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Kawasaki dynamis with two types of partiles:stable/metastable on�gurations and ommuniation heightsF. den Hollander 1 2F.R. Nardi 3 2A. Troiani 1May 24, 2011AbstratThis is the seond in a series of three papers in whih we study a two-dimensional lattie gasonsisting of two types of partiles subjet to Kawasaki dynamis at low temperature in a large�nite box with an open boundary. Eah pair of partiles oupying neighboring sites has a negativebinding energy provided their types are di�erent, while eah partile has a positive ativation energythat depends on its type. There is no binding energy between partiles of the same type. At theboundary of the box partiles are reated and annihilated in a way that represents the preseneof an in�nite gas reservoir. We start the dynamis from the empty box and are interested inthe transition time to the full box. This transition is triggered by a ritial droplet appearingsomewhere in the box.In the �rst paper we identi�ed the parameter range for whih the system is metastable, showedthat the �rst entrane distribution on the set of ritial droplets is uniform, omputed the expetedtransition time up to and inluding a multipliative fator of order one, and proved that thenuleation time divided by its expetation is exponentially distributed, all in the limit of lowtemperature. These results were proved under three hypotheses, and involve three model-dependentquantities: the energy, the shape and the number of ritial droplets. In the seond paper we provethe �rst and the seond hypothesis and identify the energy of ritial droplets. In the third paperwe settle the rest.Both the seond and the third paper deal with understanding the geometri properties ofsubritial, ritial and superritial droplets, whih are ruial in determining the metastablebehavior of the system, as explained in the �rst paper. The geometry turns out to be onsiderablymore omplex than for Kawasaki dynamis with one type of partile, for whih an extensiveliterature exists. The main motivation behind our work is to understand metastability of multi-type partile systems.1Mathematial Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands2EURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlands3Tehnishe Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
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1 IntrodutionSetion 1.1 de�nes the model, Setion 1.2 introdues basi notation, Setion 1.3 states the main theo-rems, while Setion 1.4 disusses the main theorems and provides further perspetives.1.1 Lattie gas subjet to Kawasaki dynamisLet Λ ⊂ Z
2 be a large box entered at the origin (later it will be onvenient to hoose Λ rhombus-shaped). Let

∂−Λ = {x ∈ Λ: ∃ y /∈ Λ: |y − x| = 1},
∂+Λ = {x /∈ Λ: ∃ y ∈ Λ: |y − x| = 1},

(1.1)be the internal, respetively, external boundary of Λ, and put Λ− = Λ\∂−Λ and Λ+ = Λ ∪ ∂+Λ.With eah site x ∈ Λ we assoiate a variable η(x) ∈ {0, 1, 2} indiating the absene of a partile orthe presene of a partile of type 1 or type 2. A on�guration η = {η(x) : x ∈ Λ} is an element of
X = {0, 1, 2}Λ. To eah on�guration η we assoiate an energy given by the Hamiltonian

H = −U
∑

(x,y)∈Λ∗,−

1{η(x)η(y)=2} +∆1

∑

x∈Λ

1{η(x)=1} +∆2

∑

x∈Λ

1{η(x)=2}, (1.2)where Λ∗,− = {(x, y) : x, y ∈ Λ−, |x − y| = 1} is the set of non-oriented bonds inside Λ−, −U < 0 isthe binding energy between neighboring partiles of di�erent types inside Λ−, and ∆1 > 0 and ∆2 > 0are the ativation energies of partiles of type 1, respetively, 2 inside Λ. W.l.o.g. we will assume that
∆1 ≤ ∆2. (1.3)The Gibbs measure assoiated with H is

µβ(η) =
1

Zβ

e−βH(η), η ∈ X , (1.4)where β ∈ (0,∞) is the inverse temperature and Zβ is the normalizing partition sum.Kawasaki dynamis is the ontinuous-time Markov proess, (ηt)t≥0 with state spae X whose tran-sition rates are
cβ(η, η

′) = e−β[H(η′)−H(η)]+ , η, η′ ∈ X , η 6= η′, η ↔ η′, (1.5)where η ↔ η′ means that η′ an be obtained from η by one of the following moves:
• interhanging 0 and 1 or 0 and 2 between two neighboring sites in Λ(�hopping of partiles in Λ�),
• hanging 0 to 1 or 0 to 2 in ∂−Λ(�reation of partiles in ∂−Λ�),
• hanging 1 to 0 or 2 to 0 in ∂−Λ(�annihilation of partiles in ∂−Λ�),and cβ(η, η′) = 0 otherwise. Note that this dynamis preserves partiles in Λ, but allows partiles to bereated and annihilated in ∂−Λ. Think of the latter as desribing partiles entering and exiting Λ alongnon-oriented bonds between ∂+Λ and ∂−Λ (the rates of these moves are assoiated with the bondsrather than with the sites). The pairs (η, η′) with η ↔ η′ are alled ommuniating on�gurations, thetransitions between them are alled allowed moves. Note that partiles in ∂−Λ do not interat: theinteration only works in Λ−.The dynamis de�ned by (1.2) and (1.5) models the behavior inside Λ of a lattie gas in Z

2,onsisting of two types of partiles subjet to random hopping with hard-ore repulsion and withbinding between di�erent neighboring types. We may think of Z2\Λ as an in�nite reservoir that keeps2



the partile densities �xed at ρ1 = e−β∆1 and ρ2 = e−β∆2. In the above model this reservoir is replaedby an open boundary ∂−Λ, where partiles are reated and annihilated at a rate that mathes thesedensities. Thus, the dynamis is a �nite-state Markov proess, ergodi and reversible with respet tothe Gibbs measure µβ in (1.4).Note that there is no binding energy between neighboring partiles of the same type. Consequently,the model does not redue to Kawasaki dynamis for one type of partile when ∆1 = ∆2.1.2 NotationTo state our main theorems in Setion 1.3, we need some notation.De�nition 1.1 (a) � is the on�guration where Λ is empty.(b) ⊞ is the set onsisting of the two on�gurations where Λ is �lled with the largest possible hekerboarddroplet suh that all partiles of type 2 are surrounded by partiles of type 1.() ω : η → η′ is any path of allowed moves from η ∈ X to η′ ∈ X .(d) Φ(η, η′) is the ommuniation height between η, η′ ∈ X de�ned by
Φ(η, η′) = min

ω : η→η′

max
ξ∈ω

H(ξ), (1.6)and Φ(A,B) is its extension to non-empty sets A,B ⊂ X de�ned by
Φ(A,B) = min

η∈A,η′∈B
Φ(η, η′). (1.7)(e) Vη is the stability level of η ∈ X de�ned by

Vη = Φ(η, Iη)−H(η), (1.8)where Iη = {ξ ∈ X : H(ξ) < H(η)} is the set of on�gurations with energy lower than η.(f) Xstab = {η ∈ X : H(η) = minξ∈X H(ξ)} is the set of stable on�gurations, i.e., the set of on�gu-rations with mininal energy.(g) Xmeta = {η ∈ X : Vη = maxξ∈X\Xstab
Vξ} is the set of metastable on�gurations, i.e., the set ofnon-stable on�gurations with maximal stability level.(h) Γ = Vη for η ∈ Xmeta (note that η 7→ Vη is onstant on Xmeta), Γ⋆ = Φ(�,⊞)−H(�) (note that

H(�) = 0).In [3℄ we were interested in the transition of the Kawasaki dynamis from � to ⊞ in the limit as
β → ∞. This transition, whih is viewed as a rossover from a �gas phase� to a �liquid phase�, istriggered by the appearane of a ritial droplet somewhere in Λ. The ritial droplets form a subset ofthe set of on�gurations realizing the energeti minimax of the paths of the Kawasaki dynamis from
� to ⊞, whih all have energy Γ⋆ beause H(�) = 0.In [3℄ we showed that the �rst entrane distribution on the set of ritial droplets is uniform,omputed the expeted transition time up to and inluding a multipliative fator of order one, andproved that the nuleation time divided by its expetation is exponentially distributed, all in thelimit as β → ∞. These results, whih are typial for metastable behavior, were proved under threehypotheses :(H1) Xstab = ⊞.(H2) There exists a V ⋆ < Γ⋆ suh that Vη ≤ V ⋆ for all η ∈ X\{�,⊞}.(H3) A hypothesis about the shape of the on�gurations in the essential gate for the transition from

� to ⊞ (for details see [3℄).Hypotheses (H1�H3) are the geometri input that is needed to derive the main theorems in [3℄ withthe help of the potential-theoreti approah to metastability as outlined in Bovier [2℄. In the presentpaper we prove (H1�H2) and identify the energy Γ⋆ of ritial droplets. In [4℄ we settle the rest.3



Lemma 1.2 (H1�H2) imply that V� = Γ⋆, and hene that Xmeta = � and Γ = Γ⋆.Proof. By De�nition 1.1(e�h) and (H1), ⊞ ∈ I�, whih implies that V� ≤ Γ⋆. We show that (H2)implies V� = Γ⋆. The proof is by ontradition. Suppose that V� < Γ⋆. Then, by De�nition 1.1(h),there exists a η0 ∈ I�\⊞ suh that Φ(�, η0) −H(�) < Γ⋆. But (H2), together with the �niteness of
X , implies that there exist an m ∈ N and a sequene η1, . . . , ηm ∈ X with ηm = ⊞ suh that ηi+1 ∈ Iηiand Φ(ηi, ηi+1) ≤ H(ηi) + V ⋆ for i = 0, . . . ,m− 1. Therefore

Φ(η0,⊞) ≤ max
i=0,...,m−1

Φ(ηi, ηi+1) ≤ max
i=0,...,m−1

[H(ηi) + V ⋆] = H(η0) + V ⋆ < H(�) + Γ⋆, (1.9)where in the �rst inequality we use that Φ(η, σ) ≤ max{Φ(η, ξ), Φ(ξ, σ)} for all η, σ, ξ ∈ X , and in thelast inequality that η0 ∈ I� and V ⋆ < Γ⋆. It follows that
Φ(�,⊞)−H(�) ≤ max{Φ(�, η0)−H(�), Φ(η0,⊞)−H(�)} < Γ⋆, (1.10)whih ontradits De�nition 1.1(h). Observe that the proof uses that Xmeta onsists of a single on�g-uration. �Hypotheses (H1�H2) imply that (Xmeta,Xstab) = (�,⊞), and that the highest energy barrier be-tween any two on�gurations in X is the one separating � and ⊞, i.e., (�,⊞) is the unique metastablepair. Hypothesis (H3) is needed only to �nd the asymptotis of the prefator of the expeted transitiontime in the limit as Λ → Z

2. The main theorems in [3℄ involve three model-dependent quantities : theenergy, the shape and the number of ritial droplets.1.3 Main theoremsIn [3℄ it was shown that ∆1 + ∆2 < 4U is the metastable region, i.e., the region of parameters forwhih � is a loal minimum but not a global minimum of H . Moreover, it was argued that within thisregion the subregion where ∆1,∆2 < U is of no interest beause the ritial droplet onsists of twofree partiles, one of type 1 and one of type 2. Therefore the proper metastable region is
0 < ∆1 ≤ ∆2, ∆1 +∆2 < 4U, ∆2 ≥ U, (1.11)as indiated in Fig. 1.

Figure 1: Proper metastable region.In this present paper, the analysis will be arried out for the subregion where
0 < ∆1 < U, ∆2 −∆1 > 2U, ∆1 +∆2 < 4U, (1.12)as indiated in Fig. 2. Note: The seond and third restrition imply the �rst restrition. Nevertheless,we write all three beause eah plays an important role in the sequel.The following three theorems are the main result of the present paper and are valid subjet to(1.12). We write ⌈·⌉ to denote the upper integer part.4



Figure 2: Subregion of the proper metastable region given by (1.12).Theorem 1.3 Xstab = ⊞.Theorem 1.4 There exists a V ⋆ ≤ 10U −∆1 suh that Vη ≤ V ⋆ for all η ∈ X\{�,⊞}. Consequently,if Γ⋆ > 10U −∆1, then Xmeta = � and Γ = Γ⋆.Theorem 1.5 Γ⋆ = −[ℓ⋆(ℓ⋆ − 1) + 1](4U −∆1 −∆2) + (2ℓ⋆ + 1)∆1 +∆2 with
ℓ⋆ =

⌈

∆1

4U −∆1 −∆2

⌉

∈ N. (1.13)Theorem 1.3 settles hypothesis (H1) in [3℄, Theorem 1.4 settles hypothesis (H2) in [3℄ when Γ⋆ >
10U −∆1, while Theorem 1.5 identi�es Γ⋆.As soon as V ⋆ < Γ⋆, the energy landsape does not ontain wells deeper than those surrounding �and ⊞. Theorems 1.3 and 1.4 imply that this ours at least when Γ⋆ > 10U −∆1, while Theorem 1.5identi�es Γ⋆ and allows us to exhibit a further subregion of (1.12) where the latter inequality is satis�ed.This further subregion ontains the shaded region in Fig. 3.

Figure 3: The parameter region where Γ⋆ > 10U −∆1 ontains the shaded region.1.4 Disussion1. In Setion 4 we will see that the ritial droplets for the rossover from � to ⊞ onsist of a rhombus-shaped hekerboard with a protuberane plus a free partile, as indiated in Fig. 4. A more detaileddesription will be given in [4℄.2. Abbreviate
ε = 4U −∆1 −∆2 (1.14)5



Figure 4: A ritial droplet. Light-shaded squares are partiles of type 1, dark-shaded squares arepartiles of type 2. The partiles of type 2 form an ℓ⋆ × (ℓ⋆ − 1) quasi-square with a protuberaneattahed to one of its longest sides, and are all surrounded by partiles of type 1. In addition, there isa free partile of type 2. As soon as this free partile attahes itself �properly� to a partile of type 1the dynamis is �over the hill� (see [3℄, Setion 2.3, item 3).and write ℓ⋆ = (∆1/ε) + ι with ι ∈ [0, 1). Then an easy omputation shows that Γ⋆ = (∆1)
2/ε+∆1 +

4U + ει(1− ι). From this we see that
ℓ⋆ ∼ ∆1/ε, Γ⋆ ∼ (∆1)

2/ε, ε ↓ 0. (1.15)The limit ε ↓ 0 orresponds to the weakly supersaturated regime, where the lattie gas wants toondensate but the energeti threshold to do so is high (beause the ritial droplet is large). From theviewpoint of metastability this regime is the most interesting. The shaded region in Fig. 3 apturesthis regime for all 0 < ∆1 < U . This region ontains the set of parameters where (∆1)
2/ε+∆1+4U >

10U −∆1, i.e., ε/U < (∆1/U)2/[6− 2(∆1/U)].3. The simplifying features of (1.12) over (1.11) are the following: ∆1 < U implies that eah time apartile of type 1 enters Λ and attahes itself to a partile of type 2 in a droplet the energy goes down,while ∆2 − ∆1 > 2U implies that no partile of type 2 sits on the boundary of a droplet that hasminimal energy given the number of partiles of type 2 in the droplet. In [3℄ we onjetured that themetastability results presented there atually hold throughout the region given by (1.11), even thoughthe ritial droplets will be di�erent when ∆1 ≥ U .As will beome lear in Setion 3, the onstraint ∆1 < U has the e�et that in all on�gurationsthat are loal minima of H all partiles on the boundary of a droplet are of type 1. It will turn outthat suh on�gurations onsist of a single rhombus-shaped hekerboard droplet. We expet that as
∆1 inreases from U to 2U there is a gradual transition from a rhombus-shaped hekerboard ritialdroplet to a square-shaped hekerboard ritial droplet. This is one of the reasons why it is di�ultto go beyond (1.12).4. What makes Theorem 1.4 hard to prove is that the estimate on Vη has to be uniform in η /∈ {�,⊞}.In on�gurations ontaining several droplets and/or droplets lose to ∂−Λ there may be a lak of freespae making the motion of partiles inside Λ di�ult. The mehanisms developed in Setion 5 allow usto realize an energy redution to a on�guration that lies on a suitable referene path for the nuleationwithin an energy barrier 10U −∆1 also in the absene of free spae around eah droplet.We will see in Setion 5 that for droplets su�iently far away from other droplets and from ∂−Λa redution within an energy barrier ≤ 4U +∆1 is possible. Thus, if we would be able to ontrol theon�gurations that fail to have this property, then we would have V ⋆ ≤ 4U + ∆1 and, onsequently,would have Xmeta = � and Γ = Γ⋆ throughout the subregion given by (1.12) beause Γ⋆ > 4U +∆1.Another way of phrasing the last observation is the following. We view the �liquid phase� as theon�guration �lling the entire box Λ. If, instead, we would let the liquid phase orrespond to the set6



of on�gurations �lling most of Λ but staying away from ∂−Λ, then the metastability results derivedin [3℄ would apply throughout the subregion given by (1.12).5. Theorems 1.3 and 1.5 an atually be proved without the restrition ∆2 − ∆1 > 2U . However,removal of this restrition makes the task of showing that in droplets with minimal energy all partilesof type 2 are surrounded by partiles of type 1 more involved than what is done in Setion 3. We omitthis extension, sine the restrition ∆2 −∆1 > 2U is needed for Theorem 1.4 anyway.Outline. Setion 2 ontains preparations. Theorems 1.3�1.5 are proved in Setions 3�5, respetively.The proofs are purely ombinatorial, and are rather involved due to the presene of two types ofpartiles rather than one. Setions 3�4 deal with statis and Setion 5 with dynamis. Setion 5 istehnially the hardest and takes up about half of the paper. More detailed outlines are given at thebeginning of eah setion.2 Coordinates, de�nitions and polyominoesSetion 2.1 introdues two oordinate systems that are used to desribe the partile on�gurations:standard and dual. Setion 2.2 lists the main geometri de�nitions that are needed in the rest of thepaper. Setion 2.3 proves a lemma about polyominoes (�nite unions of unit squares) and Setion 2.4 alemma about 2�tiled lusters (hekerboard on�gurations where all partiles of type 2 are surroundedby partiles of type 1). These lemmas are needed in Setion 3 to identify the droplets of minimalenergy given the number of partiles of type 2 in Λ.2.1 Coordinates1. A site i ∈ Λ is identi�ed by its standard oordinates (x1(i), x2(i)), and is alled odd when x1(i)+x2(i)is odd and even when x1(i) + x2(i) is even. The standard oordinates of a partile p in Λ are denotedby x(p) = (x1(p), x2(p)). The parity of a partile p is de�ned as x1(p)+ x2(p)+ η(x(p)) modulo 2, and
p is said to be odd when the parity is 1 and even when the parity is 0.2. A site i ∈ Λ is also identi�ed by its dual oordinates

u1(i) =
x1(i)− x2(i)

2
, u2(i) =

x1(i) + x2(i)

2
. (2.1)Two sites i and j are said to be adjaent, written i ∼ j, when |x1(i)− x1(j)|+ |x2(i)− x2(j)| = 1 or,equivalently, |u1(i)− u1(j)| = |u2(i)− u2(j)| = 1

2 (see Fig. 5).3. For onveniene, we take Λ to be the (L+ 3
2 )× (L+ 3

2 ) dual square entered at the origin for some
L ∈ N with L > 2ℓ⋆ (to allow for H(⊞) < H(�); see Setion 3.1). Partiles interat only inside Λ−,whih is the (L + 1

2 ) × (L + 1
2 ) dual square entered at the origin. This dual square, a rhombus instandard oordinates, is onvenient beause the loal minima of H are rhombus-shaped as well (seeSetion 3).2.2 De�nitions1. A site i ∈ Λ is said to be lattie-onneting in the on�guration η if there exists a lattie path λfrom i to ∂−Λ suh that η(j) = 0 for all j ∈ λ with j 6= i. We say that a partile p is lattie-onnetingif x(p) is a lattie-onneting site.2. Two partiles in η at sites i and j are alled onneted if i ∼ j and η(i)η(j) = 2. If two partiles p1and p2 are onneted, then we say that there is an ative bond b between them. The bond b is said tobe inident to p1 and p2. A partile p is said to be saturated if it is onneted to four other partiles,i.e., there are four ative bonds inident to p. The support of the on�guration η, i.e., the union of the7



(a) (b)Figure 5: A on�guration represented in: (a) standard oordinates; (b) dual oordinates. Light-shadedsquares are partiles of type 1, dark-shaded squares are partiles of type 2. In dual oordinates, partilesof type 2 are represented by larger squares than partiles of type 1 to exhibit the �tiled struture� ofthe on�guration.unit squares entered at the oupied sites of η, is denoted by supp(η). For a on�guration η, n1(η)and n2(η) denote the number of partiles of type 1 and 2 in η, and B(η) denotes the number of ativebonds. The energy of η equals H(η) = ∆1n1(η) + ∆2n2(η) − UB(η).3. Let G(η) be the graph assoiated with η, i.e., G(η) = (V (η), E(η)), where V (η) is the set of sites
i ∈ Λ suh that η(i) 6= 0, and E(η) is the set of the pairs {i, j}, i, j ∈ V (η), suh that the partilesat sites i and j are onneted. A on�guration η′ is alled a subon�guration of η, written η′ ≺ η, if
η′(i) = η(i) for all i ∈ Λ suh that η′(i) > 0. A subon�guration c ≺ η is a luster if the graph G(c) isa maximal onneted omponent of G(η). The set of non-saturated partiles in c is alled the boundaryof c, and is denoted by ∂c. Clearly, all partiles in the same luster have the same parity. Thereforethe onept of parity extends from partiles to lusters.4. For a site i ∈ Λ, the tile entered at i, denoted by t(i), is the set of �ve sites onsisting of i and thefour sites adjaent to i. If i is an even site, then the tile is said to be even, otherwise the tile is saidto be odd. The �ve sites of a tile are labeled a, b, c, d, e as in Fig. 6. The sites labeled a, b, c, d arealled juntion sites. If a partile p sits at site i, then t(i) is also denoted by t(p) and is alled the tileassoiated with p. In standard oordinates, a tile is a square of size √

2. In dual oordinates, it is aunit square.5. A tile whose entral site is oupied by a partile of type 2 and whose juntion sites are oupied bypartiles of type 1 is alled a 2�tile (see Fig. 6). Two 2�tiles are said to be adjaent if their partiles oftype 2 have dual distane 1. A horizontal (vertial) 12�bar is a maximal sequene of adjaent 2�tilesall having the same horizontal (vertial) oordinate. If the sequene has length 1, then the 12�bar isalled a 2�tiled protuberane. A luster ontaining at least one partile of type 2 suh that all partilesof type 2 are saturated is said to be 2�tiled. A 2�tiled on�guration is a on�guration onsisting of
2�tiled lusters only.

(a) (b) () (d)Figure 6: Tiles: (a) standard representation of the labels of a tile; (b) standard representation of a
2�tile; () dual representation of the labels of a tile; (d) dual representation of a 2�tile.
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6. The tile support of a on�guration η is de�ned as
[η] =

⋃

p∈̟2(η)

t(p), (2.2)where ̟2(η) is the set of partiles of type 2 in η. Obviously, [η] is the union of the tile supports ofthe lusters making up η. For a standard luster c the dual perimeter, denoted by P (c), is the lengthof the Eulidean boundary of its tile support [c] (whih inludes an inner boundary when c ontainsholes). The dual perimeter P (η) of a 2�tiled on�guration η is the sum of the dual perimeters of thelusters making up η.7. V⋆,n2
is the set of on�gurations suh that in Λ−− the number of partiles of type 2 is n2. V4n2

⋆,n2
isthe set of on�gurations suh that in Λ−− the number of partiles of type 2 is n2, the number of ativebonds is 4n2, and there is no isolated partile of type 1. In other words, V4n2

⋆,n2
is the set of 2�tiledon�gurations with n2 partiles of type 2. The lower index ⋆ is used to indiate that on�gurations inthese sets an have an arbitrary number of partiles of type 1. A on�guration η is alled standard if

η ∈ V4n2
⋆,n2

, and its tile support is a standard polyomino in dual oordinates (see De�nition 2.1 belowfor the de�nition of a standard polyomino).8. A unit hole is an empty site suh that all four of its neighbors are oupied by partiles of the sametype (either all of type 1 or all of type 2). An empty site with three neighboring sites oupied bya partile of type 1 is alled a good dual orner. In the dual representation a good dual orner is aonave orner (see Fig. 7).2.3 A lemma on polyominoesThe tile support of a luster c an be represented by a polyomino, i.e., a �nite union of unit squares.The following notation is used:
ℓ1(c) = width of c (= number of olumns).
ℓ2(c) = height of c (= number of rows).
vi(c) = number of vertial edges in the i-th non-empty row of c.
hj(c) = number of horizontal edges in the j-th non-empty olumn of c.
P (c) = length of the perimeter of c.
Q(c) = number of holes in c.
ψ(c) = number of onvex orners of c.
φ(c) = number of onave orners of c.Note that ψ(c) = ∑N(c)

i=1 ψ(i) and φ(c) = ∑N(c)
i=1 φ(i), where N(c) is the number of verties in thepolyomino representing c. If two edges e1 and e2 are inident to vertex i at a right angle with a unitsquare inside and no unit squares outside, then ψ(i) = 1 and φ(i) = 0 (Fig. 7(a)). On the other hand,if there is no unit square inside and three unit squares outside, then ψ(i) = 0 and φ(i) = 1 (Fig. 7(b)).If four edges e1, e2, e3, e4 are inident to vertex i, with two unit squares in opposite angles, then

ψ(i) = 0 and φ(i) = 2 (Fig. 7()).De�nition 2.1 [Alonso and Cerf [1℄.℄ A polyomino is alled monotone if its perimeter is equal tothe perimeter of its irumsribing retangle. A polyomino whose support is a quasi-square (i.e., aretangle whose side lengths di�er by at most one), with possibly a bar attahed to one of its longestsides, is alled a standard polyomino. 9



(a) (b) ()Figure 7: Corners of polyominoes: (a) one onvex orner; (b) one onave orner; () two onaveorners. Shaded mean oupied by a unit square.In the sequel, a key role will be played by the quantity
T (c) = 2P (c) + [ψ(c)− φ(c)] = 2P (c) + 4− 4Q(c). (2.3)Lemma 2.2 (i) All polyominoes c with a �xed number of monominoes minimizing T (c) are single-omponent monotone polyominoes of minimal perimeter, whih inlude the standard polyominoes.(ii) If the number of monominoes is ℓ2, ℓ2 − 1, ℓ(ℓ − 1) or ℓ(ℓ − 1)− 1 for some ℓ ∈ N\{1}, then thestandard polyominoes are the only minimizers of T (c).Proof. In the proof we assume w.l.o.g. that the polyomino onsists of a single luster c.(i) The proof uses projetion. Pik any non-monotone luster c. Let

c̃ = (π2 ◦ π1)(c), (2.4)where π2 and π1 denote the vertial, respetively, the horizontal projetion of c. The e�et of vertialand horizontal projetion is illustrated in Fig. 8. By onstrution, c̃ is a monotone polyomino (see e.g.the statement on Ferrers diagrams in the proof of Alonso and Cerf [1℄, Theorem 2.2).
Figure 8: E�et of vertial and horizontal projetion.Suppose �rst that Q(c) = 0. Then T (c) = 2P (c)+4. Sine c is not monotone, we have P (c̃) < P (c),and so c is not a minimizer of T (c).Suppose next that Q(c) ≥ 1. Sine

P (c) =

ℓ2(c)
∑

i=1

vi(c) +

ℓ1(c)
∑

j=1

hj(c) (2.5)and every hole belongs to at least one row and one olumn, we have
P (c) ≥ 2[ℓ1(c) + ℓ2(c)] + 4Q(c). (2.6)On the other hand, sine c̃ is a monotone polyomino, we have vi(c̃) = hj(c̃) = 2 for all i and j, and so

P (c̃) = 2[ℓ1(c̃) + ℓ2(c̃)]. (2.7)Moreover, sine ℓ1(c̃) ≤ ℓ1(c) and ℓ2(c̃) ≤ ℓ2(c), we an ombine (2.6�2.7) to get
P (c̃)− P (c) ≤ −4Q(c), (2.8)10



Using (2.8), we obtain
T (c̃)− T (c) = [2P (c̃) + 4]− [2P (c) + 4− 4Q(c)] = 2[P (c̃)− P (c)] + 4Q(c) ≤ −4Q(c) ≤ −4 < 0, (2.9)and so c is not a minimizer of T (c).(ii) We saw in the proof of (i) that if c is a minimizer of T (c), then c is monotone, and hene does notontain holes and minimizes P (c). The laim therefore follows from Alonso and Cerf [1℄, Corollary 3.7,whih states that if the number of monominoes is ℓ2, ℓ2− 1, ℓ(ℓ− 1) or ℓ(ℓ− 1)− 1 for some ℓ ∈ N\{1},then the standard polyominoes are the only minimizers of P (c). �2.4 Relation between T and the number of missing bonds in 2�tiled lustersIn this setion we onsider 2�tiled lusters and link the number of partiles of type 1 and type 2 to thenumber of ative bonds and the geometri quantity T onsidered in Setion 2.3.Lemma 2.3 For any 2�tiled luster c (i.e., c ∈ V4n2

⋆,n2
for some n2), 4n1(c) = B(c)+T (c) and 4n2(c) =

B(c).Proof. The laim of the lemma is equivalent to the a�rmation that T (c) = M(c) with M(c) thenumber of missing bonds in c. Indeed, informally, for every unit perimeter two bonds are lost withrespet to the four bonds that would be inident to eah partile of type 1 if it were saturated, whileone bond is lost at eah onvex orner and one bond is gained at eah onave orner.Formally, let p be a partile of type 1, B(p) the number of bonds inident to p, andM(p) = 4−B(p)the number of missing bonds of p. Consider the set of partiles of type 1 at the boundary of a 2�tiledluster, i.e., the set of non-saturated partiles of type 1. Eah of these partiles belongs to one of fourlasses (see Fig. 9):lass 1: p has two neighboring partiles of type 2 belonging to the same 12�bar.lass 2: p has two neighboring partiles of type 2 belonging to di�erent 12�bars.lass 3: p has three neighboring partiles of type 2.lass 4: p has one neighboring partile of type 2.
(a) (b) () (d)Figure 9: The irled boundary partile of type 1 belongs to: (a) lass 1; (b) lass 2; () lass 3; (d)lass 4.LetMk(c) be the number of missing bonds of partiles of lass k in luster c, and Ak(c) the numberof edges inident to partiles of lass k in luster c. Then

M1(c) = 2, A1(c) = 2; M2(c) = 2, A2(c) = 4; M3(c) = 1, A3(c) = 2; M4(c) = 3, A4(c) = 2.(2.10)Let Nk(c) be the number of partiles of lass k of type 1 in luster c. Observing that a luster hastwo onave orners per partile of lass 2, one onave orner per partile of lass 3 and one onvexorner per partile of lass 4, we an write
T (c) = 2P (c)− 2N2(c)−N3(c) +N4(c). (2.11)11



Sine the dual perimeter of a luster is equal to its total number of dual edges, we have
2P (c) =

4
∑

k=1

Ak(c)Nk(c) = 2N1(c) + 4N2(c) + 2N3(c) + 2N4(c) (2.12)(the sum ounts eah edge of the 2�tile twie). The total number of missing bonds, on the other hand,is
M(c) =

4
∑

k=1

Mk(c)Nk(c) = 2N1(c) + 2N2(c) +N3(c) + 3N4(c). (2.13)Combining (2.11�2.13), we arrive at T (c) =M(c). �3 Proof of Theorem 1.3: identi�ation of XstabReall that Λ− (the part of Λ where partiles interat) is an (L + 1
2 ) × (L + 1

2 ) dual square with
L > 2ℓ⋆. Let ηstab, η′stab be the on�gurations onsisting of a 2�tiled dual square of size L with evenparity, respetively, odd parity. These two on�gurations have the same energy. Theorem 1.3 says that
Xstab = {ηstab, η′stab} = ⊞. Setion 3.1 ontains two lemmas about 2�tiled on�gurations with minimalenergy. Setion 3.2 uses these two lemmas to prove Theorem 1.3.3.1 Standard on�gurations are minimizers among 2�tiled on�gurationsLemma 3.1 Within V4n2

⋆,n2
, the standard on�gurations ahieve the minimal energy.Proof. Reall from item 2 in Setion 2.2 that

H(η) = ∆1n1(η) + ∆2n2(η)− UB(η). (3.1)In V4n2
⋆,n2

both n2 and B = 4n2 are �xed, and hene min
η∈V

4n2
⋆,n2

H(η) is attained at a on�gurationminimizing n1. By Lemma 2.3, if η ∈ V4n2
⋆,n2

, then
n1(η) =

1
4 [B(η) + T (η)], n2(η) =

1
4B(η). (3.2)Hene, to minimize n1(η) we must minimize T (η). The laim therefore follows from Lemma 2.2(i). �For a standard on�guration the omputation of the energy is straightforward. For ℓ ∈ N, ζ ∈ {0, 1}and k ∈ N0 with k ≤ ℓ + ζ, let ηℓ,ζ,k denote the standard on�guration onsisting of an ℓ × (ℓ + ζ)(quasi-)square with a bar of length k attahed to one of its longest sides (see Fig. 10).

Figure 10: A standard on�guration with ℓ = 7, ζ = 1 and k = 5.Lemma 3.2 The energy of ηℓ,ζ,k is (reall (1.14))
H(ηℓ,ζ,k) = −ε[ℓ(ℓ+ ζ) + k] + ∆1[ℓ+ (ℓ+ ζ) + 1 + 1{k>0}]. (3.3)12



Proof. Note that P (ηℓ,ζ,k) = 2[ℓ+ (ℓ+ ζ) + 1{k>0}] and Q(ηℓ,ζ,k) = 0, so that
T (ηℓ,ζ,k) = 4[ℓ+ (ℓ+ ζ) + 1 + 1{k>0}]. (3.4)Also note that

B(ηℓ,ζ,k) = 4[ℓ+ (ℓ + ζ) + k], (3.5)beause all partiles of type 2 are saturated. However, by (3.1�3.2), we have
H(ηℓ,ζ,k) = − 1

4εB(ηℓ,ζ,k) + 1
4T (ηℓ,ζ,k)∆1, (3.6)and so the laim follows by ombining (3.4�3.6). �Note that the energy inreases by ∆1 − ε (whih is > 0 if and only if ℓ⋆ ≥ 2 by (1.13)) when a barof length k = 1 is added, and dereases by ε eah time the bar is extended. Note further that

H(ηℓ,1,0)−H(ηℓ,0,0) = ∆1 − ℓε, H(ηℓ+1,0,0)−H(ηℓ,1,0) = ∆1 − (ℓ + 1)ε, (3.7)whih show that the energy of a growing sequene of standard on�gurations goes up when ℓ < ℓ⋆ andgoes down when ℓ ≥ ℓ⋆. The highest energy is attained at ηℓ⋆−1,1,1, whih is the ritial droplet inFig. 4.It is worth noting that H(η2ℓ
⋆,0,0

s ) < 0, i.e., the energy of a dual square of side length 2ℓ⋆ is lowerthan the energy of �. This is why we assumed L > 2ℓ⋆, to allow for H(⊞) < H(�).3.2 Stable on�gurationsIn this setion we use Lemmas 3.1�3.2 to prove Theorem 1.3.Proof. Let η denote any on�guration in Xstab. Below we will show that:(A) η does not ontain any partile in ∂−Λ.(B) η is a 2�tiled on�guration, i.e., η ∈ V4n2
⋆,n2

for some n2 (= n2(η)).One we have (A) and (B), we observe that η annot ontain a number of 2�tiles larger than L2.Indeed, onsider the tile support of η. Sine Λ− is an (L+ 1
2 )× (L+ 1

2 ) dual square, if the tile supportof η �ts inside Λ−, then so does the dual irumsribing retangle of η. But any retangle of area ≥ L2has at least one side of length L + 1. Hene n2(η) ≤ L2, and therefore the number of 2�tiles in η isat most L2. By Lemmas 3.1�3.2, the global minimum of the energy is attained at the largest dualquasi-square that �ts inside Λ−, sine L > 2ℓ⋆. We therefore onlude that η ∈ {ηstab, η′stab}, whihproves the laim.Proof of (A). Sine in ∂−Λ partiles do not feel any interation but have a positive energy ost, removalof a partile from ∂−Λ always lowers the energy.Proof of (B). We note the following three fats:(1) η does not ontain isolated partiles of type 1.(2) ∂−Λ− does not ontain any partile of type 2.(3) All partiles of type 2 in η have all their neighboring sites oupied by a partile.For (1), simply note that the on�guration obtained from η by removing isolated partiles has lowerenergy. For (2), note that partiles in ∂−Λ− have at most two ative bonds. Therefore, if η wouldhave a partile of type 2 in ∂−Λ−, then the removal of that partile would lower the energy, beause
∆2 −∆1 > 2U and ∆1 > 0 (reall (1.12)) imply ∆2 > 2U . For (3), note that if a partile of type 213



has an empty neighboring site, then the addition of a partile of type 1 at this site lowers the energy,beause ∆1 < U (reall (1.12)).We an now omplete the proof of (B) as follows. The onstraint ∆2 − ∆1 > 2U implies thatany partile of type 2 in η must have at least three neighboring sites oupied by a partile of type
1. Indeed, the removal of a partile of type 2 with at most two ative bonds lowers the energy.But the fourth neighboring site must also be oupied by a partile of type 1. Indeed, suppose thatthis site would be oupied by a partile of type 2. Then this partile would have at most threeative bonds. Consider the on�guration η̃ obtained from η after replaing this partile by a partileof type 1. Then B(η̃) − B(η) ≥ −2, n1(η̃) − n1(η) = 1 and n2(η̃) − n2(η) = −1. Consequently,
H(η̃)−H(η) ≤ ∆1 −∆2 + 2U < 0. Hene, any partile of type 2 in η must be saturated. �4 Proof of Theorem 1.5: identi�ation of Γ⋆ = Φ(�,⊞)In Setion 4.1 we prove Theorem 1.5 subjet to the following lemma.Lemma 4.1 For any n2 ≤ L2, the on�gurations of minimal energy with n2 partiles of type 2 belongto V4n2

⋆,n2
, i.e., are 2�tiled on�gurations.The proof of this lemma is given in Setion 4.2.4.1 Proof of Theorem 1.5 subjet to Lemma 4.1Proof. For Y ⊂ X , de�ne the external boundary of Y by ∂Y = {η ∈ X\Y : ∃η′ ∈ Y, η ↔ η′} andthe bottom of Y by F(Y) = argminη∈Y H(η). Aording to Manzo, Nardi, Olivieri and Soppola [5℄,Setion 4.2, Φ(�,⊞) = minη∈∂BH(η) for B ⊂ X any (!) set with the following properties:(I) B is onneted via allowed moves, � ∈ B and ⊞ /∈ B.(II) There is a path ω⋆ : � → ⊞ suh that {argmaxη∈ω⋆ H(η)} ∩ F(∂B) 6= ∅.Thus, our task is to �nd suh a B and ompute the lowest energy of ∂B.For (I), hoose B to be the set of all on�gurations η suh that n2(η) ≤ ℓ⋆(ℓ⋆ − 1) + 1. Clearly thisset is onneted, ontains � and does not ontain ⊞.For (II), hoose ω⋆ as follows. A partile of type 2 is brought inside Λ (∆H = ∆2), moved to theorigin and is saturated by four times bringing a partile of type 1 (∆H = ∆1) and attahing it to thepartile of type 2 (∆H = −U). After this �rst 2�tile has been ompleted, ω⋆ follows a sequene ofinreasing 2�tiled dual quasi-squares. The passage from one quasi�square to the next is obtained byadding a 12�bar to one of the longest sides, as follows. First a partile of type 2 is brought inside Λ(∆H = ∆2) and is attahed to one of the longest sides of the quasi-square (∆H = −2U). Next, twiea partile of type 1 is brought inside the box (∆H = ∆1) and is attahed to the (not yet saturated)partile of type 2 (∆H = −U) in order to omplete a 2�tiled protuberane. Finally, the 12�baris ompleted by bringing a partile of type 2 inside Λ (∆H = ∆2), moving it to a onave orner(∆H = −3U), and saturating it with a partile of type 1 (∆H = ∆1, respetively, ∆H = −U). It isobvious that ω⋆ eventually hits ⊞. The path ω⋆ is referred to as the referene path for the nuleation.Call η⋆ the on�guration in ω⋆ onsisting of an ℓ⋆ × (ℓ⋆ − 1) quasi-square, a 2�tiled protuberaneattahed to one of its longest sides, and a free partile of type 2 (see Fig. 11; there are many hoiesfor ω⋆ depending on where the 2�tiled protuberanes are added; all these hoies are equivalent. Notethat, in the notation of Lemma 3.2, η⋆ = ηℓ

⋆−1,1,1 + fp[2], where +fp[2] denotes the addition of a freepartile of type 2. Observe that:(a) ω⋆ exits B via the on�guration η⋆;(b) η⋆ ∈ F(∂B); 14



() η⋆ ∈ {argmaxη∈ω⋆ H(η)}.Observation (a) is obvious, while (b) follows from Lemmas 3.1 and 4.1. To see (), note the following:(1) The total energy di�erene obtained by adding a 12�bar of length ℓ on the side of a 2�tiled lusteris ∆H(adding a 12�bar) = ∆1 − εℓ, whih hanges sign at ℓ = ℓ⋆ (reall (3.7)); (2) The on�gurationsof maximal energy in a sequene of growing quasi-squares are those where a free partile of type
2 enters the box after the 2�tiled protuberane has been ompleted. Thus, within energy barrier
2∆1 + 2∆2 − 4U = 4U − ε the 12�bar is ompleted downwards in energy. This means that, afteron�guration η⋆ is hit, the dynamis an reah the 2�tiled dual square of ℓ⋆ × ℓ⋆ while staying belowthe energy level H(η⋆). Sine all 2�tiled dual quasi-squares larger than ℓ⋆ × (ℓ⋆ − 1) have an energysmaller than that of the 2�tiled dual quasi-square ℓ⋆ × (ℓ⋆ − 1) itself, the path ω⋆ does not again reahthe energy level H(η⋆).Beause of (a�), we have Φ(�,⊞) = H(η⋆). To omplete the proof, use Lemma 3.2 to ompute

H(η⋆) = H(ηℓ
⋆−1,1,1 + fp[2]) = −ε[ℓ⋆(ℓ⋆ − 1) + 1] + ∆1(2ℓ

⋆ + 1) + ∆2. (4.1)
�

Figure 11: A ritial on�guration η⋆. This is the dual version of the ritial droplet in Fig. 4.4.2 Proof of Lemma 4.1The proof of Lemma 4.1 is arried out in two steps. In Setion 4.2.1 we show that the laim holds forsingle-luster on�gurations with a �xed number of partiles of type 2. In Setion 4.2.2 we extend thelaim to general on�gurations with a �xed number of partiles of type 2.4.2.1 Single lusters of minimal energy are 2�tiled lustersLemma 4.2 For any single-luster on�guration η ∈ V⋆,n2
\V4n2

⋆,n2
there exists a on�guration η̃ ∈ V4n2

⋆,n2suh that H(η̃) < H(η).Proof. Pik any η ∈ V⋆,n2
\V4n2

⋆,n2
. Every neighboring site of a partile of type 2 in the luster is eitherempty or oupied by a partile of type 1, and there is at least one non-saturated partile of type 2.Sine η onsists of a single luster, η̃ an be onstruted in the following way:

• η̃(i) = η(i) for all i ∈ supp(η).
• η̃(j) = 1 for all j /∈ supp(η) suh that there exists an i ∼ j with η(i) = 2.15



Sine
H(η) = ∆1n1(η) + ∆2n2(η)− UB(η),

H(η̃) = ∆1n1(η̃) + ∆2n2(η̃)− UB(η̃),
(4.2)and n2(η) = n2(η̃), we have

H(η̃)−H(η) = ∆1[n1(η̃)− n1(η)]− U [B(η̃)−B(η)]. (4.3)By onstrution, B(η̃)− B(η) ≥ n1(η̃) − n1(η) > 0. Sine 0 < ∆1 < U (reall (1.12)), it follows from(4.3) that H(η̃) < H(η). �4.2.2 Con�gurations of minimal energy with �xed number of partiles of type 2Lemma 4.3 For any n2 and any on�guration η ∈ V⋆,n2
onsisting of at least two lusters, anyon�guration η⋆ suh that η⋆ is a single luster, η⋆ ∈ V4n2

⋆,n2
and η⋆ is a standard on�guration satis�es

H(η⋆) < H(η).Proof. Let η ∈ V⋆,n2
be a on�guration onsisting of k > 1 lusters, labeled c1, . . . , ck. Let ηn2(ci)denote any standard on�guration with n2(ci) partiles of type 2. By Lemmas 3.1 and 4.2, we have

H(η) =
k

∑

i=1

H(ci) ≥
k

∑

i=1

H(ηn2(ci)). (4.4)By Lemma 2.3, we have (reall (1.14))
k

∑

i=1

H(ηn2(ci)) =

k
∑

i=1

[

∆1n1(η
n2(ci)) + ∆2n2(η

n2(ci))− UB(ηn2(ci))
]

=

k
∑

i=1

[

∆1

{

n2(η
n2(ci)) + 1

4T (ηn2(ci))
}

+∆2n2(η
n2(ci))− U4n2(η

n2(ci))
]

=

k
∑

i=1

[

− εn2(η
n2(ci)) + 1

4∆1T (ηn2(ci))
]

.

(4.5)
But from Lemma 2.2 it follows that

k
∑

i=1

T (ηn2(ci)) > T
(

η
∑

k
i=1

n2(ci)
)

, (4.6)where η∑k
i=1

n2(ci) denotes any standard on�guration with ∑k
i=1 n2(ci) = n2(η) partiles of type 2.Combining (4.4�4.6), we arrive at

H(η) > −εn2(η) +
1
4∆1T (ηn2(η)) = H(ηn2(η)). (4.7)

�5 Proof of Theorem 1.4: upper bound on Vη for η /∈ {�,⊞}In this setion we show that for any on�guration η /∈ {�,⊞} it is possible to �nd a path ω : η → η′with η′ ∈ {�,⊞} suh that maxξ∈ωH(ξ) ≤ H(η) + V ⋆ with V ⋆ ≤ 10U − ∆1 and η′ ∈ Iη. ByDe�nition 1.1(�e), this implies that Vη ≤ V ⋆ for all η /∈ {�,⊞} and therefore settles Theorem 1.4.Setion 5.3 desribes an energy redution algorithm to �nd ω. Roughly, the idea is that if η ontainsonly �subritial lusters�, then these lusters an be removed one by one to reah �, while if η ontains16



some �superritial luster�, then this luster an be taken as a stepping stone to onstrut a path to
⊞ that goes via a sequene of inreasing retangles. In partiular, the superritial luster is �rstextended to a 2�tiled retangle touhing the north-boundary of Λ, after that it is extended to a 2�tiledretangle touhing the west-boundary and the east-boundary of Λ, and �nally it is extended to ⊞.To arry out this task, six energy redution mehanisms are needed, whih are introdued andexplained in Setion 5.2:

• Moving unit holes inside 2�tiled lusters (Setion 5.2.1).
• Adding and removing 12�bars from lattie-onneting retangles (Setion 5.2.2).
• Changing bridges into 12�bars (Setion 5.2.3).
• Maximally expanding 2�tiled retangles (Setion 5.2.4).
• Merging adjaent 2�tiled retangles (Setion 5.2.5).
• Removing subritial lusters (Setion 5.2.6).Eah of Setions 5.2.1�5.2.6 states a de�nition and a lemma, and uses these to prove a propositionabout the relevant energy redution mehanism. The six propositions thus obtained will be ruial forthe energy redution algorithm in Setion 5.3.In Setion 5.1 we begin by de�ning beams and pillars, whih are needed throughout Setion 5.2.5.1 Beams and pillarsLemma 5.1 Let η be a on�guration ontaining a tile t that has at least three juntion sites oupiedby a partile of type 1. Then the on�guration η′ obtained from η by turning t into a 2�tile satis�es

H(η′) ≤ H(η).
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)Figure 12: Possible tiles with at least three juntion sites oupied by a partile of type 1.Proof. W.l.o.g. we may assume that η(ta) = η(tb) = η(td) = 1, and that η′ is the on�guration inFig. 6(d), i.e., η′(ta) = η′(tb) = η′(tc) = η′(td) = 1, η′(te) = 2. The following eight ases are possible(see Fig. 12 and reall (1.12)):(i) (η(tc), η(te)) = (0, 0). One partile of type 1 and one partile of type 2 are added, and at leastfour new bonds are ativated: ∆H ≤ ∆1 +∆2 − 4U < 0.(ii) (η(tc), η(te)) = (0, 2). One partile of type 1 is added, and one new bond is ativated: ∆H =

∆1 − U < 0.(iii) (η(tc), η(te)) = (2, 0). One partile of type 2 is moved to another site without deativating anybonds, after whih ase (ii) applies.(iv) (η(tc), η(te)) = (2, 2). One partile of type 2 with at most three ative bonds is replaed by onepartile of type 1 with at least one ative bond: ∆H ≤ ∆1 −∆2 + 2U < 0.(v) (η(tc), η(te)) = (1, 0). One partile of type 2 is added, and four new bonds are ativated: ∆H =
∆2 − 4U < 0. 17



(vi) (η(tc), η(te)) = (0, 1). One partile of type 1 is moved to another site without deativatingany ative bond, one partile of type 2 is added, and at least four new bonds are ativated:
∆H ≤ ∆2 − 4U < 0.(vii) (η(tc), η(te)) = (2, 1). Two partiles are exhanged without deativating any bonds: ∆H ≤ 0.(viii) (η(tc), η(te)) = (1, 1). One partile of type 1 is replaed by a partile of type 2, and four newbonds are ativated: ∆H = ∆2 −∆1 − 4U < 0.

�De�nition 5.2 A beam of length ℓ is a row (or olumn) of ℓ + 1 partiles of type 1 at dual distane
1 of eah other. A pillar is a partile of type 1 at dual distane 1 of the beam not loated at one ofthe two ends of the beam. The partile in the beam sitting next to the pillar divides the beam into twosetions. The lengths of these two setions are ≥ 0 and sum up to ℓ. The support of a pillared beam isthe union of all the tile supports. The support onsists of three rows (or olumns) of sites � an upper,middle and lower row (or olumn) � whih are referred to as roof, enter and basement (see Fig. 13).
Figure 13: A south-pillared horizontal beam of length 10 with a west-setion of length 4 and aneast-setion of length 6.Note that a beam an have more than one pillar. Lemma 5.1 implies the following.Corollary 5.3 Let η be a on�guration ontaining a pillared beam b̃ suh that supp(b̃) is not 2�tiled.Then the on�guration η′ obtained from η by 2�tiling supp(b̃) satis�es H(η′) ≤ H(η).5.2 Six energy redution mehanisms5.2.1 Moving unit holes inside 2�tiled lustersIn this setion we show how a unit hole an move inside a 2�tiled luster. In partiular, we show thatsuh motion is possible within an energy barrier 6U by hanging the on�guration only loally.De�nition 5.4 A set of sites S inside Λ obtained from a 4× 4 square after removing the four ornersites is alled a slot.Given a slot S, we assign a label to eah of the 12 sites in S as in Fig. 14 (a): �rst lokwise in the enterof S and then lokwise on the boundary of S. We all the pairs (S1, S3) and (S2, S4) slot-onjugatesites.Lemma 5.5 Let S be a slot, and let η0 be any on�guration suh that all partiles in S have the sameparity. W.l.o.g. this parity may be taken to be even, so that η(S1) = 0 and η(S3) = 2. Let η1 be theon�guration obtained from η by interhanging the states of S1 and S3. Then H(η0) = H(η1), andthere exists a path ω : η0 → η1 that never exeeds the energy level H(η0) + 6U .Proof. W.l.o.g. we take η0 as in Fig. 14(b�). Let a → b denote the motion of a partile from site ato site b. For the path ω we hoose the following sequene of moves: S4 → S1; S3 → S4; S2 → S3;
S1 → S2; S4 → S1; S3 → S4. The �rst three moves and the seond three moves eah are a rotation by
π
2 of the subon�guration at the sites S1, S2, S3, S4. Note that all on�gurations in ω have the samenumber of partiles of eah type and hene the hanges in energy only depend on the hange in the18



(a) (b) () (d) (e)Figure 14: (a) labelling of the sites in the slot (standard representation); (b) example of η0 in theslot (standard representation); () example of η0 in the slot (dual representation). (d) η1 in the slot(standard representation); (e) of η1 in the slot (dual representation).number of ative bonds. Let MRF be the loss of the number of ative bonds between the rotatingpartiles and the �xed partiles, and MR the loss of the number of ative bonds between the rotatingpartiles. We must show that MRF +MR ≤ 6 during the six moves. To that end, we �rst observe that
MRF ≤ 6, sine the total number of ative bonds between the rotating partiles and the �xed partilesis at most 6 (see Fig. 14(b)), and that MRF = 6 only after the �rst three moves are ompleted, i.e.,when the on�guration is suh that all the rotating partiles have a di�erent parity with respet to theparity they had in on�guration η0 (reall that partiles with di�erent parity annot share a bond).Next we observe that, by the hoie of ω, the value of MR an only be 0 or 1, and that MR = 0 afterthe �rst three moves are ompleted. �Lemma 5.5 implies the following.Proposition 5.6 Let η be a 2�tiled on�guration with a unit hole. Then the on�guration η′ obtainedfrom η by moving the unit hole elsewhere satis�es H(η′) = H(η) and Φ(η, η′) ≤ H(η) + 6U .A possible 6U -path for a unit hole inside a 2�tiled luster is given in Fig. 15. This path is obtainedthrough an iteration of loal moves as explained in Fig. 14.

Figure 15: Motion of a unit hole inside a 2�tiled luster.5.2.2 Adding and removing 12�bars from lattie-onneting retanglesLemma 5.7 Let η be a on�guration onsisting of a single 2�tiled lattie-onneting retangle. Thenthe on�guration η′ obtained from η by, respetively,1. adding a 12�bar of length ℓ ≥ ℓ⋆,2. adding a 12�bar of length ℓ < ℓ⋆,3. removing a 12�bar of length ℓ ≥ ℓ⋆,4. removing a 12�bar of length ℓ < ℓ⋆,satis�es, respetively, 19



1. H(η′) < H(η) and Φ(η, η′) ≤ H(η) + 2∆1 + 2∆2 − 4U ,2. H(η′) > H(η) and Φ(η, η′) ≤ H(η) + 2∆1 + 2∆2 − 4U ,3. H(η′) > H(η) and Φ(η, η′) ≤ H(η) + (ℓ− 2)ε+ 4U −∆1,4. H(η′) < H(η) and Φ(η, η′) ≤ H(η) + (ℓ− 2)ε+ 4U −∆1.Proof. Reall the omputations in Setions 3.1 and 4.1.Adding a 12�bar. Adding a 12�bar of length ℓ on a lattie-onneting side of a 2�tiled retangle(i.e., a side suh that all the partiles of type 1 on that side are lattie-onneting) an be done in twosteps: (i) initiate the 12�bar by adding a 2�tiled protuberane (see Fig. 16); (ii) omplete the 12�barby adding a 2�tile (in a �orner�) ℓ− 1 times (see Fig. 17). This an be ahieved within energy barrier
∆H = 2∆1+2∆2 − 4U by following the same moves as the referene path ω⋆ desribed in Setion 4.1.The energy di�erene due to the extra 12�bar of length ℓ is ∆H(ℓ) = ∆1 − ℓε, whih hanges sign at
ℓ = ℓ⋆.

Figure 16: A 2�tiled protuberane is added to a side of a dual retangle within energy barrier ∆2.

Figure 17: A 2�tile is added in a orner between 2�tiles within a energy barrier ∆2.Removing a 12�bar. Removing a 12�bar of length ℓ from a lattie-onneting retangle an bedone by following the reverse of the path used to add a 12�bar: (i) remove ℓ − 1 times a 2�tilefrom a bar; (ii) remove the last 2�tiled protuberane. This an be ahieved within energy barrier20



∆H(ℓ) = (ℓ − 2)ε+ 4U −∆1. If the luster onsists of one 12�bar only, then the path just desribedleaves ℓ+1 free partiles of type 1 inside Λ, whih an be removed (free of energy ost) afterwards. �We use Lemma 5.7 to build a northern retangle on top of a 12�bar as follows.De�nition 5.8 Let b denote the vertial oordinate of the sites lying on the north-side of ∂−Λ−. Fora given 2�tiled retangle r in Λ−, let br denote the vertial oordinate of the northern-most partiles oftype 1in r. Then r is said to be touhing the north-side of ∂−Λ− if br = b or br = b− 1
2 .In words, a 2�tiled retangle is said to be touhing the north-side of ∂−Λ− if it is not possible to adda 12�bar on the north-side within Λ−. Retangles touhing the south-, east- or west-side of Λ− arede�ned similarly.Let b̄ be a horizontal 12�bar of length ℓ, i.e., a 2�tiled ℓ×1 retangle. Suppose that all sites above b̄are vaant. Then it is possible to suessively add horizontal 12�bars, say m in total, on top of b̄ untilthe north side of the retangle grown in this way touhes the north-side of Λ−. The 2�tiled retanglewith m+1 rows and ℓ olumns suh that b̄ is its lower-most horizontal 12�bar is denoted by ⊓

(

b̄
) andis alled the northern retangle of b̄.Lemma 5.7 implies the following.Proposition 5.9 Let η be a on�guration ontaining a horizontal 12�bar b̄ of length ℓ ≥ ℓ⋆. Then theon�guration η′ obtained from η by building ⊓

(

b̄
) satis�es H(η′) < H(η) and Φ(η, η′) ≤ H(η) + 2∆1+

2∆2 − 4U .5.2.3 Changing bridges into 12�barsDe�nition 5.10 A (south-)bridge b onsists of a beam b̃ and two (south-)pillars at the outer-mostsites of the (south-)basement of b̃. The (south-)support of b oinides with the (south-)support of b̃. Ifeah of the entral sites of the tiles of the (south-)support of the bridge is oupied by a partile of type
2, then the bridge is said to be stable (see Fig. 18).Clearly, a 12�bar is a stable bridge. North-, east- and west-bridges are de�ned in a similar way.

Figure 18: A stable bridge of length 6.Given a bridge b, let b̄ denote the 12�bar obtained by 2�tiling b. Lemma 5.1 implies the following.Lemma 5.11 Let η be a on�guration ontaining a bridge b whose support is not 2�tiled. Then theon�guration η′ obtained from η by hanging b to b̄ satis�es H(η′) < H(η).Lemma 5.11 leads us to the following.Proposition 5.12 Let η be a on�guration ontaining a (south-)bridge b whose (south-)support is not
2�tiled suh that the partiles of its beam are lattie-onneting. Then the on�guration η′ obtainedfrom η by 2�tiling supp(b) satis�es H(η′) < H(η) and Φ(η, η′) ≤ H(η) + 4U +∆1.Proof. Let the (south-)bridge b have length ℓ. Label the ℓ + 1 sites of its (south-)basement as
s0, s1, . . . , sℓ, from the left to the right. In order to show that supp(b) an be 2�tiled within energybarrier 4U +∆1, it is enough to show that within the same energy barrier a partile of type 1 an bebrought to a site of the basement of b (from the left) that is empty or is oupied by a partile of type21



2. W.l.o.g. s1 may be assumed to be suh a site. The on�guration thus obtained has an energy thatis at most the energy of the original on�guration (see Lemma 5.1). The laim follows by noting thatthe partiles of type 1 at the extremal sites s1 and sℓ are the two pillars of a (south-)bridge of length
ℓ− 1 whose basement onsists of the sites s1, s2, . . . , sℓ.It remains to show how a partile of type 1 an be brought to site s1. Label the site north-west of
s1 by v1 , and the site north-east of v1 by as v2. Two ases need to be distinguished:(1) If η(s1) = 0, then, by the same argument as in the proof of Lemma 5.5, it is easy to show that thepartile of type 1 at v2 an be moved to s1 (to obtain a on�guration η̄ with H(η̄) ≤ H(η)) withoutexeeding energy level H(η) + 4U . The on�guration η′ is reahed within an energy barrier ∆1 bybringing a partile of type 1 inside Λ and moving it to v2.(2) If η(s1) = 2, then onsider the following path. First detah (∆H = 2U) and remove (∆H = −∆1)the partile of type 1 at v2, and afterwards detah (∆H = 2U) and remove (∆H = −∆2) the partileof type 2 at v3. Next, move the partile of type 2 at site s1 to site v1 (∆H ≤ 0; this partile has atmost 2 ative bonds when it sits at s1), and �nally bring a partile of type 1 (∆H = ∆1) to site v2(∆H = −2U). Call this on�guration η̄. Note that H(η̄) < H(η), sine e�etively a partile of type
2 with at most two ative bonds has been removed, and Φ(η, η′) = H(η) + 4U +∆1. Finally, observethat η′ is the same on�guration as η in Case (1). �5.2.4 Maximally expanding 2�tiled retanglesThe mehanism presented in this setion, whih is alled north maximal expansion of a 2�tiled retangle,is suh that it an be applied to a 2�tiled retangle whose north-side is lattie-onneting (even thoughthis ondition is not restritive). South, east and west maximal expansion of a 2�tiled luster areanalogous.De�nition 5.13 The north maximal expansion omes in two phases: a growing phase and a smoothingphase.(i) The growing phase onsists of the following three steps repeated ylially:1. If the partiles of type 1 on the south-side of the retangle, either at the beginning or obtainedafter step 3, onstitute a south-pillared beam b̃s, then hange supp(b̃s) into a 12�bar.2. If the partiles of type 1 on the east-side of the retangle, obtained after step 1, onstitute aneast-pillared beam b̃e, then hange supp(b̃e) into a 12�bar.3. If the partiles of type 1 on the west -side of the retangle, obtained after step 2, onstitute awest-pillared beam b̃w, then hange supp(b̃w) into a 12�bar.The growing phase ends after three onseutive steps leave the on�guration unhanged.(ii) The smoothing phase onsists of removing all the partiles of type 2 that are adjaent to the oneson the sides of the retangle that is built during the growing phase. Note that these partiles have atmost two ative bonds (otherwise it would be possible to identify another pillared beam), and thereforeremoval of these partiles lowers the energy.The outome of the north maximal expansion (see Fig. 19) of a 2�tiled retangle is again a 2�tiledretangle, ontaining the old retangle and suh that the northern-most 12�bar of the new retanglehas the same vertial oordinate.Given a 2�tiled retangle r, let R ⊣ (r) denote the north maximal expansion of r. Corollary 5.3implies the following.Lemma 5.14 Let η be a on�guration ontaining a 2�tiled retangle. Then the on�guration η′ ob-tained from η via (north) maximal expansion of this 2�tiled retangle satis�es then H(η′) ≤ H(η).22



(a) (b) ()
(d) (e) (f)Figure 19: Example of north maximal expansion of a 2�tiled retangle. The outome of the stepsof the growing phase are represented in pitures (b�e), while the outome of the smoothing phase isrepresented in piture (f).Lemma 5.14 leads us to the following.Proposition 5.15 Let η be a on�guration ontaining a 2�tiled retangle r whose north-side is lattie-onneting. Then the on�guration η′ obtained from η after replaing r by R ⊣ (r) satis�es H(η′) ≤ H(η)and Φ(η, η′) ≤ H(η) + 10U −∆1.Proof. If R ⊣ (r) = r, then there is nothing to prove. Therefore suppose that r is suh that one its sidesis a pillared beam. W.l.o.g. we may assume that the south-side of r is a beam b̃ with a south-pillar. Wemust show that the south-support of b̃ an be turned into a 12�bar within energy barrier 10U −∆1.Sine supp(b̃) is not a 12�bar, a pillar an be hosen in suh a way that at least one of the 2�tilesof the support the pillar belongs to (i.e., the �rst tile of eah setion of the support, ounting from thepillar) is not a 2�tile. W.l.o.g. we let this tile be the �rst tile of the right-setion and all it t. Let vdenote the tile adjaent to the right site of v. In the following, the term super�ial refers to tiles thatare in the top tile-bar of the retangle. In analogy with the proof of Lemma 5.1, several ases need tobe onsidered (we stik to the order in Fig. 12).(i) (η(tc), η(te)) = (0, 0). A partile of type 2 has to be brought to site te and a partile of type 1 tosite tc. First bring a partile of type 2 to site te, to reah a on�guration η̂, and then proeed asin Case (ii). As we will see in Case (ii), sine H(η̂) = H(η) − 3U + ∆2, the seond part of thepath an be ompleted without exeeding energy level H(η) + 6U +∆2. To reah on�guration

η̂, move the partile of type 2 of the 2�tile above t to site te to reah a on�guration alled η′.This an be done without exeeding energy level H(η) + 6U . Note that H(η′) = H(η) + U . Theunit hole that has been reated at the entral site of the tile above t has to be �lled. This an bedone (see Lemma 5.5) by �rst moving the unit hole until it beomes super�ial (on�guration η̃with energy H(η̃) = H(η′)) without exeeding energy level H(η′) + 6U , and then �lling this unithole with a partile of type 2 within energy level H(η′) +U −∆1 +∆2 = H(η) + 2U −∆1 +∆2.Thus, η′ an be reahed without exeeding energy barrier 6U +∆2.23



(ii) (η(tc), η(te)) = (0, 2). A partile of type 1 has to be brought to site tc. Depending on the stateof site ve, there are three ases.(a) Site ve is oupied by a partile of type 2. Move the partile of type 1 at site tb to site
tc, to reah a on�guration η′ with energy H(η′) ≤ H(η) + 2U within an energy barrier of
6U . The vaany at site tb an be moved (again by Lemma 5.5) to the north-side of theretangle within energy barrier 6U , to reah a on�guration η̂ with H(η̂) ≤ H(η), and then�lled with an extra partile of type 1. Thus, η′ an be reahed without exeeding energylevel H(η) + 8U .(b) Site ve is empty. Move the partile of type 1 at site tb to site ve (∆H ≤ 3U), and then tosite td (∆H = 0). Call this on�guration η′, and note that H(η′) ≤ H(η) + 2U . Arguingas above, we see that the vaany at site tb an be �lled without exeeding the energy level
H(η) + 9U .() Site ve is oupied by a partile of type 1. Observe that the partile of type 1 at tb has k ≤ 3ative bonds and the partile of type 2 at ve has m ≤ 2 ative bonds. It is possible to movethe partile at site ve to site tc (∆H = (m − k)U), and then the partile at site tb to site
vc (∆H = (k −m)U). The on�guration η′, reahed within energy barrier (k −m)U , hasenergy H(η′) ≤ H(η) + kU . Again, the vaany at site tb has to be �lled with a partile oftype 1. This an be done without exeeding the energy level H(η) + (6+ k)U ≤ H(η) + 9U .(iii) (η(tc), η(te)) = (2, 0). The partile of type 2 at site tc is moved to site te without inreasing theenergy. Then argue as in Case (ii).(iv) (η(tc), η(te)) = (2, 2). The partile of type 2 at site tc has to be replaed by a partile of type

1. Remove the partile of type 2 at te. To do this, �rst reate a super�ial unit hole (whih anbe done within energy barrier 4U −∆1 by reating a hole in a orner tile of the retangle) andmove this vaany to site te. By Lemma 5.5, this an be ahieved without exeeding energy level
H(η0) + 10U −∆2. Then move the partile of type 2 at site tc to site te (∆H ≤ 0). Call η′ theon�guration that is reahed in this way. Note that H(η′) ≤ H(η)−∆2+3U . To bring a partileof type 1 to site tc, argue as in Case (ii), to arrive at H(η̂) ≤ H(η) + 12U −∆2.(v) (η(tc), η(te)) = (1, 0). A partile of type 2 has to be brought to site te. Move the unit hole at teto the top tile�bar of the retangle. This does not hange the energy of the on�guration and anbe done within energy barrier 6U by Proposition 5.6. The task redues to �lling a super�ial unithole on the surfae of the luster with a partile of type 2. This an be ahieved within energybarrier U +∆2 −∆1. Therefore the maximal energy level reahed in this ase is H(η) + 6U .(vi) (η(tc), η(te)) = (0, 1). Move the partile of type 2 from site te to site tc. This move does notinrease the energy of the on�guration. Then proeed as in Case (v).(vii) (η(tc), η(te)) = (2, 1). The oupation numbers of sites tc and te have to be exhanged. Todo this, �rst remove the partile of type 1 at site tb to obtain a on�guration η′ with energy
H(η′) ≤ H(η)+ 3U without exeeding the energy level H(η)+ 10U −∆1 (again use Lemma 5.5).Move the partile of type 1 from te to tb (∆H < 0) and the partile of type 2 from tc to te(∆H = 0). Call η̂ the on�guration that is reahed in this way. Note that H(η̂) ≤ H(η)+U−∆1.Proeed as in Case (ii) to onlude within energy barrier of 10U −∆1.(viii) (η(tc), η(te)) = (1, 1). The partile of type 1 at site te has to be replaed by a partile of type 2.This an be done as follows. First the partile of type 1 sitting a site tb is removed. To ahievethis, �rst remove a partile of type 1 at the north-side of the retangle and then (use Lemma 5.5)move the vaany to site tb. The on�guration that is reahed, whih we all η′, is suh that
H(η′) ≤ H(η) + 3U −∆1. Next, move the partile of type 1 at te to site tb (∆H = 0), to reaha on�guration η̂ whose energy is H(η̂) = H(η)−∆1. Finally, argue as in Case (v), to arrive at
H(η̂) ≤ H(η) + 3U −∆1. 24



Finally, note that (1.12) implies max{6U +∆2, 10U −∆1, 12U −∆2} = 10U −∆1.By Lemma 5.1, H(η′) ≤ H(η), and therefore the same argument an be used to show that all theright-setions of the support an be 2�tiled within the same energy barrier. The left-setion an be
2�tiled analogously.To onlude, it remains to be shown how partiles of type 2, possibly adjaent to one side of theretangle, an be removed from Λ. Call t the tile assoiated with the partile p of type 2 that hasto be removed (p sits at site te) and v the tile adjaent to t belonging to the retangle. First bringa vaany to site ve within energy barrier 10U − ∆2 (one way to ahieve this has been desribed inCase (iv) above) and then move p to site ve (see Lemma 5.5). �5.2.5 Merging adjaent 2�tiled retanglesDe�nition 5.16 A 12�bar b1 of length ℓ of a luster c1 is said to be adjaent to a 12�bar b2 of length
m ≤ ℓ of a luster c2 if there exist m mutually disjoint pairs (qi1, q

i
2) of partiles of type 1 with qi1 ∈ b1and qi2 ∈ b2 suh that u(qi1) − u(qi2) = v with ‖v‖ = 1

2

√
2 for i = 1, . . . ,m. The vetor v is alled theo�set of b2 with respet to b1. The tiles in b1 have a di�erent parity than the tiles in b2. The partiles

qi1 ∈ b1, i = 1, . . .m, are alled the external partiles of b1 with respet to b2, and the partiles qi2 ∈ b2,
i = 1, . . . ,m, are alled the external partiles of b2 with respet to b1.Proposition 5.17 Let η be a on�guration that ontains two adjaent 2�tiled retangles. Then theon�guration η′ obtained by �merging� these two retangles satis�es H(η′) = H(η) and Φ(η, η′) ≤
H(η) + 2U −∆1.Proof. Given two adjaent bars b1 and b2 with o�set v = (v1, v2) in a on�guration η, we want tode�ne the sliding of b2 onto b1 along v. The resulting on�guration η′ is suh that all the partilesof type 2 originally in b2 are slid by (v1, v2) with respet to their position in η, and all the externalpartiles of type 1 of b2 with respet to b1 are slid by (v1,−v2) when the two bars are horizontal andby(−v1, v2) when the two bars are vertial. Via the sliding, the m 2�tiles in b2 are turned into m
2�tiles with the same parity as the tiles in b1. It is easy to see that H(η′) = H(η), sine neither thetotal number of ative bonds of the on�guration nor the number of partiles of eah type is hanged.To desribe the sliding of a bar onto another bar along a vetor v, we may assume w.l.o.g. thatthe two bars are vertial and that the vetor v is equal to (− 1

2 ,− 1
2 ) (Fig. 20(a)). Start by moving thelower-most external partile of type 1 in b2 over the vetor v′ = (12 ,− 1

2 ) (Fig. 20(b)). This leads to aninrease by U in energy. Then move the lower-most partile of type 2 over the vetor v (Fig. 20()).Sine the number of deativated bonds is equal to the number of new bonds ativated, this move doesnot hange the energy. Proeed by moving over the vetor v′ the seond partile of type 1 from thebottom of the bar (Fig. 20(d)). This also is a move that does not hange the energy. Afterwards, theseond partile of type 2 from the top is moved over the vetor v (Fig. 20(e)). This sequene of movesproeeds iteratively (without a hange in energy) until the m-th partile of type 2 has been moved overthe vetor v. Finally, the (m+1)-st external partile of type 1 is moved over the vetor v′ (Fig. 20(f)).This move dereases the energy by U . Thus, U is the energy barrier that must be overome in orderto realize the sliding of a 12�bar onto another 12�bar over the vetor v.It is lear that, given a on�guration η ontaining two 2�tiled retangles c1 (with vertial side length
ℓ) and c2 (with vertial side length m ≤ ℓ) with o�set v, it is possible to redue η to a on�guration
η′ suh that c1 and c2 are merged into of a single luster by sliding one bar after another, withoutexeeding energy barrier∆H = U , provided the other lusters of η do not interfere with this proedure.Sliding the last bar of c2 we get an exess of free partiles of type 1, whih an be removed from Λ,lowering the energy. In partiular, the on�guration η′ obtained via the sliding of c2 onto c1 along
v without exeeding energy level H(η) + U has energy H(η′) = H(η) − (m + 1)∆1, sine the twoon�gurations onsist of the same number of 2�tiles, and η′ ontains m+1 partiles of type 1 less than
η. Moreover, Φ(η, η′) = H(η) + U .In the argument above, the �rst move onsisted of moving down-right a partile of type 1 of b2to an empty site (say, site i). If in on�guration η site i is oupied by a partile of type 1, then25



(a) η0 (b) ()
(d) (e) (f) η1Figure 20: The sliding of b2 onto b1.the sliding of the vertial 12�bar an be realized by modifying the proedure as follows. First removefrom the box the top-left partile of type 1 of b2 sitting at site j to reah a on�guration with energy

H(η) + U − ∆1 (whih an be done without exeeding energy level H(η) + U). Then move to j thepartile of type 1 sitting at site k = j + v = j + (− 1
2 ,− 1

2 ) in η, whih inreases the energy up to level
H(η) + 2U −∆1. Then site k is �lled with the partile of type 1 originally at site k+ (12 ,− 1

2 ) withoutan inrease in energy. It is possible to ontinue in this way until the on�guration obtained after the�rst step of the above ase is reahed. This on�guration has energy H(η)+U −∆1. Then proeed asin the above ase until b2 is slid onto b1. This leads to a on�guration with energy H(η)−∆1 < H(η).In order to perform the (modi�ed) sliding proedure, it is su�ient to assume that the north-side ofretangle c2 is lattie-onneting. �5.2.6 Removing subritial lustersThe leaning mehanism de�ned in this setion produes a on�guration for whih we have a ertainontrol on the geometry of the onstituent lusters. In partiular, these lusters will be suitable for theappliation of the previous �ve energy redution mehanisms. We begin by looking at pending dimers(see Fig. 21).
Figure 21: A pending dimer is the pair of partiles irled in the piture.De�nition 5.18 A pending dimer onsists of two adjaent partiles of di�erent type suh that thepartile of type 1 is lattie-onneting and has only one ative bond and the partile of type 2 has atmost three ative bonds.Proposition 5.19 Let η be a on�guration ontaining pending dimers. Then there exists a on�gura-tion η′ not ontaining pending dimers that satis�es H(η′) < H(η) and Φ(η, η′) ≤ H(η) + 3U +∆2.26



Proof. If the partile of type 2 has at most two ative bonds, then simply remove the pending dimer.This redues the energy, sine two bonds are deativated and a partile of eah type is removed from Λ(∆H ≤ 2U −∆1−∆2 < 0), and an be ahieved within an energy barrier 2U −∆1 along the followingpath: �rst detah (∆H = U) and remove (∆H = −∆1) the partile of type 1, then detah (∆H ≤ U)and remove (∆H = −∆2) the partile of type 2.If the partile of type 2 has three ative bonds we have two ases:(i) The fourth neighbor of the partile of type 2 of the pending dimer is empty. In this ase η′ isobtained by �lling this empty site with a partile of type 1 in order to obtain a 2�tile, whihlowers the energy sine ∆1 < U . To do this, temporarily remove the pending dimer as desribedabove. This leads to a on�guration η̃ with energy H(η̃) = H(η) + 3U −∆1 −∆2 reahed withinenergy barrier 3U −∆1. Then bring a partile of type 1 to the designated site (∆H ≤ ∆1) and�nally put bak the dimer. The whole path is realized within energy barrier 3U +∆2.(ii) The fourth neighbor of the partile of type 2 is oupied by a partile of type 2. In this ase
η′ is the on�guration suh that the dimer is removed and the site originally oupied by thepartile of type 2 of the dimer is oupied by a partile of type 1. To obtain η′ from η, removethe pending dimer (again, as above, within energy barrier 3U −∆1), to reah a on�guration η̃with energy H(η̃ = H(η) + 3U −∆1 −∆2, and bring a partile of type 1 within energy barrier
∆1. To onlude, observe that H(η′) = H(η) + 2U −∆2 < H(η).

�The leaning mehanism works as follows:1. Remove all the lattie-onneting free partiles from the on�guration.After that repeat ylially the following two steps:2. Iteratively remove/transform all the lattie-onneting pending dimers.3. Bring a partile of type 1 to any of the free sites adjaent to the lattie-onneting partiles oftype 2.Repeat the leaning mehanism until the on�guration is not a�eted anymore. Eah of the three stepsan be performed within energy barrier 3U +∆2. Moreover, eah step redues the energy.Lemma 5.20 The outome of the leaning mehanism is either a on�guration suh that the �rstpartile enountered while sanning Λ in the lexiographi order is a partile of type 1 belonging to ahorizontal stable (south-)bridge, or the on�guration �.Proof. Call q the �rst partile of Λ in the lexiographi order. Reall that the dual oordinates of qare denoted by u(q) = (u1(q), u2(q)). Step 3 of the leaning mehanism guarantees that q is a partileof type 1. The fat that q is the �rst partile in the lexiographi order implies that: (i) all the sitesabove u(q) are empty; (ii) all the sites with the same vertial oordinate as q lying on the left of q areempty as well. As a onsequene of (ii), all the sites on the left of q with vertial oordinate u2(q)− 1
2are lattie-onneting and therefore annot be oupied by a partile of type 2. Sine q annot be afree partile, the site with oordinates (u1(q) + 1

2 , u2(q)− 1
2 ) must be oupied by a partile p of type

2. Let s(p) be the longest sequene of tiles adjaent to t(p) suh that the entral site is oupied bya partile of type 2. Obviously, p is the left-most partile of type 2 in s(p). Call p̃ the last partile oftype 2 in s(p) and q̃ the partile of type 1 with oordinates (u1(p) + 1
2 , u2(p) +

1
2 ). (Note that p and p̃may oinide.) All the sites on the north-side of s(p) are lattie-onneting and hene are oupied bya partile of type 1. To onlude, observe that both p and p̃ must be saturated, otherwise at least oneof the pairs (q, p) and (q̃, p̃) onstitutes a pending dimer. �27



5.3 Energy redution of a general on�guration: Proof of Theorem 1.4Fix any η /∈ {�,⊞}. In this setion we will give a general proedure, alled energy redution algorithm,that allows us to onstrut a path ω : η → ηr with ηr ∈ {�,⊞} suh that maxξ∈ωH(ξ) ≤ H(η) + V ⋆with V ⋆ ≤ 10U −∆1 and H(ηr) < H(η). Note that if ηr = ⊞, then H(ηr) < H(η) beause Xstab = ⊞.The onstrution uses the six energy redution mehanisms desribed in Setions 5.2.1�5.2.6 and relieson Propositions 5.6, 5.9, 5.12, 5.15, 5.17, 5.19, whih are the key results of these setions. Themaximal energy barrier in these propositions is 10U −∆1. Note: The energy redution mehanismsin Setions 5.2.2 and 5.2.3 onern single droplets far away from ∂−Λ and have an energy barrier notexeeding 4U + ∆1 < Γ⋆ (see below (1.14)). For suh on�gurations, the energy an be essentiallyredued by saturating partiles of type 2 and by adding and removing 12�bars. This explains theremark made in Setion 1.4, item 4.In the remainder of this setion we all superritial a 12�bar of length ≥ ℓ⋆. Similarly, we allsuperritial a dual retangle with both side lengths ≥ ℓ⋆.Proof. As a preliminary step, perform the leaning mehanism. If the outome is �, then the laimis proven. Otherwise, let b1 be the �rst bridge enountered in the lexiographi order (whih exists byLemma 5.20). This bridge an be turned into an 12�bar b̄1 (see Setion 5.2.3). If the length of b1 is
< ℓ⋆, then the 12�bar b̄1 an be removed, whih lowers the energy (see Setion 5.2.2). In this ase, gobak to performing the leaning mehanism. W.l.o.g. we may therefore assume that the length of b1 is
> ℓ⋆.By onstrution, all sites above b̄1 are empty, and therefore it is possible �rst to onstrut the
2�tiled retangle r1 = ⊓

(

b̄1
) within energy barrier 2∆1 + 2∆2 − 4U (again lowering the energy), andthen expand r1 to the retangle R1 = R ⊣ (r1) (see Setion 5.2.4). If the vertial side length of R1 is

< ℓ⋆, then R1 an be removed (lowering the energy), and it is possible to perform again the leaningmehanism.Therefore suppose that R1 has both its side lengths ≥ ℓ⋆. In the remainder of the setion wewill show how to reah within energy barrier 10U − ∆1 a on�guration ontaining a retangle RNWtouhing both the north-side and the west-side of Λ− whose support ontains the support of R1. Onethis has been ahieved, it is possible to argue for RNW in the same way as for R1 in order to reaha on�guration ontaining a retangle RNWE touhing the north-side, the east-side and the west-sideof Λ− whose support ontains the support of RNW . Repeating the same argument for RNWE , it ispossible to reah ⊞.The onstrution of RNW is obtained by using an algorithm alled invasion of R1, whih is on-struted with the help of tehniques similar to the ones that were used to build R1.(A) Invasion of R1. See Fig. 22. Let (a1, b1) be, respetively, the horizontal and the vertialoordinate of the left lower-most partile of R1 (whih is of type 1). De�ne Λ(R1) ⊂ Λ to be the setonsisting of the sites whose vertial oordinate is ≥ b1 and horizontal oordinate is < a1. In words,
Λ(R1) ontains the sites of Λ on the left of R1. Perform the leaning mehanism (see Setion 5.2.6)and san Λ(R1) in the lexiographi order. Three ases are possible.1. Λ(R1) is empty. Add, if possible (R1 might already be touhing the west-boundary of Λ−), 12�barsonto the left side of R1 until the resulting luster touhes the west-boundary of Λ−.2. The �rst horizontal bridge b2 enountered in Λ(R1) has length < ℓ⋆. Remove the partiles of the(south)-support of the bridge, lowering the energy of the on�guration, and restart the overing of

Λ(R1).3. The �rst horizontal bridge b2 enountered in Λ(R1) has length ≥ ℓ⋆. As for b1, �rst turn b2 into the
12�bar b̄2, then build the 2�tiled retangle r2 = ⊓

(

b̄2
), after that expand r2 to R2 = R ⊣ (r2), and�nally perform the leaning mehanism. Note that the support of R2 may over (part or possibly allof) the support of R1. This means that during the maximal expansion, some of the sites of supp(R1)were in the support of the pillared beam that is going to be 2�tiled. Eah time this happens, R2absorbs an entire vertial superritial 12�bar of R1 (see Setion 5.2.4). Call R̃1 what is left of R128



after the maximal expansion of R2. The following three ases are possible: (i) R̃1 does not ontainany partile (R̃1 = ∅); (ii) R̃1 ≺ R1 (in the proper sense); (iii) R̃1 = R1. In Case (ii), the retangles
R2 and R̃1 are neessarily adjaent (more preisely, the right-most 12�bar of R2 is adjaent to theleft-most 12�bar of R1), whereas in Case (iii) the two retangles may or may not be adjaent. Notethat this implies that if R̃1 ≺ R1, then R2 is neessarily superritial. Obviously, if R̃1 6= ∅, then itis again a 2�tiled retangle, and there are several possibilities.(a) R2 is not superritial. This implies that R̃1 = R1. Remove R2 from Λ, put R1 = R̃1 andrestart the invasion of R1.(b) R2 is superritial and R̃1 = ∅. Change the name of R2 to R1 and restart the overing of Λ(R1).() R2 is superritial and is adjaent to R̃1. Note that both retangles touh the north-side of

Λ−. Call Rmax the retangle with the largest vertial length (in ase of a tie, w.l.o.g. hoose
R1) and all Rmin the other retangle. Slide Rmin onto Rmax. This is possible beause thesmoothing phase of the maximal expansion (see Setion 5.2.4) removes all the partiles of type
2 that may interfere with the sliding of the 12�bars. Then perform again the maximal expansionof Rmax, i.e., the retangle that has not been moved during the sliding. These steps bring theon�guration to a retangle whose support ontains supp(R2) ∪ supp(R1) ∪ Λ(R1). Call thisretangle R1 and restart the invasion of R1.(d) R2 is superritial and is not adjaent to R̃1. This implies R̃1 = R1. Start the invasion of R2(see below).In order to omplete the proof, it remains to show how the invasion of R2 arries over. To thatend, we introdue the following reursive algorithm realizing the invasion of Ri for i = 2, 3, . . ., et.(B) Invasion of Ri. Call R̄i−1 what is left of Ri−1 after the invasion of Ri+1. There are three ases:I. R̄i−1 = ∅ (i.e., the support of Ri−1 is ompletely overed by Ri). Put Ri−1 = Ri and restart theinvasion of Ri−1.II. R̄i−1 6= ∅ and Ri and R̄i−1 are adjaent. Call Rmax the retangle with the largest vertial sidebetween Ri and R̄i−1 (in ase of a tie, w.l.o.g. hoose Rmax = Ri) and all Rmin the otherretangle. Slide Rmin onto Rmax and perform the maximal expansion of Rmax. Call Ri−1 theoutome of the maximal expansion of Rmax and restart the invasion of Ri−1.III. R̄i−1 6= ∅ and Ri and R̄i−1 are not adjaent. If Ri is on the left of Ri−1, then let (ai, bi) denote,respetively, the horizontal and the vertial oordinate of the lower right-most partile (whih isof type 1) of Ri, and all Λ(Ri) the subset of Λ(Ri−1) onsisting of those sites whose vertialoordinates are ≥ bi and whose horizontal oordinates are > ai. If Ri is on the right of Ri−1, thenlet (ai, bi) denote, respetively, the horizontal and the vertial oordinate of the lower left-mostpartile (whih is of type 1) of Ri, and all Λ(Ri) the subset of Λ(Ri−1) onsisting of those siteswhose vertial oordinates are ≥ bi and whose horizontal oordinates are < ai. In words, Λ(Ri)onsists of those sites of Λ(Ri−1) between Ri−1 and Ri. Perform the leaning mehanism andsan Λ(Ri) in the lexiographi order. There are again several ases.1. Λ(Ri) is empty. Call Rmax the retangle with the largest vertial side between Ri and R̄i−1 (inase of tie, w.l.o.g. hoose Rmax = Ri) and all Rmin the other retangle. Add vertial 12�barson the side of Rmin faing Rmax until (depending on the parity of the retangles) it beomesadjaent (di�erent parity) to Rmax or it is at distane 1 (same parity) from Rmax. In the �rstase, slide the extended Rmin onto Rmax. Perform the maximal expansion of Rmax, and all
Ri−1 the retangle obtained in this way, whose support ontains supp(Ri) ∪ Ri−1 ∪ Λ(Ri−1).Restart the invasion of Ri−1.2. The �rst horizontal bridge bi+1 enountered in Λ(Ri) has length < ℓ⋆. Remove the partilesof the (south)-support of the bridge, lowering the energy of the on�guration, and restart theinvasion of Ri. 29



3. The �rst horizontal bridge bi+1 enountered in Λ(Ri) has length ≥ ℓ⋆. First turn bi+1 intothe 12�bar b̄i+1, then build the 2�tiled retangle ri+1 = ⊓
(

b̄i+1

), after that expand ri to
Ri+1 = R ⊣ (ri+1), and �nally perform the leaning mehanism. Call R̃i what is left of Ri afterthe maximal expansion of Ri+1. The following ases are possible.(a) Ri+1 is not superritial. This implies R̃i = Ri. Remove Ri+1 from Λ, put Ri = R̃i, andrestart the invasion of Ri.(b) Ri+1 is superritial and R̃i = ∅. Change the name of Ri+1 to Ri, and restart the invasionof Ri.() Ri+1 is superritial and is adjaent to R̃i. Note that both retangles touh the north-sideof Λ−. Slide the retangle with the shorter vertial length onto the other retangle andperform again the maximal expansion of the retangle that has not been moved duringthe sliding. These steps bring the on�guration to a retangle whose support ontainssupp(Ri+1) ∪ supp(Ri) ∪ Λ(Ri). Call this retangle Ri and restart the invasion of Ri.(d) Ri+1 is superritial and is not adjaent to R̃i. This implies R̃i = Ri. Start the invasionof Ri+1.The �niteness of Λ ensures that the algorithm eventually terminates. �

(a) (b) ()
(d) (e) (f)Figure 22: Example of invasion of the dual retangle R1. Only the support of the relevant lustersare drawn and the parity of di�erent lusters is not indiated. The set Λ(R1) ontains a superritialbridge belonging to luster A (Fig. 22(a)). Growing this bridge via the onstrution of its northernretangle and its subsequent maximal expansion leads to the superritial retangle R2 (Fig. 22(b)).Next, the invasion of Λ(R2) has to be performed in order to omplete the invasion of R1. The set Λ(R2)ontains a superritial bridge belonging to luster B, whih is grown into the superritial retangle

R3 (Fig. 22()). Note that R3 partly overs the support of R̃1 and that R3 and R̄1 are adjaent. Theinvasion of R2 proeeds via the invasion of R3. Sine Λ(R3) is empty, the invasion of R3 is arried outby adding 12�bars to the left-side of R3 until R̃2 is at dual distane 1. After that a maximal expansionprodues a dual retangle that overs the support of R̃2 (Fig. 22(d)). The new dual retangle R2 isadjaent to R̄1. The two retangles are merged and a maximal expansion gives a new retangle R1(Fig.22(e)). Now Λ(R1) is empty and an be �lled by adding 12�bars to the left-side of R1 until theretangle RNW is obtained (Fig. 22(f)).
30
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