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Abstract

In this paper we consider a random copolymer near a selective interface separating two
solvents. The configurations of the copolymer are directed paths that can make i.i.d. ex-
cursions of finite length above and below the interface. The excursion length distribution is
assumed to have a tail that is logarithmically equivalent to a power law with exponent o > 1.
The monomers carry i.i.d. real-valued types whose distribution is assumed to have zero mean,
unit variance, and a finite moment generating function. The interaction Hamiltonian rewards
matches and penalizes mismatches of the monomer types and the solvents, and depends on two
parameters: the interaction strength 8 > 0 and the interaction bias h > 0. We are interested
in the behavior of the copolymer in the limit as its length tends to infinity.

The quenched free energy per monomer (8, h) — ¢"¢(3, h) has a phase transition along
a quenched critical curve 8 +— h3"¢(8) separating a localized phase, where the copolymer
stays close to the interface, from a delocalized phase, where the copolymer wanders away
from the interface. We derive wvariational formulas for both these quantities. We compare
these variational formulas with their analogues for the annealed free energy per monomer
(B,h) — ¢*™™ (B, h) and the annealed critical curve S — h2"(3), both of which are explicitly
computable. This comparison leads to:

(1) A proof that h2"*(8/a) < h3"(8) < h2™(B) for all @ > 1 and 8 > 0.
(2) A proof that gau¢(8,h) < ¢g***(B,h) for all & > 1 and (8,h) in the annealed localized
phase.

(3) An estimate of the total number of times the copolymer visits the interface in the interior
of the quenched delocalized phase.

(4) An identification of the asymptotic frequency at which the copolymer visits the interface
in the quenched localized phase.

The copolymer model has been studied extensively in the literature. The goal of the present
paper is to open up a window with a variational view and to settle a number of open problems.
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1 Introduction and main results

In Section 1.1 we define the model. In Sections 1.2 and 1.3 we define the quenched and the annealed
free energy and critical curve. In Section 1.4 we state our main results, while in Section 1.5 we
place these results in the context of earlier work. For more background and key results in the
literature, we refer the reader to Giacomin [19], Chapters 6-8, and den Hollander [20], Chapter 9.

1.1 A copolymer near a selective interface

Let w = (wg)gen be ii.d. random variables with a probability distribution v on R having zero
mean and unit variance:

/qu(dx) =0, /R:c21/(dx) =1, (1.1)

and a finite cumulant generating function:

M(\) = log/ e My(dr) <oo  VYAER. (1.2)
R
Let
H:{ﬂ':(k,ﬂ'k)keNO: w9 =0, WkEZVkGN}. (1.3)

denote the set of infinite directed paths on Ny x Z (with Ng = NU{0}). Fix n € Ny and §,h > 0.
For given w, let

n
HM(w) = =B (wk + h)sign(m_1,7), w1, (1.4)
k=1
be the n-step Hamiltonian on II, and let
1

b () = i e HUM® p(n), mell (1.5)
n

be the n-step path measure on II, where P is any probability distribution on II under which
the excursions away from the interface are i.i.d., lie with equal probability above and below the
interface, and have a length whose probability distribution p on N has infinite support and a
polynomial tail
i L082(7)
im

/:En_));oo 10g n

= —q for some o > 1. (1.6)

Note that the Hamiltonian in (1.4) only depends on the signs of the excursions and on their starting
and ending points in w, not on their shape.

Example. For the special case where v is the binary distribution v(—1) = v(+1) = 3 and P
is simple random walk on Z, the above definitions have the following interpretation (see Fig. 1).
Think of 7 € IT in (1.3) as the path of a directed copolymer on Ny x Z, consisting of monomers
represented by the edges (mp_1,7k), k € N, pointing either north-east of south-east. Think of
the lower half-plane as water and the upper half-plane as oil. The monomers are labeled by w,
with wp = —1 indicating that monomer k is hydrophilic and w; = +1 that it is hydrophobic.
Both types occur with density 3. The factor sign(mg_1,mx) in (1.4) equals —1 or +1 depending
on whether monomer k lies in the water or in the oil. The interaction Hamiltonian in (1.4)
therefore rewards matches and penalizes mismatches of the monomer types and the solvents. The
parameter [ is the interaction strength (or inverse temperature), the parameter h plays the role of
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Figure 1: A directed copolymer near a linear interface. Oil in the upper half plane and hydrophobic
monomers in the polymer chain are shaded light, water in the lower half plane and hydrophilic monomers
in the polymer chain are shaded dark. (Courtesy of N. Pétrélis.)

the interaction bias: h = 0 corresponds to the hydrophobic and hydrophilic monomers interacting
equally strongly, while h = 1 corresponds to the hydrophilic monomers not interacting at all. The
probability distribution of the copolymer given w is the quenched Gibbs distribution in (1.5). For
simple random walk the support of p is 2N and the exponent is o = %: p(2n) ~ 1/71/2n%/2 as
n — oo (Spitzer [23], Section 1).

1.2 Quenched free energy and critical curve

The model in Section 1.1 was introduced in Garel, Huse, Leibler and Orland [14]. It was shown in
Bolthausen and den Hollander [7] that for every 3,h > 0 the quenched free energy per monomer

1
fI(B,h) = nlgrolo - log Z/2"w exists, is finite and is constant w-a.s. (1.7)

It was further noted that
f1e(B, h) > Bh. (1.8)

This lower bound comes from the strategy where the path spends all of its time above the interface,
ie, mp > 0 for 1 < k < n. Indeed, in that case sign(mi_1,7,) = +1 for 1 < k < n, resulting
in Hﬁ’h’w(w) = —Bhn[l + o(1)] w-a.s. as n — oo by the strong law of large numbers for w (recall
(1.1)). Since P({m € II: m; > 0 for 1 <k <n}) =3, p(n) =n'"2"°W as n — 0o by (1.6, the
cost of this strategy under P is negligible on an exponential scale.

In view of (1.8), it is natural to introduce the quenched excess free energy

g (B, h) = f4(B, h) — Bh, (1.9)

to define the two phases
DY ={(B,h): g**(B,h) = 0},
L3 ={(B,h): g**(B,h) > 0},

and to refer to D¢ as the quenched delocalized phase, where the strategy of staying above the
interface is optimal, and to £9%¢ as the quenched localized phase, where this strategy is not optimal.
The presence of these two phases is the result of a competition between entropy and energy: by
staying close to the interface the copolymer looses entropy, but it gains energy because it can more
easily switch between the two sides of the interface in an attempt to place as many monomers as
possible in their preferred solvent.

(1.10)



General convexity arguments show that D¢ and L9 are separated by a quenched critical
curve 3+ hd"®(3) given by

hd¢(B) = sup{h > 0: ¢g9°(5,h) > 0} = inf{h > 0: ¢g9"°(8, h) = 0}, 8 >0, (1.11)
with the property that he  (0) = 0, 8+ ha () is strictly increasing and finite on [0, 00), and

B+ Bhd™(B) is strictly convex on [0,00). Moreover, it is easy to check that limg_,oo hd ™ (8) =
sup[supp(v)], the supremum of the support of v (see Fig. 2).

g*e(B,h) he™ (8)

PDaue

[aue

. h g
" ne(9) ’

Figure 2: Qualitative pictures of h — g9"¢(8, h) for fixed 8 > 0, respectively, 5 +— h3"¢(3). The quenched
critical curve is part of De,

The following bounds are known for the quenched critical curve:

()7 M (2) <hge®) < @0)'M@8) V>0 (1.12)

The upper bound was proved in Bolthausen and den Hollander [7], and comes from an annealed
estimate on w. The lower bound was proved in Bodineau and Giacomin [5], and comes from
strategies where the copolymer dips below the interface during rare stretches in w where the
empirical density is sufficiently biased downwards.

Remark: In the literature p is typically assumed to be regularly varying at infinity, i.e.,
p(n) =n"*L(n) for some o > 1 with L slowly varying at infinity. (1.13)

However, the proof of (1.12) in [7] and [5] is easily extended to p satisfying the weaker assumption
n (1.6). Sometimes results in the literature are derived under assumptions on v that are stronger
than (1.2), e.g. Gaussian or sub-Gaussian tails. Also this is not necessary for (1.12).

1.3 Annealed free energy and critical curve

Recalling (1.3-1.5), (1.7) and (1.9), and using that 8> ;_,(wx + h) = Bhn[l + o(1)] w-a.s. as
n — 0o, we see that the quenched excess free energy is given by

1 _
g (B8,h) = lim —log ZJ"  w-as. (1.14)
n—o0o N
with
ZGM = N P(r) exp |8 (wr + h) [sign(m—1,m) — 1| - (1.15)
mell k=1



In this partition sum only the excursions of the copolymer below the interface contribute. The
annealed version of the model has partition sum

E(Z3") = Z P(m) H [1{sign(nk,1,wk)=1} + M(28)-25h 1{sign(7rk,1,7rk)=fl}] , (1.16)
mell k=1

where E is expectation w.r.t. P = v®N, the probability distribution of w. The annealed excess free
energy is therefore given by

1 ~
¢ (B,h) = lim — logE(Z5"w). (1.17)

n—oo N

(Note: In the anncaled model the average w.r.t. P is taken on the partition sum Z"™ in (1.15)
rather than on the original partition sum Z5" in (1.5).) The two corresponding phases are

D™ ={(8,h): g"™(B,h) = 0},
L ={(8,h): g"™(B,h) > 0},

which are referred to as the annealed delocalized phase, respectively, the annealed localized phase,
and are separated by an annealed critical curve B — h2™ () given by

(1.18)

h2*(B) = sup{h > 0: ¢*"(B,h) > 0} = inf{h > 0: ¢**"(B,h) = 0}, 5> 0. (1.19)
g™ (8, h) B ()
M(26) pann
ﬁal’ll’l
0 - h 5
B () 0

Figure 3: Qualitative picture of h — ¢***(8, h) for fixed 8 > 0, respectively, 5 — h2"*(8). The annealed
critical curve is part of D*"".

An easy computation based on (1.16) gives that (see Fig. 3)
gann(/@’h) :OV[M(Qﬂ)_Q/BhL 57h207 (120)

and

he™(8) = (26)7'M(28), B> 0. (1.21)
Thus, the upper bound in (1.12) equals h2"(3), while the lower bound equals h2™(5/a).

1.4 Main results

Our variational characterization of the excess free energies and the critical curves are contained in
the following theorem.



Theorem 1.1 Assume (1.2) and (1.6).
(i) For every [3,h > 0, there are lower semi-continuous, conver and non-increasing functions

g ST(B, h; g),

ann (1.22)
g =SB, hig),
given by explicit variational formulas, such that
4 (5, ) = inflg € R ST(5, i) < 0}, 23
g™ (B, h) = inf{g € R: S*™(B, h;g) < 0}. '
(ii) For every 8> 0, g1"¢(5,h) and g™ (B, h) are the unique solutions of the equations
Sque(lﬁ’h;g) :0 f0T0<h§hgue(ﬁ), (1 24)
S*(B,hig) =0 for b= hg™(B). '
(iii) For every > 0, hd"*(8) and h2™(B) are the unique solutions of the equations
que . —
§(6,1;.0) = 0, (1.25)

Sann(B, b 0) = 0.

The variational formulas for S¢(8, h; g) and S**™(3, h; g) are given in Theorem 3.1, respectively,
Theorem 3.2 in Section 3. Figs. 5-8 in Section 3 show how these functions depend on 3, h and g,
which is crucial for our analysis.

Next we state five corollaries that are consequences of the variational formulas. The first three
corollaries are strict inequalities for the excess free energies and the critical curves.

Corollary 1.2 ¢9"°(5,h) < g™ (B, h) for all (5,h) € L2,
Corollary 1.3 If a > 1, then hd"(B) < h2™(B3) for all B > 0.

Corollary 1.4 If a > 1, then hd"™(8) > h2™(8/«) for all > 0.

The last two corollaries concern the typical path behavior. Let Pn Fh@ denote the path measure
associated with the constrained partition sum Z5™* defined in (1.15). Write M,, = [{1 < i <
n: m; = 0}] to denote the number of times 7 returns to the interface up to time n.

Corollary 1.5 For every (5,h) € int(D°) and ¢ > a/[-S1"(5, h; 0)] € (0, 00),

lim P2M (M,, > clogn) =0 W — a.s. (1.26)

n—oo

Corollary 1.6 For every (8,h) € LI,

h_)m Pﬁhw(| M, -Cl<e) =1 w—a.s. Ye>0, (1.27)
where
R 2Sq“e(ﬁ h; g4 (8, h)) € (—o0,0) (1.28)
C ag ) ? ) ) )

provided this derivative exists. (By convexity, at least the left-derivative and the right-derivative
exist.)



1.5 Discussion

1. The main importance of our results in Section 1.4 is that they open up a window on the
copolymer model with a variational view. Whereas the results in the literature were obtained
with the help of a variety of estimation techniques, Theorem 1.1 provides wvariational formulas
that are new and explicit. As we will see in Section 3, these variational formulas are not easy to
manipulate. However, they provide a natural setting, and are robust in the sense that they can be
applied to other polymer models as well, e.g. the pinning model with disorder (Cheliotis and den
Hollander [12]). Still other applications involve certain classes of interacting stochastic systems
(Birkner, Greven and den Hollander [3]). For an overview, see den Hollander [21].

2. The gap between the excess free energies stated in Corollary 1.2 has never been claimed in the
literature, but follows from known results. Fix 5 > 0. We know that h — ¢*"(5,h) is strictly
positive, strictly decreasing and linear on (0, h2" ()], and zero on [h2™(f3),00) (see Fig. 3). We
also know that h — ¢g99¢(3, h) is strictly positive, strictly decreasing and convex on (0, he"° ()], and
zero on [h¢"(B),00). It was shown in Giacomin and Toninelli [16, 17] that h — ¢g9"°(3, h) drops
below a quadratic as h T hd"®(3), i.e., the phase transition is “at least of second order” (see Fig. 2).
Hence, the gap is present in a left-neighborhood of he"“(3). Combining this observation with the
fact that g9"(3,h) < ¢®™(B,h) and hd"(B) < h2™(j), it follows that the gap is present for all
h € (0,h2"(j3)). Note: The above argument crucially relies on the linearity of h — ¢*"*(3,h) on
(0, 2" (3)]. However, we will see in Section 3 that our proof of Corollary 1.2 is robust and does
not depend on this linearity.

3. For a number of years, all attempts in the literature to improve (1.12) had failed. As explained in
Orlandini, Rechnitzer and Whittington [22] and Caravenna and Giacomin [8], the reason behind
this failure is that any improvement of (1.12) necessarily requires a deep understanding of the
global behavior of the copolymer when the parameters are close to the quenched critical curve.
Toninelli [24] proved the strict upper bound in Corollary 1.3 with the help of fractional moment
estimates for unbounded disorder and large § subject to (1.2) and (1.13), and this result was later
extended by Bodineau, Giacomin, Lacoin and Toninelli [6] to arbitrary disorder and arbitrary
B, again subject to (1.2) and (1.13). The latter paper also proved the strict lower bound in
Corollary 1.4 with the help of appropriate localization strategies for small 8 and a > «g, where
ap ~ 1.801 (theoretical bound) and agp ~ 1.65 (numerical bound), which unfortunately excludes
the simple random walk example in Section 1.1 for which a = 2. Corollaries 1.3 and 1.4 settle the

2
strict inequalities in full generality subject to (1.2) and (1.6).

4. A point of heated debate has been the slope of the quenched critical curve at g = 0,

1
lim — hd"(8) = K., 1.29
lim 3 he (8) (1.29)

which is believed to be universal, i.e., to depend on « alone and to be robust under changes of the
fine details of the interaction Hamiltonian. The existence of the limit was proved in Bolthausen and
den Hollander [7] for simple random walk, via a Brownian approximation of the copolymer model.
This result was extended in Caravenna and Giacomin [10] to p satisfying (1.13) with a € (1,2)
for disorder with a moment generating function that is finite in a neighborhood of the origin.
The proof uses a Lévy approximation of the copolymer model. The Lévy copolymer serves as the
attractor of a universality class, indexed by the exponent « € (1,2). The bounds in (1.12) imply
that K. € [a~!, 1], and various claims were made in the literature arguing in favor of K. = a™ !,
respectively, K. = 1. However, in Bodineau, Giacomin, Lacoin and Toninelli [6] it was shown that



K. < 1for a > 2 and K, > a~! for @ > ag. For an overview, see Caravenna, Giacomin and
Toninelli [11].

5. A numerical analysis carried out in Caravenna, Giacomin and Gubinelli [9] (see also Gia-
comin [19], Chapter 9) showed that for simple random walk and binary disorder

hd%(B) ~ (2K.B) ' log cosh(2K.f) for moderate 8 with K, € [0.82,0.84]. (1.30)

Thus, for this case the quenched critical curve lies “somewhere halfway” between the two bounds
in (1.12), and so it remains a challenge to quantify the strict inequalities in Corollaries 1.3 and 1.4.
For the upper bound some quantification is offered in Bodineau, Giacomin, Lacoin and Toninelli [6].

6. Because of (1.12), it was suggested that the quenched critical curve possibly depends on the
exponent a of p alone and not on the fine details of p. However, it was shown in Bodineau,
Giacomin, Lacoin and Toninelli [6] that for every @ > 1, § > 0 and € > 0 there exists a p satisfying
(1.13) such that hd™(B) is e-close to the upper bound, which rules out such a scenario. Our
variational characterization in Section 3 confirms this observation, and makes it quite evident that
the fine details of p do indeed matter.

7. Special cases of Corollaries 1.5 and 1.6 were proved in Biskup and den Hollander [4] (for
simple random walk and binary disorder) and Giacomin and Toninelli [15, 18] (subject to (1.13),
for disorder with a finite moment generating function in a neighborhood of the origin satisfy-
ing a Gaussian concentration of measure bound, and under the average quenched measure, i.e.,
E(Pf ’h’“’)). However, no formulas were obtained for the relevant constants.

1.6 Outline

In Section 2 we recall two large deviation principles (LDP’s) derived in Birkner [1] and Birkner,
Greven and den Hollander [2], which describe the large deviation behavior of the empirical process
of words cut out from a random letter sequence according to a random renewal process with
exponentially bounded, respectively, polynomial tails. In Section 3 we use these LDP’s to prove
Theorem 1.1. In Sections 4, 5 and 6 we prove Corollaries 1.2, 1.3 and 1.4, respectively. The proofs
of Corollaries 1.5 and 1.6 are given in Section 7. Appendices A—C contain a number of technical
estimates that are needed in Section 3.

In Cheliotis and den Hollander [12], the LDP’s in [2] were applied to the pinning model with
disorder, and variational formulas were derived for the critical curves (not the free energies). The
Hamiltonian is similar in spirit to (1.4), except that the disorder is felt only at the interface, which
makes the pinning model easier than the copolymer model. The present paper borrows ideas from
[12]. However, the new challenges that come up are considerable.

2 Large deviation principles

In this section we recall the LDP’s from Birkner [1] and Birkner, Greven and den Hollander [2],
which are the key tools in the present paper. Section 2.1 introduces the relevant notation, while
Sections 2.2 and 2.3 state the annealed, respectively, quenched version of the LDP. Apart from
minor modifications, this section is copied from [2]. We repeat it here in order to set the notation
and to keep the paper self-contained.



2.1 Notation

Let E be a Polish space, playing the role of an alphabet, i.e., a set of letters. Let E = UpenE"
be the set of finite words drawn from FE, which can be metrized to become a Polish space. Write
P(F) and P(FE) to denote the set of probability measures on E and E.
1 3 T4
75

vy Yy (@) Y3 Y@ y(6)
T T, T3 T T5

X

\ 4

Figure 4: Cutting words out from a sequence of letters according to renewal times.

Fix v € P(E), and p € P(N) satisfying (1.6). Let X = (Xi)gen be i.i.d. E-valued random
variables with marginal law v, and 7 = (7;);en i.1.d. N-valued random variables with marginal law
p. Assume that X and 7 are independent, and write P* to denote their joint law. Cut words out
of the letter sequence X according to 7 (see Fig. 4), i.e., put

To=0 and T;=T;, 1+1, ©€N, (2.1)

and let '
VO = (Xg 41, X1, 142,...,X1), €N (2.2)

Under the law P*, Y = (Y(i))ieN is an i.i.d. sequence of words with marginal law ¢, , on E given
by
qp,y(dxl, ... ,dmn) =P (Y(l) € (dxy,... ,dwn))

(2.3)
= p(n)v(dxy) x -+ x v(dzy), neN, z,...,z, € E.
We define p, as the tilted version of p given by
e—gnp(n) —gn
pg(n) = Wa n €N, N(g) = Ze p(n), g€ [0,00). (2.4)

neN

Note that if g > 0, then p, has an exponentially bounded tail. For g = 0 we write p instead of po.
We write Py and g, ., for the analogues of P* and g,, when p is replaced by p, defined in (2.4).

The reverse operation of cutting words out of a sequence of letters is glueing words together
into a sequence of letters. Formally, this is done by defining a concatenation map x from EN to
EN. This map induces in a natural way a map fsrom P(EN) to P(EY), the sets of probability
measures on £ and EN (endowed with the topology of weak convergence). The concatenation
q§3§ okl of q§3§ equals N, as is evident from (2.3).

_ Let pinv LEN) be the set of probability measures on EN that are invariant under the left-shift
6 acting on EN. For Q € P™V(EYN), let H(Q | qg’f) be the specific relative entropy of Q w.r.t. q§3§
defined by

1
®Ny _ 73 N
H(Q ‘ Qp,u) = ]\}E}(l)o N h(ﬂ.NQ ’ qp,u)? (25)
where myQ € P(EN) denotes the projection of Q onto the first N words, h(- | ) denotes relative

entropy, and the limit is non-increasing. The following lemma relates the specific relative entropies
of Q w.r.t. q§§ and qfﬁ]y.



Lemma 2.1 For Q € P™(EN) and g € [0, ),

H(Q|¢S) =H@Q|dh) +logN(g) +gmq (2.6)

with N'(g) € (0,1] defined in (2.4) and mg = Eq(m1) € [1,00] the average word length under Q
(Eq denotes expectation under the law @ and 11 is the length of the first word).

Proof. Observe from (2.4) that

WrnQ L ap ) =

(mnQ)(dy) log ( quQ(y)>

p97

NN drnQ > (2.7)
)(dy) 1
- 7TNQ y og (692?1 @) dqu (y)

= h(rnQ | 4p),) + Nlog N(g) + Ngma,

EN

Il
o

where |y(®| is the length of the i-th word and the second equality uses that Q € PinV(EN). Let
N — oo and use (2.5), to get the claim. n

Lemma 2.1 implies that if g > 0, then mg < co whenever H(Q | q ) < 0o. This is a special
case of [1], Lemma 7.

2.2 Annealed LDP

For N € N, let (Yil), ..., Y(N))Per be the periodic extension of the N-tuple (Y1), ..., Y(N)) ¢ EN
to an element of EN, and define

1 N-1

Ry = > Ty yvyper € PV(ED). (2.8)
i=0

This is the empirical process of N-tuples of words. The following annealed LDP is standard (see
e.g. Dembo and Zeitouni [13], Section 6.5).

Theorem 2.2 For every g € [0,00), the family P;(Ry € -), N € N, satisfies the LDP on
PinV(EN ) with rate N and with rate function I™ given by

"™Q) =H(@Q|d5,), Q € P™(EN). (2.9)

This rate function is lower semi-continuous, has compact level sets, has a unique zero at qu L, and

is affine.
It follows from Lemma 2.1 that
I5"(Q) = I"™(Q) + log N(g) + gmq, (2.10)

where 1" (Q) = H(Q | qgﬁ), the annealed rate function for g = 0.

10



2.3 Quenched LDP

To formulate the quenched analogue of Theorem 2.2, we need some more notation. Let P™(EY)
be the set of probability measures on EN that are invariant under the left-shift § acting on EV.
For Q € P™(EY) such that mg < oo, define

T1—1
g = —EQ (Z Sgr (v > c Pv(EN). (2.11)

mqQ k=0

Think of W as the shift-invariant version of @ o k™1 obtained after randomizing the location of
the origin. This randomization is necessary because a shift-invariant () in general does not give
rise to a shift-invariant Q o k1.

For tr € N, let [Jyr: E — [E]yy = U™_ E™ denote the truncation map on words defined by
y= (21, ,2n) = [Yler = (&1, ., Tnate)s neN zy,...,z, € E, (2.12)

i.e., [yl is the word of length < tr obtained from the word y by dropping all the letters with
label > tr. This map induces in a natural way a map from EN to [E]tr, and from Pm"(EN) to
P ([EIN). Note that if Q € P™(EV), then [Q];, is an element of the set

’Pinv’ﬁn(EN) _ {Q c ’PinV(EN): mg < OO} (2'13)

Define (w-lim means weak limit)
o | Nl
= {Q e P™(EY): w— lim Z Ok (v = N Q- a.s.} , (2.14)
k=0

i.e., the set of probability measures in PV (EN ) under which the concatenation of words almost
surely has the same asymptotic statistics as a typical realization of X.

Theorem 2.3 (Birkner [1]; Birkner, Greven and den Hollander [2]) Assume (1.2) and (1.6). Then,
for v®N—qa.s. all X and all g € [0,00), the family of (reqular) conditional probability distributions
P;(Ry € - | X), N € N, satisfies the LDP on PV (ENY with rate N and with deterministic rate
function I3 given by

Q) ifQeR
que — g bl bl
I3"(@) { 00, otherwise, when g >0, (2.15)
and . .

ue "(Q), if Q € PMVIN(EY)

Iq — ’ h = 2.1
@) { limiy—yoo Iﬁn([Q]tr), otherwise, when g =0, (2.16)

where

I"™Q)=H(@Q|d5y) + (o — 1)ymq H(¥q | v*M). (2.17)

This rate function is lower semi-continuous, has compact level sets, has a unique zero at qp L, and

s affine.
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The difference between (2.15) for g > 0 and (2.16-2.17) for ¢ = 0 can be explained as follows.
For g = 0, the word length distribution p has a polynomial tail. It therefore is only exponentially
costly to cut out a few words of an exponentially large length in order to move to stretches in X
that are suitable to build a large deviation { Ry ~ @} with words whose length is of order 1. This
is precisely where the second term in (2.17) comes from: this term is the extra cost to find these
stretches under the quenched law rather than to create them “on the spot” under the annealed
law. For g > 0, on the other hand, the word length distribution p, has an exponentially bounded
tail, and hence exponentially long words are too costly, so that suitable stretches far away cannot
be reached. Phrased differently, g > 0 and « € [1,00) is qualitatively similar to g = 0 and o = oo,
for which we see that the expression in (2.17) is finite if and only ¥ = v®N. It was shown in [1],
Lemma 2, that

Uo=1v"N «— QeR  onPinEN), (2.18)

and so this explains why the restriction € R appears in (2.15). For more background, see [2].

Note that 79"°(Q) requires a truncation approximation when mg = oo, for which case there is
no closed form expression like in (2.17). As we will see later on, the cases mg < oo and mg = oo

need to be separated. For later reference we remark that, for all Q € P (EN),

1™ (Q) = lim_ 1™ ([Q)) = sup ™™ QL)
. treN (219)
Q) = Jim 1 ([Q)) = sup I ([Q)).

as shown in [2], Lemma A.1.

3 Proof of Theorem 1.1

We are now ready to return to the copolymer and start our variational analysis.

In Sections 3.1 and 3.2 we derive the variational formulas for the quenched and the annealed
excess free energies and critical curves that were announced in Theorem 1.1. These variational
formulas are stated in Theorems 3.1 and 3.2 below and imply part (i) of Theorem 1.1. In Section 3.3
we state additional properties that imply parts (ii) and (iii).

3.1 Quenched excess free energy and critical curve

Let
n
Zg:(]]%w = F <exp [,8 Z(wk + h) [sign(wk_l,wk) — 1]] 1{7Tn=0}> , (3.1)
k=1

which differs from Z5"™* in (1.15) because of the extra indicator 1;;, —gy. This indicator is harm-
less in the limit as n — oo (see Bolthausen and den Hollander [7], Lemma 2) and is added for
convenience. To derive a variational expression for g4"¢(5, h) = lim, o % log Zgjg “w—a.s., we
use Theorem 2.3 with

X=w, E=R, E=U,nR", veP®R), pePN), (3.2)

where v satisfies (1.2) and p satisfies (1.6), with p(n) = P({r € II: 7, #0V1 < k < n,m, = 0}),
n € N, the excursion length distribution.

Abbreviate
C={QeP™(EN): I"™(Q) <o}, CM={QeC: mg<oo} (3.3)
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Theorem 3.1 Assume (1.2) and (1.6). Fiz ,h > 0.
(i) The quenched excess free energy is given by

g%¢(B,h) = inf{g € R: S9(B, h;g) < 0}, (3.4)
where
ST(B hig) = sup  [@pa(Q) — gmg — I (Q)) (3.5)
QecinnR
with
Dsn(Q) = /E(MQ)(dy) log 5.(v), (3.6)
donly) = §(L4e?hrWRo0)), (3.7)

where 1 : EN — E is the projection onto the first word, i.e., TQ = Qo Wfl, and 7(y),o(y) are
the length, respectively, the sum of the letters in the word y.
(ii) An alternative variational formula at g = 0 is S9¢(8,h;0) = S3*(B, h) with

S8 h) = sup [@p4(Q) — IT(Q)].- (3.8)

QECﬁ“
(i1i) The function g — S9"(B, h; g) is lower semi-continuous, conver and non-increasing on R, is
infinite on (—00,0), and is finite, continuous and strictly decreasing on (0, 00).
Proof. The proof comes in 5 steps. Throughout the proof 5, h > 0 are fixed.

1. Let t,, = t,(7) denote the number of excursions in 7 away from the interface (recall that 7, =0
n (3.1)). Fori=1,...,t,, let I; = I;(7) denote the i-th excursion interval in 7. Then

ﬁz (wg + h)[sign(mp_1,mg) — 1] ﬁz Z (wg + h)[sign(mp_1,m) — 1]. (3.9)

k=1 =1 kel;

During the i-th excursion, m cuts out the word wy, = (wg)kes, from w. Each excursion can be

either above or below the interface, with probability each, and so the contribution to Zﬁ e in

(3.1) coming from the i-th excursion is

Vinl) =5 | 1+exp |[=28) (wp+h)| | (3.10)
kel;

Hence, putting I; = (k;—1, k;] NN, we have
174 7h7
Zg“ =3 > Hp — kiz1) U5 ((kim, ki) (3.11)
NeN 0=ko<ki<---<kny=n i=1

Summing on n, we get

SNlemZli =3 Fy(g),  gel0,00), (3.12)

neN NeN
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with (recall (2.4))

N N
Hhg =Y Y <Hﬂg<’%—’““)> o [Zlog@”%’,h((kil”“i]) - 849)
i=1

0=ko<k1<---<kny<oo i=1

2. Let
1 N
Ry = N Z 551(w11,---,w1N)per (3.14)
i=1

denote the empirical process of N-tuples of words in w cut out by the successive excursions. Then
(3.13) gives

F(5) = V(0" B (e [V [ (mB5)00) 108650

(3.15)
= N(9)" Ej(exp [N®s(R3)])
with @35 and ¢gp, defined in (3.6-3.7). Next, let
_ 1
S48, h; g) = limsup = log Fy™“(g), g € [0,00), (3.16)
N—o0 N

and note that the limsup exists and is constant (possibly infinity) w-a.s. because it is measurable
w.r.t. the tail sigma-algebra of w (which is trivial). By (1.14), the left-hand side of (3.12) is a
power series that converges for g > ¢4"¢(8, h) and diverges for g < g4'°(/3,h). Hence we have

gT(B,h) = inf{g € R: §I°(8, h: g) < O}. (3.17)

Below we will see that g — S9¢(3, h;g) is strictly decreasing when finite, so that S9%(8, h; g)
changes sign precisely at g = g4"¢(3, h).

3. A naive application of Varadhan’s lemma to (3.15-3.16) based on the quenched LDP in Theo-
rem 2.3 yields that

S1(B,hig) =logN(g) + sup_ [®54(Q) = If*(Q)] - (3.18)
QePinv(EN)

This variational formula brings us close to where we want, because Lemma 2.1 and the formulas
for I"(Q) given in Theorem 2.3 tell us that

sSup [CI)@h(Q) —gmqQ — Iann(Q)] ) if g€ (07 OO)?
QeR . 19)
sup  [@4(Q) — IM(Q)]. g =0, (3.
Qefpinv(EN)

r.hs. (3.18) =

which is the same as the variational formulas in (3.5) and (3.8), except that the suprema in (3.19)
are not restricted to Cf". Unfortunately, the application of Varadhan’s lemma is problematic,
because @) — mg and @ — ®g,(Q) are neither bounded nor continuous in the weak topology.
The proof of (3.18-3.19) therefore requires an approzimation argument, which is written out in
Appendix B. This approximation argument also shows how the restriction to Cfi® comes in. This
restriction is needed to make the variational formulas proper, namely, it is shown in Appendix A
that if /%" is finite, then also ®g, is finite. In Appendix B we further show that the variational
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formula in (3.5) at g = 0 equals the variational formula in (3.8), i.e., S9¢(3, h;0) = S"°(8, h).
Thus, we have

SU(B, by g) = SM(B, hig), g €[0,00). (3-20)
4. To include g € (—00,0) in (3.20) we argue as follows. We see from (3.6-3.7) and (3.15)
that Fﬁhw( > [N ]N Since N(g) = oo for g € (—00,0), it follows from (3.16) that
Saue(3 h;g) = oo o for g 6 (—00,0). Moreover, we have
SU(B,hig) > log(3) + sup [—gmy —h(p' | p)], (3.21)
p'€P(N)

which is obtained from (3.5-3.7) by picking Q = ¢'*N with ¢/(dz1,...,dw,) = p'(n)v(dzr1) X --- X
v(dzy,), n € N, xq,...,z, € R (compare with (2.3)). By picking p'(n) = d,, n € N, with L € N
arbitrary, we get from (3.21) that S9°(3, h; g) > log(1) — gL +log p(L). Letting L — oo and using
(1.6), we obtain that S¢(j, h;g) = oo for g € (—00,0). Thus, (3.20) extends to

SUC(B,h; g) = SM(B, hig),  gER (3.22)
S8, h; g) S9ue(B, h; g) SE(B, h; g)
o oo oo

(1) b < he™(B) (2) b = he™(B) (3) h > he™(B)
Figure 5: Qualitative picture of g — S¢(8, h; g) for 8, h > 0.

5. In Section 6 we will show, with the help of a fractional moment estimate, that S9¢(3, h; g) < oo
for g € (0,00). By (3.5), g — S9"¢(3, h; g) is a supremum of functions that are finite and linear on
R. Hence, g — S9"¢(3, h; g) is lower semi-continuous and convex on R and, being finite on (0, c0),
is continuous on (0, 00). Moreover, since mg > 1, it is strictly decreasing on (0,00) as well. This
completes the proof of part (iii). n

Fig. 5 provides a sketch of g — S9¢(3, h; g) for (8, h) drawn from L3¢ 9D and int(DI"),
respectively, and completes the variational characterization in Theorem 3.1. In Section 3.3 we look
at h — S9¢(8, h;0) and obtain the picture drawn in Fig. 6, which is crucial for our analysis.

Remark: A major advantage of the variational formula in (3.8) over the one in (3.5) at ¢ = 0
is that the supremum runs over Ci® rather than Cfi® NR. This will be crucial for the proof of
Corollaries 1.3 and 1.4 in Sections 5 and 6, respectively. In Section 6 we will show that

Sae(s, hann( );0) > 0. (3.23)
It will turn out that S"¢(}3, hgnn(a); 0) < oo for some choices of p, but we do not know whether

it is finite in general.
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S9e(B, h;0)

e

Q™

)

log(3)
Figure 6: Qualitative picture of h — S9"¢(3, h;0) for 5 > 0.

3.2 Annealed excess free energy and critical curve

In order to exploit Theorem 3.1, we need an analogous variational expression for the annealed
excess free energy defined in (1.16-1.17). This variational expression will serve as a comparison

object and will be crucial for the proof of Corollaries 1.2-1.4.

Theorem 3.2 Assume (1.2) and (1.6). Fiz 8,h > 0.
(i) The annealed excess free energy is given by

g™ (B, h) = inf{g € R: S*™(B, h;g) < 0},

where

S (B, hyg) = sup [Ppn(Q) — gmg — I"(Q)].
Qecﬁ“

(3.24)

(3.25)

(i) The function g — S*™(B,h;g) is lower semi-continuous, conver and non-increasing on R,

infinite on (—oo, g™ (B, h)), and finite, continuous and strictly decreasing on [¢*™™ (B, h),

Proof. Throughout the proof 3, h > 0 are fixed.
(i) Replacing Z5™* by E(Z2™*) in (3.12-3.13), we obtain from (3.16) that

gann ) — Tim s l B,h,w
S5, h; g) = limsup I logE (FN (g)> .

N—o00
Using (2.3-2.4), (3.10) and (3.13), and abbreviating
dpnk,l) = %(1 + 6*25’**2&), keN,leR,

we compute

S¥(B, h; g) = log N'(8, h; g)

with
N (B, h;9g) Z/ Qo (K, dl) e 5 1, (K, 1)

keN

_Z/ L@k (dl) o9k 1(1+ —2ﬁhk—261>
keN

k
=13k 4 53T pl) ek [N
keN keN

= SN (9) + 3 N (g — [M(28) — 26h]),
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where N(g) is the normalization constant in (2.4), and v®¥ is the k-fold convolution of v. The
right-hand side of (3.28) has the behavior as sketched in Fig. 7. It is therefore immediate that
(3.24-3.25) is consistent with (1.20), provided we have

S (B, h; g) = S*™ (3, h; g). (3.30)

To prove this equality we must distinguish three cases.

(M) g(B,h) = g*™™(B,h) = 0V [M(28)—2Bh]. The proof comes in 2 steps. Note that the right-hand
side of (3.29) is finite.

1. Note that ®3(Q) defined in (3.6) is a functional of m1Q. Moreover, by (2.5),

inf H(Q|qp)="na]g.) VaeP(E) (3.31)
ermv(EN)
m1Q=q
with the infimum uniquely attained at Q = ¢®N, where the right-hand side denotes the relative
entropy of ¢ w.r.t. g,,. (The uniqueness of the minimum is easily deduced from the strict convexity
of relative entropy on finite cylinders.) Consequently, the variational formula in (3.25) reduces to

SA(B,hg) = sup { /~ q(dy) [—g7(y) + log ¢p.(y)] — h(q | qp,u)} (3.32)

q€P(E) E
mg<oo, h(qlgp,v)<oo
with ¢g5(y) defined in (3.7) and mg = [ q(dy)7(y). A further reduction is possible by noting that,
in view of (3.7), the integral is a functional of the law of (7(y),o(y)) under g. Hence, projecting
further from E to N x R and using the analogue of (3.31) for this projection, we have

sonE g = s {3 [ alnd) =gk + logép(k.D)
q€P(NxR) keN lER
ma <o hlap ) <oe (3.33)
q(k, dl)
- (k. d1) log <7
%/leﬂ% Qp,u(kadl)}

with mg = 37, oy Jier Fa(k, dl).

2. Define

1
Qp.ng(k, dl) = NG g Gp(kydl) e79% g5 4 (K, 1), (k,1) e Nx R, (3.34)

with NV (3, h; g) the normalizing constant in (3.29) (which is finite because g > [M(28) — 28h]).
Then the term between braces in (3.33) can be rewritten as

log N'(B,h;9) — h(q | 48,h;g); (3.35)

and so we have two cases:

(1) if both my,, < oo and h(ggny | gpp) < o0, then the supremum in (3.33) has a unique
maximizer at ¢ = gg p;g;

(2) if mg,,., = oo and/or h(ggny | gpr) = oo, then any maximizing sequence (gn)nen with
Mg, < 0o and h(qgy | ¢,) < oo for all n € N satisfies w — limy, 00 gn = ¢8,h;g (Weak limit).
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In both cases

S8, h; g) = log N (B, h; g), (3.36)
which settles (3.30) in view of (3.28).

(I) g < [M(28) — 2Bh]. Tt follows from (3.28-3.29) that S*™ (8, h, g) = co. We therefore need to
show that S*"(3, h;g) = oo as well. For L € N, let qé € P(E) be defined by

qé(dwl,...,dxn): nLu?"(dxl,...,dxn), neN, x,...,7, €R, (3.37)

where v3 € P(R) is defined by

vg(de) = e 2o~ ME8) y(dr), x €R. (3.38)
Sann(ﬁ’ h; g) Sann(ﬂ7 h; g) Sann(ﬂ7 h; g)
T o oo
\ g g ‘\ g
(1) h < hg™(B) (2) h = b2 (3) (3) h > h2™(3)

Figure 7: Qualitative picture of g — S?**(3, h; g) for 8,h > 0. Compare with Fig. 5.
Put Qf = (¢5)®". Then mqr = L, while

I*™QF) = HQf | ¢5))
= h(q§ | gp)

~ [ dbtay
E
= —log p(L

)
= —logp(L)
)

= —logp(L) —

dqé

(y)
pv (3.39)

h(vg [ v)
vg(dx) log <e_2ﬁx_M(26)>
RL

[2BE,,(w1) + M(25)]

dq
+L
+L
L
and

D5,(QF) = /E a5 (dy) log da.u(y)

— / vit(day, ..., dxr) log (% [1 + e—wzézl(a:wh)]) (3.40)
RL

> log(3) — L [28E,, (w1) + 26R] .
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It follows that
®p0(QF) — g mot — I*™(QF) > log(3) + log p(L) + L [M(2B) — 28h — g], (3.41)

which tends to infinity as L — oo (use (1.6)).

S (B, s 0)

log(3) ”””.”_.é._.._...._...

Figure 8: Qualitative picture of h — S2**(3, h;0) for 8 > 0. Compare with Fig. 6.

(ITI1) M(28) —28h < 0 and g € [M(283) — 28h,0). Repeat the argument in (3.39-3.41) with Q[];
replaced by QF and keep only the first term in the right-hand side of (3.41). This gives

®5.1(QF) — gmgr — I"™(QF) > log(3) +log p(L) — Ly, (3.42)
which tends to infinity as L — oo for g < 0. [ |

Fig. 7 provides a sketch of g — S (3, h; g) for (5, h) drawn from L£2** 9D and int(D*""),
respectively, and completes the variational characterization in Theorem 3.2. Fig. 8 provides a

sketch of h — S (3, h; 0).

3.3 Proof of Theorem 1.1

Theorems 3.1 and 3.2 complete the proof of part (i) of Theorem 1.1. From the computations
carried out in Section 3.2 we also get parts (ii) and (iii) for the annealed model, but to get parts
(ii) and (iii) for the quenched model we need some further information.

Theorem 3.1 provides no information on S9¢(3, h;0). We know that, for every § > 0, h —
S9U¢(B, h;0) is lower semi-continuous, convex and non-increasing on (0, 00). Indeed, h +— ¢gp(k,1)
is continuous, convex and non-increasing for all £ € N and [ € R, hence h — ®354(Q) is lower
semi-continuous, convex and non-increasing for every Q € Cfi", and these properties are preserved
under taking suprema. We know that h — S9¢(3, h;0) is strictly negative on (hd"“(83),00). In
Section 6 we prove the following theorem, which corroborates the picture drawn in Fig. 6 and
completes the proof of parts (ii) and (iii) of Theorem 1.1 for the quenched model.

Theorem 3.3 For every 5 > 0,

=00 for h <hi™(B/a),
SM(B,h;0)8 >0 for h=h2"(8/a), (3.43)
< oo for h > h2"(B/a).
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We close this section with the following remark. The difference between the variational formulas
in (3.5) (quenched model) and (3.25) (annealed model) is that the supremum in the former runs
over Ci" N R while the supremum in the latter runs over Cfi®. Both involve the annealed rate
function ™. However, the restriction to R for the quenched model allows us to replace I*"" by
I¢ (recall (2.18)). After passing to the limit g | 0, we can remove the restriction to R to obtain
the alternative variational formula for the quenched model given in (3.8). The latter turns out to
be crucial in Sections 5 and 6.

Note that the two variational formulas for g # 0 are different even when o = 1, although in
that case I = J9¢ (compare Theorems 2.2 and 2.3). For a = 1 the quenched and the annealed
critical curves coincide, but the free energies do not.

4 Proof of Corollary 1.2

Proof. The claim is trivial for hd"(8) < h < h2™(83) because g@"¢(B,h) = 0 < ¢*™(B,h).
Therefore we may assume that 0 < h < he (). Since 19%¢(Q) > I*™(Q), (3.5) and (3.25) yield

SR b1 0) < S*(B, h; 0) (4.1)

which, via (3.4) and (3.24), implies that g4¢(8,h) < ¢*™™(8,h), a property that is also evident
from (1.9) and (1.17). To prove that g9"¢(3,h) < ¢®™ (83, h) for 0 < h < hd"*(3), we combine (4.1)
with Figs. 5 and 7. First note that

STE(B, hy g™ (B, b)) < S™(B, h; g™ (B,h)) <0, 0 <h <h™(B). (4.2)

Next, for 0 < h < h2"™(8), g — S*™™(5, h;g) blows up at g = ¢**(8,h) > 0 by jumping from a
strictly negative value to infinity (see Fig. 7). Since S¢(j, h; g*™ (B, h)) < 0, and g — S9¢(8, h; g)
is strictly decreasing and continuous when finite, the claim is immediate from Theorem 1.1(ii),

which says that S9¢(3, h; g4"¢(5,h)) = 0. "

5 Proof of Corollary 1.3

Proof. Throughout the proof, & > 1 and 5 > 0 are fixed. The proof comes in 4 steps.

1. We begin with a truncation approximation.

Lemma 5.1 For every B > 0, there exists a sequence (Qiy)iren with Qi € cin for all tr € N such
that

lim [‘I)B,hi‘“e(ﬁ)@tr) _Iﬁn(Qtr)} = 0. (5.1)

tr—o0

Proof. Note that

sup | @5,(Q) = I™(Q)] = sup sup @5, (Qlu) = I™(Qle)|  VBH>0.  (52)

Qecfin treN QeC

Indeed, trivially the left-hand side is > the right-hand side, but the reverse inequality is also true
because

liminf @51, ([Qler) > 5 (Q), lim I"([Qy) = I™(@Q), VvQeP™EN).  (5.3)

r—00 tr—o0
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The former follows from the fact that @ — ®31,(Q) is lower semi-continuous on Pv(ENY while
the latter is the second half of (2.19). Because U = [fin on pinviin(gNy 5 cfin the left-hand
side of (5.2) equals S&"(3,h) defined in (3.8). We know from Theorem 3.1(ii) and Fig. 6 that
ST(B, hd™(B)) = S8, hd™(B);0) = 0. Combine this with (5.2) to get the claim. |

In steps 2-4 below we exploit Lemma 5.1.
2. Let g5 € P(E) be defined by

ap(dxr, ... .dxy) = 1 p(n) [v®"(dxy,. .., dx,) + y?"(dxl, o dxy)],

(5.4)
neN, z,...,z, €R,

where v € P(R) is given in (3.38). The projection of gz from E to N x R is precisely 48 hann(8):0
defined in (3.34). Define

Qs =q5" (5.5)
We saw in Section 3.2 that Q3 is the unique maximizer of the variational expression for S*™*(, h; 0)

at h = h2* () when >, . kp(k) < oo and h(qglgp,,) < 0o, and the unique limit of any maximizing
sequence when ), - kp(k) = oo and/or h(qgl|q,.) = oo.

3. The key to proving the strict inequality in Corollary 1.3 is the following lemma.
Lemma 5.2 For every 5 > 0 there exists a 6(3) > 0 such that

1 ([Qpler) — I*™ ([Qplir) = 6(8) M(Qs]u Vir € N. (5.6)
Proof. By (2.9) and (2.17), we have

I ([Qpler) — I*™([Qpler) = (& = 1) myq ., H (g, | V), (5.7)

where we recall (2.11-2.12). Let py, € P(N) be defined by

p(k) if k < tr,
pulk) = TXpll) itk =tr, (5.8)
0 if k> tr.

It is immediate from (5.4-5.5) that

m[QB]tr = Z kptr(k)v
keN

(5.9)
M@k Via ({d2} x BNT) = 5 [u(de) + vg(da)] 3 ko ().
keN
Putting
1v(dz) + vg(dz)] = pg(dz), z €R, (5.10)
we get from (5.9) that
Vg, ({dz} x BNV = pg(da),  z€R, (5.11)

which is independent of the truncation level tr. Hence (recall that the limit in (2.5) is non-

decreasing)
H(¥q,, | v®) > hug |v)  VireN. (5.12)
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But pug # v, and so (5.7) yields the claim with §(8) = (o — 1)h(ug | v) > 0. |

4. We finish by showing that Lemma 5.2 implies Corollary 1.3. The proof is by contradiction and
uses (5.1). Suppose that hd"*(8) = h2™(8). Then, with (Qt;)tren as in Lemma 5.1, we have

D pave(gy (Qur) — 19 (Qtr) = P pann () (Qtr) — Ique(Qtr)
<@g pann(y (Qur) — I (Qur)
< B pann () (M1 Q) — MM Qur | gpv)
) —

S SuP [‘bﬁ hann ﬁ) q h(q ’ qp7y):|
9€P([Blyr): (5.13)

h(qlgg)<oo

= log Niw (8, 2™ (8);0) — _inf g | g)
h(alag)<oo

<- inf h(qlgs) =0.
qEP(E):
h(qlag)<oo

The first inequality uses that [9%¢ > 1™ the second inequality that

™™ (Qu) = H(Qu | ¢57) = M(mQur | 4., (5.14)

the third inequality that h(m1 Q. | ¢p,) < 00 because 1% (Qy;) < oo (note from Lemma 5.1 that
Qi € CM), the second equality uses the computation carried out in Section 3.2 (recall from (3.34)
and (5.4) that gg = qg pann(g),0), and the fourth inequality uses that Ny (8, A" (5);0) = 1 for all
tr € N, where Ny, (8, h2™(8);0) is as in (3.29) but with p replaced by py.
Since, according to (5.1), the left-hand side of (5.13) tends to zero as tr — oo, it follows from
(5.13) that
w— hm Qi = qﬁ , (5.15)
— 00

where we use that the inequality in (5.14) is an equality if and only if Qy, is a product measure.
It now also follows from (5.13) that

1 que __gann —
Jim [1(Qu) = I (Que)] = 0, (5.16)
which contradicts Lemma 5.2 because mg,, > 1 for all tr € N. n

We close this section with the following remark. As (2.17) shows, I™(Q) depends on dp,v, the
reference law defined in (2.3). Since the latter depends on the full law p € P(N) of the excursion
lengths, it is evident from Lemma 5.1 that the quenched critical curve is not a function of the
exponent « in (1.6) alone. This supports the statement made in Section 1.5, item 6.

6 Proof of Corollary 1.4

The proof is immediate from Theorem 3.3 (recall Fig. 6), which is proved in Sections 6.1-6.3.
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6.1 Proof for h > h2™(5/«)

Proof. Recall from (3.15-3.16) and (3.22) that

1
S(B, h; g) = limsup ¥ log Fﬁ,’h’” (9)

N—oo

(6.1)
1
= log N(g) + lim sup — log E;(exp [N(I>57h(R§"V)] )
N—o0 N
Abbreviate
S%(9) = E; (exp [N®g n(RY)]) (6.2)
and pick
t =[0,1], h = h2"(fBt). (6.3)

Then the ¢-th moment of S (g) can be estimated as (recall (3.10-3.11))

B (s3(0)") =2 | | <e><p li log (3 [1.+ 6‘”2’“@”“’”"’])])] )
i=1
-

=1
r t

-k Z {ﬂ pg(ki — ki—l)} { x % [1 + 625Zke(kil,ki](wk+h):|}

| 0<k<--<ky<oo li=1

N N
<E Z {Hpg(k?i - k‘il)t} {H ot [1 + 672Btzk€(ki_1,ki](wk+h)i| })

i=1

0<ki<--<ky<oo \i=1 i=1

= Z {IJ_V[ Pg(k?@ - kil)t} {ﬁ 9—t [1 + e(ki*kifl)[M(Qﬁt)f2Bth]] }

0<ki<--<ky<oo \i=1 i=1

N
— 2(1—t)N Z {Hpg(kl - ki—l)t}

0<k1< - <kny<oo \i=1

N
= <21t Z Pg(kf)t> :
keN 6

The inequality uses that (u + v)! < uf + v for u,v > 0 and ¢ € [0, 1], while the fifth equality uses
that M (25t) — 2f8th = 0 for the choice of ¢ and h in (6.3) (recall (1.21)).

Let K(g) denote the term between round brackets in the last line of (6.4). Then, for every
€ > 0, we have

P (5 loeSi(0) = 7 log k(o) + ) =P (S30)' > K(0) e

<E([S%(9)]") K(g9) Ve Ne<e N,

(6.5)
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Since this bound is summable it follows from the Borel-Cantelli lemma that

1 1
lim sup N log S¥(g9) < i log K (g) w — a.s. (6.6)

N—oo

Combine (6.1-6.2) and (6.6) to obtain

S8, h; g) < log N (g) +

—1 1
log2 + n log (Z pg(kz)t>

keN

1-t 1 gtk 1t
= — log2+glog<Zeg p(k:))

keN

(6.7)

We see from (6.7) that S9¢(3, h3"(5t);g) < oo for g > 0 and ¢ € (0,1], and also for g = 0 and
te(1/a,1], ie., S1(B,h;0) < oo for h € (h2"(B8/a), h2"(B)]. This completes the proof because
we already know that S9¢(5,h;0) < 0 for h € (h2"*(f), 00). |

Note that if ), p(k)/* < oo, then S¢(B, h2™(3/a);0) < oo. This explains the remark
made below (3.23).

6.2 Proof for h < 2™ (5/«)

Proof. For L € N, define (recall (3.38))

q5(k,dl) = 0y, ug/L (dl), (k,l) e Nx R, (6.8)
and .
QF = (g5)®" € P™(EY), (6.9)

with qé(y), y € E, linked to qé(k:,l), (k,1) € N x R, in the same manner as in (5.4). We will show
that

h <h™(B/a) = liLH;iogf% [@5,(QF5) — I™(Q5)] >0, (6.10)

which will imply the claim because Qé € Cfin. (Recall (3.3) and note that both mor = L and

"™ (QF) = haf | dpo) = —log p(L) + h(vga | vp) are finite.)
We have (recall (3.6) and (3.27))

B(QL) Z/ g, di) log 5k 1),
kEN 6.11)
ok (k. di) (6.

H(QF | 450) = hldf | ap.) Z/ qﬁkd“g<py(k:dn)

keN
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Dropping the 1 in front of the exponential in (3.27), we obtain (similarly as in (3.39-3.41))
®5n(QF) — H(QF | 4;)

—28hk—281
1 e Qv (k,dl)
> log(3) —i—E / qﬁkdl log[ qL(kc[‘l)l)

keN
_ oy VE(dl
=log(3) + / Ve, (dl) log[ 2BhL =261 E/La((dl)) (L)] (6.12)
®L(dl)
~ oo( 9L () log | M @8)—26m1L Y8 %)
=1 g(%)—i—/ g/a(dl) 1 g[ 28)-2 g/La(dl) (L)]

=log(3) + [M(28) — 28R L — h(vg)a | v3) L + log p(L).
Furthermore, from (6.8) we have (recall (2.11))
mor =L, VgL = u?}i, (6.13)

which gives
(a—1) mat H(\I/Qé | vN) = (a - 1) Lh(vga | V). (6.14)

Combining (6.12-6.14), recalling (2.16-2.17) and using that limy,_,o, L~ log p(L) = 0 by (1.6),
we arrive at

lgrgggf% [@5.(Q5) — IT(Q5)] > [M(28) — 28h] — h(vsya | v5) — (@ — 1) h(vga | )
= aM(2) — 28h = 28 [h*™(8/a) — h],

where the first equality uses the relation (recall (1.21) and (3.38))

(6.15)

h(vg/a | vg) + (@ — 1) h(Vﬁ/a |v)
:/ Vs /a(dl) ([ M(%)} Y281+ M©28)] + (o — 1) [—%Z—M(%)D (6.16)

leR
= M(28) — aM(%).

Note that (6.15) proves (6.10). n

6.3 Proof for h = h2"™(5/a)

Proof. Our starting point is (3.8), where (recall Theorem 2.3)

1(Q) = I"™(Q) = H(Q | 4jn) + (= ) mq H(¥q [ v*),  Qec™. (6.17)
The proof comes in 4 steps.

1. As shown in Birkner, Greven and den Hollander [2], Equation (1.32),

H(Q| ¢5)) =mq H(¥q | v*") + R(Q), (6.18)
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where R(Q) > 0 is the “specific relative entropy w.r.t. p®N of the word length process under Q
conditional on the concatenation”. Combining (6.17-6.18), we have [1"°(Q) < a H(Q | qﬁ’y),
which yields

Saue(B, h) > S [P54(Q) —aH(Q | ¢5))]. (6.19)
c fin

2. The variational formula in the right-hand side of (6.19) can be computed similarly as in part
(I) of Section 3.2. Indeed,

r.hs. (6.19) = sup [/N q(k,dl)log ¢gn(k,l) —ah(q | qpu)| - (6.20)
qEP(E) E
mg<oo, h(qlgp,v)<oo
Define 1
apnkdl) = Tz [Bpn (kD gy (K, d), (6:21)

where N (3, h) is the normalizing constant. Then the term between square brackets in the right-
hand side of (6.20) equals alog N (3, h) — ah(q | gs,n), and hence

SHe(B,h) = alog N (B, h), (6.22)
provided NV (3, h) < oo so that gg, is well-defined.

3. Abbreviate 1 = 25/a. Since h2"™ (5/a) = M(p)/ 1, we have

N (B, b2 (B/a) Zp / k(dl) {% (1 + e*a[M(u)knLul])}l/a_ (6.23)

keN

Let Z be the random variable on (0,00) with law P that is equal in distribution to the random
variable e MWkl with law p(k) v®*(dl). Let f(2) = {3(1 +2%)}¥/®, 2 > 0. Then

rhs. (6.23) = E(f(Z)). (6.24)

We have F(Z) = 1. Moreover, an easy computation gives
f/(z) = (%)1/0’ (1 + Za’)(l/a)—l Za_l’
F(z) = ()Y (1 4 22) (/)2 z0=2 (1),

so that f is strictly convex. Therefore, by Jensen’s inquality and the fact that P is not a point
mass, we have

(6.25)

E(f(2)) > [(E(2)) = f(1) = L. (6.26)
Combining (6.22-6.24) and (6.26), we arrive at

Sdue (B, hE™(B/a)) > 0, (6.27)

which proves the claim.

4. It remains to check that NV (3, h2™(3/a)) < co. But f(z) < (2)Y/2(1+ 2), z > 0, and so we
have

N( hann(/@/a)) (%)1/04(1 —i—E(Z)) < 21—(1/Oé) < 0. (6.28)
|
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7 Proof of Corollaries 1.5 and 1.6

Corollaries 1.5 and 1.6 are proved in Sections 7.1 and 7.2, respectively.

7.1 Proof of Corollary 1.5

Proof. Fix (B,h) € int(D9°). We know that S9"°(3,h;0) < 0 (recall Fig. 6) and ) ZPhe <
oo. It follows from (3.16) and (3.22) that for every € > 0 and w-a.s. there exists an Ny = Ny(w, €) <
oo such that

FBh(0) < NGBR3 N, &

For E an arbitrary event, write fo’h’“(E) to denote the constrained partition restricted to E.
Estimate, for M € N and e small enough such that S9¢(3, h;0) + € < 0,

~ 7 B,h,w ~B,h,w >
rpg,h,w(Mn > M) _ Zn (Mn > M) < ZnEN Zn (Mn > M)

257’17“) - 257’17“) 7 2
1 FBihw 2 M5 (B,h;0)+] (7:2)
oz NEM v p(n) 1 — elST(B.h0)+d”

where the second equality follows from (3.11-3.13). The second inequality follows from (7.1) and
the bound Z" > 1p(n), the latter being immediate from (1.15) and the fact that every excursion
has probability % of lying below the interface. Since p(n) = n=to() we get the claim by choosing

M = [clog n] with ¢ such that «+ ¢[S9"¢(5, h;0) + €] < 0, and letting n — oo followed by € | 0. B

7.2 Proof of Corollary 1.6

Proof. Fix (8,h) € £9°. We know that ¢4"¢(5,h) > 0 and S¢(S3, h; g9 (8, h)) = 0. It follows
from (3.16) and (3.22) that for every €,0 > 0 and w-a.s. there exist ng = ng(w,€) < oo and
My = Mp(w, d) < oo such that

Zg,h,w > nlg™e(Bh)—d n > no,
F]@h,w(gque(/@’h) o) < eM[SQ“e(B,h;gq“e(ﬁ,h)+5)+<¥2}7 M > My, (7.3)
F@h,w(gque(ﬁ’ h) —§) < eM[Sq“e(B,h;gq“e(ﬁyh)*5)+52}7 M > Mp.

For every My, My € N with My < My we have
PRl (My < My < M) =1 = |PRM (M > Ma) + P (M, < M) (7.4)

Below we show that the probabilities in the right-hand side of (7.4) vanish as n — oo when
M = [egn] with ¢; < C_ and My = [eon| with ¢o > C, respectively, where

_CL N (82>_ S9e(B, h; g1 (B, 1)),
1_ ag X (7.5)
O (0_9> SC(B, h; g(B, 1)),
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are the left-derivative and right-derivative of g — S¢(8, h;g) at g = g9"°(53, h), which exist by
convexity, are strictly negative (recall Fig. 5) and satisfy C_ < C,. Throughout the proof we
assume that M; > M.

e Put My = [can], and abbreviate
a(B,h, ) = SU(B, h; g2 (B, h) + 6) + &%, (7.6)
where we choose 0 small enough such that a(j3, h,d) < 0 (recall Fig. 6). Estimate

ZPhe (M, > My)
Zﬁ7h7w
< enletdl Zﬁl’h’w (M, > Mo) e~ 91 (B,h)+4]

< AT ST ZEM Moy > My) e B4
> n =

ﬁg’hw(Mn > MQ) =

n/eN
— onletd] Z Fﬁ,h,w( g8, R) + 0) (7.7)
N>Ma
< nletd] Z oNa(8,h,0)
N>M,
enleto+ca(B,h,0)]
1 — ea(B,h,9)

The first inequality follows from the first line in (7.3), the second equality from (3.11-3.13), and
the third inequality from (7.3). The claim follows by picking cs such that

€+ 0+ cea(B, h,d) <0, (7.8)

letting n — oo followed by € | 0 and § | 0, and using that

tin S a8, n,0) = (L) 50, hsgme o, ) =~ < L (79)
im=a == : I .
510 5 s Iy ag y 15 g ) C+ 62
e Put M; = [¢in] and abbreviate
b(B, h,8) = SI(B, h; g™°(8, h) — 8) + &2, (7.10)
where we choose 0 small enough such that b(53, h,d) > 0. Split
PO M, < My) = T+ 1T (7.11)
with ~an Soh
Zn" (M, < M, Zn"Y (Mo < <M
I= (f;/lh < 0), I = ( MM Y. (7.12)
Zn7 ,w Z S,w
Since

I < e o™ B ZBhw (M, < My) = el BRh=d R~ FOM(gme (8 By — ), (7.13)
N< My

28



this term is harmless as n — co. Repeat the arguments leading to (7.7), to estimate

IT < el N Z0M (My < M,y < My) e 9™ (53]

n’eN

=T ERg (B, h) - 9)
Mo<N<M;

< en[s—(ﬂ Z er(ﬁ,h,(S)
Mo<N<M

< 677/[5—(5+Clb(ﬁ,h76)] Z e[N_Ml}b(ﬁvh‘vé)

N<M;
en[€75+61b(ﬁ,h75)]

(7.14)

Therefore the assertion follows by choosing ¢; such that
€ — 0+ c1b(B,h,0) <0, (7.15)
letting n — oo followed by € | 0 and ¢ | 0, and using that

: 1 a - ue . ue _ L i
lim < b(8.h,0) = - (a—g> S8 g (8. h) = G- < (7.16)

Recalling (7.4), we have now proved that

lim P2 ([ein] < My, < [ean]) =1 Ve <Co, e >Ch. (7.17)

n—o0

Finally, if (1.28) holds, then C_ = C, and we get the law of large numbers in (1.27). n

A Control of &3,

In this Appendix we prove that h(m1Q|q,,) < oo implies that ®g;(Q) < oo for all 3,h > 0. In
the proof we make use of a concentration of measure estimate for the disorder w whose proof is
given in Appendix C.

Lemma A.1 Fiz 8,h >0, p € P(N) and v € P(R). Then, for all Q € P (RN) with h(m1Q|qpv)
< 00, there are finite constants C > 0, v > % and K = K(B, h, p,v,7y) such that

Ppn(Q) <7 h(mQlgpy) + K. (A.1)

Proof. Abbreviate

fly) = W), u(y)=-28lrh+0o@)], yER=UpenR"™ (A.2)

Fix v > 28/C, with C' > 0 as in (C.8), and for n,m € N define

Amp={y € R": m —1 < ylog f(y) < m},
Ao ={y €R™: 0 < f(y) <1}, (A.3)
Bpn={yeR": m—1<u(y) <m}.
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Note that

"= AO,n U [UmENAm,n] , ME N, (A-4)
and that
By, = U Bm,na neN, (AS)
meN

is the set of points y € R™ for which u(y) > 0. This gives rise to the decomposition
2@ = 3 / tog (4 [1+¢*¥)]) (mQ) ()

< lo 1\/6“(y (m1Q)(dy)
%/ g > 1 Y (A6)

=35 [ @@

neNmeN
=I1+I1I+1I1

with

=Yy / u(®)f(9) 4 ()

neN meN leNg m+l n]mAm n

n-yx [ w() (1) dpady), (A7)

1
neNmeN Y AmnNUZ " Bin)

IIT = Z/A u(y) f(y) gp (dy).

neN 0,nN[Umen Bm,n]
The terms I and I1 deal with the set B, N U,,cny Am,n, while I11 deals with the set B, N Agp.

Note that
1<Y o) Y e S (m 4 ) P(Bousi),

neN meN 1eNg (AS)

11 <Y p(n) Y mP(Bun),

neN meN

where we recall that P = v®YN. The upper bound on I uses that f < ™7 on Appn and u < m on
By, n. The upper bound on 11 uses that f <1 on Ap, and u < m on By, . We need to show
that each of the three terms is finite. Observe from (A.8) that 7] < I. Hence it suffices to show
that I and I are finite.

I: Estimate

I< Z p(n) Z em/V Z (m + l) ]P’(Bm+l,n)

neN meN 1eNo
m = l+m—1
neN meN leNg =1
< Zp(n) e O Z em/ Z(Z +m)exp[-C(l+m—1)] < o0
neN meN leNo

where 