ex0−x[e−qτ0 ] + Ex0 [e−qτ0 ]

∫∞
x
Ey[e−qτ0 ]π(dy)∫∞

0
Ey[e−qτ0 ]π(dy)

+
∫ x

0

∫∞
x
Ey[e−qτ0 ]π(dy)∫∞

z
Ey[e−qτ0 ]π(dy)

dPx0( inf
0≤u≤eq

R(u) ≤ z).

Evaluating this quantity, then taking derivatives shows that the transient density of R(eq) is just

fR(eq)(x;x0) = (−1 +
√

1 + 2q)e−(−1+
√

1+2q)x0e−(1−
√

1+2q)x

+ (1 +
√

1 + 2q)e−(−1+
√

1+2q)x0e−(1+
√

1+2q)x

+ (1−
√

1 + 2q)(−1 +
√

1 + 2q)e−(−1+
√

1+2q)x0e−(1−
√

1+2q)x

− q√
1 + 2q

e−(−1+
√

1+2q)x0e−(1+
√

1+2q)x

= (−1 +
√

1 + 2q)(2−
√

1 + 2q)e−(−1+
√

1+2q)x0e−(1−
√

1+2q)x

+
√

1 + 2q + 1 + q√
1 + 2q

e−(−1+
√

1+2q)x0e−(1+
√

1+2q)x.

A Palm measures

Throughout this paper, we assume that all of our random elements reside on a probability space
(Ω,F , P ), where Ω represents a complete, separable metric space, F the Borel σ-field generated by
the open sets of the metric, and P a probability measure on F . These additional restrictions will
be needed in order to properly define a collection of Palm measures, which are used to derive our
main result. The reader should not be alarmed by such restrictions, as the space D[0,∞) endowed
with the proper choice of Skorohod metric is a complete, separable metric space, and many queueing
processes (and stochastic processes in general) can reside on such a space. Moreover, R+ is used to
represent the nonnegative real line, and B the Borel σ-field generated by the open sets of R+.

Let N := {N(t); t ≥ 0} represent a point process on the nonnegative real line, with mean measure
µ, where µ(A) = E[N(A)] <∞ for all bounded A ∈ B. Under such assumptions, it is known that N
induces a µ-a.e. unique probability kernel P : R+ × F → [0, 1], where for each fixed E ∈ F , Ps(E)
is a Borel measurable function in s, and for each fixed s ∈ R+, Ps is a probability measure on F .
The probability distributions of this kernel are referred to as the Palm measures of N , and these are
defined to be the measures that satisfy the following condition: for each B ∈ B, and each A ∈ F ,

E[N(B)1A] =
∫
B

Ps(A)µ(ds). (8)
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An important consequence of equation (8) is the Campbell-Mecke formula; see for instance Kallen-
berg [28]. The proof of this formula follows from applying a monotone class argument to (8).

Theorem A.1 (Campbell-Mecke formula) For any measurable stochastic process {X(t); t ≥ 0}, we
find that

E

[∫ ∞
0

X(s)N(ds)
]

=
∫ ∞

0

Es[X(s)]µ(ds)

where Es represents expectation, under the probability measure Ps.

Throughout, we say that a stochastic process is measurable if it is measurable with respect to the
σ-field A, which is generated by sets of the form A × C, where A ∈ B, and C ∈ F , i.e. if for each
B ∈ B, {(t, ω);X(t, ω) ∈ B} ∈ A.

The Campbell-Mecke formula is a very important, fundamental result in the theory of Palm
measures, and is typically the main tool used when applying Palm measures to a given problem.
Readers wishing to consult a rigorous treatment of such measures are referred to Chapters 10-12 of
[28]: other classical references on point process theory include the series of textbooks by Daley and
Vere-Jones [15, 16].

A collection of sub-σ-fields {Fs; s ≥ 0} of F is said to be a filtration, if for each s < t, Fs ⊂ Ft.
We say that a stochastic process {X(t); t ≥ 0} is adapted to the filtration if, for each t ≥ 0, X(t) is
measurable with respect to Ft. Associated with a filtration is a collection of σ-fields {Fs−; s > 0},
where Fs− is the smallest σ-field containing all σ-fields Fr, for r < s. These are standard concepts
within stochastic calculus, and can be found in virtually any textbook on the subject. Some examples
of textbooks that focus on point processes, and include such concepts, are Brémaud [12] and Baccelli
and Brémaud [7].

We are now ready to quote a result that is used to derive the main result of this paper. Suppose
N := {N(t); t ≥ 0} represents a point process on [0,∞), and suppose {Ft; t ≥ 0} represents a
filtration, to which N is adapted. Within this framework, we say that N is an Ft-Poisson process, if
(i) N is adapted to the filtration, and (ii) the distribution of N(a, b], conditional on Fa, is Poisson
with rate

µ(a, b] =
∫

(a,b]

λ(s)ds

for some deterministic function λ : [0,∞)→ [0,∞) (i.e. N(a, b] is independent of Fa). Under these
conditions, we can apply the following result, which is a corollary of a time-dependent analogue of
Papangelou’s lemma for point processes; see [19] for details.

Proposition A.1 If N is an Ft-Poisson process, then Pt = P on Ft−, for almost all t (w.r.t.
Lebesgue measure).
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[34] R. Núñez-Queija (2001). Note on the GI/GI/1 queue with LCFS-PR observed at arbitrary
times. Probability in the Engineering and Informational Sciences 15, 179-187.
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