EURANDOM PREPRINT SERIES
2011-032

Separation of timescales in a two-layered network

Maria Vlasiou, Jiheng Zhang, Bert Zwart, Rob van der Mei
ISSN 1389-2355

Separation of timescales in a two-layered network

Maria Vlasiou*, Jiheng ZhangT, Bert Zwartt, Rob van der Meit
*Department of Mathematics and Computer Science
Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
Email: m.vlasiou@tue.nl
TDepartment of Industrial Engineering and Logistics Management
Hong Kong University of Science and Technology, Hong Kong, S.A.R, China
Email: j.zhang@ust.hk
{Centrum Wiskunde & Informatica
Science Park 123,Amsterdam, The Netherlands
Email: (bert.zwart, mei) @cwi.nl

Abstract—We investigate a network consisting of two layers
occurring in, for example, application servers, and model the
first layer as a many-server Jackson network. Active servers acts
as customers at the second layer, where they are served by a
common CPU. This system provides a benchmark example of a
layered system. Our main result shows a separation of time scales
in heavy traffic: the main source of randomness occurs at the
(aggregate) CPU level; the interactions between different types of
nodes at the other level is shown to converge to a fixed point at a
faster time scale; this also yields a state-space collapse property.
Apart from these fundamental insights, we also obtain an explicit
approximation for the joint law of the system which is provably
accurate for heavily loaded systems, and performs numerically
well for moderately loaded systems. The obtained results for
the model under consideration can be applied to thread-pool
dimensioning in application servers.

I. INTRODUCTION

Communication networks need to support a growing di-
versity and heterogeneity in applications. Examples are web-
based multi-tiered system architectures, with a client tier to
provide an interface to end users, a business logic tier to
coordinate information retrieval and processing, and a data tier
with legacy systems to store and access customer data. In such
environments, different applications compete for access to
shared infrastructure resources, both at the software level (e.g.,
mutex and database locks, thread-pools) and at the hardware
level (e.g., bandwidth, processing power, disk access). Thus,
the performance of such applications is determined by the in-
terplay of software and hardware contention. For background,
see [1], [2].

In particular, in situations where web pages are created on-
the-fly (think of making a reservation online), the benefits
of caching are limited and sizes of web pages are unknown,
and there is usually ample core network bandwidth available

The research of Maria Vlasiou and Jiheng Zhang is partly supported by
two grants from the ‘Joint Research Scheme’ program, sponsored by the
Netherlands Organization of Scientific Research (NWO) and the Research
Grants Council of Hong Kong (RGC) through projects D-HK007/11T and
600.649.000.10N006. The research of Bert Zwart is partly supported by an
NWO VIDI grant and an IBM faculty award.

at reasonable prices. Consequently, the bottleneck in user-
level performance can shift from the network interface to the
application server, and implementing size-based scheduling
policies becomes hard, contrary to the situation considered
in [3], [4].

Application servers usually implement a number of thread-
pools; a thread is software that can perform a specific type
of sub-transaction. Consider for example the web-server per-
formance model proposed in [1]. Each HTTP request that
requires server-side scripting (e.g., CGI or ASP scripts, or
Java servlets) consists of two subsequent phases: a document-
retrieval phase, and a script processing phase. To this end, the
web server implements two thread-pools, one performing the
first phase of processing, and the other performing the second
phase of processing. The model consists of a tandem of two
multi-server queues, where servers at queue 1 represent the
phase-1 threads, and the servers at queue 2 represent phase-2
threads. A particular feature of this model is that at all times
the active threads share a common Central Processing Unit
(CPU) hardware in a Processor-Sharing (PS) fashion; c.f. [5],
[6]. Alternatively, one can think of scheduling jobs in data
centers, where different parts of a job are taken care of by a
different thread-pool.

Motivated by this, we study a relatively simple, but non-
trivial two-layered network. An informal model description is
as follows. The first layer looks like a (generalized) Jackson
network consisting of many-server queues. The servers in this
network act as customers in a second layer, in the sense that
they are served by a single CPU in a PS fashion. A detailed
model description is provided in Section II.

Variations of the above model have been investigated in
several papers in the literature, but apart from stability analysis
[5], a rigorous analysis of this layered network has been
lacking. The same can be said about other literature on layered
networks. Only a limited number of papers focus on the per-
formance of multi-layered queuing networks. A fundamental
paper is Rolia and Sevcik [7], who propose the Method of
Layers, i.e., a closed queuing-network based model for the
responsiveness of client-server applications, explicitly taking

into account both software and hardware contention. Another
fundamental contribution is presented by Woodside et al.
[8], who propose to use the so-called Stochastic Rendezvous
Network model to analyze the performance of application
software with client-server synchronization. The contributions
presented in [7] and [8] are often referred to as Layered
Queuing Models. A common drawback of multi-layered queu-
ing models is that exact analysis is primarily restricted to
special cases, and numerical algorithms are typically required
to obtain performance measures of interest (see for example
[8]). Although such methods are important, it is also valuable
to look at layered systems from a more qualitative point of
view, which we do in this paper by considering the system
under critical load.

The most simple example of the layered systems we con-
sider is the case where the first layer consists of a single node.
In this case, the model reduces to the so-called limited proces-
sor sharing (LPS) queue. Recently, there has been considerable
interest in the analysis of LPS systems. Avi-Itzhak and Halfin
[9] propose an approximation for the mean response time. A
computational analysis based on matrix geometric methods is
performed in Zhang and Lipsky [10], [11]. Some stochastic
ordering results are derived in Nuyens and van de Weij [12].
Large deviation results are presented in Nair et al. [13], and
these results are also applied to show that LPS provides
robust performance across a range of both heavy-tailed and
light-tailed job sizes, as it combines the attractive properties
of a guaranteed service rate of FIFO and the possibility of
overtaking offered by PS.

The work on LPS that is most relevant for this study
is the work of Zhang, Dai and Zwart [14]-[16] who study
the stochastic processes that underlie the LPS queue in the
heavy traffic regime, i.e. an asymptotic regime where the
traffic intensity converges to 1. The setting is rather general,
allowing the inter-arrival and service times to have general
distributions. Fluid and diffusion limits are derived, leading to
a heavy traffic analysis of the steady-state distribution of LPS,
showing that the approximation by Avi-Itzhak and Halfin [9]
is asymptotically accurate in heavy traffic.

In the present paper, we perform an analysis similar to the
one performed in [14]-[16], generalizing from a single node to
networks, although our mathematical results are derived under
the assumption that job sizes are exponential; however, we do
propose an extension based on these mathematical results. We
analyze the system as it approaches heavy traffic. Under the
assumption that there is a single bottleneck (an exact definition
of bottleneck is given later), we derive explicit results for the
joint distribution of the number of jobs in the system, by
proving a diffusion limit theorem. This limit theorem does
not only yield explicit approximations but yields also useful
insights: if we look at the system from the CPU layer, we
can aggregate the whole system since the total workload acts
as if we were dealing with a single server queue. However,
the interaction of several types of customers at the other
layer would then be lost. It turns out, nonetheless, that those
interactions take place at a much faster time scale in heavy

traffic, and that the number of users of all types converge
instantaneously to a piece-wise linear function of the number
of users at the bottleneck. This separation of time scales
property is shown to imply that in heavy traffic, the joint queue
length vector can be written as a deterministic function of the
total workload as seen from the CPU layer. Such a property is
known as state-space collapse (SSC) in the stochastic network
literature.

Thus, our methodological contribution is that it is possible
to rigorously establish a separation of time scales property in
heavy traffic in an important class of layered networks, which
makes these layered networks tractable. Although we focus on
the Markovian case, we believe that such properties hold more
generally as well; we provide some physical and numerical
arguments to support this claim. The result on separation of
time scales result essentially implies that the main source of
randomness in heavy traffic can be observed at the CPU layer,
thus making performance analysis much more tractable. Apart
from supporting these claims by theorems, some numerical
experiments suggest that the resulting approximations perform
well. The results in our paper may be useful to create design
rules, for example to dimension thread-pools. Some first efforts
using heuristic approximations were proposed in [6].

The paper is organized as follows. We provide a detailed
model description in Section II. In Section III we propose
a fluid model for our two-layered system. We use this fluid
model to analyze how users of different types interact if
the system is in heavy traffic. In doing so, we construct a
Lyapounov function which we use to show that the user pop-
ulation converges uniformly to a fixed point that is uniquely
defined through the total workload. The fluid model also helps
understand which stations will be bottlenecks. Section IV
contains our main results, namely a process limit theorem for
the customer population process. A heavy traffic approxima-
tion of the steady-state distribution is proposed in Section V.
Section VI presents an extension to general service times
based on physical arguments, and some numerical validation
by comparing the proposed approximations with simulation
results. Concluding remarks can be found in Section VII.
Additional proofs can be found in the appendix.

II. MODEL DESCRIPTION

The purpose of this section is to give a formal model
description. We adopt the convention that all vectors are
column vectors, and use a? to denote the transpose of a vector
or matrix. For vectors z, y we denote xy to be the vector
consisting of elements x;y;. Furthermore, I is the identity
matrix, e is the vector consisting of 1’s, and e; is the vector
whose ith element is 1 and the rest are all 0.

We consider a network with J nodes. Jobs arrive at node
i € {1,...,J} according to a Poisson process of rate)\;, and
are served at rate p; at that node. Each node has K; servers.
Customers move between queues according to a substochastic
routing matrix P of dimension J. As in the case of regular
queuing networks, we need to introduce the actual arrival rates
of jobs to station ¢, which are denoted by ~; and are a solution

to the traffic equation
y=XA+PTy.

Throughout the paper, we need to assume that I — P is
invertible as is usual for open Jackson networks, so we have
that v = (I — PT)~1\. All active servers interact since they
acquire their capacity from a CPU working at rate 1.

It can be useful to view the system from the CPU layer,
since there is a connection with an M/PH /1 queue which we
now describe: users arrive at rate A =), A; and start their
service at node ¢ with probability a; = A;/A. Define ag = 0,
poo = 1, and for ¢+ > 1, pp; = 0 and pjp = 1 — ijij~
Observe that the total service requirement of a job is the time
to absorption in state 0 of a continuous-time Markov chain
with initial distribution (a;), where the sojourn time in state 7 is
exponentially distributed with rate p;, after which one jumps to
state j with probability p;;. Thus, the total service requirement
S of an arbitrary customer has a phase-type distribution with
parameters (a, i1, P). We also denote by 5; = 1/, and ,6’1-(2) =
2/u? the first and second moment of service requirements at
node 7. The corresponding vectors are denoted by 3 and ().

It is possible to compute the first two moments of this
distribution by using standard methods (see for e.g. [17] and
references therein). Let T; be the total service requirement
of users waiting to be served at node 7. This includes their
immediate service at node ¢ and all the future services due to
routing. Denote by 7; and TZ-(2) the first and second moment
of T;. Then 7 = (1 — P)~!/3 and

’7'1-(2) = ﬂz(z) + Zpij(QﬁiTj +’T;2)).
J

In vector notation, this becomes
@ = (1)71 (82 +28(P7)).

Notice that the final formulae are still valid if the service
requirement of a user at node ¢ is not exponential, but is
generally distributed. In that case, the total service requirement
is simply the time to absorption of a semi-Markov process. We
need this interpretation in Section VI. Of course, in that case,
it no longer holds that 8% = 2/42.

We can compute the first and the second moment of the
total service requirement .S, obtaining

E[S] = a"7 and E[S?] = aT7®.

It is also clear from the M/PH/1 interpretation that the
global stability condition of the system is E[S]) . A; < 1,
or equivalently

p:=X(I-P)'p=pTy<1.

We also define p; = 3;7; = 7;/p;. Observe that p =", p;.

Example: We are particularly interested in the simple two-
node tandem case (J = 2), where all users first enter station
1 (A2 = 0), then move from station 1 to station 2 (p12 = 1)

and then leave (pyg = 1). In this case v1 = y2 = A1, E[S] =
1/p1 + 1/p2, and

B[S%) = 2/uf + 2/ (i p2) + 2/ 1.

Z1 < K Zy < Ko
Q1 Q2
A
—> buffer 1 buffer 2
Share a CPU
Fig. 1. LPS queues in tandem with a shared CPU

We now investigate the system under critical load, i.e. when
p is (close to) 1. To this end, we first develop and analyze a
critical fluid model in the next section.

III. FLUID ANALYSIS AND INVARIANT POINTS

In this section we propose a fluid model for our layered
system under the assumption of critical loading, i.e. p = 1, or

equivalently, "
> ; =1 (1)
. 7

In the sequel, we establish that the workload will stay constant,
and that the queue length vector will converge to an invariant
point. We also characterize the set of invariant points, and
show this set is one-dimensional under the assumption that
there is a unique bottleneck.

Our fluid model is defined by the following ordinary differ-
ential equation (ODE):

J
Xi(t) = N — wRi(X (1)) + ij,ijj(X(t))

We can write this into vector form
X' =9(X),)
where U : [0,00)” — R can be represented as
U(z) = A — pR(z) + PT(uR(x)), 3)
where pR(z) means component-wise product.

Theorem 1 (Existence and uniqueness). For any X (0) = z €
Ri, there exist a unique solution to the ODE (2).

Proof: Tt is clear that each R;(z) is Lipschitz continuous
on RY. So is the linear combination ¥ (x). The result follows
from Theorem VI in Chapter 10 of [18]. |

Recall that the system is a work-conserving single-server
queue when considered at the CPU layer. We now show
that this is also the case for our fluid model. We define the
workload for the fluid model as follows:

W(t)=p"(1-P")'X(1). 4)

Proposition 1. For each solution of (2), W (t) = W(0).
Proof: The proof is quite straightforward. From (2),
W'(t) = BY(I - P X'(1)

— B7(1 - PT)"" (A= uR(z) + P (uR()))
= fy = (I — PT)"HI - PT)uR(X(t))
=1-BTuR(X(t))=1-1=0,

where 37y = 1 is due to critical loading and 87 uR(z) =

Z;-le R;(x) which equals 1 by the definition of R(x). [|

We now characterize the invariant manifold of the ODE,
which is the set of invariant points. A point z is invariant if

i=1,...,J (5)

A crucial notion in the study of invariant points is the
notion of bottleneck. It turns out that the following definition
is appropriate:

wiRi(z) = i,

Definition 1 (Bottleneck). Node i is the bottleneck if 1 =

K
arg min; %74
J

In this paper, we focus on the case where there is a unique
bottleneck. Without loss of generality, we take node 1 as the
bottleneck when we investigate the case of a general network;
in the two-node tandem case we sometimes take node 2 as the
bottleneck if we do numerical experiments.

There are two cases: if 1 < K; then it follows from (5)

that
Hii = i Z Ty
J

Thus, Zj xj = 1/, so that px; = 'yi%. If z; > K,
. i Kq
then we can write u;x; = v;——.

1
i K
23"'7J, we have IZZIM

In general, for i =

. Thus, the set of
Hi 71
invariant points, called the invariant manifold, is the following:
iTi NKy) |
pazi _ (o 1>,z:2,...,J}.
Vi ga!
The invariant manifold is illustrated in the following picture
for the two dimensional case.
We now conclude by formally showing that our notion of
invariant points makes indeed sense.
Proposition 2. X(t) = X(0) for all t > 0 if and only if
X(0) e

I:{xeRi:

Proof: The necessity part follows from the above discus-
sion. For sufficiency, it suffices to show that for any = € Z,
U(z) = 0. Note that for any z € Z, let ¢ = “jyﬁ,i: 2,...,J.

By (1), e1 ANK1 + Y, 2 = Y1y ¢ = c. So Ri(w) = &,
thus p; R;(z) = ;. We have
U(z) = A — pR(z) + PT(uR(x))
= (I - P")(y — pR(z)) = 0.

&

Ky

T2

Fig. 2. Invariant manifold for the 2-dimensional tandem case.

A. Convergence to invariant points

We now define a Lyapunov function to show that the
solution of the ODE (2) converges to the invariant manifold Z.
Let 2* be the point in the invariance manifold with 27 = Kj.
We define a critical workload level

wh= 1= PT) et = BT P (B D
(Yet another interpretation is w* = 77 2*.) This gives rise to
a “critical hyperplane”:

{z: 8T - PT)lox =w*}. (6)

The idea is simple. The Lyapunov function is constructed
based on the distance from the point z to the invariant mani-
fold depending on whether = is above the critical hyperplane
or below. For any w < w*, let fort =1,...,J

Yiw sy w

T wBTI=PT)BY) o

! (w) (7

Note that

‘rT w i/ Hi
Ry(z'(w)) = ZZET(L) D P '/w,/m -

?

7
i

This is an intuitive result, since on the invariant manifold, the
R;’s, representing outflow of work at station ¢, should be equal
to the inflow of work at station 7. For any w > w*, let

t B (w—w*) B (w — w*)
(W) =K1+ BT(I—PT)"le; Kt T ©
Kiv .
i(w):%%, i=2,...,J 9)

It is clear that xf(w) is the intersection of the workload
hyperplane W (t) = w and the invariant manifold. Depending
on whether w is larger than w* or not, the calculation is
different. We can define a Lyapunov function:

L(X(t))
|

= (%@ —al@)" (1= P (%) - ot w))]. 7

We now state the following property for the Lyapunov func-
tion, which will imply the convergence to the invariant mani-
fold for the fluid model.

Proposition 3. L(x) is continuous in x and for any = ¢ T,
L(z) > 0; for any x € I, L(x) = 0. When X(t) ¢ Z,
d
—L
dt
A proof of this result can be found in the appendix. The
following proposition is an immediate consequence.

(X(t) <0.

Proposition 4 (Convergence to the invariant manifold). For
any solution X to the ODE (2), we have that

X(t) = z'(w),
where z'1 is as defined by (7)—~(9) and w = W (0).

as t — oo,

In the following section we will show that, as p is close to 1,
the fluid model is a good approximation of the queue length
on a time scale of O(1/(1 — p)). Since the diffusion time
scale is of O(1/(1 — p)?) it is tempting to conclude that the
only configurations of the customer populations that matter are
configurations on the invariant manifold. These configurations
depend on the workload w at the CPU, which then is expected
to be the driving force of randomness. The goal of the next
section is to make this statement rigorous.

IV. STATE-SPACE COLLAPSE IN HEAVY TRAFFIC

We are now ready to develop a diffusion approximation
for the process describing the number of customers in the
system, which we sometimes also refer to as the head-count
process. Consider a sequence of such processes indexed by n.
As n — oo,

A" —
Let v = (I — PT)=1\", and
1
P =" -
I
We assume that as n — oo, foreach i =1,...,J,
K"
n(l—p")—0>0, and —~ — K. (11)
n

We are interested in the limit of the diffusion scaled process
5 1
X"(t) = = X"™(n?t)
n

in the heavy traffic regime.

As shown in Williams [19], a key step in obtaining a diffu-
sion limit in heavy traffic is to establish a state-space collapse
result. In our setting, SSC means that the diffusion-scaled,
J-dimensional process is close to a deterministic function of
the diffusion-scaled, one-dimensional workload process. The
workload process is essentially equivalent to that of a G/G/1
queue under any work-conserving policy. By a classical result
(c.f. [17]), the limiting workload process is a one-dimensional
reflected Brownian motion (RBM).

Our proof strategy is analogous to the modular approach
proposed in Bramson [20] and Williams [19]. We already

have studied a critically loaded fluid model in Section III.
The critically loaded fluid model exhibits an SSC: each fluid
model solution converges to an invariant state in some uniform
sense, and each invariant state has an SSC.

We adopt Bramson’s framework in [20] to translate the fluid
model SSC result into the diffusion-scaled SSC result. The
diffusion scaled process on the interval [0, 7] corresponds to
the unscaled process on the interval [0,n?7T]. Fix a constant
L > 1,then the interval [0,n2T] is covered by the |nT| + 1
overlapping intervals

[nm,nrm +nL] n=0,1,---,|nT].

On each of these intervals, the diffusion scaled process can be
viewed as a shifted, fluid-scaled process defined by

. 1
XMty = =X"(nm+nt) 0<t<L.
n

To carry out the program suggested by Bramson and
Williams in our particular case, we need to show that (a) each
limit from the family of shifted, fluid-scaled processes is a
solution to the fluid model (such a limit is called a fluid limit
in this paper, but is also known as a “cluster point” [20].);
(b) the set of fluid limits is “rich”: each shifted, fluid-scaled
process is close to the fluid model introduced in the previous
section. A major step to proving (a) and (b) is to show, the
precompactness of the shifted fluid scaled processes. Details
can be found in the appendix.

We first establish that the shifted fluid scaled processes can
be uniformly approximated by the fluid model solution studied
in Section III.

Proposition 5. Fix T > 0 and L > 1. The family of shifted
fluid scaled process { X™™(-) }sn<nTnen is relatively compact
in D([0, L], RY) (the space of right continuous function with
left limits). Moreover, each limit of the weakly converging
subsequence is a solution to the ODE (3).

The next step is to study the diffusion limit by establishing
state-space collapse. Define the map A : Ry —]Ri by

w A w* w—w*)T
Ar(w) = o K1+(o) ; (12)
ANw* p Ky v; .
Aj(w) = ZLU BRI g (13)

wr

This map is called lifting map, as it will be used to construct

the multi-dimensional limiting queue length process from the
one-dimensional limiting workload process.

Proposition 6 (State-space collapse). Assume that
[X7(0) = A(W™(0))] =0,
as n — oo specified by (11). We have

sup | X" (t) — A(W™(t))| = 0,
t€[0,T)

as n — 0. (14)

Let X*() be the diffusion limit of the head-count process,
and W*(-) be the diffusion limit of the workload process,
in the heavy traffic limit specified by (11). Based on our

discussion on the equivalency with the M/PH/1 queue, W*
is known to be an RBM with drift —f and variance 0% =
E(S)(1+c?) = E[S?]/E[S], where ¢2 = Var(S)/E?(S). Ac-
cording to the calculation in Section II, 02 = a”7() /(a”'T).
We have the following result that fully characterizes the

diffusion limit X* based on W*.

Theorem 2 (Diffusion limit). Under the same condition as
in Proposition 6, the diffusion-scaled process Xn converges
weakly to the limit X* in heavy traffic. The limit X* can be
characterized as

W*(t) A w* (W*(t) —w*)*

Xf(t)z py K+ o R
W*(t) Nw* 1 K1 v)
xp = ORIy

Proof: Note that the mapping A defined by (12) and
(13) is continuous. The result follows immediately from the
continuous mapping theorem by invoking Proposition IV.2 and
the fact that the workload process converges to W*(-).]

V. STEADY-STATE PERFORMANCE APPROXIMATIONS

It is well-known that the normalized steady-state workload
of an M/G/1 queue in heavy traffic converges to an expo-
nentially distributed random variable; i.e. if we consider the
sequence of systems introduced in the previous section, and
let W"(c0) be the steady-state workload in the nth system,
then

W™ (00) = W*(c0),

where W*(o0) is an exponentially distributed random variable
with mean m = ‘2’—;, by the classical steady-state analysis of
RBM.

Since W*(00) can also be seen as the limit (in distribution)
of W*(t) as ¢ — oo, it is natural to expect that the heavy
traffic and steady-state limits can be interchanged. Without
being able to go into the details due to space considerations,
it turns out that it is possible to do this in the same way
as has been carried out in [14], where uniform bounds (in
n) on coupling times for (diffusion-scaled) work-conserving
systems have been established, allowing a limit interchange to
take place.

We can exploit this to derive a heavy traffic limit theorem
for X™, which is a J-dimensional random vector denoting the
customer population in steady state in the nth system. We have
the following result by the continuous mapping theorem:

X"(00) = X*(00) := A(W*(0)).
Note that
P(X[(00) > z) =P (Ai(W*(00)) >)

Since the distribution of W*(oc0) is explicit, as is the
mapping A, the above formula is explicit. Thus, we can
develop explicit approximations for the original system that
will be accurate in heavy traffic. For that, it is necessary to
remove the index n from the limit theorem, as we observe a
single process only: we observe p and K, rather than p™ and

nkK;. Simply set k; = K;(1 — p) (this does not change the
definition of the bottleneck), take # = 1, and modify w* and
the lifting map A by replacing K; with k;.

Observe that p;/p is the probability that an arbitrary cus-
tomer in the system is of type 7, so that

3" pii/p = EIS?Y/2ES) = m.

J

After some rewriting we get

w* = (1-p) Y pimK1/p1 = (1= p)K1pm/p1.
J

Since W* 1is exponentially distributed with mean m, the
probability of delay at the bottleneck becomes

pa~ P(W* > w*) ~ pRior, (15)

In the second equation we used that e=(!=#) ~ p to obtain
an approximation more in line with the single-node approx-
imation proposed by [9]. Due to lack of space, we focus on
one performance measure only. The expected total response
time (i.e. the sojourn time) E[V] of an arbitrary job can be
computed using Little’s law:
BV] = B[X51/A =~ 1 B3 a, 077
J J

Straightforward computations, combined with the above ap-
proximations, yield

B[S AW % (1= pa) +pu

It makes sense to multiply the final approximation with p to
obtain a result that would yield an exact expression for the
single-node case, and from a heavy traffic point of view, this
would still yield asymptotically optimal estimates. Thus, we
obtain as final approximation:

BV~ T [(1) + a2]

I—p

In the single node case for exponential job sizes, we have
that m = E[S] = 7 so our approximation indeed reduces
to E[S]/(1 — p) which is the expected sojourn time in an
M/M/1 queue. We now develop an extension valid for more
general service times combining the insights of the heavy-
traffic analysis of our network model with available results
for the single node case.

(16)

VI. EXTENSION TO GENERAL JOB SIZES

In [16], it was shown that, for general job sizes, the queue
length process X* in heavy traffic satisfies

X*(t) = (W"(t) — KB°)"/B +min{W"(t), K5} /B°.

It is clear that this is a generalization of what is obtained in
this paper for J = 1, but the structure is also clear: locally, the
process behaves like a PS queue if the queue length is smaller
than K, and like a FCFS queue when the queue length is larger
than K. The fluid model is no longer a simple ODE, and [16]

develops a framework using measure-valued processes, which
is beyond the scope of this paper.

We, therefore, only use the physical insight obtained from
the above equation to construct an approximation of the
invariant queue length vector. We let 8 and 3¢ be vectors
corresponding to means, and the means of residual job sizes
of type i, i.e. B¢ = 61-(2)/2&.

We need to slightly modify our notion of the lifting map
to account for general job sizes, the only change being the
definition of w*. The expected residual service requirement of
a job at node ¢ will not be 7; but (; := 7; + 5 — [3;, so that
w* = ¢Tx*. With this definition, we expect (12)-(13) to be
correct for generally distributed job sizes.

Assuming this is indeed the case, we carry out the same
procedure as in the previous section. We set k; = K;(1 — p),
take 0 = 1, and modify w* and the lifting map A by replacing
K; with k; to get w* = (1 —p) >, pj¢iKi/p1. As in the
previous section, note that 3~ p;(;/p = E[S?]/(2E[S]) = m,
so that we again obtain pg =~ P(W* > w*) =~ pKlﬁ,
V]~ 22 (1= pa) + pa2].

and

1—

If J= 1pand K = oo, we have pg = 0, so the resulting
approximation formula for E[V] indeed reduces to the exact
expression for E[V] = E[S]/(1 — p) in the case of PS. If
J =1 and K; = 1, our approximation for p, simplifies to p
so that

_ E[S] _ P
EWV] > £ (L=)+ dm) = BIS] + 2—m,

which equals the Pollaczek-Khintchin formula of the sojourn
time of a user in the M/G/1 queue. Our approximation
thus coincides with the two special cases, for which an exact
expression is known. For J = 1 and arbitrary values of K3, it
reduces to the approximation given in [9] for a single node.

As mentioned before, proving that our approximation is
asymptotically exact for general service times is beyond the
scope of this paper. We, therefore, validate our approximation
with some simulation results in the two-node tandem case. For
the two-node tandem case we have (; = 35, (1 = B + [a,
M=% =A

In addition, pg; =~ p”Ki*/ Pi* if node 7* is the bottleneck.
This leads to

E[S]

1
ElV]~ -, (1 —pa) +pam —

We now present some numerical results for the case that
both service times follow a hyper-exponential distribution. In
all examples, we focus on a moderately loaded system with
p = 0.7. We let the coefficient of variation of the service times
range from 4 to 10 at both nodes (in fact we take the same
parameters as done in the experiment of [6]).

Generally, the heavy-traffic approximations are quite accu-
rate, always within 15% of the outcome predicted by simu-
lation, and in several cases the error is as small as 2%. We
find that the results become less accurate if the coefficient of
variation of the service time at the bottleneck is high.

TABLE I
SIMULATION RESULTS

(B1,B2,c%,c3, K1, K2) | approximation | simulation
(1,2,4,4,3,7) 10.24 10.41
(1, 2, 4, 10, 4, 6) 11.37 10.71
(1, 2, 10, 4, 4, 6) 10.77 10.57
(1, 2, 10, 10, 4, 6) 11.58 10.87
2,1,4,4,6,4) 10.24 10.49
2,1, 4,10, 6, 4) 10.38 10.70
2,1, 10, 4,6, 4) 10.78 10.98
2, 1, 10, 10, 6, 4) 10.91 11.18
(1, 10, 4, 4, 2, 8) 38.86 37.43
(1, 10, 4, 10, 2, 8) 43.20 37.83
(1, 10, 10, 4, 2, 8) 38.91 37.53

(1, 10, 10, 10, 2, 8) 43.24 37.97
(10, 1, 4, 4, 8, 2) 38.52 38.88
(10, 1, 4, 10, 8, 2) 38.56 39.11
(10, 1, 10, 4, 8, 2) 42.46 40.77

(10, 1, 10, 10, 8, 2) 42.50 41.00

VII. CONCLUDING REMARKS

By establishing fluid and diffusion approximations of a two-
layered queuing network, we have shown that, under critical
loading, different layers in the network operate at different
time scales. From the macroscopic CPU point of view, the
system behaves like a simple one-server queue, which when
critically loaded fluctuates at time scale of O(1/(1— p)?), and
the network dynamics taking place at the other layer evolve
at a faster time scale O(1/(1 — p)), thus always reaching an
invariant point as if the total workload at the CPU is constant.

We have established this result by introducing fluid and
diffusion approximation techniques to study layered networks.
It is interesting to examine the potential of such techniques to
analyze other layered networks, such as those in [7], [8].

For our model, state-space collapse was established as a
consequence of the single bottleneck assumption. Driven by
curiosity, we are currently extending the analysis to multiple
bottlenecks, although we note that the single bottleneck as-
sumption will typically be an artefact of the fact that the buffer
sizes K; need to be chosen as integers in implementations.

Another interesting topic is to allow for general job sizes,
as well as time-varying arrival rates. Finally, we expect the
results to be directly useful to dimension thread-pools in web
servers in a static fashion. The techniques in this paper are
likely to be useful for dynamic thread-pool dimensioning as
well, as the application of the techniques in this paper seems
promising to formulate tractable (Brownian) control problems.

REFERENCES

[11 R. van der Mei, R. Hariharan, and P. Reeser, “Web server performance
modeling,” Telecommunication Systems, vol. 16, pp. 361-378, 2001.

[2] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu, “The state of the
art in locally distributed web server systems,” ACM Computing Surveys,
vol. 34, pp. 263-U311, 2002.

[3] M. Crovella, R. Frangioso, and M. Harchol-Balter, “Connection schedul-
ing in web servers,” in Proceedings USENIX symposium on Internet
Technologies and Systems, 1999.

[4] M. Harchol-Balter, B. Schroeder, N. Bansal, and N. Agrawal, “Srpt
scheduling for web servers,” Lecture Notes in Computer Science, vol.
2221, pp. 11-21, 2001.

[5S] M. Jonckheere, R. van der Mei, and W. van der Weij, “Stability and
throughput for two-layered queueing networks,” Performance Evalua-
tion, vol. 67, pp. 28-42, 2010.

[6] W. van der Weij, R. van der Meia, and B. G. F. Phillipson, “Optimal
server assignment in a two-layered tandem of multi-server queues,”
in Proceedings 3rd International Working Conference on Performance
Modelling and Evaluation of Heterogeneous Networks (HETNETS),
volume P01, Ilkley, England, July 2004.

[7] J. Rolia and K. Sevcik, “The method of layers,” IEEE Transactions on
Software Engineering, vol. 21, 689—699.

[8] C. Woodside, J. Neilson, D. Petriu, and S. Majumdar, “The stochastic
rendezvous network model for the performance of synchronous client-
server like distributed software,” IEEE Transactions on Computers,
vol. 44, pp. 20-34, 1995.

[9] B. Avi-Itzhak and S. Halfin, “Expected response times in a non-

symmetric time sharing queue with a limited number of service po-

sitions,” in Proceedings of the 12th International Teletraffic Congress,

Torino, 1988.

F. Zhang and L. Lipsky, “Modelling restricted processor sharing,” in

Proc. of the 2006 Int’l Conf. on Parallel and Distributed Processing

Techniques and Applications (PDPTA06), 2006.

, “An analytical model for computer systems with non-exponential

service times and memory thrashing overhead,” in Proc. of the 2007

Int’l Conf. on Parallel and Distributed Processing Techniques and

Applications (PDPTA07), 2007.

M. Nuyens and W. van der Weij, “The limited processor sharing queue,”

CWI, Amsterdam, Tech. Rep., 2007.

J. Nair, A. Wierman, and B. Zwart, “Tail-robust scheduling via limited

processor sharing,” Performance Evaluation, 2010.

J. Zhang and B. Zwart, “Steady state approximations of limited pro-

cessor sharing queues in heavy traffic,” Queueing Systems. Theory and

Applications, vol. 60, no. 3-4, pp. 227-246, 2008.

J. Zhang, J. G. Dai, and B. Zwart, “Law of Large Number Limits of

Limited Processor-Sharing Queues,” Math. Oper. Res., vol. 34, no. 4,

pp. 937-970, 2009.

[16] ——, “Diffusion Limits of Limited Processor-Sharing Queues,” Ann.

Appl. Probab., vol. 21, no. 2, pp. 745-799, 2011.

S. Asmussen, Applied probability and queues, 2nd ed., ser. Applications

of Mathematics (New York). New York: Springer-Verlag, 2003, vol. 51.

W. Walter, Ordinary differential equations, ser. Graduate Texts in

Mathematics. New York: Springer-Verlag, 1998, vol. 182.

R. J. Williams, “Diffusion approximations for open multiclass queueing

networks: sufficient conditions involving state space collapse,” Queueing

Systems Theory Appl., vol. 30, no. 1-2, pp. 27-88, 1998.

M. Bramson, “State space collapse with application to heavy traffic

limits for multiclass queueing networks,” Queueing Systems Theory

Appl., vol. 30, no. 1-2, pp. 89-148, 1998.

S. N. Ethier and T. G. Kurtz, Markov processes, ser. Wiley Series in

Probability and Mathematical Statistics: Probability and Mathematical

Statistics. New York: John Wiley & Sons Inc., 1986.

[10]

(11]

[12]
[13]

[14]

[15]

[17]
[18]

[19]
[20]

[21]

APPENDIX

In this appendix, we collect several technical proofs of
results stated in Sections III and IV.

Proof of Proposition 3: Due to space considerations, we
only give a sketch of the argument. The continuity is clear by
the definition. It is also clear that £(x) = 0 if and only if
x € Z. We now focus on the derivative. Since for any solution
X to the ODE (2), Proposition 1 yields that the workload load
W does not change, for w = W (0) we have

d _ _
%E(X(t)) =2(X(t) —2'(w

It remains to show that for any i, if X;(t) > m;r(w) then

Z— < R;(X(t)), and vice versa. Consider first the case where
w < w* and the hyperplane

H={zeR]:efzx=c"2"(w)}.

This is the hyperplane that crosses the point z(w) and on
which the total number of jobs remains the same. Let Y (¢)
be the intersection of H and the line determined by the origin
and X (t) A K, where the minimum is taken component-wise.
It is clear that R;(X(t)) = ZYi)%)(t)
hyperplane from (6) and H are defined by linear equations
with positive coefficients, they have no intersection with:

Sy(zl(w) ={z e RY @z > 2! (w) for all i},
S_(zl(w)) ={z e Ry :z; < xj(w) for all i}.

3

Since the workload

Intuitively, both H and the workload hyperplane are almost
perpendicular to the line that connects the origin and z'(w).
Thus, X;(t) > =/ (w) if and only if Y;(t) > ! (w). Note here
that X;(¢) > x;r (w) is equivalent to X;(t) A K; > xf(w) due
to w < w*. Since both Y;(¢) and :cj(w) are on H (meaning
that the total number of jobs remains the same), Y;(t) > z
. . Yi(t
implies =0 }%)(D)
due to zf(w) being on the invariant manifold. This implies
that RZ(X(t)) > ’Yi/ﬂz’-

The case where w > w™* can be argued similarly. The only
difference is that we also need to project z'(w) back to the
region {z : x; < K;} by taking ' (w) A K. Essentially, we
only change xl{(w) to K1. We omit the detailed presentation.

|

The remainder of this appendix is devoted to proofs of
results appearing in Section IV. Let E(-) and N'(-), i =
1,...,J, be independent Poisson processes, both with rate
1. Let ®; j(n) = ;- ¢:,;(I) be the routing process, where
¢i;(1), 1 = 1,2,... is a sequence of independent Bernoulli
random variables, with P{¢; ;(1) = 1} = p; ;.

The dynamics of the queuing system under fluid scaling are
forany s<tandi=1,...,J,

> R;(z"(w)) = 7i/pi, where the equality is

XP(t) = X7 (s) +

(2

1
B (\'nt) - B (X))

- %N;” (ui /: Ri(iX”(T))dT>
n Z]: %@N (N;L (Mj /nt Rj(;X”(T))m)) .

A7)

Observe that via change of variable, we have that

/n " R(%X"(T))dr - / t R(X"(s))dr.

S

HOEDY %fbm <N]” (uj /nmf Rj(;X”(T))d7->>

j S

1. I
_ ij,iﬁNj/ (,uj/ RJ(EX L(7’))d7’> ,

j S

and ®" be the vector with ith component being ®(¢). We can
center the stochastic processes (17) with their mean to obtain
a representation involving martingales.

X"(t) = X" (s) + M (1) — My (s) + ®"(t)
= (I = PH)TH M) = MI(s)] +A"(t = s)

D (u /: R(X"(ﬂ)ch) , (18)

where

_ 1
M(t) = —E"(X"nt) = X"t,

w0 = o3 (i [R ()as)

L[e xeopa
e ; - s))ds.

Again, the martingales are of dimension J. We can also write
the dynamic equation (18) for the shifted fluid scaled process
X™™ in exactly the same way. We now study some estimates.

Lemma 1. Fix T > 0 and L > 1. For all ¢, > 0, there
exists an ng such that whenever n > ny,

max sup

P" E™™(s,t) — At —s)| > €) <€ (19)
(mgtm s,te[O,L]| (5:5) =X))

max sup

]P’"(N (s,t) — u(t — s >e’)<e.
e s,te[O,L]| (s,1) — p(t — s)|

(20)

Proof: The result stated in (19) is the same as Lemma 4.1
in [16]. The result in (20) follows straightforwardly from by
specializing the renewal process to a Poisson process.]

Proof of Proposition 5: The relative compactness follows
immediately from Lemma 1 and the dynamic equation (18).
To see that the limiting process is a fluid model solution, note
that both ®" and the martingale terms in (18) converges to 0
along any subsequence following classical arguments. [|

A technical disclaimer: when convenient, we will assume,
using Skorohod’s representation theorem [21, Theorem 3.1.8],
that the weak convergence in Proposition 5 takes place almost
surely on a suitable probability space, and also assume that
all our processes are actually defined on that space without
changing notation.

The task of proving state-space collapse is divided into
the following steps: we first show that the set of limits in
Proposition 5, which called fluid limits, is “rich” in the sense
that itself and the set of shifted fluid scaled process mutually
approximates each other (inequality (21)); the proof of the
state-space collapse result is then presented based on the
richness of fluid limits and the convergence to the invariant
manifold for fluid model.

Let L7 1 denote the set of fluid limits of all convergent
subsequences of sequences in Proposition 5. Pick an element
X() € Lrr; for any € > 0 and ng € Ny, there exists an
n > ng, m < [nT] such that

(X)) = X()| <e Q1)

Roughly speaking, any element in Lp ;, can be approximated
by a shifted fluid-scaled process of the nth system.

Following the same proof as for Lemma 5.3 in [16], we have
that any shifted fluid-scaled process of the nth system with
index n large enough can be approximated by some element in
L7 1. Mathematically, for each € > 0, there exists an ng € R
such that for any n > ng and m < |nT], we can find a
X(-) € Ly, satisfying (21).

Proof of Proposition 6: The proof of this result follows
using ideas similar to the proof of Theorem 2.2 in [16], which
follows a classical approach introduced in Bramson [20]. Due
space limitations, we only give a sketch of the proof.

From Proposition 5, we have that each X e Lr 1, is a fluid
model solution. By Proposition 4, there exists an L* > 0 such
that when s > L*, | X (s) — z'(w)| < €/6, where w = W (s).
Here W is the fluid workload for X , defined in the same way
as (4). Since zf(w) is on the invariant manifold, we have that
2T (w) = A(w). Thus

‘X(s) - A(W(s))’ <¢/3. (22)

Now, fix a constant L > L* + 1. Note that
[nT]
[0,°T) C [0,nL*]U] [n(m + L*),n(m + L)].
m=0

By the definition of diffusion and shifted fluid scaling, to show
(14) it suffices to show that for all large enough n,

max su XM (s) — AW™™(s))| < e, (23)
m< |nT] sG[LP,L]‘ (=) (())’
sup |X"70(s) - A(W”’O(s))| <. (24)

s€[0,L*]

Again, here we utilize the convenience resulting from Sko-
rohod’s representation theorem. We first prove (23). Fix an
m < |nT|. Then, from the fluid approximation, there exists
X € L 1, such that

3 ’X"’m(s)—f((s) < e/3.

s€[0,L]

(25)

Following the classical argument as in [20], we can also show
that the workload process converges, thus we have that the
shifted fluid scaled workload process W™™ converges to the
workload fluid limit T It is clear to see that A is a Lipschitz
continuous function, so we have

> |A(s) - AW ()| < ¢/3,

s€[0,L]

(26)

for large n. Then (23) follows from the triangle inequality,
(22), (25) and (26). The proof for (24) follows in a similar
fashion but is slightly easier by utilizing the initial condition.

|

	032-cover.pdf
	032-report
	Introduction
	Model description
	Fluid analysis and invariant points
	Convergence to invariant points

	State-space collapse in heavy traffic
	Steady-state performance approximations
	Extension to general job sizes
	Concluding remarks
	References
	Appendix

