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tThis is the se
ond in a series of three papers in whi
h we study a two-dimensional latti
e gas
onsisting of two types of parti
les subje
t to Kawasaki dynami
s at low temperature in a large�nite box with an open boundary. Ea
h pair of parti
les o

upying neighboring sites has a negativebinding energy provided their types are di�erent, while ea
h parti
le has a positive a
tivation energythat depends on its type. There is no binding energy between parti
les of the same type. At theboundary of the box parti
les are 
reated and annihilated in a way that represents the presen
eof an in�nite gas reservoir. We start the dynami
s from the empty box and are interested inthe transition time to the full box. This transition is triggered by a 
riti
al droplet appearingsomewhere in the box.In the �rst paper we identi�ed the parameter range for whi
h the system is metastable, showedthat the �rst entran
e distribution on the set of 
riti
al droplets is uniform, 
omputed the expe
tedtransition time up to and in
luding a multipli
ative fa
tor of order one, and proved that thenu
leation time divided by its expe
tation is exponentially distributed, all in the limit of lowtemperature. These results were proved under three hypotheses, and involve three model-dependentquantities: the energy, the shape and the number of 
riti
al droplets. In the se
ond paper we provethe �rst and the se
ond hypothesis and identify the energy of 
riti
al droplets. In the third paperwe settle the rest.Both the se
ond and the third paper deal with understanding the geometri
 properties ofsub
riti
al, 
riti
al and super
riti
al droplets, whi
h are 
ru
ial in determining the metastablebehavior of the system, as explained in the �rst paper. The geometry turns out to be 
onsiderablymore 
omplex than for Kawasaki dynami
s with one type of parti
le, for whi
h an extensiveliterature exists. The main motivation behind our work is to understand metastability of multi-type parti
le systems.1Mathemati
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1 Introdu
tionSe
tion 1.1 de�nes the model, Se
tion 1.2 introdu
es basi
 notation, Se
tion 1.3 states the main theo-rems, while Se
tion 1.4 dis
usses the main theorems and provides further perspe
tives.1.1 Latti
e gas subje
t to Kawasaki dynami
sLet Λ ⊂ Z
2 be a large box 
entered at the origin (later it will be 
onvenient to 
hoose Λ rhombus-shaped). Let

∂−Λ = {x ∈ Λ: ∃ y /∈ Λ: |y − x| = 1},
∂+Λ = {x /∈ Λ: ∃ y ∈ Λ: |y − x| = 1},

(1.1)be the internal, respe
tively, external boundary of Λ, and put Λ− = Λ\∂−Λ and Λ+ = Λ ∪ ∂+Λ.With ea
h site x ∈ Λ we asso
iate a variable η(x) ∈ {0, 1, 2} indi
ating the absen
e of a parti
le orthe presen
e of a parti
le of type 1 or type 2. A 
on�guration η = {η(x) : x ∈ Λ} is an element of
X = {0, 1, 2}Λ. To ea
h 
on�guration η we asso
iate an energy given by the Hamiltonian

H = −U
∑

(x,y)∈Λ∗,−

1{η(x)η(y)=2} +∆1

∑

x∈Λ

1{η(x)=1} +∆2

∑

x∈Λ

1{η(x)=2}, (1.2)where Λ∗,− = {(x, y) : x, y ∈ Λ−, |x − y| = 1} is the set of non-oriented bonds inside Λ−, −U < 0 isthe binding energy between neighboring parti
les of di�erent types inside Λ−, and ∆1 > 0 and ∆2 > 0are the a
tivation energies of parti
les of type 1, respe
tively, 2 inside Λ. W.l.o.g. we will assume that
∆1 ≤ ∆2. (1.3)The Gibbs measure asso
iated with H is

µβ(η) =
1

Zβ

e−βH(η), η ∈ X , (1.4)where β ∈ (0,∞) is the inverse temperature and Zβ is the normalizing partition sum.Kawasaki dynami
s is the 
ontinuous-time Markov pro
ess, (ηt)t≥0 with state spa
e X whose tran-sition rates are
cβ(η, η

′) = e−β[H(η′)−H(η)]+ , η, η′ ∈ X , η 6= η′, η ↔ η′, (1.5)where η ↔ η′ means that η′ 
an be obtained from η by one of the following moves:
• inter
hanging 0 and 1 or 0 and 2 between two neighboring sites in Λ(�hopping of parti
les in Λ�),
• 
hanging 0 to 1 or 0 to 2 in ∂−Λ(�
reation of parti
les in ∂−Λ�),
• 
hanging 1 to 0 or 2 to 0 in ∂−Λ(�annihilation of parti
les in ∂−Λ�),and cβ(η, η′) = 0 otherwise. Note that this dynami
s preserves parti
les in Λ, but allows parti
les to be
reated and annihilated in ∂−Λ. Think of the latter as des
ribing parti
les entering and exiting Λ alongnon-oriented bonds between ∂+Λ and ∂−Λ (the rates of these moves are asso
iated with the bondsrather than with the sites). The pairs (η, η′) with η ↔ η′ are 
alled 
ommuni
ating 
on�gurations, thetransitions between them are 
alled allowed moves. Note that parti
les in ∂−Λ do not intera
t: theintera
tion only works in Λ−.The dynami
s de�ned by (1.2) and (1.5) models the behavior inside Λ of a latti
e gas in Z

2,
onsisting of two types of parti
les subje
t to random hopping with hard-
ore repulsion and withbinding between di�erent neighboring types. We may think of Z2\Λ as an in�nite reservoir that keeps2



the parti
le densities �xed at ρ1 = e−β∆1 and ρ2 = e−β∆2. In the above model this reservoir is repla
edby an open boundary ∂−Λ, where parti
les are 
reated and annihilated at a rate that mat
hes thesedensities. Thus, the dynami
s is a �nite-state Markov pro
ess, ergodi
 and reversible with respe
t tothe Gibbs measure µβ in (1.4).Note that there is no binding energy between neighboring parti
les of the same type. Consequently,the model does not redu
e to Kawasaki dynami
s for one type of parti
le when ∆1 = ∆2.1.2 NotationTo state our main theorems in Se
tion 1.3, we need some notation.De�nition 1.1 (a) � is the 
on�guration where Λ is empty.(b) ⊞ is the set 
onsisting of the two 
on�gurations where Λ is �lled with the largest possible 
he
kerboarddroplet su
h that all parti
les of type 2 are surrounded by parti
les of type 1.(
) ω : η → η′ is any path of allowed moves from η ∈ X to η′ ∈ X .(d) Φ(η, η′) is the 
ommuni
ation height between η, η′ ∈ X de�ned by
Φ(η, η′) = min

ω : η→η′

max
ξ∈ω

H(ξ), (1.6)and Φ(A,B) is its extension to non-empty sets A,B ⊂ X de�ned by
Φ(A,B) = min

η∈A,η′∈B
Φ(η, η′). (1.7)(e) Vη is the stability level of η ∈ X de�ned by

Vη = Φ(η, Iη)−H(η), (1.8)where Iη = {ξ ∈ X : H(ξ) < H(η)} is the set of 
on�gurations with energy lower than η.(f) Xstab = {η ∈ X : H(η) = minξ∈X H(ξ)} is the set of stable 
on�gurations, i.e., the set of 
on�gu-rations with mininal energy.(g) Xmeta = {η ∈ X : Vη = maxξ∈X\Xstab
Vξ} is the set of metastable 
on�gurations, i.e., the set ofnon-stable 
on�gurations with maximal stability level.(h) Γ = Vη for η ∈ Xmeta (note that η 7→ Vη is 
onstant on Xmeta), Γ⋆ = Φ(�,⊞)−H(�) (note that

H(�) = 0).In [3℄ we were interested in the transition of the Kawasaki dynami
s from � to ⊞ in the limit as
β → ∞. This transition, whi
h is viewed as a 
rossover from a �gas phase� to a �liquid phase�, istriggered by the appearan
e of a 
riti
al droplet somewhere in Λ. The 
riti
al droplets form a subset ofthe set of 
on�gurations realizing the energeti
 minimax of the paths of the Kawasaki dynami
s from
� to ⊞, whi
h all have energy Γ⋆ be
ause H(�) = 0.In [3℄ we showed that the �rst entran
e distribution on the set of 
riti
al droplets is uniform,
omputed the expe
ted transition time up to and in
luding a multipli
ative fa
tor of order one, andproved that the nu
leation time divided by its expe
tation is exponentially distributed, all in thelimit as β → ∞. These results, whi
h are typi
al for metastable behavior, were proved under threehypotheses :(H1) Xstab = ⊞.(H2) There exists a V ⋆ < Γ⋆ su
h that Vη ≤ V ⋆ for all η ∈ X\{�,⊞}.(H3) A hypothesis about the shape of the 
on�gurations in the essential gate for the transition from

� to ⊞ (for details see [3℄).Hypotheses (H1�H3) are the geometri
 input that is needed to derive the main theorems in [3℄ withthe help of the potential-theoreti
 approa
h to metastability as outlined in Bovier [2℄. In the presentpaper we prove (H1�H2) and identify the energy Γ⋆ of 
riti
al droplets. In [4℄ we settle the rest.3



Lemma 1.2 (H1�H2) imply that V� = Γ⋆, and hen
e that Xmeta = � and Γ = Γ⋆.Proof. By De�nition 1.1(e�h) and (H1), ⊞ ∈ I�, whi
h implies that V� ≤ Γ⋆. We show that (H2)implies V� = Γ⋆. The proof is by 
ontradi
tion. Suppose that V� < Γ⋆. Then, by De�nition 1.1(h),there exists a η0 ∈ I�\⊞ su
h that Φ(�, η0) −H(�) < Γ⋆. But (H2), together with the �niteness of
X , implies that there exist an m ∈ N and a sequen
e η1, . . . , ηm ∈ X with ηm = ⊞ su
h that ηi+1 ∈ Iηiand Φ(ηi, ηi+1) ≤ H(ηi) + V ⋆ for i = 0, . . . ,m− 1. Therefore

Φ(η0,⊞) ≤ max
i=0,...,m−1

Φ(ηi, ηi+1) ≤ max
i=0,...,m−1

[H(ηi) + V ⋆] = H(η0) + V ⋆ < H(�) + Γ⋆, (1.9)where in the �rst inequality we use that Φ(η, σ) ≤ max{Φ(η, ξ), Φ(ξ, σ)} for all η, σ, ξ ∈ X , and in thelast inequality that η0 ∈ I� and V ⋆ < Γ⋆. It follows that
Φ(�,⊞)−H(�) ≤ max{Φ(�, η0)−H(�), Φ(η0,⊞)−H(�)} < Γ⋆, (1.10)whi
h 
ontradi
ts De�nition 1.1(h). Observe that the proof uses that Xmeta 
onsists of a single 
on�g-uration. �Hypotheses (H1�H2) imply that (Xmeta,Xstab) = (�,⊞), and that the highest energy barrier be-tween any two 
on�gurations in X is the one separating � and ⊞, i.e., (�,⊞) is the unique metastablepair. Hypothesis (H3) is needed only to �nd the asymptoti
s of the prefa
tor of the expe
ted transitiontime in the limit as Λ → Z

2. The main theorems in [3℄ involve three model-dependent quantities : theenergy, the shape and the number of 
riti
al droplets.1.3 Main theoremsIn [3℄ it was shown that ∆1 + ∆2 < 4U is the metastable region, i.e., the region of parameters forwhi
h � is a lo
al minimum but not a global minimum of H . Moreover, it was argued that within thisregion the subregion where ∆1,∆2 < U is of no interest be
ause the 
riti
al droplet 
onsists of twofree parti
les, one of type 1 and one of type 2. Therefore the proper metastable region is
0 < ∆1 ≤ ∆2, ∆1 +∆2 < 4U, ∆2 ≥ U, (1.11)as indi
ated in Fig. 1.

Figure 1: Proper metastable region.In this present paper, the analysis will be 
arried out for the subregion where
0 < ∆1 < U, ∆2 −∆1 > 2U, ∆1 +∆2 < 4U, (1.12)as indi
ated in Fig. 2. Note: The se
ond and third restri
tion imply the �rst restri
tion. Nevertheless,we write all three be
ause ea
h plays an important role in the sequel.The following three theorems are the main result of the present paper and are valid subje
t to(1.12). We write ⌈·⌉ to denote the upper integer part.4



Figure 2: Subregion of the proper metastable region given by (1.12).Theorem 1.3 Xstab = ⊞.Theorem 1.4 There exists a V ⋆ ≤ 10U −∆1 su
h that Vη ≤ V ⋆ for all η ∈ X\{�,⊞}. Consequently,if Γ⋆ > 10U −∆1, then Xmeta = � and Γ = Γ⋆.Theorem 1.5 Γ⋆ = −[ℓ⋆(ℓ⋆ − 1) + 1](4U −∆1 −∆2) + (2ℓ⋆ + 1)∆1 +∆2 with
ℓ⋆ =

⌈

∆1

4U −∆1 −∆2

⌉

∈ N. (1.13)Theorem 1.3 settles hypothesis (H1) in [3℄, Theorem 1.4 settles hypothesis (H2) in [3℄ when Γ⋆ >
10U −∆1, while Theorem 1.5 identi�es Γ⋆.As soon as V ⋆ < Γ⋆, the energy lands
ape does not 
ontain wells deeper than those surrounding �and ⊞. Theorems 1.3 and 1.4 imply that this o

urs at least when Γ⋆ > 10U −∆1, while Theorem 1.5identi�es Γ⋆ and allows us to exhibit a further subregion of (1.12) where the latter inequality is satis�ed.This further subregion 
ontains the shaded region in Fig. 3.

Figure 3: The parameter region where Γ⋆ > 10U −∆1 
ontains the shaded region.1.4 Dis
ussion1. In Se
tion 4 we will see that the 
riti
al droplets for the 
rossover from � to ⊞ 
onsist of a rhombus-shaped 
he
kerboard with a protuberan
e plus a free parti
le, as indi
ated in Fig. 4. A more detaileddes
ription will be given in [4℄.2. Abbreviate
ε = 4U −∆1 −∆2 (1.14)5



Figure 4: A 
riti
al droplet. Light-shaded squares are parti
les of type 1, dark-shaded squares areparti
les of type 2. The parti
les of type 2 form an ℓ⋆ × (ℓ⋆ − 1) quasi-square with a protuberan
eatta
hed to one of its longest sides, and are all surrounded by parti
les of type 1. In addition, there isa free parti
le of type 2. As soon as this free parti
le atta
hes itself �properly� to a parti
le of type 1the dynami
s is �over the hill� (see [3℄, Se
tion 2.3, item 3).and write ℓ⋆ = (∆1/ε) + ι with ι ∈ [0, 1). Then an easy 
omputation shows that Γ⋆ = (∆1)
2/ε+∆1 +

4U + ει(1− ι). From this we see that
ℓ⋆ ∼ ∆1/ε, Γ⋆ ∼ (∆1)

2/ε, ε ↓ 0. (1.15)The limit ε ↓ 0 
orresponds to the weakly supersaturated regime, where the latti
e gas wants to
ondensate but the energeti
 threshold to do so is high (be
ause the 
riti
al droplet is large). From theviewpoint of metastability this regime is the most interesting. The shaded region in Fig. 3 
apturesthis regime for all 0 < ∆1 < U . This region 
ontains the set of parameters where (∆1)
2/ε+∆1+4U >

10U −∆1, i.e., ε/U < (∆1/U)2/[6− 2(∆1/U)].3. The simplifying features of (1.12) over (1.11) are the following: ∆1 < U implies that ea
h time aparti
le of type 1 enters Λ and atta
hes itself to a parti
le of type 2 in a droplet the energy goes down,while ∆2 − ∆1 > 2U implies that no parti
le of type 2 sits on the boundary of a droplet that hasminimal energy given the number of parti
les of type 2 in the droplet. In [3℄ we 
onje
tured that themetastability results presented there a
tually hold throughout the region given by (1.11), even thoughthe 
riti
al droplets will be di�erent when ∆1 ≥ U .As will be
ome 
lear in Se
tion 3, the 
onstraint ∆1 < U has the e�e
t that in all 
on�gurationsthat are lo
al minima of H all parti
les on the boundary of a droplet are of type 1. It will turn outthat su
h 
on�gurations 
onsist of a single rhombus-shaped 
he
kerboard droplet. We expe
t that as
∆1 in
reases from U to 2U there is a gradual transition from a rhombus-shaped 
he
kerboard 
riti
aldroplet to a square-shaped 
he
kerboard 
riti
al droplet. This is one of the reasons why it is di�
ultto go beyond (1.12).4. What makes Theorem 1.4 hard to prove is that the estimate on Vη has to be uniform in η /∈ {�,⊞}.In 
on�gurations 
ontaining several droplets and/or droplets 
lose to ∂−Λ there may be a la
k of freespa
e making the motion of parti
les inside Λ di�
ult. The me
hanisms developed in Se
tion 5 allow usto realize an energy redu
tion to a 
on�guration that lies on a suitable referen
e path for the nu
leationwithin an energy barrier 10U −∆1 also in the absen
e of free spa
e around ea
h droplet.We will see in Se
tion 5 that for droplets su�
iently far away from other droplets and from ∂−Λa redu
tion within an energy barrier ≤ 4U +∆1 is possible. Thus, if we would be able to 
ontrol the
on�gurations that fail to have this property, then we would have V ⋆ ≤ 4U + ∆1 and, 
onsequently,would have Xmeta = � and Γ = Γ⋆ throughout the subregion given by (1.12) be
ause Γ⋆ > 4U +∆1.Another way of phrasing the last observation is the following. We view the �liquid phase� as the
on�guration �lling the entire box Λ. If, instead, we would let the liquid phase 
orrespond to the set6



of 
on�gurations �lling most of Λ but staying away from ∂−Λ, then the metastability results derivedin [3℄ would apply throughout the subregion given by (1.12).5. Theorems 1.3 and 1.5 
an a
tually be proved without the restri
tion ∆2 − ∆1 > 2U . However,removal of this restri
tion makes the task of showing that in droplets with minimal energy all parti
lesof type 2 are surrounded by parti
les of type 1 more involved than what is done in Se
tion 3. We omitthis extension, sin
e the restri
tion ∆2 −∆1 > 2U is needed for Theorem 1.4 anyway.Outline. Se
tion 2 
ontains preparations. Theorems 1.3�1.5 are proved in Se
tions 3�5, respe
tively.The proofs are purely 
ombinatorial, and are rather involved due to the presen
e of two types ofparti
les rather than one. Se
tions 3�4 deal with stati
s and Se
tion 5 with dynami
s. Se
tion 5 iste
hni
ally the hardest and takes up about half of the paper. More detailed outlines are given at thebeginning of ea
h se
tion.2 Coordinates, de�nitions and polyominoesSe
tion 2.1 introdu
es two 
oordinate systems that are used to des
ribe the parti
le 
on�gurations:standard and dual. Se
tion 2.2 lists the main geometri
 de�nitions that are needed in the rest of thepaper. Se
tion 2.3 proves a lemma about polyominoes (�nite unions of unit squares) and Se
tion 2.4 alemma about 2�tiled 
lusters (
he
kerboard 
on�gurations where all parti
les of type 2 are surroundedby parti
les of type 1). These lemmas are needed in Se
tion 3 to identify the droplets of minimalenergy given the number of parti
les of type 2 in Λ.2.1 Coordinates1. A site i ∈ Λ is identi�ed by its standard 
oordinates (x1(i), x2(i)), and is 
alled odd when x1(i)+x2(i)is odd and even when x1(i) + x2(i) is even. The standard 
oordinates of a parti
le p in Λ are denotedby x(p) = (x1(p), x2(p)). The parity of a parti
le p is de�ned as x1(p)+ x2(p)+ η(x(p)) modulo 2, and
p is said to be odd when the parity is 1 and even when the parity is 0.2. A site i ∈ Λ is also identi�ed by its dual 
oordinates

u1(i) =
x1(i)− x2(i)

2
, u2(i) =

x1(i) + x2(i)

2
. (2.1)Two sites i and j are said to be adja
ent, written i ∼ j, when |x1(i)− x1(j)|+ |x2(i)− x2(j)| = 1 or,equivalently, |u1(i)− u1(j)| = |u2(i)− u2(j)| = 1

2 (see Fig. 5).3. For 
onvenien
e, we take Λ to be the (L+ 3
2 )× (L+ 3

2 ) dual square 
entered at the origin for some
L ∈ N with L > 2ℓ⋆ (to allow for H(⊞) < H(�); see Se
tion 3.1). Parti
les intera
t only inside Λ−,whi
h is the (L + 1

2 ) × (L + 1
2 ) dual square 
entered at the origin. This dual square, a rhombus instandard 
oordinates, is 
onvenient be
ause the lo
al minima of H are rhombus-shaped as well (seeSe
tion 3).2.2 De�nitions1. A site i ∈ Λ is said to be latti
e-
onne
ting in the 
on�guration η if there exists a latti
e path λfrom i to ∂−Λ su
h that η(j) = 0 for all j ∈ λ with j 6= i. We say that a parti
le p is latti
e-
onne
tingif x(p) is a latti
e-
onne
ting site.2. Two parti
les in η at sites i and j are 
alled 
onne
ted if i ∼ j and η(i)η(j) = 2. If two parti
les p1and p2 are 
onne
ted, then we say that there is an a
tive bond b between them. The bond b is said tobe in
ident to p1 and p2. A parti
le p is said to be saturated if it is 
onne
ted to four other parti
les,i.e., there are four a
tive bonds in
ident to p. The support of the 
on�guration η, i.e., the union of the7



(a) (b)Figure 5: A 
on�guration represented in: (a) standard 
oordinates; (b) dual 
oordinates. Light-shadedsquares are parti
les of type 1, dark-shaded squares are parti
les of type 2. In dual 
oordinates, parti
lesof type 2 are represented by larger squares than parti
les of type 1 to exhibit the �tiled stru
ture� ofthe 
on�guration.unit squares 
entered at the o

upied sites of η, is denoted by supp(η). For a 
on�guration η, n1(η)and n2(η) denote the number of parti
les of type 1 and 2 in η, and B(η) denotes the number of a
tivebonds. The energy of η equals H(η) = ∆1n1(η) + ∆2n2(η) − UB(η).3. Let G(η) be the graph asso
iated with η, i.e., G(η) = (V (η), E(η)), where V (η) is the set of sites
i ∈ Λ su
h that η(i) 6= 0, and E(η) is the set of the pairs {i, j}, i, j ∈ V (η), su
h that the parti
lesat sites i and j are 
onne
ted. A 
on�guration η′ is 
alled a sub
on�guration of η, written η′ ≺ η, if
η′(i) = η(i) for all i ∈ Λ su
h that η′(i) > 0. A sub
on�guration c ≺ η is a 
luster if the graph G(c) isa maximal 
onne
ted 
omponent of G(η). The set of non-saturated parti
les in c is 
alled the boundaryof c, and is denoted by ∂c. Clearly, all parti
les in the same 
luster have the same parity. Thereforethe 
on
ept of parity extends from parti
les to 
lusters.4. For a site i ∈ Λ, the tile 
entered at i, denoted by t(i), is the set of �ve sites 
onsisting of i and thefour sites adja
ent to i. If i is an even site, then the tile is said to be even, otherwise the tile is saidto be odd. The �ve sites of a tile are labeled a, b, c, d, e as in Fig. 6. The sites labeled a, b, c, d are
alled jun
tion sites. If a parti
le p sits at site i, then t(i) is also denoted by t(p) and is 
alled the tileasso
iated with p. In standard 
oordinates, a tile is a square of size √

2. In dual 
oordinates, it is aunit square.5. A tile whose 
entral site is o

upied by a parti
le of type 2 and whose jun
tion sites are o

upied byparti
les of type 1 is 
alled a 2�tile (see Fig. 6). Two 2�tiles are said to be adja
ent if their parti
les oftype 2 have dual distan
e 1. A horizontal (verti
al) 12�bar is a maximal sequen
e of adja
ent 2�tilesall having the same horizontal (verti
al) 
oordinate. If the sequen
e has length 1, then the 12�bar is
alled a 2�tiled protuberan
e. A 
luster 
ontaining at least one parti
le of type 2 su
h that all parti
lesof type 2 are saturated is said to be 2�tiled. A 2�tiled 
on�guration is a 
on�guration 
onsisting of
2�tiled 
lusters only.

(a) (b) (
) (d)Figure 6: Tiles: (a) standard representation of the labels of a tile; (b) standard representation of a
2�tile; (
) dual representation of the labels of a tile; (d) dual representation of a 2�tile.
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6. The tile support of a 
on�guration η is de�ned as
[η] =

⋃

p∈̟2(η)

t(p), (2.2)where ̟2(η) is the set of parti
les of type 2 in η. Obviously, [η] is the union of the tile supports ofthe 
lusters making up η. For a standard 
luster c the dual perimeter, denoted by P (c), is the lengthof the Eu
lidean boundary of its tile support [c] (whi
h in
ludes an inner boundary when c 
ontainsholes). The dual perimeter P (η) of a 2�tiled 
on�guration η is the sum of the dual perimeters of the
lusters making up η.7. V⋆,n2
is the set of 
on�gurations su
h that in Λ−− the number of parti
les of type 2 is n2. V4n2

⋆,n2
isthe set of 
on�gurations su
h that in Λ−− the number of parti
les of type 2 is n2, the number of a
tivebonds is 4n2, and there is no isolated parti
le of type 1. In other words, V4n2

⋆,n2
is the set of 2�tiled
on�gurations with n2 parti
les of type 2. The lower index ⋆ is used to indi
ate that 
on�gurations inthese sets 
an have an arbitrary number of parti
les of type 1. A 
on�guration η is 
alled standard if

η ∈ V4n2
⋆,n2

, and its tile support is a standard polyomino in dual 
oordinates (see De�nition 2.1 belowfor the de�nition of a standard polyomino).8. A unit hole is an empty site su
h that all four of its neighbors are o

upied by parti
les of the sametype (either all of type 1 or all of type 2). An empty site with three neighboring sites o

upied bya parti
le of type 1 is 
alled a good dual 
orner. In the dual representation a good dual 
orner is a
on
ave 
orner (see Fig. 7).2.3 A lemma on polyominoesThe tile support of a 
luster c 
an be represented by a polyomino, i.e., a �nite union of unit squares.The following notation is used:
ℓ1(c) = width of c (= number of 
olumns).
ℓ2(c) = height of c (= number of rows).
vi(c) = number of verti
al edges in the i-th non-empty row of c.
hj(c) = number of horizontal edges in the j-th non-empty 
olumn of c.
P (c) = length of the perimeter of c.
Q(c) = number of holes in c.
ψ(c) = number of 
onvex 
orners of c.
φ(c) = number of 
on
ave 
orners of c.Note that ψ(c) = ∑N(c)

i=1 ψ(i) and φ(c) = ∑N(c)
i=1 φ(i), where N(c) is the number of verti
es in thepolyomino representing c. If two edges e1 and e2 are in
ident to vertex i at a right angle with a unitsquare inside and no unit squares outside, then ψ(i) = 1 and φ(i) = 0 (Fig. 7(a)). On the other hand,if there is no unit square inside and three unit squares outside, then ψ(i) = 0 and φ(i) = 1 (Fig. 7(b)).If four edges e1, e2, e3, e4 are in
ident to vertex i, with two unit squares in opposite angles, then

ψ(i) = 0 and φ(i) = 2 (Fig. 7(
)).De�nition 2.1 [Alonso and Cerf [1℄.℄ A polyomino is 
alled monotone if its perimeter is equal tothe perimeter of its 
ir
ums
ribing re
tangle. A polyomino whose support is a quasi-square (i.e., are
tangle whose side lengths di�er by at most one), with possibly a bar atta
hed to one of its longestsides, is 
alled a standard polyomino. 9



(a) (b) (
)Figure 7: Corners of polyominoes: (a) one 
onvex 
orner; (b) one 
on
ave 
orner; (
) two 
on
ave
orners. Shaded mean o

upied by a unit square.In the sequel, a key role will be played by the quantity
T (c) = 2P (c) + [ψ(c)− φ(c)] = 2P (c) + 4− 4Q(c). (2.3)Lemma 2.2 (i) All polyominoes c with a �xed number of monominoes minimizing T (c) are single-
omponent monotone polyominoes of minimal perimeter, whi
h in
lude the standard polyominoes.(ii) If the number of monominoes is ℓ2, ℓ2 − 1, ℓ(ℓ − 1) or ℓ(ℓ − 1)− 1 for some ℓ ∈ N\{1}, then thestandard polyominoes are the only minimizers of T (c).Proof. In the proof we assume w.l.o.g. that the polyomino 
onsists of a single 
luster c.(i) The proof uses proje
tion. Pi
k any non-monotone 
luster c. Let

c̃ = (π2 ◦ π1)(c), (2.4)where π2 and π1 denote the verti
al, respe
tively, the horizontal proje
tion of c. The e�e
t of verti
aland horizontal proje
tion is illustrated in Fig. 8. By 
onstru
tion, c̃ is a monotone polyomino (see e.g.the statement on Ferrers diagrams in the proof of Alonso and Cerf [1℄, Theorem 2.2).
Figure 8: E�e
t of verti
al and horizontal proje
tion.Suppose �rst that Q(c) = 0. Then T (c) = 2P (c)+4. Sin
e c is not monotone, we have P (c̃) < P (c),and so c is not a minimizer of T (c).Suppose next that Q(c) ≥ 1. Sin
e

P (c) =

ℓ2(c)
∑

i=1

vi(c) +

ℓ1(c)
∑

j=1

hj(c) (2.5)and every hole belongs to at least one row and one 
olumn, we have
P (c) ≥ 2[ℓ1(c) + ℓ2(c)] + 4Q(c). (2.6)On the other hand, sin
e c̃ is a monotone polyomino, we have vi(c̃) = hj(c̃) = 2 for all i and j, and so

P (c̃) = 2[ℓ1(c̃) + ℓ2(c̃)]. (2.7)Moreover, sin
e ℓ1(c̃) ≤ ℓ1(c) and ℓ2(c̃) ≤ ℓ2(c), we 
an 
ombine (2.6�2.7) to get
P (c̃)− P (c) ≤ −4Q(c), (2.8)10



Using (2.8), we obtain
T (c̃)− T (c) = [2P (c̃) + 4]− [2P (c) + 4− 4Q(c)] = 2[P (c̃)− P (c)] + 4Q(c) ≤ −4Q(c) ≤ −4 < 0, (2.9)and so c is not a minimizer of T (c).(ii) We saw in the proof of (i) that if c is a minimizer of T (c), then c is monotone, and hen
e does not
ontain holes and minimizes P (c). The 
laim therefore follows from Alonso and Cerf [1℄, Corollary 3.7,whi
h states that if the number of monominoes is ℓ2, ℓ2− 1, ℓ(ℓ− 1) or ℓ(ℓ− 1)− 1 for some ℓ ∈ N\{1},then the standard polyominoes are the only minimizers of P (c). �2.4 Relation between T and the number of missing bonds in 2�tiled 
lustersIn this se
tion we 
onsider 2�tiled 
lusters and link the number of parti
les of type 1 and type 2 to thenumber of a
tive bonds and the geometri
 quantity T 
onsidered in Se
tion 2.3.Lemma 2.3 For any 2�tiled 
luster c (i.e., c ∈ V4n2

⋆,n2
for some n2), 4n1(c) = B(c)+T (c) and 4n2(c) =

B(c).Proof. The 
laim of the lemma is equivalent to the a�rmation that T (c) = M(c) with M(c) thenumber of missing bonds in c. Indeed, informally, for every unit perimeter two bonds are lost withrespe
t to the four bonds that would be in
ident to ea
h parti
le of type 1 if it were saturated, whileone bond is lost at ea
h 
onvex 
orner and one bond is gained at ea
h 
on
ave 
orner.Formally, let p be a parti
le of type 1, B(p) the number of bonds in
ident to p, andM(p) = 4−B(p)the number of missing bonds of p. Consider the set of parti
les of type 1 at the boundary of a 2�tiled
luster, i.e., the set of non-saturated parti
les of type 1. Ea
h of these parti
les belongs to one of four
lasses (see Fig. 9):
lass 1: p has two neighboring parti
les of type 2 belonging to the same 12�bar.
lass 2: p has two neighboring parti
les of type 2 belonging to di�erent 12�bars.
lass 3: p has three neighboring parti
les of type 2.
lass 4: p has one neighboring parti
le of type 2.
(a) (b) (
) (d)Figure 9: The 
ir
led boundary parti
le of type 1 belongs to: (a) 
lass 1; (b) 
lass 2; (
) 
lass 3; (d)
lass 4.LetMk(c) be the number of missing bonds of parti
les of 
lass k in 
luster c, and Ak(c) the numberof edges in
ident to parti
les of 
lass k in 
luster c. Then

M1(c) = 2, A1(c) = 2; M2(c) = 2, A2(c) = 4; M3(c) = 1, A3(c) = 2; M4(c) = 3, A4(c) = 2.(2.10)Let Nk(c) be the number of parti
les of 
lass k of type 1 in 
luster c. Observing that a 
luster hastwo 
on
ave 
orners per parti
le of 
lass 2, one 
on
ave 
orner per parti
le of 
lass 3 and one 
onvex
orner per parti
le of 
lass 4, we 
an write
T (c) = 2P (c)− 2N2(c)−N3(c) +N4(c). (2.11)11



Sin
e the dual perimeter of a 
luster is equal to its total number of dual edges, we have
2P (c) =

4
∑

k=1

Ak(c)Nk(c) = 2N1(c) + 4N2(c) + 2N3(c) + 2N4(c) (2.12)(the sum 
ounts ea
h edge of the 2�tile twi
e). The total number of missing bonds, on the other hand,is
M(c) =

4
∑

k=1

Mk(c)Nk(c) = 2N1(c) + 2N2(c) +N3(c) + 3N4(c). (2.13)Combining (2.11�2.13), we arrive at T (c) =M(c). �3 Proof of Theorem 1.3: identi�
ation of XstabRe
all that Λ− (the part of Λ where parti
les intera
t) is an (L + 1
2 ) × (L + 1

2 ) dual square with
L > 2ℓ⋆. Let ηstab, η′stab be the 
on�gurations 
onsisting of a 2�tiled dual square of size L with evenparity, respe
tively, odd parity. These two 
on�gurations have the same energy. Theorem 1.3 says that
Xstab = {ηstab, η′stab} = ⊞. Se
tion 3.1 
ontains two lemmas about 2�tiled 
on�gurations with minimalenergy. Se
tion 3.2 uses these two lemmas to prove Theorem 1.3.3.1 Standard 
on�gurations are minimizers among 2�tiled 
on�gurationsLemma 3.1 Within V4n2

⋆,n2
, the standard 
on�gurations a
hieve the minimal energy.Proof. Re
all from item 2 in Se
tion 2.2 that

H(η) = ∆1n1(η) + ∆2n2(η)− UB(η). (3.1)In V4n2
⋆,n2

both n2 and B = 4n2 are �xed, and hen
e min
η∈V

4n2
⋆,n2

H(η) is attained at a 
on�gurationminimizing n1. By Lemma 2.3, if η ∈ V4n2
⋆,n2

, then
n1(η) =

1
4 [B(η) + T (η)], n2(η) =

1
4B(η). (3.2)Hen
e, to minimize n1(η) we must minimize T (η). The 
laim therefore follows from Lemma 2.2(i). �For a standard 
on�guration the 
omputation of the energy is straightforward. For ℓ ∈ N, ζ ∈ {0, 1}and k ∈ N0 with k ≤ ℓ + ζ, let ηℓ,ζ,k denote the standard 
on�guration 
onsisting of an ℓ × (ℓ + ζ)(quasi-)square with a bar of length k atta
hed to one of its longest sides (see Fig. 10).

Figure 10: A standard 
on�guration with ℓ = 7, ζ = 1 and k = 5.Lemma 3.2 The energy of ηℓ,ζ,k is (re
all (1.14))
H(ηℓ,ζ,k) = −ε[ℓ(ℓ+ ζ) + k] + ∆1[ℓ+ (ℓ+ ζ) + 1 + 1{k>0}]. (3.3)12



Proof. Note that P (ηℓ,ζ,k) = 2[ℓ+ (ℓ+ ζ) + 1{k>0}] and Q(ηℓ,ζ,k) = 0, so that
T (ηℓ,ζ,k) = 4[ℓ+ (ℓ+ ζ) + 1 + 1{k>0}]. (3.4)Also note that

B(ηℓ,ζ,k) = 4[ℓ+ (ℓ + ζ) + k], (3.5)be
ause all parti
les of type 2 are saturated. However, by (3.1�3.2), we have
H(ηℓ,ζ,k) = − 1

4εB(ηℓ,ζ,k) + 1
4T (ηℓ,ζ,k)∆1, (3.6)and so the 
laim follows by 
ombining (3.4�3.6). �Note that the energy in
reases by ∆1 − ε (whi
h is > 0 if and only if ℓ⋆ ≥ 2 by (1.13)) when a barof length k = 1 is added, and de
reases by ε ea
h time the bar is extended. Note further that

H(ηℓ,1,0)−H(ηℓ,0,0) = ∆1 − ℓε, H(ηℓ+1,0,0)−H(ηℓ,1,0) = ∆1 − (ℓ + 1)ε, (3.7)whi
h show that the energy of a growing sequen
e of standard 
on�gurations goes up when ℓ < ℓ⋆ andgoes down when ℓ ≥ ℓ⋆. The highest energy is attained at ηℓ⋆−1,1,1, whi
h is the 
riti
al droplet inFig. 4.It is worth noting that H(η2ℓ
⋆,0,0

s ) < 0, i.e., the energy of a dual square of side length 2ℓ⋆ is lowerthan the energy of �. This is why we assumed L > 2ℓ⋆, to allow for H(⊞) < H(�).3.2 Stable 
on�gurationsIn this se
tion we use Lemmas 3.1�3.2 to prove Theorem 1.3.Proof. Let η denote any 
on�guration in Xstab. Below we will show that:(A) η does not 
ontain any parti
le in ∂−Λ.(B) η is a 2�tiled 
on�guration, i.e., η ∈ V4n2
⋆,n2

for some n2 (= n2(η)).On
e we have (A) and (B), we observe that η 
annot 
ontain a number of 2�tiles larger than L2.Indeed, 
onsider the tile support of η. Sin
e Λ− is an (L+ 1
2 )× (L+ 1

2 ) dual square, if the tile supportof η �ts inside Λ−, then so does the dual 
ir
ums
ribing re
tangle of η. But any re
tangle of area ≥ L2has at least one side of length L + 1. Hen
e n2(η) ≤ L2, and therefore the number of 2�tiles in η isat most L2. By Lemmas 3.1�3.2, the global minimum of the energy is attained at the largest dualquasi-square that �ts inside Λ−, sin
e L > 2ℓ⋆. We therefore 
on
lude that η ∈ {ηstab, η′stab}, whi
hproves the 
laim.Proof of (A). Sin
e in ∂−Λ parti
les do not feel any intera
tion but have a positive energy 
ost, removalof a parti
le from ∂−Λ always lowers the energy.Proof of (B). We note the following three fa
ts:(1) η does not 
ontain isolated parti
les of type 1.(2) ∂−Λ− does not 
ontain any parti
le of type 2.(3) All parti
les of type 2 in η have all their neighboring sites o

upied by a parti
le.For (1), simply note that the 
on�guration obtained from η by removing isolated parti
les has lowerenergy. For (2), note that parti
les in ∂−Λ− have at most two a
tive bonds. Therefore, if η wouldhave a parti
le of type 2 in ∂−Λ−, then the removal of that parti
le would lower the energy, be
ause
∆2 −∆1 > 2U and ∆1 > 0 (re
all (1.12)) imply ∆2 > 2U . For (3), note that if a parti
le of type 213



has an empty neighboring site, then the addition of a parti
le of type 1 at this site lowers the energy,be
ause ∆1 < U (re
all (1.12)).We 
an now 
omplete the proof of (B) as follows. The 
onstraint ∆2 − ∆1 > 2U implies thatany parti
le of type 2 in η must have at least three neighboring sites o

upied by a parti
le of type
1. Indeed, the removal of a parti
le of type 2 with at most two a
tive bonds lowers the energy.But the fourth neighboring site must also be o

upied by a parti
le of type 1. Indeed, suppose thatthis site would be o

upied by a parti
le of type 2. Then this parti
le would have at most threea
tive bonds. Consider the 
on�guration η̃ obtained from η after repla
ing this parti
le by a parti
leof type 1. Then B(η̃) − B(η) ≥ −2, n1(η̃) − n1(η) = 1 and n2(η̃) − n2(η) = −1. Consequently,
H(η̃)−H(η) ≤ ∆1 −∆2 + 2U < 0. Hen
e, any parti
le of type 2 in η must be saturated. �4 Proof of Theorem 1.5: identi�
ation of Γ⋆ = Φ(�,⊞)In Se
tion 4.1 we prove Theorem 1.5 subje
t to the following lemma.Lemma 4.1 For any n2 ≤ L2, the 
on�gurations of minimal energy with n2 parti
les of type 2 belongto V4n2

⋆,n2
, i.e., are 2�tiled 
on�gurations.The proof of this lemma is given in Se
tion 4.2.4.1 Proof of Theorem 1.5 subje
t to Lemma 4.1Proof. For Y ⊂ X , de�ne the external boundary of Y by ∂Y = {η ∈ X\Y : ∃η′ ∈ Y, η ↔ η′} andthe bottom of Y by F(Y) = argminη∈Y H(η). A

ording to Manzo, Nardi, Olivieri and S
oppola [5℄,Se
tion 4.2, Φ(�,⊞) = minη∈∂BH(η) for B ⊂ X any (!) set with the following properties:(I) B is 
onne
ted via allowed moves, � ∈ B and ⊞ /∈ B.(II) There is a path ω⋆ : � → ⊞ su
h that {argmaxη∈ω⋆ H(η)} ∩ F(∂B) 6= ∅.Thus, our task is to �nd su
h a B and 
ompute the lowest energy of ∂B.For (I), 
hoose B to be the set of all 
on�gurations η su
h that n2(η) ≤ ℓ⋆(ℓ⋆ − 1) + 1. Clearly thisset is 
onne
ted, 
ontains � and does not 
ontain ⊞.For (II), 
hoose ω⋆ as follows. A parti
le of type 2 is brought inside Λ (∆H = ∆2), moved to theorigin and is saturated by four times bringing a parti
le of type 1 (∆H = ∆1) and atta
hing it to theparti
le of type 2 (∆H = −U). After this �rst 2�tile has been 
ompleted, ω⋆ follows a sequen
e ofin
reasing 2�tiled dual quasi-squares. The passage from one quasi�square to the next is obtained byadding a 12�bar to one of the longest sides, as follows. First a parti
le of type 2 is brought inside Λ(∆H = ∆2) and is atta
hed to one of the longest sides of the quasi-square (∆H = −2U). Next, twi
ea parti
le of type 1 is brought inside the box (∆H = ∆1) and is atta
hed to the (not yet saturated)parti
le of type 2 (∆H = −U) in order to 
omplete a 2�tiled protuberan
e. Finally, the 12�baris 
ompleted by bringing a parti
le of type 2 inside Λ (∆H = ∆2), moving it to a 
on
ave 
orner(∆H = −3U), and saturating it with a parti
le of type 1 (∆H = ∆1, respe
tively, ∆H = −U). It isobvious that ω⋆ eventually hits ⊞. The path ω⋆ is referred to as the referen
e path for the nu
leation.Call η⋆ the 
on�guration in ω⋆ 
onsisting of an ℓ⋆ × (ℓ⋆ − 1) quasi-square, a 2�tiled protuberan
eatta
hed to one of its longest sides, and a free parti
le of type 2 (see Fig. 11; there are many 
hoi
esfor ω⋆ depending on where the 2�tiled protuberan
es are added; all these 
hoi
es are equivalent. Notethat, in the notation of Lemma 3.2, η⋆ = ηℓ

⋆−1,1,1 + fp[2], where +fp[2] denotes the addition of a freeparti
le of type 2. Observe that:(a) ω⋆ exits B via the 
on�guration η⋆;(b) η⋆ ∈ F(∂B); 14



(
) η⋆ ∈ {argmaxη∈ω⋆ H(η)}.Observation (a) is obvious, while (b) follows from Lemmas 3.1 and 4.1. To see (
), note the following:(1) The total energy di�eren
e obtained by adding a 12�bar of length ℓ on the side of a 2�tiled 
lusteris ∆H(adding a 12�bar) = ∆1 − εℓ, whi
h 
hanges sign at ℓ = ℓ⋆ (re
all (3.7)); (2) The 
on�gurationsof maximal energy in a sequen
e of growing quasi-squares are those where a free parti
le of type
2 enters the box after the 2�tiled protuberan
e has been 
ompleted. Thus, within energy barrier
2∆1 + 2∆2 − 4U = 4U − ε the 12�bar is 
ompleted downwards in energy. This means that, after
on�guration η⋆ is hit, the dynami
s 
an rea
h the 2�tiled dual square of ℓ⋆ × ℓ⋆ while staying belowthe energy level H(η⋆). Sin
e all 2�tiled dual quasi-squares larger than ℓ⋆ × (ℓ⋆ − 1) have an energysmaller than that of the 2�tiled dual quasi-square ℓ⋆ × (ℓ⋆ − 1) itself, the path ω⋆ does not again rea
hthe energy level H(η⋆).Be
ause of (a�
), we have Φ(�,⊞) = H(η⋆). To 
omplete the proof, use Lemma 3.2 to 
ompute

H(η⋆) = H(ηℓ
⋆−1,1,1 + fp[2]) = −ε[ℓ⋆(ℓ⋆ − 1) + 1] + ∆1(2ℓ

⋆ + 1) + ∆2. (4.1)
�

Figure 11: A 
riti
al 
on�guration η⋆. This is the dual version of the 
riti
al droplet in Fig. 4.4.2 Proof of Lemma 4.1The proof of Lemma 4.1 is 
arried out in two steps. In Se
tion 4.2.1 we show that the 
laim holds forsingle-
luster 
on�gurations with a �xed number of parti
les of type 2. In Se
tion 4.2.2 we extend the
laim to general 
on�gurations with a �xed number of parti
les of type 2.4.2.1 Single 
lusters of minimal energy are 2�tiled 
lustersLemma 4.2 For any single-
luster 
on�guration η ∈ V⋆,n2
\V4n2

⋆,n2
there exists a 
on�guration η̃ ∈ V4n2

⋆,n2su
h that H(η̃) < H(η).Proof. Pi
k any η ∈ V⋆,n2
\V4n2

⋆,n2
. Every neighboring site of a parti
le of type 2 in the 
luster is eitherempty or o

upied by a parti
le of type 1, and there is at least one non-saturated parti
le of type 2.Sin
e η 
onsists of a single 
luster, η̃ 
an be 
onstru
ted in the following way:

• η̃(i) = η(i) for all i ∈ supp(η).
• η̃(j) = 1 for all j /∈ supp(η) su
h that there exists an i ∼ j with η(i) = 2.15



Sin
e
H(η) = ∆1n1(η) + ∆2n2(η)− UB(η),

H(η̃) = ∆1n1(η̃) + ∆2n2(η̃)− UB(η̃),
(4.2)and n2(η) = n2(η̃), we have

H(η̃)−H(η) = ∆1[n1(η̃)− n1(η)]− U [B(η̃)−B(η)]. (4.3)By 
onstru
tion, B(η̃)− B(η) ≥ n1(η̃) − n1(η) > 0. Sin
e 0 < ∆1 < U (re
all (1.12)), it follows from(4.3) that H(η̃) < H(η). �4.2.2 Con�gurations of minimal energy with �xed number of parti
les of type 2Lemma 4.3 For any n2 and any 
on�guration η ∈ V⋆,n2

onsisting of at least two 
lusters, any
on�guration η⋆ su
h that η⋆ is a single 
luster, η⋆ ∈ V4n2

⋆,n2
and η⋆ is a standard 
on�guration satis�es

H(η⋆) < H(η).Proof. Let η ∈ V⋆,n2
be a 
on�guration 
onsisting of k > 1 
lusters, labeled c1, . . . , ck. Let ηn2(ci)denote any standard 
on�guration with n2(ci) parti
les of type 2. By Lemmas 3.1 and 4.2, we have

H(η) =
k

∑

i=1

H(ci) ≥
k

∑

i=1

H(ηn2(ci)). (4.4)By Lemma 2.3, we have (re
all (1.14))
k

∑

i=1

H(ηn2(ci)) =

k
∑

i=1

[

∆1n1(η
n2(ci)) + ∆2n2(η

n2(ci))− UB(ηn2(ci))
]

=

k
∑

i=1

[

∆1

{

n2(η
n2(ci)) + 1

4T (ηn2(ci))
}

+∆2n2(η
n2(ci))− U4n2(η

n2(ci))
]

=

k
∑

i=1

[

− εn2(η
n2(ci)) + 1

4∆1T (ηn2(ci))
]

.

(4.5)
But from Lemma 2.2 it follows that

k
∑

i=1

T (ηn2(ci)) > T
(

η
∑

k
i=1

n2(ci)
)

, (4.6)where η∑k
i=1

n2(ci) denotes any standard 
on�guration with ∑k
i=1 n2(ci) = n2(η) parti
les of type 2.Combining (4.4�4.6), we arrive at

H(η) > −εn2(η) +
1
4∆1T (ηn2(η)) = H(ηn2(η)). (4.7)

�5 Proof of Theorem 1.4: upper bound on Vη for η /∈ {�,⊞}In this se
tion we show that for any 
on�guration η /∈ {�,⊞} it is possible to �nd a path ω : η → η′with η′ ∈ {�,⊞} su
h that maxξ∈ωH(ξ) ≤ H(η) + V ⋆ with V ⋆ ≤ 10U − ∆1 and η′ ∈ Iη. ByDe�nition 1.1(
�e), this implies that Vη ≤ V ⋆ for all η /∈ {�,⊞} and therefore settles Theorem 1.4.Se
tion 5.3 des
ribes an energy redu
tion algorithm to �nd ω. Roughly, the idea is that if η 
ontainsonly �sub
riti
al 
lusters�, then these 
lusters 
an be removed one by one to rea
h �, while if η 
ontains16



some �super
riti
al 
luster�, then this 
luster 
an be taken as a stepping stone to 
onstru
t a path to
⊞ that goes via a sequen
e of in
reasing re
tangles. In parti
ular, the super
riti
al 
luster is �rstextended to a 2�tiled re
tangle tou
hing the north-boundary of Λ, after that it is extended to a 2�tiledre
tangle tou
hing the west-boundary and the east-boundary of Λ, and �nally it is extended to ⊞.To 
arry out this task, six energy redu
tion me
hanisms are needed, whi
h are introdu
ed andexplained in Se
tion 5.2:

• Moving unit holes inside 2�tiled 
lusters (Se
tion 5.2.1).
• Adding and removing 12�bars from latti
e-
onne
ting re
tangles (Se
tion 5.2.2).
• Changing bridges into 12�bars (Se
tion 5.2.3).
• Maximally expanding 2�tiled re
tangles (Se
tion 5.2.4).
• Merging adja
ent 2�tiled re
tangles (Se
tion 5.2.5).
• Removing sub
riti
al 
lusters (Se
tion 5.2.6).Ea
h of Se
tions 5.2.1�5.2.6 states a de�nition and a lemma, and uses these to prove a propositionabout the relevant energy redu
tion me
hanism. The six propositions thus obtained will be 
ru
ial forthe energy redu
tion algorithm in Se
tion 5.3.In Se
tion 5.1 we begin by de�ning beams and pillars, whi
h are needed throughout Se
tion 5.2.5.1 Beams and pillarsLemma 5.1 Let η be a 
on�guration 
ontaining a tile t that has at least three jun
tion sites o

upiedby a parti
le of type 1. Then the 
on�guration η′ obtained from η by turning t into a 2�tile satis�es

H(η′) ≤ H(η).
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)Figure 12: Possible tiles with at least three jun
tion sites o

upied by a parti
le of type 1.Proof. W.l.o.g. we may assume that η(ta) = η(tb) = η(td) = 1, and that η′ is the 
on�guration inFig. 6(d), i.e., η′(ta) = η′(tb) = η′(tc) = η′(td) = 1, η′(te) = 2. The following eight 
ases are possible(see Fig. 12 and re
all (1.12)):(i) (η(tc), η(te)) = (0, 0). One parti
le of type 1 and one parti
le of type 2 are added, and at leastfour new bonds are a
tivated: ∆H ≤ ∆1 +∆2 − 4U < 0.(ii) (η(tc), η(te)) = (0, 2). One parti
le of type 1 is added, and one new bond is a
tivated: ∆H =

∆1 − U < 0.(iii) (η(tc), η(te)) = (2, 0). One parti
le of type 2 is moved to another site without dea
tivating anybonds, after whi
h 
ase (ii) applies.(iv) (η(tc), η(te)) = (2, 2). One parti
le of type 2 with at most three a
tive bonds is repla
ed by oneparti
le of type 1 with at least one a
tive bond: ∆H ≤ ∆1 −∆2 + 2U < 0.(v) (η(tc), η(te)) = (1, 0). One parti
le of type 2 is added, and four new bonds are a
tivated: ∆H =
∆2 − 4U < 0. 17



(vi) (η(tc), η(te)) = (0, 1). One parti
le of type 1 is moved to another site without dea
tivatingany a
tive bond, one parti
le of type 2 is added, and at least four new bonds are a
tivated:
∆H ≤ ∆2 − 4U < 0.(vii) (η(tc), η(te)) = (2, 1). Two parti
les are ex
hanged without dea
tivating any bonds: ∆H ≤ 0.(viii) (η(tc), η(te)) = (1, 1). One parti
le of type 1 is repla
ed by a parti
le of type 2, and four newbonds are a
tivated: ∆H = ∆2 −∆1 − 4U < 0.

�De�nition 5.2 A beam of length ℓ is a row (or 
olumn) of ℓ + 1 parti
les of type 1 at dual distan
e
1 of ea
h other. A pillar is a parti
le of type 1 at dual distan
e 1 of the beam not lo
ated at one ofthe two ends of the beam. The parti
le in the beam sitting next to the pillar divides the beam into twose
tions. The lengths of these two se
tions are ≥ 0 and sum up to ℓ. The support of a pillared beam isthe union of all the tile supports. The support 
onsists of three rows (or 
olumns) of sites � an upper,middle and lower row (or 
olumn) � whi
h are referred to as roof, 
enter and basement (see Fig. 13).
Figure 13: A south-pillared horizontal beam of length 10 with a west-se
tion of length 4 and aneast-se
tion of length 6.Note that a beam 
an have more than one pillar. Lemma 5.1 implies the following.Corollary 5.3 Let η be a 
on�guration 
ontaining a pillared beam b̃ su
h that supp(b̃) is not 2�tiled.Then the 
on�guration η′ obtained from η by 2�tiling supp(b̃) satis�es H(η′) ≤ H(η).5.2 Six energy redu
tion me
hanisms5.2.1 Moving unit holes inside 2�tiled 
lustersIn this se
tion we show how a unit hole 
an move inside a 2�tiled 
luster. In parti
ular, we show thatsu
h motion is possible within an energy barrier 6U by 
hanging the 
on�guration only lo
ally.De�nition 5.4 A set of sites S inside Λ obtained from a 4× 4 square after removing the four 
ornersites is 
alled a slot.Given a slot S, we assign a label to ea
h of the 12 sites in S as in Fig. 14 (a): �rst 
lo
kwise in the 
enterof S and then 
lo
kwise on the boundary of S. We 
all the pairs (S1, S3) and (S2, S4) slot-
onjugatesites.Lemma 5.5 Let S be a slot, and let η0 be any 
on�guration su
h that all parti
les in S have the sameparity. W.l.o.g. this parity may be taken to be even, so that η(S1) = 0 and η(S3) = 2. Let η1 be the
on�guration obtained from η by inter
hanging the states of S1 and S3. Then H(η0) = H(η1), andthere exists a path ω : η0 → η1 that never ex
eeds the energy level H(η0) + 6U .Proof. W.l.o.g. we take η0 as in Fig. 14(b�
). Let a → b denote the motion of a parti
le from site ato site b. For the path ω we 
hoose the following sequen
e of moves: S4 → S1; S3 → S4; S2 → S3;
S1 → S2; S4 → S1; S3 → S4. The �rst three moves and the se
ond three moves ea
h are a rotation by
π
2 of the sub
on�guration at the sites S1, S2, S3, S4. Note that all 
on�gurations in ω have the samenumber of parti
les of ea
h type and hen
e the 
hanges in energy only depend on the 
hange in the18



(a) (b) (
) (d) (e)Figure 14: (a) labelling of the sites in the slot (standard representation); (b) example of η0 in theslot (standard representation); (
) example of η0 in the slot (dual representation). (d) η1 in the slot(standard representation); (e) of η1 in the slot (dual representation).number of a
tive bonds. Let MRF be the loss of the number of a
tive bonds between the rotatingparti
les and the �xed parti
les, and MR the loss of the number of a
tive bonds between the rotatingparti
les. We must show that MRF +MR ≤ 6 during the six moves. To that end, we �rst observe that
MRF ≤ 6, sin
e the total number of a
tive bonds between the rotating parti
les and the �xed parti
lesis at most 6 (see Fig. 14(b)), and that MRF = 6 only after the �rst three moves are 
ompleted, i.e.,when the 
on�guration is su
h that all the rotating parti
les have a di�erent parity with respe
t to theparity they had in 
on�guration η0 (re
all that parti
les with di�erent parity 
annot share a bond).Next we observe that, by the 
hoi
e of ω, the value of MR 
an only be 0 or 1, and that MR = 0 afterthe �rst three moves are 
ompleted. �Lemma 5.5 implies the following.Proposition 5.6 Let η be a 2�tiled 
on�guration with a unit hole. Then the 
on�guration η′ obtainedfrom η by moving the unit hole elsewhere satis�es H(η′) = H(η) and Φ(η, η′) ≤ H(η) + 6U .A possible 6U -path for a unit hole inside a 2�tiled 
luster is given in Fig. 15. This path is obtainedthrough an iteration of lo
al moves as explained in Fig. 14.

Figure 15: Motion of a unit hole inside a 2�tiled 
luster.5.2.2 Adding and removing 12�bars from latti
e-
onne
ting re
tanglesLemma 5.7 Let η be a 
on�guration 
onsisting of a single 2�tiled latti
e-
onne
ting re
tangle. Thenthe 
on�guration η′ obtained from η by, respe
tively,1. adding a 12�bar of length ℓ ≥ ℓ⋆,2. adding a 12�bar of length ℓ < ℓ⋆,3. removing a 12�bar of length ℓ ≥ ℓ⋆,4. removing a 12�bar of length ℓ < ℓ⋆,satis�es, respe
tively, 19



1. H(η′) < H(η) and Φ(η, η′) ≤ H(η) + 2∆1 + 2∆2 − 4U ,2. H(η′) > H(η) and Φ(η, η′) ≤ H(η) + 2∆1 + 2∆2 − 4U ,3. H(η′) > H(η) and Φ(η, η′) ≤ H(η) + (ℓ− 2)ε+ 4U −∆1,4. H(η′) < H(η) and Φ(η, η′) ≤ H(η) + (ℓ− 2)ε+ 4U −∆1.Proof. Re
all the 
omputations in Se
tions 3.1 and 4.1.Adding a 12�bar. Adding a 12�bar of length ℓ on a latti
e-
onne
ting side of a 2�tiled re
tangle(i.e., a side su
h that all the parti
les of type 1 on that side are latti
e-
onne
ting) 
an be done in twosteps: (i) initiate the 12�bar by adding a 2�tiled protuberan
e (see Fig. 16); (ii) 
omplete the 12�barby adding a 2�tile (in a �
orner�) ℓ− 1 times (see Fig. 17). This 
an be a
hieved within energy barrier
∆H = 2∆1+2∆2 − 4U by following the same moves as the referen
e path ω⋆ des
ribed in Se
tion 4.1.The energy di�eren
e due to the extra 12�bar of length ℓ is ∆H(ℓ) = ∆1 − ℓε, whi
h 
hanges sign at
ℓ = ℓ⋆.

Figure 16: A 2�tiled protuberan
e is added to a side of a dual re
tangle within energy barrier ∆2.

Figure 17: A 2�tile is added in a 
orner between 2�tiles within a energy barrier ∆2.Removing a 12�bar. Removing a 12�bar of length ℓ from a latti
e-
onne
ting re
tangle 
an bedone by following the reverse of the path used to add a 12�bar: (i) remove ℓ − 1 times a 2�tilefrom a bar; (ii) remove the last 2�tiled protuberan
e. This 
an be a
hieved within energy barrier20



∆H(ℓ) = (ℓ − 2)ε+ 4U −∆1. If the 
luster 
onsists of one 12�bar only, then the path just des
ribedleaves ℓ+1 free parti
les of type 1 inside Λ, whi
h 
an be removed (free of energy 
ost) afterwards. �We use Lemma 5.7 to build a northern re
tangle on top of a 12�bar as follows.De�nition 5.8 Let b denote the verti
al 
oordinate of the sites lying on the north-side of ∂−Λ−. Fora given 2�tiled re
tangle r in Λ−, let br denote the verti
al 
oordinate of the northern-most parti
les oftype 1in r. Then r is said to be tou
hing the north-side of ∂−Λ− if br = b or br = b− 1
2 .In words, a 2�tiled re
tangle is said to be tou
hing the north-side of ∂−Λ− if it is not possible to adda 12�bar on the north-side within Λ−. Re
tangles tou
hing the south-, east- or west-side of Λ− arede�ned similarly.Let b̄ be a horizontal 12�bar of length ℓ, i.e., a 2�tiled ℓ×1 re
tangle. Suppose that all sites above b̄are va
ant. Then it is possible to su

essively add horizontal 12�bars, say m in total, on top of b̄ untilthe north side of the re
tangle grown in this way tou
hes the north-side of Λ−. The 2�tiled re
tanglewith m+1 rows and ℓ 
olumns su
h that b̄ is its lower-most horizontal 12�bar is denoted by ⊓

(

b̄
) andis 
alled the northern re
tangle of b̄.Lemma 5.7 implies the following.Proposition 5.9 Let η be a 
on�guration 
ontaining a horizontal 12�bar b̄ of length ℓ ≥ ℓ⋆. Then the
on�guration η′ obtained from η by building ⊓

(

b̄
) satis�es H(η′) < H(η) and Φ(η, η′) ≤ H(η) + 2∆1+

2∆2 − 4U .5.2.3 Changing bridges into 12�barsDe�nition 5.10 A (south-)bridge b 
onsists of a beam b̃ and two (south-)pillars at the outer-mostsites of the (south-)basement of b̃. The (south-)support of b 
oin
ides with the (south-)support of b̃. Ifea
h of the 
entral sites of the tiles of the (south-)support of the bridge is o

upied by a parti
le of type
2, then the bridge is said to be stable (see Fig. 18).Clearly, a 12�bar is a stable bridge. North-, east- and west-bridges are de�ned in a similar way.

Figure 18: A stable bridge of length 6.Given a bridge b, let b̄ denote the 12�bar obtained by 2�tiling b. Lemma 5.1 implies the following.Lemma 5.11 Let η be a 
on�guration 
ontaining a bridge b whose support is not 2�tiled. Then the
on�guration η′ obtained from η by 
hanging b to b̄ satis�es H(η′) < H(η).Lemma 5.11 leads us to the following.Proposition 5.12 Let η be a 
on�guration 
ontaining a (south-)bridge b whose (south-)support is not
2�tiled su
h that the parti
les of its beam are latti
e-
onne
ting. Then the 
on�guration η′ obtainedfrom η by 2�tiling supp(b) satis�es H(η′) < H(η) and Φ(η, η′) ≤ H(η) + 4U +∆1.Proof. Let the (south-)bridge b have length ℓ. Label the ℓ + 1 sites of its (south-)basement as
s0, s1, . . . , sℓ, from the left to the right. In order to show that supp(b) 
an be 2�tiled within energybarrier 4U +∆1, it is enough to show that within the same energy barrier a parti
le of type 1 
an bebrought to a site of the basement of b (from the left) that is empty or is o

upied by a parti
le of type21



2. W.l.o.g. s1 may be assumed to be su
h a site. The 
on�guration thus obtained has an energy thatis at most the energy of the original 
on�guration (see Lemma 5.1). The 
laim follows by noting thatthe parti
les of type 1 at the extremal sites s1 and sℓ are the two pillars of a (south-)bridge of length
ℓ− 1 whose basement 
onsists of the sites s1, s2, . . . , sℓ.It remains to show how a parti
le of type 1 
an be brought to site s1. Label the site north-west of
s1 by v1 , and the site north-east of v1 by as v2. Two 
ases need to be distinguished:(1) If η(s1) = 0, then, by the same argument as in the proof of Lemma 5.5, it is easy to show that theparti
le of type 1 at v2 
an be moved to s1 (to obtain a 
on�guration η̄ with H(η̄) ≤ H(η)) withoutex
eeding energy level H(η) + 4U . The 
on�guration η′ is rea
hed within an energy barrier ∆1 bybringing a parti
le of type 1 inside Λ and moving it to v2.(2) If η(s1) = 2, then 
onsider the following path. First deta
h (∆H = 2U) and remove (∆H = −∆1)the parti
le of type 1 at v2, and afterwards deta
h (∆H = 2U) and remove (∆H = −∆2) the parti
leof type 2 at v3. Next, move the parti
le of type 2 at site s1 to site v1 (∆H ≤ 0; this parti
le has atmost 2 a
tive bonds when it sits at s1), and �nally bring a parti
le of type 1 (∆H = ∆1) to site v2(∆H = −2U). Call this 
on�guration η̄. Note that H(η̄) < H(η), sin
e e�e
tively a parti
le of type
2 with at most two a
tive bonds has been removed, and Φ(η, η′) = H(η) + 4U +∆1. Finally, observethat η′ is the same 
on�guration as η in Case (1). �5.2.4 Maximally expanding 2�tiled re
tanglesThe me
hanism presented in this se
tion, whi
h is 
alled north maximal expansion of a 2�tiled re
tangle,is su
h that it 
an be applied to a 2�tiled re
tangle whose north-side is latti
e-
onne
ting (even thoughthis 
ondition is not restri
tive). South, east and west maximal expansion of a 2�tiled 
luster areanalogous.De�nition 5.13 The north maximal expansion 
omes in two phases: a growing phase and a smoothingphase.(i) The growing phase 
onsists of the following three steps repeated 
y
li
ally:1. If the parti
les of type 1 on the south-side of the re
tangle, either at the beginning or obtainedafter step 3, 
onstitute a south-pillared beam b̃s, then 
hange supp(b̃s) into a 12�bar.2. If the parti
les of type 1 on the east-side of the re
tangle, obtained after step 1, 
onstitute aneast-pillared beam b̃e, then 
hange supp(b̃e) into a 12�bar.3. If the parti
les of type 1 on the west -side of the re
tangle, obtained after step 2, 
onstitute awest-pillared beam b̃w, then 
hange supp(b̃w) into a 12�bar.The growing phase ends after three 
onse
utive steps leave the 
on�guration un
hanged.(ii) The smoothing phase 
onsists of removing all the parti
les of type 2 that are adja
ent to the oneson the sides of the re
tangle that is built during the growing phase. Note that these parti
les have atmost two a
tive bonds (otherwise it would be possible to identify another pillared beam), and thereforeremoval of these parti
les lowers the energy.The out
ome of the north maximal expansion (see Fig. 19) of a 2�tiled re
tangle is again a 2�tiledre
tangle, 
ontaining the old re
tangle and su
h that the northern-most 12�bar of the new re
tanglehas the same verti
al 
oordinate.Given a 2�tiled re
tangle r, let R ⊣ (r) denote the north maximal expansion of r. Corollary 5.3implies the following.Lemma 5.14 Let η be a 
on�guration 
ontaining a 2�tiled re
tangle. Then the 
on�guration η′ ob-tained from η via (north) maximal expansion of this 2�tiled re
tangle satis�es then H(η′) ≤ H(η).22



(a) (b) (
)
(d) (e) (f)Figure 19: Example of north maximal expansion of a 2�tiled re
tangle. The out
ome of the stepsof the growing phase are represented in pi
tures (b�e), while the out
ome of the smoothing phase isrepresented in pi
ture (f).Lemma 5.14 leads us to the following.Proposition 5.15 Let η be a 
on�guration 
ontaining a 2�tiled re
tangle r whose north-side is latti
e-
onne
ting. Then the 
on�guration η′ obtained from η after repla
ing r by R ⊣ (r) satis�es H(η′) ≤ H(η)and Φ(η, η′) ≤ H(η) + 10U −∆1.Proof. If R ⊣ (r) = r, then there is nothing to prove. Therefore suppose that r is su
h that one its sidesis a pillared beam. W.l.o.g. we may assume that the south-side of r is a beam b̃ with a south-pillar. Wemust show that the south-support of b̃ 
an be turned into a 12�bar within energy barrier 10U −∆1.Sin
e supp(b̃) is not a 12�bar, a pillar 
an be 
hosen in su
h a way that at least one of the 2�tilesof the support the pillar belongs to (i.e., the �rst tile of ea
h se
tion of the support, 
ounting from thepillar) is not a 2�tile. W.l.o.g. we let this tile be the �rst tile of the right-se
tion and 
all it t. Let vdenote the tile adja
ent to the right site of v. In the following, the term super�
ial refers to tiles thatare in the top tile-bar of the re
tangle. In analogy with the proof of Lemma 5.1, several 
ases need tobe 
onsidered (we sti
k to the order in Fig. 12).(i) (η(tc), η(te)) = (0, 0). A parti
le of type 2 has to be brought to site te and a parti
le of type 1 tosite tc. First bring a parti
le of type 2 to site te, to rea
h a 
on�guration η̂, and then pro
eed asin Case (ii). As we will see in Case (ii), sin
e H(η̂) = H(η) − 3U + ∆2, the se
ond part of thepath 
an be 
ompleted without ex
eeding energy level H(η) + 6U +∆2. To rea
h 
on�guration

η̂, move the parti
le of type 2 of the 2�tile above t to site te to rea
h a 
on�guration 
alled η′.This 
an be done without ex
eeding energy level H(η) + 6U . Note that H(η′) = H(η) + U . Theunit hole that has been 
reated at the 
entral site of the tile above t has to be �lled. This 
an bedone (see Lemma 5.5) by �rst moving the unit hole until it be
omes super�
ial (
on�guration η̃with energy H(η̃) = H(η′)) without ex
eeding energy level H(η′) + 6U , and then �lling this unithole with a parti
le of type 2 within energy level H(η′) +U −∆1 +∆2 = H(η) + 2U −∆1 +∆2.Thus, η′ 
an be rea
hed without ex
eeding energy barrier 6U +∆2.23



(ii) (η(tc), η(te)) = (0, 2). A parti
le of type 1 has to be brought to site tc. Depending on the stateof site ve, there are three 
ases.(a) Site ve is o

upied by a parti
le of type 2. Move the parti
le of type 1 at site tb to site
tc, to rea
h a 
on�guration η′ with energy H(η′) ≤ H(η) + 2U within an energy barrier of
6U . The va
an
y at site tb 
an be moved (again by Lemma 5.5) to the north-side of there
tangle within energy barrier 6U , to rea
h a 
on�guration η̂ with H(η̂) ≤ H(η), and then�lled with an extra parti
le of type 1. Thus, η′ 
an be rea
hed without ex
eeding energylevel H(η) + 8U .(b) Site ve is empty. Move the parti
le of type 1 at site tb to site ve (∆H ≤ 3U), and then tosite td (∆H = 0). Call this 
on�guration η′, and note that H(η′) ≤ H(η) + 2U . Arguingas above, we see that the va
an
y at site tb 
an be �lled without ex
eeding the energy level
H(η) + 9U .(
) Site ve is o

upied by a parti
le of type 1. Observe that the parti
le of type 1 at tb has k ≤ 3a
tive bonds and the parti
le of type 2 at ve has m ≤ 2 a
tive bonds. It is possible to movethe parti
le at site ve to site tc (∆H = (m − k)U), and then the parti
le at site tb to site
vc (∆H = (k −m)U). The 
on�guration η′, rea
hed within energy barrier (k −m)U , hasenergy H(η′) ≤ H(η) + kU . Again, the va
an
y at site tb has to be �lled with a parti
le oftype 1. This 
an be done without ex
eeding the energy level H(η) + (6+ k)U ≤ H(η) + 9U .(iii) (η(tc), η(te)) = (2, 0). The parti
le of type 2 at site tc is moved to site te without in
reasing theenergy. Then argue as in Case (ii).(iv) (η(tc), η(te)) = (2, 2). The parti
le of type 2 at site tc has to be repla
ed by a parti
le of type

1. Remove the parti
le of type 2 at te. To do this, �rst 
reate a super�
ial unit hole (whi
h 
anbe done within energy barrier 4U −∆1 by 
reating a hole in a 
orner tile of the re
tangle) andmove this va
an
y to site te. By Lemma 5.5, this 
an be a
hieved without ex
eeding energy level
H(η0) + 10U −∆2. Then move the parti
le of type 2 at site tc to site te (∆H ≤ 0). Call η′ the
on�guration that is rea
hed in this way. Note that H(η′) ≤ H(η)−∆2+3U . To bring a parti
leof type 1 to site tc, argue as in Case (ii), to arrive at H(η̂) ≤ H(η) + 12U −∆2.(v) (η(tc), η(te)) = (1, 0). A parti
le of type 2 has to be brought to site te. Move the unit hole at teto the top tile�bar of the re
tangle. This does not 
hange the energy of the 
on�guration and 
anbe done within energy barrier 6U by Proposition 5.6. The task redu
es to �lling a super�
ial unithole on the surfa
e of the 
luster with a parti
le of type 2. This 
an be a
hieved within energybarrier U +∆2 −∆1. Therefore the maximal energy level rea
hed in this 
ase is H(η) + 6U .(vi) (η(tc), η(te)) = (0, 1). Move the parti
le of type 2 from site te to site tc. This move does notin
rease the energy of the 
on�guration. Then pro
eed as in Case (v).(vii) (η(tc), η(te)) = (2, 1). The o

upation numbers of sites tc and te have to be ex
hanged. Todo this, �rst remove the parti
le of type 1 at site tb to obtain a 
on�guration η′ with energy
H(η′) ≤ H(η)+ 3U without ex
eeding the energy level H(η)+ 10U −∆1 (again use Lemma 5.5).Move the parti
le of type 1 from te to tb (∆H < 0) and the parti
le of type 2 from tc to te(∆H = 0). Call η̂ the 
on�guration that is rea
hed in this way. Note that H(η̂) ≤ H(η)+U−∆1.Pro
eed as in Case (ii) to 
on
lude within energy barrier of 10U −∆1.(viii) (η(tc), η(te)) = (1, 1). The parti
le of type 1 at site te has to be repla
ed by a parti
le of type 2.This 
an be done as follows. First the parti
le of type 1 sitting a site tb is removed. To a
hievethis, �rst remove a parti
le of type 1 at the north-side of the re
tangle and then (use Lemma 5.5)move the va
an
y to site tb. The 
on�guration that is rea
hed, whi
h we 
all η′, is su
h that
H(η′) ≤ H(η) + 3U −∆1. Next, move the parti
le of type 1 at te to site tb (∆H = 0), to rea
ha 
on�guration η̂ whose energy is H(η̂) = H(η)−∆1. Finally, argue as in Case (v), to arrive at
H(η̂) ≤ H(η) + 3U −∆1. 24



Finally, note that (1.12) implies max{6U +∆2, 10U −∆1, 12U −∆2} = 10U −∆1.By Lemma 5.1, H(η′) ≤ H(η), and therefore the same argument 
an be used to show that all theright-se
tions of the support 
an be 2�tiled within the same energy barrier. The left-se
tion 
an be
2�tiled analogously.To 
on
lude, it remains to be shown how parti
les of type 2, possibly adja
ent to one side of there
tangle, 
an be removed from Λ. Call t the tile asso
iated with the parti
le p of type 2 that hasto be removed (p sits at site te) and v the tile adja
ent to t belonging to the re
tangle. First bringa va
an
y to site ve within energy barrier 10U − ∆2 (one way to a
hieve this has been des
ribed inCase (iv) above) and then move p to site ve (see Lemma 5.5). �5.2.5 Merging adja
ent 2�tiled re
tanglesDe�nition 5.16 A 12�bar b1 of length ℓ of a 
luster c1 is said to be adja
ent to a 12�bar b2 of length
m ≤ ℓ of a 
luster c2 if there exist m mutually disjoint pairs (qi1, q

i
2) of parti
les of type 1 with qi1 ∈ b1and qi2 ∈ b2 su
h that u(qi1) − u(qi2) = v with ‖v‖ = 1

2

√
2 for i = 1, . . . ,m. The ve
tor v is 
alled theo�set of b2 with respe
t to b1. The tiles in b1 have a di�erent parity than the tiles in b2. The parti
les

qi1 ∈ b1, i = 1, . . .m, are 
alled the external parti
les of b1 with respe
t to b2, and the parti
les qi2 ∈ b2,
i = 1, . . . ,m, are 
alled the external parti
les of b2 with respe
t to b1.Proposition 5.17 Let η be a 
on�guration that 
ontains two adja
ent 2�tiled re
tangles. Then the
on�guration η′ obtained by �merging� these two re
tangles satis�es H(η′) = H(η) and Φ(η, η′) ≤
H(η) + 2U −∆1.Proof. Given two adja
ent bars b1 and b2 with o�set v = (v1, v2) in a 
on�guration η, we want tode�ne the sliding of b2 onto b1 along v. The resulting 
on�guration η′ is su
h that all the parti
lesof type 2 originally in b2 are slid by (v1, v2) with respe
t to their position in η, and all the externalparti
les of type 1 of b2 with respe
t to b1 are slid by (v1,−v2) when the two bars are horizontal andby(−v1, v2) when the two bars are verti
al. Via the sliding, the m 2�tiles in b2 are turned into m
2�tiles with the same parity as the tiles in b1. It is easy to see that H(η′) = H(η), sin
e neither thetotal number of a
tive bonds of the 
on�guration nor the number of parti
les of ea
h type is 
hanged.To des
ribe the sliding of a bar onto another bar along a ve
tor v, we may assume w.l.o.g. thatthe two bars are verti
al and that the ve
tor v is equal to (− 1

2 ,− 1
2 ) (Fig. 20(a)). Start by moving thelower-most external parti
le of type 1 in b2 over the ve
tor v′ = (12 ,− 1

2 ) (Fig. 20(b)). This leads to anin
rease by U in energy. Then move the lower-most parti
le of type 2 over the ve
tor v (Fig. 20(
)).Sin
e the number of dea
tivated bonds is equal to the number of new bonds a
tivated, this move doesnot 
hange the energy. Pro
eed by moving over the ve
tor v′ the se
ond parti
le of type 1 from thebottom of the bar (Fig. 20(d)). This also is a move that does not 
hange the energy. Afterwards, these
ond parti
le of type 2 from the top is moved over the ve
tor v (Fig. 20(e)). This sequen
e of movespro
eeds iteratively (without a 
hange in energy) until the m-th parti
le of type 2 has been moved overthe ve
tor v. Finally, the (m+1)-st external parti
le of type 1 is moved over the ve
tor v′ (Fig. 20(f)).This move de
reases the energy by U . Thus, U is the energy barrier that must be over
ome in orderto realize the sliding of a 12�bar onto another 12�bar over the ve
tor v.It is 
lear that, given a 
on�guration η 
ontaining two 2�tiled re
tangles c1 (with verti
al side length
ℓ) and c2 (with verti
al side length m ≤ ℓ) with o�set v, it is possible to redu
e η to a 
on�guration
η′ su
h that c1 and c2 are merged into of a single 
luster by sliding one bar after another, withoutex
eeding energy barrier∆H = U , provided the other 
lusters of η do not interfere with this pro
edure.Sliding the last bar of c2 we get an ex
ess of free parti
les of type 1, whi
h 
an be removed from Λ,lowering the energy. In parti
ular, the 
on�guration η′ obtained via the sliding of c2 onto c1 along
v without ex
eeding energy level H(η) + U has energy H(η′) = H(η) − (m + 1)∆1, sin
e the two
on�gurations 
onsist of the same number of 2�tiles, and η′ 
ontains m+1 parti
les of type 1 less than
η. Moreover, Φ(η, η′) = H(η) + U .In the argument above, the �rst move 
onsisted of moving down-right a parti
le of type 1 of b2to an empty site (say, site i). If in 
on�guration η site i is o

upied by a parti
le of type 1, then25



(a) η0 (b) (
)
(d) (e) (f) η1Figure 20: The sliding of b2 onto b1.the sliding of the verti
al 12�bar 
an be realized by modifying the pro
edure as follows. First removefrom the box the top-left parti
le of type 1 of b2 sitting at site j to rea
h a 
on�guration with energy

H(η) + U − ∆1 (whi
h 
an be done without ex
eeding energy level H(η) + U). Then move to j theparti
le of type 1 sitting at site k = j + v = j + (− 1
2 ,− 1

2 ) in η, whi
h in
reases the energy up to level
H(η) + 2U −∆1. Then site k is �lled with the parti
le of type 1 originally at site k+ (12 ,− 1

2 ) withoutan in
rease in energy. It is possible to 
ontinue in this way until the 
on�guration obtained after the�rst step of the above 
ase is rea
hed. This 
on�guration has energy H(η)+U −∆1. Then pro
eed asin the above 
ase until b2 is slid onto b1. This leads to a 
on�guration with energy H(η)−∆1 < H(η).In order to perform the (modi�ed) sliding pro
edure, it is su�
ient to assume that the north-side ofre
tangle c2 is latti
e-
onne
ting. �5.2.6 Removing sub
riti
al 
lustersThe 
leaning me
hanism de�ned in this se
tion produ
es a 
on�guration for whi
h we have a 
ertain
ontrol on the geometry of the 
onstituent 
lusters. In parti
ular, these 
lusters will be suitable for theappli
ation of the previous �ve energy redu
tion me
hanisms. We begin by looking at pending dimers(see Fig. 21).
Figure 21: A pending dimer is the pair of parti
les 
ir
led in the pi
ture.De�nition 5.18 A pending dimer 
onsists of two adja
ent parti
les of di�erent type su
h that theparti
le of type 1 is latti
e-
onne
ting and has only one a
tive bond and the parti
le of type 2 has atmost three a
tive bonds.Proposition 5.19 Let η be a 
on�guration 
ontaining pending dimers. Then there exists a 
on�gura-tion η′ not 
ontaining pending dimers that satis�es H(η′) < H(η) and Φ(η, η′) ≤ H(η) + 3U +∆2.26



Proof. If the parti
le of type 2 has at most two a
tive bonds, then simply remove the pending dimer.This redu
es the energy, sin
e two bonds are dea
tivated and a parti
le of ea
h type is removed from Λ(∆H ≤ 2U −∆1−∆2 < 0), and 
an be a
hieved within an energy barrier 2U −∆1 along the followingpath: �rst deta
h (∆H = U) and remove (∆H = −∆1) the parti
le of type 1, then deta
h (∆H ≤ U)and remove (∆H = −∆2) the parti
le of type 2.If the parti
le of type 2 has three a
tive bonds we have two 
ases:(i) The fourth neighbor of the parti
le of type 2 of the pending dimer is empty. In this 
ase η′ isobtained by �lling this empty site with a parti
le of type 1 in order to obtain a 2�tile, whi
hlowers the energy sin
e ∆1 < U . To do this, temporarily remove the pending dimer as des
ribedabove. This leads to a 
on�guration η̃ with energy H(η̃) = H(η) + 3U −∆1 −∆2 rea
hed withinenergy barrier 3U −∆1. Then bring a parti
le of type 1 to the designated site (∆H ≤ ∆1) and�nally put ba
k the dimer. The whole path is realized within energy barrier 3U +∆2.(ii) The fourth neighbor of the parti
le of type 2 is o

upied by a parti
le of type 2. In this 
ase
η′ is the 
on�guration su
h that the dimer is removed and the site originally o

upied by theparti
le of type 2 of the dimer is o

upied by a parti
le of type 1. To obtain η′ from η, removethe pending dimer (again, as above, within energy barrier 3U −∆1), to rea
h a 
on�guration η̃with energy H(η̃ = H(η) + 3U −∆1 −∆2, and bring a parti
le of type 1 within energy barrier
∆1. To 
on
lude, observe that H(η′) = H(η) + 2U −∆2 < H(η).

�The 
leaning me
hanism works as follows:1. Remove all the latti
e-
onne
ting free parti
les from the 
on�guration.After that repeat 
y
li
ally the following two steps:2. Iteratively remove/transform all the latti
e-
onne
ting pending dimers.3. Bring a parti
le of type 1 to any of the free sites adja
ent to the latti
e-
onne
ting parti
les oftype 2.Repeat the 
leaning me
hanism until the 
on�guration is not a�e
ted anymore. Ea
h of the three steps
an be performed within energy barrier 3U +∆2. Moreover, ea
h step redu
es the energy.Lemma 5.20 The out
ome of the 
leaning me
hanism is either a 
on�guration su
h that the �rstparti
le en
ountered while s
anning Λ in the lexi
ographi
 order is a parti
le of type 1 belonging to ahorizontal stable (south-)bridge, or the 
on�guration �.Proof. Call q the �rst parti
le of Λ in the lexi
ographi
 order. Re
all that the dual 
oordinates of qare denoted by u(q) = (u1(q), u2(q)). Step 3 of the 
leaning me
hanism guarantees that q is a parti
leof type 1. The fa
t that q is the �rst parti
le in the lexi
ographi
 order implies that: (i) all the sitesabove u(q) are empty; (ii) all the sites with the same verti
al 
oordinate as q lying on the left of q areempty as well. As a 
onsequen
e of (ii), all the sites on the left of q with verti
al 
oordinate u2(q)− 1
2are latti
e-
onne
ting and therefore 
annot be o

upied by a parti
le of type 2. Sin
e q 
annot be afree parti
le, the site with 
oordinates (u1(q) + 1

2 , u2(q)− 1
2 ) must be o

upied by a parti
le p of type

2. Let s(p) be the longest sequen
e of tiles adja
ent to t(p) su
h that the 
entral site is o

upied bya parti
le of type 2. Obviously, p is the left-most parti
le of type 2 in s(p). Call p̃ the last parti
le oftype 2 in s(p) and q̃ the parti
le of type 1 with 
oordinates (u1(p) + 1
2 , u2(p) +

1
2 ). (Note that p and p̃may 
oin
ide.) All the sites on the north-side of s(p) are latti
e-
onne
ting and hen
e are o

upied bya parti
le of type 1. To 
on
lude, observe that both p and p̃ must be saturated, otherwise at least oneof the pairs (q, p) and (q̃, p̃) 
onstitutes a pending dimer. �27



5.3 Energy redu
tion of a general 
on�guration: Proof of Theorem 1.4Fix any η /∈ {�,⊞}. In this se
tion we will give a general pro
edure, 
alled energy redu
tion algorithm,that allows us to 
onstru
t a path ω : η → ηr with ηr ∈ {�,⊞} su
h that maxξ∈ωH(ξ) ≤ H(η) + V ⋆with V ⋆ ≤ 10U −∆1 and H(ηr) < H(η). Note that if ηr = ⊞, then H(ηr) < H(η) be
ause Xstab = ⊞.The 
onstru
tion uses the six energy redu
tion me
hanisms des
ribed in Se
tions 5.2.1�5.2.6 and relieson Propositions 5.6, 5.9, 5.12, 5.15, 5.17, 5.19, whi
h are the key results of these se
tions. Themaximal energy barrier in these propositions is 10U −∆1. Note: The energy redu
tion me
hanismsin Se
tions 5.2.2 and 5.2.3 
on
ern single droplets far away from ∂−Λ and have an energy barrier notex
eeding 4U + ∆1 < Γ⋆ (see below (1.14)). For su
h 
on�gurations, the energy 
an be essentiallyredu
ed by saturating parti
les of type 2 and by adding and removing 12�bars. This explains theremark made in Se
tion 1.4, item 4.In the remainder of this se
tion we 
all super
riti
al a 12�bar of length ≥ ℓ⋆. Similarly, we 
allsuper
riti
al a dual re
tangle with both side lengths ≥ ℓ⋆.Proof. As a preliminary step, perform the 
leaning me
hanism. If the out
ome is �, then the 
laimis proven. Otherwise, let b1 be the �rst bridge en
ountered in the lexi
ographi
 order (whi
h exists byLemma 5.20). This bridge 
an be turned into an 12�bar b̄1 (see Se
tion 5.2.3). If the length of b1 is
< ℓ⋆, then the 12�bar b̄1 
an be removed, whi
h lowers the energy (see Se
tion 5.2.2). In this 
ase, goba
k to performing the 
leaning me
hanism. W.l.o.g. we may therefore assume that the length of b1 is
> ℓ⋆.By 
onstru
tion, all sites above b̄1 are empty, and therefore it is possible �rst to 
onstru
t the
2�tiled re
tangle r1 = ⊓

(

b̄1
) within energy barrier 2∆1 + 2∆2 − 4U (again lowering the energy), andthen expand r1 to the re
tangle R1 = R ⊣ (r1) (see Se
tion 5.2.4). If the verti
al side length of R1 is

< ℓ⋆, then R1 
an be removed (lowering the energy), and it is possible to perform again the 
leaningme
hanism.Therefore suppose that R1 has both its side lengths ≥ ℓ⋆. In the remainder of the se
tion wewill show how to rea
h within energy barrier 10U − ∆1 a 
on�guration 
ontaining a re
tangle RNWtou
hing both the north-side and the west-side of Λ− whose support 
ontains the support of R1. On
ethis has been a
hieved, it is possible to argue for RNW in the same way as for R1 in order to rea
ha 
on�guration 
ontaining a re
tangle RNWE tou
hing the north-side, the east-side and the west-sideof Λ− whose support 
ontains the support of RNW . Repeating the same argument for RNWE , it ispossible to rea
h ⊞.The 
onstru
tion of RNW is obtained by using an algorithm 
alled invasion of R1, whi
h is 
on-stru
ted with the help of te
hniques similar to the ones that were used to build R1.(A) Invasion of R1. See Fig. 22. Let (a1, b1) be, respe
tively, the horizontal and the verti
al
oordinate of the left lower-most parti
le of R1 (whi
h is of type 1). De�ne Λ(R1) ⊂ Λ to be the set
onsisting of the sites whose verti
al 
oordinate is ≥ b1 and horizontal 
oordinate is < a1. In words,
Λ(R1) 
ontains the sites of Λ on the left of R1. Perform the 
leaning me
hanism (see Se
tion 5.2.6)and s
an Λ(R1) in the lexi
ographi
 order. Three 
ases are possible.1. Λ(R1) is empty. Add, if possible (R1 might already be tou
hing the west-boundary of Λ−), 12�barsonto the left side of R1 until the resulting 
luster tou
hes the west-boundary of Λ−.2. The �rst horizontal bridge b2 en
ountered in Λ(R1) has length < ℓ⋆. Remove the parti
les of the(south)-support of the bridge, lowering the energy of the 
on�guration, and restart the 
overing of

Λ(R1).3. The �rst horizontal bridge b2 en
ountered in Λ(R1) has length ≥ ℓ⋆. As for b1, �rst turn b2 into the
12�bar b̄2, then build the 2�tiled re
tangle r2 = ⊓

(

b̄2
), after that expand r2 to R2 = R ⊣ (r2), and�nally perform the 
leaning me
hanism. Note that the support of R2 may 
over (part or possibly allof) the support of R1. This means that during the maximal expansion, some of the sites of supp(R1)were in the support of the pillared beam that is going to be 2�tiled. Ea
h time this happens, R2absorbs an entire verti
al super
riti
al 12�bar of R1 (see Se
tion 5.2.4). Call R̃1 what is left of R128



after the maximal expansion of R2. The following three 
ases are possible: (i) R̃1 does not 
ontainany parti
le (R̃1 = ∅); (ii) R̃1 ≺ R1 (in the proper sense); (iii) R̃1 = R1. In Case (ii), the re
tangles
R2 and R̃1 are ne
essarily adja
ent (more pre
isely, the right-most 12�bar of R2 is adja
ent to theleft-most 12�bar of R1), whereas in Case (iii) the two re
tangles may or may not be adja
ent. Notethat this implies that if R̃1 ≺ R1, then R2 is ne
essarily super
riti
al. Obviously, if R̃1 6= ∅, then itis again a 2�tiled re
tangle, and there are several possibilities.(a) R2 is not super
riti
al. This implies that R̃1 = R1. Remove R2 from Λ, put R1 = R̃1 andrestart the invasion of R1.(b) R2 is super
riti
al and R̃1 = ∅. Change the name of R2 to R1 and restart the 
overing of Λ(R1).(
) R2 is super
riti
al and is adja
ent to R̃1. Note that both re
tangles tou
h the north-side of

Λ−. Call Rmax the re
tangle with the largest verti
al length (in 
ase of a tie, w.l.o.g. 
hoose
R1) and 
all Rmin the other re
tangle. Slide Rmin onto Rmax. This is possible be
ause thesmoothing phase of the maximal expansion (see Se
tion 5.2.4) removes all the parti
les of type
2 that may interfere with the sliding of the 12�bars. Then perform again the maximal expansionof Rmax, i.e., the re
tangle that has not been moved during the sliding. These steps bring the
on�guration to a re
tangle whose support 
ontains supp(R2) ∪ supp(R1) ∪ Λ(R1). Call thisre
tangle R1 and restart the invasion of R1.(d) R2 is super
riti
al and is not adja
ent to R̃1. This implies R̃1 = R1. Start the invasion of R2(see below).In order to 
omplete the proof, it remains to show how the invasion of R2 
arries over. To thatend, we introdu
e the following re
ursive algorithm realizing the invasion of Ri for i = 2, 3, . . ., et
.(B) Invasion of Ri. Call R̄i−1 what is left of Ri−1 after the invasion of Ri+1. There are three 
ases:I. R̄i−1 = ∅ (i.e., the support of Ri−1 is 
ompletely 
overed by Ri). Put Ri−1 = Ri and restart theinvasion of Ri−1.II. R̄i−1 6= ∅ and Ri and R̄i−1 are adja
ent. Call Rmax the re
tangle with the largest verti
al sidebetween Ri and R̄i−1 (in 
ase of a tie, w.l.o.g. 
hoose Rmax = Ri) and 
all Rmin the otherre
tangle. Slide Rmin onto Rmax and perform the maximal expansion of Rmax. Call Ri−1 theout
ome of the maximal expansion of Rmax and restart the invasion of Ri−1.III. R̄i−1 6= ∅ and Ri and R̄i−1 are not adja
ent. If Ri is on the left of Ri−1, then let (ai, bi) denote,respe
tively, the horizontal and the verti
al 
oordinate of the lower right-most parti
le (whi
h isof type 1) of Ri, and 
all Λ(Ri) the subset of Λ(Ri−1) 
onsisting of those sites whose verti
al
oordinates are ≥ bi and whose horizontal 
oordinates are > ai. If Ri is on the right of Ri−1, thenlet (ai, bi) denote, respe
tively, the horizontal and the verti
al 
oordinate of the lower left-mostparti
le (whi
h is of type 1) of Ri, and 
all Λ(Ri) the subset of Λ(Ri−1) 
onsisting of those siteswhose verti
al 
oordinates are ≥ bi and whose horizontal 
oordinates are < ai. In words, Λ(Ri)
onsists of those sites of Λ(Ri−1) between Ri−1 and Ri. Perform the 
leaning me
hanism ands
an Λ(Ri) in the lexi
ographi
 order. There are again several 
ases.1. Λ(Ri) is empty. Call Rmax the re
tangle with the largest verti
al side between Ri and R̄i−1 (in
ase of tie, w.l.o.g. 
hoose Rmax = Ri) and 
all Rmin the other re
tangle. Add verti
al 12�barson the side of Rmin fa
ing Rmax until (depending on the parity of the re
tangles) it be
omesadja
ent (di�erent parity) to Rmax or it is at distan
e 1 (same parity) from Rmax. In the �rst
ase, slide the extended Rmin onto Rmax. Perform the maximal expansion of Rmax, and 
all
Ri−1 the re
tangle obtained in this way, whose support 
ontains supp(Ri) ∪ Ri−1 ∪ Λ(Ri−1).Restart the invasion of Ri−1.2. The �rst horizontal bridge bi+1 en
ountered in Λ(Ri) has length < ℓ⋆. Remove the parti
lesof the (south)-support of the bridge, lowering the energy of the 
on�guration, and restart theinvasion of Ri. 29



3. The �rst horizontal bridge bi+1 en
ountered in Λ(Ri) has length ≥ ℓ⋆. First turn bi+1 intothe 12�bar b̄i+1, then build the 2�tiled re
tangle ri+1 = ⊓
(

b̄i+1

), after that expand ri to
Ri+1 = R ⊣ (ri+1), and �nally perform the 
leaning me
hanism. Call R̃i what is left of Ri afterthe maximal expansion of Ri+1. The following 
ases are possible.(a) Ri+1 is not super
riti
al. This implies R̃i = Ri. Remove Ri+1 from Λ, put Ri = R̃i, andrestart the invasion of Ri.(b) Ri+1 is super
riti
al and R̃i = ∅. Change the name of Ri+1 to Ri, and restart the invasionof Ri.(
) Ri+1 is super
riti
al and is adja
ent to R̃i. Note that both re
tangles tou
h the north-sideof Λ−. Slide the re
tangle with the shorter verti
al length onto the other re
tangle andperform again the maximal expansion of the re
tangle that has not been moved duringthe sliding. These steps bring the 
on�guration to a re
tangle whose support 
ontainssupp(Ri+1) ∪ supp(Ri) ∪ Λ(Ri). Call this re
tangle Ri and restart the invasion of Ri.(d) Ri+1 is super
riti
al and is not adja
ent to R̃i. This implies R̃i = Ri. Start the invasionof Ri+1.The �niteness of Λ ensures that the algorithm eventually terminates. �

(a) (b) (
)
(d) (e) (f)Figure 22: Example of invasion of the dual re
tangle R1. Only the support of the relevant 
lustersare drawn and the parity of di�erent 
lusters is not indi
ated. The set Λ(R1) 
ontains a super
riti
albridge belonging to 
luster A (Fig. 22(a)). Growing this bridge via the 
onstru
tion of its northernre
tangle and its subsequent maximal expansion leads to the super
riti
al re
tangle R2 (Fig. 22(b)).Next, the invasion of Λ(R2) has to be performed in order to 
omplete the invasion of R1. The set Λ(R2)
ontains a super
riti
al bridge belonging to 
luster B, whi
h is grown into the super
riti
al re
tangle

R3 (Fig. 22(
)). Note that R3 partly 
overs the support of R̃1 and that R3 and R̄1 are adja
ent. Theinvasion of R2 pro
eeds via the invasion of R3. Sin
e Λ(R3) is empty, the invasion of R3 is 
arried outby adding 12�bars to the left-side of R3 until R̃2 is at dual distan
e 1. After that a maximal expansionprodu
es a dual re
tangle that 
overs the support of R̃2 (Fig. 22(d)). The new dual re
tangle R2 isadja
ent to R̄1. The two re
tangles are merged and a maximal expansion gives a new re
tangle R1(Fig.22(e)). Now Λ(R1) is empty and 
an be �lled by adding 12�bars to the left-side of R1 until there
tangle RNW is obtained (Fig. 22(f)).
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