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Abstract

We consider a system in which customers join upon arrival the shortest of two single-server

queues. The interarrival times between customers are Erlang distributed and the service times of

both servers are exponentially distributed. Under these assumptions, this system gives rise to a

Markov chain on a multi-layered quarter plane. For this Markov chain we derive the equilibrium

distribution using the compensation approach. The obtained expression for the equilibrium distri-

bution matches and refines heavy-traffic approximations and tail asymptotics obtained earlier in

the literature.

Keywords: random walks in the quarter plane, compensation approach, join the shorter queue, tail

asymptotics
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1 Introduction

Consider a system of two unbounded single server queues, in which a customer on arrival joins the

shorter queue. The service times of customers are independent and exponentially distributed with

mean one, irrespective of the queue they have joined. The arrivals form a renewal process with Erlang

interarrival times with mean k/λ, so that each interarrival time consists of k independent exponen-

tial phases with mean 1/λ. Under these Markovian assumptions, the evolution of the system can

be described as a three-dimensional Markov chain, whose state space consists of a k-layered quarter

plane. When ρ = λ/2k < 1 this Markov chain is ergodic and the equilibrium distribution exists.

In this paper we derive an explicit expression for the equilibrium distribution in terms of an infinite

series of geometric terms. This explicit expression immediately renders heavy-traffic approximations

valid when ρ is close to unity, including the asymptotic result that connects the tail exponent of the

shortest queue length to the tail exponent of the corresponding queueing system with Erlang arrivals,

one common queue and two servers.

The shorter queue problem with Poisson arrivals (k = 1) was originally proposed by Haight [14].

Kingman [15] came up with an ingenious approach for finding the equilibrium distribution. Kingman

first transformed the state space such that the queue length process was described by a random walk

in the quarter plane, next described the bivariate generating function of the equilibrium distribution

1Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB

Eindhoven, The Netherlands

E-mails: i.j.b.f.adan@tue.nl, s.kapodistria@tue.nl, j.s.h.v.leeuwaarden@tue.nl

1



in terms of a functional equation, and finally solved the functional equation using complex analysis.

Kingman’s work was the first of many papers exploiting the connection between two-dimensional ran-

dom walks in the quarter plane and functional equations. For the general class of random walks in

the quarter plane Malyshev pioneered this approach in the 1970’s, and the theory has advanced since,

via applications like lattice path counting and two-server queueing models. The crucial idea was to

reduce the functional equations to standard boundary value problems, and extensive treatments of

this technique can be found in Cohen and Boxma [8] and Fayolle, Iasnogorodski and Malyshev [9]. It

typically concerns sophisticated complex analysis, Riemann surfaces and conformal mappings.

Kingman’s solution to the functional equation for the shortest queue problem, however, was sim-

ple and elegant, and only required an iterative mapping that was shown to lead to a convergent

solution. In fact, it was shown later that Kingman’s solution could be obtained without using the

functional equation, and by solving the equilibrium equations directly. This direct method was called

the compensation approach and developed in a series of papers [1, 3, 5]. It exploits the fact that the

(linear) equilibrium equations in the interior of the quarter plane are satisfied by linear combinations

of product-forms, the parameters of which satisfy a kernel equation, and that need to be chosen such

that the equilibrium equations on the boundaries are satisfied as well. As it turns out, this can be

done by alternatingly compensating for the errors on the two boundaries, which eventually leads to

an infinite series of product-forms that matches the solution of Kingman. In [1, 3, 5], the compensa-

tion approach has been shown to work for two-dimensional random walks on the lattice of the first

quadrant that obey the following conditions:

• Step size: Only transitions to neighboring states.

• Forbidden steps: No transitions from interior states to the North, North-East, and East.

• Homogeneity: The same transitions occur according to the same rates for all interior points, and

similarly for all points on the horizontal boundary, and for all points on the vertical boundary.

Although the theory has been developed for two-dimensional random walks with only one layer, this

paper demonstrates that it can also be applied to random walks with multiple layers. For this, we

have to extend the compensation approach to a three-dimensional setting.

Random walks in the quarter plane play the role of canonical example for obtaining tail asymptotics

for equilibrium distributions. Indeed, random walks in the quarter plane present serious challenges to

the traditional approaches for obtaining tail asymptotics, including large-deviations theory, matrix-

analytic methods, and complex-function methods. A comprehensive overview of the state of the art in

this field is given in [21]. Our contribution to this area is that, for the special case of the shorter queue

model with Erlang arrivals, we obtain an exact expression for the equilibrium distribution, which by

its nature, also reveals the tail asymptotics, including leading-order behavior, correction terms and

explicit error estimates. Our exact results yield asymptotic results that match and refine those ob-

tained in [24].

The paper is organized as follows. In Section 2 we describe the model in full detail. In Section 3

we present a first result on the decay rate of the shortest queue length. In Section 4 we develop the

three-dimensional compensation approach. In Section 5 we present the explicit expression for the

equilibrium distribution. Finally, in Section 6 we present some conclusions.
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2 Model description

Consider a system consisting of two identical servers, in which the service times of customers are inde-

pendent and exponentially distributed with mean one, irrespective of the queue they have joined. The

interarrival times between consecutive jobs follow an Erlang distribution with mean k/λ, consisting of

k exponential phases, each with mean 1/λ. Upon arrival a customer joins the shortest queue, and in

case of a tie, the customer joins either queue with probability 1/2. This system is stable if and only

if ρ = λ/2k < 1. The stability condition can be easily proven as follows. We know that the number

of jobs in this shortest queue system is stochastically larger than in the Ek/M/2 queue with FCFS

discipline (see [12] and the references therein). On the other hand it is stochastically smaller than

in the system, where each server has his own waiting line and customers are assigned to either line

with probability 1/2 (see [17]). Since both bounding models have the same stability condition ρ < 1,

we can conclude that this condition is necessary and sufficient to ensure stability for the model at hand.

An Erlang arrival process corresponds with the assumption that each customers first goes through k

independent exponential phases before arriving to the system. Let R(t) denote the phase in which the

customer to arrive next is in at time t. Further, let Qi(t) denote the stochastic process describing the

number of jobs in queue i at time t. For convenience introduce X1(t) = min{Q1(t), Q2(t)} and X2(t) =

|Q1(t) − Q2(t)|. Then the dynamics of the queueing system can be described by a continuous-time

Markov chain {(R(t), X1(t), X2(t)), t ≥ 0}, with state space {(h,m, n), h = 0, 1, . . . , k − 1, m, n =

0, 1, . . .}, where h is the number of completed phases of arrival, m the length of the shortest queue and n

the difference between the longest and the shortest queue. Under the stability condition ρ = λ/2k < 1,

we shall determine the equilibrium distribution

p(h,m, n) = lim
t→∞

P((R(t), X1(t), X2(t)) = (h,m, n)), h = 0, 1, . . . , k − 1, m, n = 0, 1, . . .

of this three-dimensional Markov chain.

The transition rates are given by

(h,m, n)
2kρ−−−→ (h+ 1,m, n), h = 0, . . . , k − 2, m ≥ 0, n ≥ 0,

(k − 1,m, n)
2kρ−−−→ (0,m+ 1, n− 1), m ≥ 0, n ≥ 1,

(k − 1,m, 0)
2kρ−−−→ (0,m, 1), m ≥ 0,

corresponding to arrivals, and

(h,m, n)
1−−−→ (h,m− 1, n+ 1), h = 0, . . . , k − 1, m ≥ 1, n ≥ 1,

(h,m, n)
1−−−→ (h,m, n− 1), h = 0, . . . , k − 1, m ≥ 0, n ≥ 1,

(h,m, 0)
2−−−→ (h,m− 1, 1), h = 0, . . . , k − 1, m ≥ 1,
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Figure 1: k-layered transition rate diagram with H = {0, 1, . . . , k − 1}.

corresponding to service completions. The equilibrium equations then read

2kρ p(h, 0, 0) = p(h, 0, 1) + 2kρ (1− δh,0) p(h− 1, 0, 0), (2.1)

(2kρ+ 1)p(h, 0, 1) = p(h, 0, 2) + 2p(h, 1, 0) + 2kρ δh,0 p(k − 1, 0, 0)

+ 2kρ (1− δh,0) p(h− 1, 0, 1), (2.2)

(2kρ+ 1)p(h, 0, n) = p(h, 1, n− 1) + p(h, 0, n+ 1)

+ 2kρ (1− δh,0) p(h− 1, 0, n), n ≥ 2, (2.3)

2(kρ+ 1)p(h,m, 0) = p(h,m, 1) + 2kρ δh,0 p(k − 1,m− 1, 1)

+ 2kρ (1− δh,0) p(h− 1,m, 0), m ≥ 1, (2.4)

2(kρ+ 1)p(h,m, 1) = p(h,m, 2) + 2p(h,m+ 1, 0) + 2kρ δh,0 p(k − 1,m− 1, 2)

+ 2kρ δh,0 p(k − 1,m, 0) + 2kρ (1− δh,0) p(h− 1,m, 1), m ≥ 1, (2.5)

2(kρ+ 1)p(h,m, n) = p(h,m, n+ 1) + p(h,m+ 1, n− 1) + 2kρ δh,0 p(k − 1,m− 1, n+ 1)

+ 2kρ (1− δh,0) p(h− 1,m, n), m ≥ 1, n ≥ 2, (2.6)

where h = 0, . . . , k−1 and δi,j denotes the Kronecker delta taking value 1 when i = j and 0 otherwise.

Let p(m,n) = (p(0,m, n), p(1,m, n), . . . , p(k − 1,m, n))T , with xT the transpose of a column vector

x. We introduce the following matrix notation to describe the equilibrium equations:

A0,0 p(0, 0) +A0,−1 p(0, 1) = 0, (2.7)

B0,0 p(0, 1) +A0,−1 p(0, 2) + 2A−1,1 p(1, 0) +A0,1 p(0, 0) = 0, (2.8)

4



B0,0 p(0, n) +A0,−1 p(0, n+ 1) +A−1,0 p(1, n− 1) = 0, n ≥ 2, (2.9)

C0,0 p(m, 0) +A0,−1 p(m, 1) +A1,−1 p(m− 1, 1) = 0, m ≥ 1, (2.10)

C0,0 p(m, 1) +A0,−1 p(m, 2) + 2A−1,1 p(m+ 1, 0) +A1,−1 p(m− 1, 2)

+A0,1 p(m, 0) = 0, m ≥ 1, (2.11)

C0,0 p(m,n) +A0,−1 p(m,n+ 1) +A−1,1 p(m+ 1, n− 1)

+A1,−1 p(m− 1, n+ 1) = 0, m ≥ 1, n ≥ 2, (2.12)

where

A0,−1 = A−1,1 = A−1,0 = Ik,

A0,1 = A1,−1 = 2kρM
(1,k)
k ,

A0,0 = −2kρIk + 2kρLk,

B0,0 = −(2kρ+ 1)Ik + 2kρLk,

C0,0 = −2(kρ+ 1)Ik + 2kρLk,

with Ik the k × k identity matrix, M
(i,j)
k a k × k binary matrix with element (i, j) equal to one and

zeros elsewhere, and Lk a lower shift matrix with elements (i, i − 1), i = 2, . . . , k, equal to one and

zeros elsewhere.

3 Decay rate

Sakuma et al. [24] studied the join the shorter queue model with phase-type arrivals (of which Erlang

arrivals are a special case). They combined matrix-analytic techniques with general results for decay

rates of quasi-birth-death processes to establish the following result. Although the result in [24] is more

general, here we present the result for the special case of Erlang arrivals. Let σ denote the unique

positive real root of σ = Ã (2(1− σ)) inside the open unit circle, with Ã(s) the Laplace-Stieltjes

transform of the interarrival time distribution.

Proposition 3.1 (Sakuma et al. [24]) For h = 0, 1, . . . , k − 1,

lim
m→∞

σ−2mp(h,m, n) = Kh,1β
n
1 +Kh,2β

n
2 + · · ·+Kh,kβ

n
k (3.1)

with β1, . . . , βk and Kh,1, . . . ,Kh,k constants that do not depend on m.

Proposition 3.1 can be understood by comparing the join the shorter queue model with the corre-

sponding G/M/2 model with one queue, two servers, phase-type arrivals with mean interarrival time

1/2ρ and mean service time one. Let Q1 and Q2 denote the steady-state queue length in the original

join the shorter queue model, and let Q denote the steady-state queue length in the G/M/2 model

with one queue. It is then expected that P(Q1 + Q2 = m) and P(Q = m) have the same decay rate,

since both systems will work at full capacity whenever the total number of customers grows large.

Moreover, since the join the shorter queue discipline constantly aims at balancing the lengths of the

two queues over time, it is expected that, for large values of m,

P(min(Q1, Q2) = m) ≈ P(Q1 +Q2 = 2m) ≈ P(Q = 2m). (3.2)
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For the standard G/M/2 model with one queue, it is well known that

P(Q = m) ≈ (1− σ)σm, (3.3)

where σ is the unique root in (0, 1) of σ = Ã (2(1− σ)), with Ã(s) the Laplace-Stieltjes transform of

the interarrival distribution. Notice that in case of Erlang arrivals this gives

σ =

�
kρ

kρ+ 1− σ

�k
. (3.4)

Combining (3.2) and (3.3) leads to the following conjectured behavior of the tail probability of the

minimum queue length;

P(min(Q1, Q2) = m) ≈ cσ2m, m→∞, (3.5)

for some positive constant c. Hence, the decay rate of the tail probabilities for min(Q1, Q2) is conjec-

tured to equal the square of the decay rate of the tail probabilities of Q. Proposition 3.1 thus proves

this conjecture, for the case when the difference of the queue sizes and the arrival phase are fixed.

In [24] it was left as an open problem to determine the decay rate of the marginal distribution of

min(Q1, Q2). The latter does not follow immediately from Proposition 3.1, because the summation of

the difference in queue sizes, which can be unbounded, requires a formal justification. In this paper,

we derive an exact expression for p(h,m, n), which, among other things renders the following result.

Proposition 3.2

lim
m→∞

σ−2mP(min(Q1, Q2) = m) =
kX
j=1

κj
1− βj

(3.6)

with κj =
Pk−1
h=0Kh,j.

4 The compensation procedure

In this section we shall present a series of preliminary results that together will lead up to the full

solution of the equilibrium equations reported in Section 5. We start by exploiting the intuition de-

veloped in Section 3 about the tail asymptotics in (3.5). In order to establish that the equilibrium

distribution p(h,m, n) is indeed of a form that would yield the asymptotics of the type (3.5) we first

consider a modified model that is closely related to the original model and that is expected to give

the same asymptotic behavior.

The modified model is constructed as follows. We start from the state space of one model illustrated

in Fig. 1 and bend the vertical axis as shown in Fig. 2 to create a modified model that has the same

equilibrium equations in the interior and on the horizontal boundary. This model can be recognized

as the Erlang arrivals joining the shorter queue in a two-server production system with the additional

feature that when one of the queues is left empty the server works in advance and puts the produced

items on stock. Then, when a customer arrives he takes immediately a product from the stock and

leaves the system, and when both queues are empty again, the stock is cleared.

The characteristic feature of the modified model is that its equilibrium equations for m + n = 0

are exactly the same as the ones in the interior; in this sense the modified model has no “vertical”

boundary equations.
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Figure 2: k-layered transition rate diagram for the modified model with H = {0, 1, . . . , k − 1}.

We now present two lemmas. The first lemma gives a product-form solution for the modified model.

The second lemma gives a similar product-form solution for the original model via exploiting the

relation with the modified model. Let p̂(h,m, n) denote the equilibrium distribution of the modified

model.

Lemma 4.1 For ρ < 1, the equilibrium distribution of the modified model exists and it is of the form

p̂(h,m, n) = αmq̂h(n), h = 0, 1, . . . , k − 1, m ≥ −n, n ≥ 0 , (4.1)

with α ∈ (0, 1) unique and {q̂h(n)}n∈N0 such that
P∞
n=0 α

−nq̂h(n) <∞.

Proof. First notice that the modified model is stable whenever the original model is stable and that

p̂(h,m, n) satisfies (2.10)-(2.12) for all m+n ≥ 0, except for states (h, 0, 0). Observe that the modified

model, restricted to an area of the form {(m,n) : m ≥ n0 − n, n ≥ 0, n0 = 1, 2, . . .} embarked by

a line parallel to the diagonal axis, yields the exact same process. Hence, we can conclude that for

p̂(m,n) = (p̂(0,m, n), . . . , p̂(k − 1,m, n))T ,

p̂(m+ 1, n) = αp̂(m,n), m ≥ −n, n ≥ 0 , (4.2)

and therefore

p̂(h,m, n) = αmq̂h(n), h = 0, 1, . . . , k − 1, m ≥ −n, n ≥ 0 . (4.3)

Finally, we observe that
∞X
n=0

α−nq̂h(n) =
∞X
n=0

p̂(h,−n, n) < 1,

which concludes the proof. �

In Lemma 4.1 we have shown that the equilibrium distribution of the modified model has a product-

form expression which is unique up to a positive multiplicative constant. Furthermore, one can verify

that the unique α of formula (4.1) is equal to σ2, where σ is the unique root of (3.4) in the interval
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(0, 1) (see Appendix A). Returning to the original model, we will prove completely independently from

Lemma 4.1 that the solution of the equilibrium equations (2.10)-(2.12) is identical to the expression

for the modified model as given in (4.1), with α = σ2.

Lemma 4.2 For ρ < 1, there exists a product-form

p(m,n) = σ2mq(n), m, n ≥ 0, (4.4)

with σ the unique root of (3.4) inside the open unit circle and q(n) = (q0(n), . . . , qk−1(n))T non-zero

such that
P∞
n=0 σ

−2nqh(n) < ∞, h = 0, . . . , k − 1, which satisfies the equilibrium equations (2.10)-

(2.12).

Proof. Substituting p(m,n) = σ2mq(n) into the equilibrium equations (2.10)-(2.12) reveals that

q(n) satisfies a system of linear difference equations. Let Q(y) = (Q0(y), . . . , Qk−1(y))T , with Qh(y) =P∞
n=0 y

nqh(n), |y| < 1/σ2. It then follows after straightforward calculations that

H1(y)Q(y) = H2(y)Q(0), (4.5)

with

H1(y) = (−2(kρ+ 1)σ2y + σ2 + σ4y2)Ik + 2kρσ2yLk + 2kρM
(1,k)
k ,

H2(y) = σ2(1− σ2y2)Ik + 2kρ(1− σ2y2)M (1,k)
k .

We will show that Q(y) is non-zero and analytic within the circle of radius 1/σ2.

In order to analyze the linear system (4.5) we should investigate for which values of y the matrix

H1(y) is not invertible. Setting det(H1(y)) = 0, for σ 6= 0, is tantamount to

(2(kρ+ 1)σ2y − σ2 − (σ2y)2)k − (2kρ)k(σ2y)k−1 = 0. (4.6)

First, we will show that equation (4.6) has k roots inside the open circle of radius 1/σ2. To this end,

we define u = σ2y and observe that (4.6) can be written as

hk1(u)− (2kρ)kuk−1 = 0 (4.7)

with h1(u) = 2(kρ+ 1)u− σ2 − u2. Then h1(u) has two roots:

u± = kρ+ 1±
È

(kρ+ 1)2 − σ2.

Observe that, for 0 < ρ < 1

|u+| = (kρ+ 1)

�����1 +

s
1− σ2

(kρ+ 1)2

����� > kρ+ 1 > 1,

and

|u−| = σ2

|u+|
< |α| < 1.
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Furthermore, for |u| = 1 one can easily see that

|hk1(u)| = |2(kρ+ 1)u− σ2 − u2|k ≥ |2(kρ+ 1)|u| − σ2 − |u|2|k

= (2kρ+ 1− σ2)k > (2kρ)k.

Hence, by Rouché’s theorem, hk1(σ2y)− (2kρ)k(σ2y)k−1 has exactly k roots, denoted by y1, y2, . . . , yk,

inside the circle of radius 1/σ2.

Next, we will show that these roots are distinct. The assumption that yi = yj for some i, j = 1, . . . , k,

with i 6= j, or equivalently ui = σ2yi = σ2yj = uj for i 6= j, contradicts σ2 ∈ (0, 1). To prove

this contradiction observe that, for a root of hk1(σ2y) − (2kρ)k(σ2y)k−1 in (4.6) to be of (at least)

multiplicity two, it must be that hk1(u)− (2kρ)kuk−1 = khk−11 (u)h′1(u)− (k− 1)(2kρ)kuk−2 = 0, which

gives

σ2 = u
(k + 1)u− 2(kρ+ 1)

k − 1
. (4.8)

Substituting (4.8) into (4.6) yields

u(kρ+ 1− y)k − (k − 1)kρk = 0 . (4.9)

Equation (4.9) has according to Rouché’s theorem a unique solution inside |u| = ρ, since�����u− � (k − 1)ρ

kρ+ 1− u

�k
− u

����� =

������ (k − 1)ρ

kρ+ 1− u

�k����� ≤ � (k − 1)ρ

kρ+ 1− |u|

�k
<

�
(k − 1)ρ

(k − 1)ρ+ 1

�k
< ρ, for all k ≥ 2.

Furthermore, applying the intermediate value theorem in the interval [0, ρ] shows that the solution is

real. Then, for u ≤ ρ the σ2 we obtain from (4.8) is a non-positive number, which contradicts the

assumption that σ2 ∈ (0, 1).

We have shown that (4.6) has k roots inside the open circle of radius 1/σ2, denoted by y1, . . . , yk.

Furthermore, one can easily verify that one of these roots is equal to 1/σ, say yk = 1/σ, and observe

that this is the unique root (with multiplicity k) of the determinant of matrix H2(y). The rest of

the roots y1, . . . , yk−1 will be used to determine the vector Q(0) up to a non-zero constant. More

concretely, for the roots y1, . . . , yk of (4.6) the columns of the matrix H1(yi) are linearly dependent,

so for each root yi there exists a non-null vector v(yi) such that v(yi)H1(yi) = 0. It can be easily

shown that the vector v(yi) = (v1(yi), v2(yi), . . . , vk(yi)) has the form

vj(yi) =

�
2(kρ+ 1)yi − 1− σ2y2i

2kρyi

�j−1
v1(yi), j = 2, . . . , k, (4.10)

with v1(yi) 6= 0, for i = 1, 2, . . . , k. Then from (4.5) we know that the vector Q(0) should be such

that v(yi)H2(yi)Q(0) = 0 for all i = 1, 2, . . . , k. After some calculations we obtain that Q(0) =

(q1(0), q2(0), . . . , qk(0))T satisfies the system of linear equations

(1− σ2y2i )

�
kX
j=1

qj(0)

�
2(kρ+ 1)yi − 1− σ2y2i

2kρyi

�j−1
+

2kρ

σ2
qk(0)

�
= 0, (4.11)
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for i = 1, 2, . . . , k. For non-null solutions of the system (4.11), the system determinant is zero, which

can be seen to be equivalent to

kY
i=1

(1− σ2y2i )
k−1Y
l=1

kY
j=l+1

(1− σ2ylyj)(yj − yl) = 0. (4.12)

Assuming that yj = 1/(σ2yl) equation (4.6) implies yl = yj = ±1/σ, which cannot happen since we

have proven that yl 6= yj for all l 6= j. Hence, from (4.12) we have that the determinant of the system

of equations (4.11) is zero if and only if 1/σ2 = y2k. Then, the linear system for the vector Q(0), after

omitting the k-th line, assumes the form266664
v1(y1) v2(y1) · · · vk−1(y1)

v1(y2) v2(y2) · · · vk−1(y2)
...

...
. . .

...

v1(yk−1) v2(yk−1) · · · vk−1(yk−1)

377775
266664

Q0(0)

Q1(0)
...

Qk−2(0)

377775 =

266664
vk(y1) + 2kρ

σ2 v1(y1)

vk(y2) + 2kρ
σ2 v1(y2)

...

vk(yk−1) + 2kρ
σ2 v1(yk−2)

377775Qk−1(0),

(4.13)

with vj(yi) defined in (4.10). The linear system (4.13) has a non-zero determinant, leading to the

conclusion that it has a non-zero solution. �

In Lemma 4.2 we have shown that there exists a product-form solution of the equilibrium equations

(2.10)-(2.12). Further, Lemma 4.1 implies that this product-form is unique, since the equilibrium

distribution of the modified model is unique. Combining Lemmas 4.1 and 4.2 yields the following

central result.

Proposition 4.1 For ρ < 1, the product-form

p(m,n) = σ2mq(n), m, n ≥ 0, (4.14)

with σ the unique root of (3.4) inside the open unit circle, and q(n) = (q0(n), . . . , qk−1(n))T non-zero

such that
P∞
n=0 σ

−2nqh(n) < ∞, h = 0, . . . , k − 1, is the unique (up to a constant) solution of the

equilibrium equations (2.10)-(2.12).

The next results shows why the compensation procedure starts with a product-form satisfying the

inner and horizontal axis equilibrium equations, and not with one satisfying the inner and vertical

axis equilibrium equations.

Proposition 4.2 For ρ < 1, there is no β, with 0 < |β| < 1, such that the product-form

p(m,n) = βnq(m), m, n ≥ 0, (4.15)

with q(m) = (q0(m), . . . , qk−1(m))T non-null such that
P∞
m=0 qh(m) < ∞, h = 0, . . . , k − 1, is a

solution to the equilibrium equations (2.8), (2.9), (2.11) and (2.12).

Proof. Setting p(m,n) = βnq(m) in (2.8), (2.9), (2.11) and (2.12) yields two systems of linear differ-

ence equations for q(m). Let Q(y) = (Q0(y), . . . , Qk−1(y))T , with Qh(y) =
P∞
m=0 y

mqh(m), |y| < 1.

We will show that for every β, with 0 < |β| < 1, the generating functions Qh(y), h = 0, . . . , k− 1, are

zero for all y, with |y| < 1.
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More concretely, equations (2.9) and (2.11) yields after some calculations the first of the two systems

of difference equations

H3(β, y)Q(y) = (1− βy)IkQ(0), (4.16)

with

H3(β, y) = (−(2kρ+ 2− β)βy + 1)Ik + 2kρβyLk + 2kρβ2y2M
(1,k)
k .

Furthermore, setting p(m,n) = βnq(m) in (2.8) and (2.11) gives the second system of linear difference

equations for q(m):

H4(β, y)Q(y) = (2− βy)IkQ(0) (4.17)

with

H4(β, y) = H3(β, y) + Ik + 2kρyM
(1,k)
k .

In light of (4.16) equation (4.17) assumes the form

(Ik + 2kρyM
(1,k)
k )Q(y) = IkQ(0),

which leads to

Q(y) = (Ik − 2kρyM
(1,k)
k )IkQ(0). (4.18)

Then (4.16) can be written as

H5(β, y)Q(0) = 0

with

H5(β, y) = [H3(β, y)(Ik − 2kρyM
(1,k)
k )− (1− βy)Ik]

= βy[β(β − 1− 2kρ)Ik + 2kρβLk + 2kρ(2βy(1 + kρ)− 1)M
(1,k)
k − (2kρ)2βyM

(2,k)
k ].

For y 6= 0,

det(H5(β, y)) = (β + 1)(2kρβ)k
�
y − 1

β(β + 1)
− 1

β + 1

�
1 +

1− β
2kρ

�k�
.

Hence, for 0 < |y| < 1 such that y 6= 1
β(β+1) + 1

β+1

�
1 + 1−β

2kρ

�k
the matrix H5(β, y) is invertible, so that

Q(0) = 0, which concludes the proof. �

The starting solution obtained in Proposition 4.1 satisfies the inner equilibrium equations as well

as the horizontal boundary equations, so we will need to compensate for the error created on the

vertical boundary. While performing this compensation the expressions we obtain should always keep

satisfying the inner equilibrium equations. For this reason we present Lemmas 4.3 and 4.4 that are

needed to describe the form of a solution satisfying the inner equilibrium equations. Furthermore, in

Proposition 4.1 we have shown that the starting formula has a unique product-form representation,

but we still need to specify the form of the vector q(n). This will be done in Lemma 4.5.

Lemma 4.3 The product-form p(m,n) = αmβnθ, m ≥ 0, n ≥ 1, is a solution of the inner equilibrium

equation (2.12) if

D(α, β)θ = 0, (4.19)

where D(α, β) = αβC0,0 + αβ2A0,−1 + α2A−1,1 + β2A1,−1.
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Figure 3: Det(D(α, β)) = 0 in R2
+ for ρ = 1/8 and k = 2.

We should now determine the α’s and β’s with 0 < |α| < 1, 0 < |β| < 1, for which (4.19) has a non-zero

solution θ, or equivalently, for which det(D(α, β)) = 0. Fig. 3 depicts the graph of det(D(α, β)) = 0

in R2
+ for ρ = 1/8 and k = 2.

The following lemma provides information about the location and the number of zeros of det(D(α, β)).

Lemma 4.4 (i) For every α, with |α| ∈ (0, 1), the equation det(D(α, β)) = 0 assumes the form

(2(kρ+ 1)β − β2 − α)kα− (2kρ)kβk+1 = 0 (4.20)

and has exactly k simple roots in the β-plane with 0 < |β| < |α|.
(ii) For every β, with |β| ∈ (0, 1), equation (4.20) has exactly one root in the α-plane with 0 < |α| < |β|.

Proof. (i) Equation (4.20) is a polynomial in β of degree 2k and we will show that only k roots are

inside the open circle of radius |α|. Other possible roots inside the open unit circle appear not to be

useful, since they will produce a divergent solution, as we have proved in Proposition 4.1. We divide

both sides of equation (4.20) by αk+1 and set z = β/α, which gives

fk1 (z)− (2kρ)kzk+1 = 0 (4.21)

with f1(z) = 2(kρ+ 1)z − αz2 − 1. Observe that (4.21) is equal to (4.7) after setting z = 1/y. Hence,

according to the proof of Proposition 4.1, the polynomial fk1 (z)−(2kρ)kzk+1 has exactly k roots inside

the open unit circle, so we have proven that (4.20) has for each fixed |α| ∈ (0, 1) exactly k roots inside

|β| = |α|. Denote these roots by β1, β2, . . . , βk. We next show that the roots are distinct. To this

end, for a root of g1(z) = fk1 (z)− (2kρ)kzk+1 in (4.21) to be of (at least) multiplicity two, it must be

that g1(z) = g′1(z) = 0, which gives

α(k − 1)z2 + 2(kρ+ 1)z − (k + 1) = 0. (4.22)

Equation (4.22) has two solutions

ẑ± =
−(kρ+ 1)±

È
(kρ+ 1)2 + α(k2 − 1)

α(k − 1)
,

with |ẑ−| > |α| and hence β = ẑ+. By (4.22) we get αβ2 = (−2(kρ + 1)β + k + 1)/(k − 1), so that

equation (4.21) can be written as

((k − 1)ρ)kβ =

�
(kρ+ 1)β − 1

β

�k
. (4.23)
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Setting β = ẑ+ and solving (4.23) in terms of α, we will show that all α roots that satisfy the equation

exceed the starting solution σ2, where σ is defined as the unique root in (0, 1) of (3.4), leading to a

contradiction.

Define u =
q

1 + α k2−1
(kρ+1)2

. Then either u ∈ R+ or u ∈ C \ R. Equivalently α = u2−1
k2−1 (kρ + 1)2 and

β = 1
kρ+1

k+1
1+u . Using the form of β in (4.23) we obtain after some calculations that

h(u) = (u− k)k(u+ 1)− (−1)k
ρk(k + 1)k+1(k − 1)k

(kρ+ 1)k+1
= 0. (4.24)

We consider, now two cases for k = 2 and k > 2. First, we will treat the case k > 2. Using the

intermediate value theorem the function (4.24) can be easily seen to have at least one real root in

the interval [−
√

2, 0], since h(0)h(−
√

2) < 0. This root is the only real root of h(u) in the interval

[−
√

2,
√

2]. Assume that there is a second root in the interval [−
√

2, 0]. Then by Rolle’s theorem the

derivative h′(u) = (k+1)(u−k)k−1u should have a real root in the corresponding open interval, which

is not the case. Furthermore, the derivative h′(u) = (k+ 1)(u− k)k−1u maintains sign throughout the

interval [0,
√

2] and since h(0)h(
√

2) > 0 there are no real roots in the interval [0,
√

2]. If we assume

that there is one complex root, with |u| <
√

2, then there should be in total at least three roots (the

real root, the complex one and its conjugate) inside the circle of radius
√

2, which would mean that

there are at least two roots of the derivative h′(u) = (k + 1)(u − k)k−1u inside the circle of radius√
2/ sin( π

2(k−1)) (see e.g. [19]). However one can check that only the zero root is inside the circle since

for the other root, k say, one can verify that k >
√

2/ sin( π
2(k−1)) for all k > 2.

Hence, there is only one root in the circle of radius
√

2, and this root is a real negative number. All

other roots in the u-plane will produce α-values greater than σ2:

|α| = (kρ+ 1)2
|u2 − 1|
k2 − 1

≥ (kρ+ 1)2
1

k2 − 1
> ρ2 > σ2, k > 2.

Repeating a similar analysis we observe that for k = 2 the function (4.24) has exactly one root in

the open circle of radius
√

7/2, and this root is a real negative number. The other two roots in the

u-plane will produce α-values greater than σ2:

|α| = (2ρ+ 1)2
|u2 − 1|

3
≥ (2ρ+ 1)2

1

4
> ρ2 > σ2 .

(ii) Equation (4.20) is a polynomial in α of degree k+ 1 and we will prove that there is only one root

inside the circle of radius |β|. Dividing both sides of (4.20) by βk+1 and setting x = α/β gives

f2(x)− (2kρ)k = 0 (4.25)

with f2(x) = x(2kρ + 2 − β − x)k. Then f2(x) has a zero root of multiplicity one and a root

2kρ + 2 − β of multiplicity k larger than the radius 3/4. Furthermore, for |x| = 1, we have that

|f2(x)| ≥ |x|(2kρ+2−|β|−|x|)k = (2kρ+1−|β|)k > (2kρ)k, hence by Rouché’s theorem f2(x)−(2kρ)k

has exactly one root in |x| < 1. This proves that (4.20) has for each fixed |β| ∈ (0, 1) exactly one root

in |α| < |β|. �

Lemmas 4.3 and 4.4 characterize basic solutions satisfying the inner condition (2.12). In Lemma 4.5

we present the starting solution of the compensation approach. The starting solution was proven

in Proposition 4.1 to have a unique product-form representation (up to a positive constant) and in

Lemma 4.5 we will specify the form of the vector q(n) appearing in (4.14).
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Lemma 4.5 For |α| ∈ (0, 1) let β1, β2, . . . , βk be the roots of (4.20) with |β| < |α|, and let θ1, θ2, . . . , θk
be the corresponding non-zero vectors satisfying (4.19). Then there exists exactly one α with 0 < |α| < 1

for which there are a non-zero vector ξ and coefficients d1, d2, . . . , dk such that

p(m,n) =

8<:αmPk
i=1 diβ

n
i θi, m ≥ 0, n ≥ 1,

αmξ, m ≥ 0, n = 0,
(4.26)

satisfies (2.10)-(2.12). This α is the square of the unique solution of equation (3.4) inside the open

unit circle.

The eigenvector θ = (θ(1), θ(2), . . . , θ(k))T satisfies

θ(i)

θ(k)
=

�
2(kρ+ 1)β − β2 − α

2kρβ

�k−i
, i = 1, 2, . . . , k − 1. (4.27)

The vector ξ is given by

ξ = − 1

α
C −1

0,0 [A0,−1 α+A1,−1]
kX
i=1

diβiθi, (4.28)

and the coefficients d1, d2, . . . , dk satisfy

kX
j=1

K(α, βj)dj = 0, (4.29)

with K(α, βj) = (K1(α, βj), . . . ,Kk(α, βj))
T

K1(α, βj) = βj

 
α

β2j + α

�
kρ

kρ+ 1

�k
+

α

2(kρ+ 1)

2(kρ+ 1)βj − 2α

2(kρ+ 1)βj − β2j − α
+

αβj
β2j + α

!
θ
(k)
j , (4.30)

Ki(α, βj) =
βj

β2j + α

�
2α

�
kρ

kρ+ 1

�i
+ (β2j − α)

 
2kρβj

2(kρ+ 1)βj − β2j − α

!i�
θ
(k)
j , (4.31)

for i = 2, . . . , k, j = 1, . . . , k.

Proof. Substituting in (2.10) the expression for p(m,n) in (4.26) immediately yields (4.28). Then,

from (2.11) we obtain

kX
i=1

diβi
�
C0,0α+A0,−1αβi +A1,−1βi − [2A−1,1α+A0,1]C

−1
0,0 [A0,−1 α+A1,−1]

�
θi = 0.

After tedious calculations the above matrix expression can be simplified to expression (4.29). �

Remark 4.1 The rank of matrix K = [K(α, β1) . . .K(α, βk)] in (4.29) is equal to k−1. This can be

proven as follows. First notice that rank(K) < k, since the equilibrium distribution of the modified

model is non-zero under stability. Further, if rank(K) < k − 1, then there exist at least two linearly

independent solutions d1 and d2, hence there would be at least two linearly independent vectors

q1(m) and q2(m) satisfying (4.1). This contradicts the uniqueness of the equilibrium distribution of

the modified model.
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The starting formula in the upper plane is a linear combination of k terms. One can easily check that

these terms do not satisfy the vertical boundary. Let us consider a term dαmβnθ (with |β| < |α|)
and show how to compensate for the error of this term on the vertical boundary. The idea behind

the compensation approach is to add a new term cα̂mβ̂nθ̂, such that dαmβnθ+ cα̂mβ̂nθ̂ satisfies both

(2.9) and (2.12). Substituting this linear combination into (2.9) yields a set of k equations of the form

dβn−1H(α, β)θ + cβ̂n−1H(α̂, β̂)θ̂ = 0, n > 1,

where H(x, y) = yB0,0 +y2A1,0 +xA0,−1. Hence, β = β̂, and therefore α̂ can be obtained from (4.20)

and θ̂ is the corresponding non-zero solution of (4.19), only leaving c for meeting k requirements.

Thus the choice of dαmβnθ + cα̂mβ̂nθ̂ for m,n ≥ 0 does not provide enough freedom to satisfy the

boundary equations. Remarkably, the constant c, as we will prove in Lemma 4.6, is very close to our

initial approach of simply adding the term cα̂mβnθ̂.

We shall next describe the compensation on the vertical boundary.

Lemma 4.6 For |β| ∈ (0, 1) let α, α̂ be roots of (4.20)) with |α̂| < |β| < |α|, and let θ, θ̂ be the

corresponding non-zero vectors satisfying (4.19). Then there exists a coefficient c such that

p(m,n) =

8<:dαmβnθ + cα̂mβnθ̂, m > 0, n ≥ 0,

d α
α−ββ

nθ + c α̂
α̂−ββ

nθ̂, m = 0, n ≥ 0,
(4.32)

satisfy both (2.9) and (2.12). The coefficient c is given by

c = d
β − α̂
α− β

θ(k)

θ̂(k)
. (4.33)

The eigenvector θ is given in (4.27) and θ̂ = (θ̂(1), θ̂(2), . . . , θ̂(k))T satisfies

θ̂(i)

θ̂(k)
=

�
2(kρ+ 1)β − β2 − α̂

2kρβ

�k−i
, i = 1, 2, . . . , k − 1. (4.34)

Proof. We observe that the equilibrium equations (2.4)-(2.6) for m = 1 demand that the equilibrium

distribution p(k − 1, 0, n), for n ≥ 1, is of the same geometric form as p(h,m, n), m ≥ 1. Hence, we

need only to assume that

p(k − 1, 0, n) = (d θ(k) + c θ̂(k))βn . (4.35)

We will determine p(0, n) iteratively through (2.3). Because of the form of equation (2.3) we can

assume that

p(h, 0, n) =
�
d ph+1θ

(h+1) + c p̂h+1θ̂
(h+1)

�
βn , h = 0, . . . , k − 1. (4.36)

Then plugging equation (4.36) into equation (2.3) for h = 1, 2, . . . , k − 1 and using (4.27) we have

that the sequences ph+1 and p̂h+1 satisfy the recursive schemes ph = η(ph+1) and p̂h = η̂(p̂h+1), for

h = 0, 1, . . . , k − 1 and

η(x) =
(2kρ+ 1)βx− β2x− α

2(kρ+ 1)β − β2 − α
, η̂(x) =

(2kρ+ 1)βx− β2x− α̂
2(kρ+ 1)β − β2 − α̂
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with initial conditions pk = p̂k = 1. Solving these linear difference equations gives for h = 0, . . . , k− 1

p(h, 0, n)

βn
= d

α− β
�

(2kρ+1)β−β2

2(kρ+1)β−β2−α

�k−h−1
α− β

θ(h+1) + c
α̂− β

�
(2kρ+1)β−β2

2(kρ+1)β−β2−α̂

�k−h−1
α̂− β

θ̂(h+1). (4.37)

Equation (2.3) for h = 0 yields

c = −d (2kρ+ 1)βp1 − β2p1 − α
(2kρ+ 1)βp̂1 − β2p̂1 − α̂

θ(1)

θ̂(1)
.

Using the recursive scheme for the sequences ph+1 and p̂h+1 and (4.37) gives

c = −d p0
p̂0

2(kρ+ 1)β − β2 − α
2(kρ+ 1)β − β2 − α̂

θ(1)

θ̂(1)

= −d

α−β
�

(2kρ+1)β−β2

2(kρ+1)β−β2−α

�k
α−β

α̂−β
�

(2kρ+1)β−β2
2(kρ+1)β−β2−α̂

�k
α̂−β

2(kρ+ 1)β − β2 − α
2(kρ+ 1)β − β2 − α̂

θ(1)

θ̂(1)
.

Using (4.20) and (4.27) gives

c = −d
α−α

�
2kρ+1−β

2kρ

�k
α−β

α̂−α̂
�

2kρ+1−β
2kρ

�k
α̂−β

2(kρ+ 1)β − β2 − α
2(kρ+ 1)β − β2 − α̂

θ(1)

θ̂(1)

= d
β − α̂
α− β

α(2(kρ+ 1)β − β2 − α)k

α̂(2(kρ+ 1)β − β2 − α̂)k
θ(k)

θ̂(k)

= d
β − α̂
α− β

θ(k)

θ̂(k)
.

In light of equation (4.33) equation (4.37) can be simplified, after eliminating the common terms, to

(4.32). �

Compensation on the vertical boundary has created an error and one can check that the new fromula

does not satisfy the horizontal boundary. Let us consider the term cα̂mβnθ̂ (with |α̂| < |β|) and show

how to compensate for the error of this term on the horizontal boundary. We will add a new term

α̌m
Pk
i=1 d̂iβ̂

nθ̌, such that cα̂mβnθ̂ + α̌m
Pk
i=1 d̂iβ̂

nθ̌ satisfies (2.10)-(2.12). Substituting this linear

combination into (2.10) and (2.11) yields a set of k equations of the form

cα̂m−1βG(α̂, β)θ + α̌m−1
kX
i=1

d̂iβ̂iG(α̌, β̂i)θ̂i = 0, m > 1,

where G(x, y) = xC0,0 + xyA0,−1 + yA1,−1 − [2xA−1,1 +A0,1]C
−1

0,0 [xA0,−1 +A1,−1]. Hence, α̂ = α̌,

and therefore β̂1, . . . , β̂k can be obtained from (4.20) and θ̌1, . . . , θ̌k are the corresponding non-zero

solutions of (4.19), only leaving d̂1, . . . , d̂k to be calculated from the set of the k equations.

The next result presents the compensation on the horizontal boundary.
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Lemma 4.7 For |α̂| ∈ (0, 1) let β, β̂1, β̂2, . . . , β̂k be the roots of (4.20) with |β̂| < |α̂| < |β|, and let

θ̂, θ̌1, θ̌2, . . . , θ̌k be the corresponding non-zero vectors satisfying (4.19). Then there exists a non-zero

vector ξ̂ and coefficients d̂1, d̂2, . . . , d̂k such that

p(m,n) =

8<:cα̂mβnθ̂ + α̂m
Pk
i=1 d̂iβ̂i

n
θ̌i, m ≥ 0, n ≥ 1,

αmξ + α̂mξ̂ m ≥ 0, n = 0,
(4.38)

satisfy (2.10)-(2.12). The eigenvector θ̂ is given in (4.34) and θ̌ = (θ̌(1), θ̌(2), . . . , θ̌(k))T satisfies

θ̌(i)

θ̌(k)
=

 
2(kρ+ 1)β̂ − β̂2 − α̂

2kρβ̂

!k−i
, i = 1, 2, . . . , k − 1. (4.39)

The vector ξ̂ is given by

ξ̂ = −ξ − 1

α̂
C −1

0,0 [A0,−1 α̂+A1,−1]
�
cβθ̂ +

kX
i=1

d̂iβ̂iθ̌i
�
, (4.40)

where ξ is given in (4.28). The coefficients d̂1, d̂2, . . . , d̂k satisfy

kX
j=1

K(α̂, β̂j)d̂j = −cK(α̂, β), (4.41)

with K(α, β) = (K1(α, β), . . . ,Kk(α, β))T defined in (4.30) and (4.31).

Proof. The proof is identical to the proof of Lemma 4.5. �

Repeating the compensation procedure by adding terms so as to compensate alternatively for the error

on the boundary m = 0 according to Lemma 4.6, and on the boundary n = 0 according to Lemma

4.7, will generate a sequence of terms. These sequences of compensation terms grow as a k-ary tree

and the problem is to prove that they converge. First, we will describe the compensation procedure,

then we will formally define the final expression in terms of infinite series and afterwards prove the

convergence.

5 Description of the compensation approach

The compensation approach will lead to an expression for p(m,n) in terms of an infinite series of

product-forms. We next describe how the product-forms can be obtained in an iterative fashion.

H0: Start with α0,1, the unique root of equation (3.4) inside the open unit circle, and calculate the

k β’s from Lemma 4.4, denoted by β0,1, β0,2, . . . , β0,k. The corresponding non-zero θ vectors

and the coefficients d from Lemma 4.3 are denoted by θ0,1, θ0,2, . . . , θ0,k and d0,1, d0,2, . . . , d0,k,

respectively. This gives the product-form αm0,1
Pk
j=1 d0,jβ

n
0,jθ0,j .

V0: For β0,j , j = 1, 2, . . . , k, calculate the α’s from Lemma 4.4, denoted by α1,j . The correspond-

ing non-zero θ̂ vectors and the coefficients c from Lemma 4.6 are denoted by θ̂1,j and c0,j ,

respectively. This gives the product-form
Pk
j=1 c0,jα

m
1,jβ

n
0,j θ̂1,j .
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H1: For α1,i, i = 1, 2, . . . , k, obtained in the previous step, calculate the k β’s from Lemma 4.4,

denoted by β1,ki−j , j = 0, . . . , k − 1. The corresponding non-zero θ̌ vectors and the coefficients

d̂ from Lemma 4.7 are denoted by θ1,ki−j and d1,ki−j , respectively. This gives the product-formPk2

i=1 α
m
1,i

Pk−1
j=0 d1,ki−jβ

n
1,ki−j θ1,ki−j .

V1: For β1,j , j = 1, 2, . . . , k2, calculate the α’s from Lemma 4.4, denoted by α2,j . The correspond-

ing non-zero θ̂ vectors and the coefficients c from Lemma 4.6 are denoted by θ̂2,j and c1,j ,

respectively. This gives the product-form
Pk2

j=1 c1,jα
m
2,jβ

n
1,j θ̂2,j .

α0,1

{{ ##
β0,1

��

β0,2

��
α1,1

uu ��

α1,2

�� ))
β1,1

��

β1,2

��

β1,3

��

β1,4

��
α2,1

��||

α2,2

��||

α2,3

�� ##

α2,4

##��
β2,1

��

β2,2

��

β2,3

��

β2,4

��

β2,5

��

β2,6

��

β2,7

��

β2,8

��
...

...
...

...
...

...
...

...

Figure 4: Tree structure of α’s and β’s for k = 2

A general step of this process is described as follows:

H`: For α`,i, i = 1, 2, . . . , k`, calculate the k β’s from Lemma 4.4, denoted by β`,ki−j , j = 0, . . . , k− 1.

The corresponding non-zero θ̌ vectors and the coefficients d̂ from Lemma 4.7 are denoted by

θ`,ki−j and d`,ki−j , respectively. This gives the product-form
Pk`

i=1 α
m
`,i

Pk−1
j=0 d`,ki−jβ

n
`,ki−j θ`,ki−j .

V`: For β`,j , j = 1, 2, . . . , k`+1, calculate the α from Lemma 4.4, denoted by α`+1,j . The corresponding

non-zero θ̂ vectors and the coefficients c from Lemma 4.6 are denoted by θ̂`+1,j and c`,j . This

gives the product-form
Pk`+1

j=1 c`,jα
m
`+1,j β

n
`,j θ̂`+1,j .

Continuing the above procedure leads to all pairs of α and β for which the corresponding vectors θ or

θ̂ and the coefficients d or d̂ and c are all the basic solutions for constructing a formal expression for

the equilibrium probability vectors p(m,n). The tree structure of consecutive α’s and β’s is illustrated

in Fig. 4.

The compensation approach eventually leads to the following expression for the equilibrium distribu-

tion.
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Theorem 5.1 For all states (h,m, n), h = 0, 1, . . . , k − 1,

p(m,n) ∝
∞X̀
=0

k`X
i=1

αm`,i

k−1X
j=0

d`,ki−j β
n
`,ki−j θ`,ki−j

+
∞X̀
=0

k`+1X
i=1

c`,i α
m
`+1,i β

n
`,i θ̂`+1,i, m > 0, n > 0, (5.1)

p(m, 0) ∝
∞X̀
=0

k`X
i=1

αm`,i ξ`,i, m > 0, (5.2)

p(0, n) ∝
∞X̀
=0

k`X
i=1

k−1X
j=0

α`,i
β`,ki−j − α`,i

d`,ki−j β
n
`,ki−j θ`,ki−j

+
∞X̀
=0

k`+1X
i=1

α`+1,i

β`,i − α`+1,i
c`,i β

n
`,i θ̂`+1,i, n > 0, (5.3)

p(0, 0) ∝ 1

2kρ
Tkp(0, 1), (5.4)

where Tk denotes a k × k lower triangular matrix, with elements (i, j), i ≥ j, j = 1, . . . , k, equal to

one and zeros elsewhere.

There remains the task of proving that these formal expressions are in fact absolutely convergent.

However, before doing so we need several preliminary results. The analysis that will follow is similar to

the analysis performed in [4]. First, we analyze the limiting behavior of the sequences {α`,i}`∈N0,i=1,...,k`

and {β`,i}`∈N0,i=1,...,k`+1 and the corresponding sequences of coefficients. The following proposition

provides geometric bounds for the α’s and β’s.

Proposition 5.1 The {α`,i}`∈N0,i=1,...,k` and {β`,i}`∈N0,i=1,...,k`+1 appearing in (5.1)-(5.4) satisfy the

properties

(i) 1 ≥ |α0,1| > max{|β0,1|, . . . , |β0,k|} > max{|α1,1|, . . . , |α1,k|} > max{|β1,1|, . . . , |β1,k2 |} > . . ..

(ii) 0 ≤ max{|α`,1|, . . . , |α`,k` |} ≤ (38)` and 0 ≤ max{|β`,1|, . . . , |β`,k`+1 |} ≤ 1
2(38)`.

Proof. (i) Remember that α0,1 is the root of equation (3.4) inside the open unit circle, hence

|α0,1| ≤ 1, for all ρ ∈ (0, 1). Then, β0,1, . . . , β0,k follow from (4.20) and according to Lemma 4.4

max{|β0,1|, . . . , |β0,k|} < |α0,1|, so that assertion (i) follows upon repeating this argument.

(ii) We only need to prove that for each α, with |α| < 1, we obtain k β’s with |β| < |α|/2 and that for

each β, with |β| < 1, we obtain one α with |α| < 3|β|/4. These two proofs are almost identical to the

proofs of Lemma 4.4 and for this reason we omit them (see Appendix C). �

It follows from Proposition 5.1 that the sequences of {α`,i} and {β`,i} tend to zero as ` tends to

infinity. The limiting behavior of the sequences of α’s and β’s is presented in Lemma 5.1 and the

limiting behavior of the coefficients is treated in Lemma 5.2.
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Lemma 5.1

(i) Let α, β and α̂ be roots of equation (4.20) for fixed α, with 1 > |α| > |β| > |α̂|. Then, as α→ 0,

β/α→ w, with |w| < 1, and α̂/β → 1/ŵ, with |ŵ| > 1, and both w and ŵ are roots of

(2(kρ+ 1)w − 1)k = (2kρ)kwk+1. (5.5)

(ii) Let β, α̂ and β̂ be roots of equation (4.20) for fixed β, with 1 > |β| > |α̂| > |β̂|. Then, as β → 0,

β̂/α̂→ w, with |w| < 1, and α̂/β → 1/ŵ, with |ŵ| > 1, and both w and ŵ are roots of (5.5).

Corollary 5.1 The equation (5.5) has k roots inside the open unit circle, denoted by w1, . . . , wk, and a

real root outside denoted by wk+1. Furthermore, w1, . . . , wk+1 roots have the following characteristics:

(i) w1, . . . , wk are distinct and |wi| < 1/2 for i = 1, . . . , k.

(ii)
1

2
(1 +

1

kρ
)k < wk+1. (5.6)

Proof. We rewrite (5.5) as

fk3 (w)− (2kρ)kwk+1 = 0 (5.7)

with f3(w) = 2(kρ + 1)w − 1, and we observe that f3(w) has a single root w = 1
2(kρ+1) <

1
2 . Fur-

thermore, for |w| = 1 we have that |f3(w)|k ≥ |2(kρ + 1)|w| − 1|k = (2kρ + 1)k > (2kρ)k, hence by

Rouché’s theorem fk3 (w) − (2kρ)kwk+1 has exactly k roots in |w| < 1 and one root in |w| ≥ 1. The

root outside the open unit circle can be easily verified to be a real root by applying the intermediate

value theorem on the interval [1,∞).

(i) Again using Rouché’s theorem on |w| = 1
2 leads to the more strict bound for the roots inside the

open unit circle as stated in assertion (ii). For a root of g3(w) = fk3 (w) − (2kρ)kwk+1 to be of (at

least) multiplicity two, it must be that g3(w) = g′3(w) = 0, which gives w = 1
2
k+1
kρ+1 >

1
2 . Hence all

roots w1, . . . , wk inside the open circle are distinct.

(ii) Proving that wk+1 >
1
2(1 + 1

kρ)k is equivalent with showing that inside the circle of radius |w| =
1
2(1 + 1

kρ)k the polynomial fk3 (w)− (2kρ)kwk+1 = 0 has exactly k roots. This proof is identical to the

proof that the polynomial has k roots inside the open unit circle and for this reason is omitted. �

Lemma 5.2

(i) Let α and β1, . . . , βk be roots of equation (4.20) for fixed α, with 1 > |α| > max{|β1|, . . . , |βk|}.
Then, as α→ 0,

(a) The vector θi = (θ
(1)
i , . . . , θ

(k)
i )T converges to

θ
(h)
i

θ
(k)
i

→
�

2(kρ+ 1)wi − 1

2kρwi

�k−h
, h = 1, 2, . . . , k − 1,

where w1, . . . , wk are the roots of (5.5) inside the open unit circle.
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(b) The system (4.29) for determining the coefficients d1, . . . , dk reduces to

kX
j=1

θjdj = 0

and can be explicitly solved as

dj
dk

= −
k−1Y
i=1
i 6=j

wi − wk
wi − wj

, j = 1, . . . , k − 1.

(c) The vector ξ converges to

ξ = −C −1
0,0 A1,−1

kX
j=1

djwjθj .

(ii) Let βi and α̂ be roots of equation (4.20) for fixed βi, with 1 > |βi| > |α̂|, i = 1, . . . , k. Then, as

βi → 0,

(a) The vector θ̂ = (θ̂(1), . . . , θ̂(k))T converges to

θ̂(h)

θ̂(k)
→
�

2(kρ+ 1)wk+1 − 1

2kρwk+1

�k−h
, h = 1, 2, . . . , k − 1,

where wk+1 is the root of (5.5) outside the open unit circle.

(b) The coefficient c/di converges to

c/di →
wi
wk+1

wk+1 − 1

1− wi
θ
(k)
i

θ̂
(k)
i

.

(c) The system (4.41) for determining the coefficients d̂1, . . . , d̂k reduces to

kX
j=1

θj d̂j = −cθ̂

and can be explicitly solved as

d̂j =
dj
dk

�
d̂k + c

k−1Y
i=1
i 6=j

wi − wk+1

wi − wk

�
, j = 1, . . . , k − 1.

(d) The vector ξ̂ converges to

ξ̂ = −ξ −C −1
0,0 A1,−1

�
cwk+1θ̂ +

kX
j=1

d̂jwjθj
�
.

Lemmas 5.1 and 5.2 provide the ingredients to prove the absolute convergence of the series appearing

in Theorem 5.1.
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Theorem 5.2 There exists a positive integer N , such that:

(i) The series
P∞
`=0

Pk`

i=1 α
m
`,i

Pk−1
j=0 d`,ki−j β

n
`,ki−j θ

(h)
`,ki−j and

P∞
`=0

Pk`+1

i=1 c`,i α
m
`+1,i β

n
`,i θ̂

(h)
`+1,i, the sum

of which defines p(h,m, n) for m,n > 0, both converge absolutely for all m > 0 and n > 0 with

m+ n > N .

(ii) The series
P∞
`=0

Pk`

i=1 α
m
`,i ξ

(h)
`,i , which defines p(h,m, 0) for m > 0, converges absolutely for all

m ≥ N .

(iii) The series
∞X̀
=0

k`X
i=1

k−1X
j=0

α`,i
β`,ki−j − α`,i

d`,ki−j β
n
`,ki−j θ

(h)
`,ki−j

and
∞X̀
=0

k`+1X
i=1

α`+1,i

β`,i − α`+1,i
c`,i β

n
`,i θ̂

(h)
`+1,i,

the sum of which defines p(h, 0, n) for n > 0, both converge absolutely for all n > N .

(iv) The series

X
m+n>N

∞X̀
=0

� k`X
i=1

αm`,i

k−1X
j=0

d`,ki−j β
n
`,ki−j θ

(h)
`,ki−j +

k`+1X
i=1

c`,i α
m
`+1,i β

n
`,i θ̂

(h)
`+1,i

�
+
X
m>N

∞X̀
=0

k`X
i=1

αm`,i ξ
(h)
`,i

+
X
n>N

∞X̀
=0

� k`X
i=1

k−1X
j=0

α`,i
β`,ki−j − α`,i

d`,ki−j β
n
`,ki−j θ

(h)
`,ki−j +

k`+1X
i=1

α`+1,i

β`,i − α`+1,i
c`,i β

n
`,i θ̂

(h)
`+1,i

�
,

which defines
P
m+n>N p(h,m, n), converges absolutely.

Proof. For m ≥ 1 and n ≥ 1 the series that define p(h,m, n) converge absolutely if and only if

∞X̀
=0

k`X
i=1

|α`,i|m
k−1X
j=0

|d`,ki−j | |β`,ki−j |n |θ
(h)
`,ki−j | <∞

and
∞X̀
=0

k`+1X
i=1

|c`,i| |α`+1,i|m |β`,i|n |θ̂
(h)
`+1,i| <∞.

Consider now a fixed m ≥ 1 and n ≥ 1. Then, define the ratios of two consecutive terms

R(`)
r,v(m,n) =

|α`+1,j |m |d`+1,k(j−1)+v| |β`+1,k(j−1)+v|n |θ
(h)
`+1,k(j−1)+v|

|α`,i|m |d`,k(i−1)+r| |β`,k(i−1)+r|n |θ
(h)
`,k(i−1)+r|

and

R̂(`)
r,v(m,n) =

|c`+1,k(j−1)+v| |α`+2,k(j−1)+v|m |β`+1,k(j−1)+v|n |θ̂
(h)
`+1,k(j−1)+v|

|c`,j | |α`+1,j |m |β`,j |n |θ̂
(h)
`,j |
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ρ k N (max{ϕ(N + 1), ϕ̂(N + 1)})
0.15 2 0 (0.030220)

4 0 (0.067301)

9 0 (0.143173)

0.5 2 0 (0.143064)

4 0 (0.167491)

9 0 (0.228031)

0.85 2 0 (0.191315)

4 0 (0.217884)

9 0 (0.271387)

Table 1: The index N

with j = k(i − 1) + r, i = 1, 2, . . .. As ` → ∞, the corresponding α’s and β’s tend to zero and we

obtain by Lemmas 5.1 and 5.2 that the ratios of two consecutive terms converges to

R(`)
r,v(m,n)→ Rr,v(m,n) =

|wr|m |wv|n

wm+n
k+1

|d̂v|
|dr|

� |wv|
|wr|

�1−h/k
(5.8)

and

R̂(`)
r,v(m,n)→ R̂r,v(m,n) =

� |wv|
wk+1

�m+n |wv|
|wr|
|1− wr|
|1− wv|

|d̂v|
|dr|

, (5.9)

where the coefficients dr, d̂v, r, v = 1, . . . , k are defined in Lemma 5.2. Hence, the absolute convergence

of the series is determined by the spectral radius of the corresponding matrices of rates R(m,n) =

(Rr,v(m,n))r,v=1...,k and R̂(m,n) = (R̂r,v(m,n))r,v=1...,k (see, e.g. [4]). The spectral radius of the

matrices R(m,n) and R̂(m,n) only depends on m and n through their sum, m+ n, so we can define

ϕ(m+ n) and ϕ̂(m+ n) to be the spectral radius of the matrices R(m,n) and R̂(m,n), respectively.

Observing that
|wi|
wk+1

<
1

(1 + 1/kρ)k
< 1, i = 1, . . . , k,

we can define N to be the minimal integer for which both spectral radii are less than one. �

Corollary 5.2 The index N is the minimal non-negative integer for which the spectral radii of the

matrices R(N + 1) and R̂(N + 1) defined by (5.8) and (5.9) are both less than one. For this minimal

index N the series defining p(h,m, n) and
P
m,n p(h,m, n) for m ≥ 0 and n ≥ 0 with m + n > N ,

presented in Theorem 5.1, converge absolutely.

Remark 5.1 In general, the index N is small. In the special case of Poisson arrivals join the shorter

queue (k = 1) it follows that N = 0. The same seams to apply for k ≥ 2 according to our numerical

findings.

We are now in a position to state the main result of the paper.
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Theorem 5.3 For all states (h,m, n), h = 0, 1, . . . , k− 1, m,n ≥ 0 and m+n > N including m = N

and n = 0,

p(m,n) = C−1
∞X̀
=0

k`X
i=1

αm`,i

k−1X
j=0

d`,ki−j β
n
`,ki−j θ`,ki−j

+ C−1
∞X̀
=0

k`+1X
i=1

c`,i α
m
`+1,i β

n
`,i θ̂`+1,i, m > 0, n > 0, (5.10)

p(m, 0) = C−1
∞X̀
=0

k`X
i=1

αm`,i ξ`,i, m > 0, (5.11)

p(0, n) = C−1
∞X̀
=0

k`X
i=1

k−1X
j=0

α`,i
β`,ki−j − α`,i

d`,ki−j β
n
`,ki−j θ`,ki−j

+ C−1
∞X̀
=0

k`+1X
i=1

α`+1,i

β`,i − α`+1,i
c`,i β

n
`,i θ̂`+1,i, n > 0, (5.12)

p(0, 0) = C−1
1

2kρ
Tkp(0, 1), (5.13)

where C is the normalizing constant and Tk denotes a k × k lower triangular matrix, with elements

(i, j), i ≥ j, j = 1, . . . , k, equal to one and zeros elsewhere.

Proof. Define L(N) to be the set of states (m,n) with m + n > N including state (m,n) = (N, 0).

Then L(N) is the set on which the series of Theorem 5.1 converge absolutely. The restricted stochastic

process on the set L(N) with transition rates as given in Fig. 5 is an irreducible Markov process, whose

associated equilibrium equations are identical to the equations of the original unrestricted process on

the set L(N), except for the equation of state (N, 0). Hence, the process restricted to L(N) is ergodic

so that the series of Theorem 5.1 can be normalized to produce the equilibrium distribution of the

restricted process on L(N). Since the set H ×N0×N0\L(N) is finite, it follows that the original process

is ergodic and relating appropriately the equilibrium probabilities of the unrestricted and restricted

process proves Theorem 5.3. �

6 Conclusions

We have studied the symmetric shorter queue problem with Erlang arrivals and have proved that the

equilibrium distribution of the queue lengths can be represented by an infinite series of product-forms

by using a generalization of the compensation approach. These analytical results offer numerically

efficient algorithms, mainly due to the exponential convergence of the series.

This paper has demonstrated that the compensation approach can work for three-dimensional Markov

chains, whose state space consists of a k-layered quarter plane. We believe that the same approach

can be used to obtain the equilibrium distribution in the case of phase-type arrivals, and even for the

more general Markovian arrival process (MAP).
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Figure 5: L(4) transition rate diagram with H = {0, 1, . . . , k − 1}.
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A Determining the starting α for the modified model

Lemma A.1 For ρ < 1, the product-form

p̂(h,m, n) = σ2mq̂h(n), h = 0, 1, . . . , k − 1, m ≥ −n, n ≥ 0 , (A.1)

with σ the unique root of (3.4) inside the open unit circle and {q̂h(n)}n∈N0 such that
P∞
n=0 σ

−2nq̂h(n) <

∞, is the unique (up to a constant) solution of the equilibrium equations (2.10)-(2.12).

Proof. We consider levels of the form

(L, h) = {(h,m, n) : 2m+ n = L ≥ 0}, h = 0, 1, . . . .k.

h = 0 · · · •
2kρ

��

2oo •
2kρ

��

2oo •
2kρ

��

2oo · · ·2oo

h = 1 · · · •
2kρ
��

2oo •
2kρ
��

2oo •
2kρ
��

2oo · · ·2oo

...

2kρ

��

...

2kρ

��

...

2kρ

��
h = k − 2 · · · •

2kρ

��

2oo •
2kρ

��

2oo •
2kρ

��

2oo · · ·2oo

h = k − 1 · · ·

2kρ

HH

•

2kρ

GG

2oo •

2kρ

GG

2oo •

2kρ

HH

2oo · · ·2oo

L = `− 1 L = ` L = `+ 1 · · ·

Figure 6: Transition rate diagram of the levels {(L, h), L ∈ N, h = 0, 1, . . . , k − 1} of the modified

model.

The equilibrium equations between the levels are given by (see Fig. 6)

(kρ+ 1)
X

2m+n=L

p̂(0,m, n) = kρ
X

2m+n=L−1
p̂(k − 1,m, n) +

X
2m+n=L+1

p̂(0,m, n) , (A.2)

(kρ+ 1)
X

2m+n=L

p̂(h,m, n) = kρ
X

2m+n=L

p̂(h− 1,m, n) +
X

2m+n=L+1

p̂(h,m, n), (A.3)
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for h = 1, . . . , k − 1. Substituting (4.1) into (A.2) and (A.3) yields

(kρ+ 1)
X

2m+n=L

αmq̂0(n) = kρ
X

2m+n=L−1
αmq̂k−1(n) +

X
2m+n=L+1

αmq̂0(n) , (A.4)

(kρ+ 1)
X

2m+n=L

αmq̂h(n) = kρ
X

2m+n=L

αmq̂h−1(n) +
X

2m+n=L+1

αmq̂h(n), (A.5)

for h = 1, . . . , k − 1. Iterating equation (A.5) givesX
2m+n=L

αmq̂0(n) =
hX
i=0

�
h

i

�
(−1)i

(kρ+ 1)h−i

(kρ)h

X
2m+n=L+i

αmq̂h(n), (A.6)

for h = 1, . . . , k − 1. Substituting equation (A.6) for h = k − 1 into (A.4) yields

k−1X
i=0

�
k − 1

i

�
(−1)i

(kρ+ 1)k−i

(kρ)k−1

X
2m+n=L+i

αmq̂k−1(n) = kρ
X

2m+n=L−1
αmq̂k−1(n)

−
kX
i=1

�
k − 1

i− 1

�
(−1)i

(kρ+ 1)k−i

(kρ)k−1

X
2m+n=L+i

αmq̂k−1(n). (A.7)

Observing thatX
2m+n=L

αmq̂k−1(n) =
X

2m+n=L

σ2mq̂k−1(n) =
X

j+n=L
j odd

σj q̂k−1(n) =
LX
n=0

L−n odd

σL−nq̂k−1(n) (A.8)

with σ = α2, and equating all coefficients of q̂k−1(n) in (A.7) leads, for 0 ≤ n ≤ L− 1,

(kρ)k =
k−1X
i=0

�
k − 1

i

�
(−1)i(kρ+ 1)k−iσi+1 +

kX
i=1

�
k − 1

i− 1

�
(−1)i(kρ+ 1)k−iσi+1

=
kX
i=0

�
k

i

�
(−1)i(kρ+ 1)k−iσi+1 = σ(kρ+ 1− σ)k,

which is exactly equation (3.4).

�

B Appendix

Lemma B.1 For all x, with |x| < 1,

|1 +
√

1± x| ≥ 1 +
È

1− |x| > 1 > |x| . (B.1)

Proof. Taylor expansion of the square root yields

1−
√

1− x =
∞X
n=1

(2n)!

(2n− 1)(n!)24n
xn, |x| < 1. (B.2)

Then

|1 +
√

1− x| = |2−
∞X
n=1

(2n)!

(2n− 1)(n!)24n
xn|

≥ 2−
∞X
n=1

(2n)!

(2n− 1)(n!)24n
|x|n

(B.2)
= 1 +

È
1− |x| > 1.
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C Appendix

In what follows we will assume that the α’s are in absolute value smaller than or equal to the starting

solution σ2, with σ the unique root in (0, 1) of (3.4). However, for 0 < ρ < 1 one can easily verify

that σ < ρ, so we will assume that |α| < ρ2.

Lemma C.1 For ρ < 1 and for every α, with |α| ∈ (0, ρ2), the equation det(D(α, β)) = 0 assumes

the form

(2(kρ+ 1)β − β2 − α)kα− (2kρ)kβk+1 = 0 , (4.20)

and has exactly k simple roots in the β-plane with 0 < |β| < |α|/2.

Proof. Equation (4.20) is a polynomial in β of degree 2k and we will show that exactly k roots are

inside the open circle of radius |α|/2. We divide both sides of equation (4.20) by αk+1 and set z = β/α

which gives

fk1 (z)− (2kρ)kzk+1 = 0 (4.21)

with f1(z) = 2(kρ+ 1)z − αz2 − 1. Then f1(z) has two roots:

z± =
kρ+ 1±

È
(kρ+ 1)2 − α
α

.

For 0 < ρ < 1, we observe that z+ is located outside the open unit circle, while

|z−| =
kρ+ 1

|α|

�����1−Ê1− α

(kρ+ 1)2

����� =
1

kρ+ 1

1���1 +
È

1− α
(kρ+1)2

���
(B.1)
<

1

kρ+ 1

1

1 +
É

1− |α|
(kρ+1)2

<
1

2
.

Furthermore, for |z| = 1/2,

|fk1 (z)| = |2(kρ+ 1)z − αz2 − 1|k > |2(kρ+ 1)|z| − |α||z|2 − 1|k

=
�
2kρ− |α|

2

�k
(
1

2
)k>

�
2kρ− ρ2

2

�k
(
1

2
)k

=
�
1− ρ

4k

�k
(kρ)k >

�
1− 1

8

�2
(kρ)k

> (2kρ)k(
1

2
)k+1 = |g1(z)− fk1 (z)|.

Hence by Rouché’s theorem fk1 (z)− (2kρ)kzk+1 has exactly k roots inside |z| = 1/2, which completes

the proof. �

According to Lemma C.1 all β roots are located in the open circle with radius ρ2/2, so we assume

that |β| < ρ2/2.
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Lemma C.2 For ρ < 1 and for every β, with |β| ∈ (0, ρ2/2), the equation det(D(α, β)) = 0 assumes

the form

(2(kρ+ 1)β − β2 − α)kα− (2kρ)kβk+1 = 0 , (4.20)

and has exactly one root in the α-plane with 0 < |α| < 3|β|/4.

Proof. Equation (4.20) is a polynomial in α of degree k + 1 and we will show that there is only one

root inside the open circle of radius 3|α|/4. We divide both sides of equation (4.20) by βk+1 and set

x = α/β, which gives

f2(x)− (2kρ)k = 0, (4.25)

with f2(x) = x(2kρ + 2 − β − x)k. Then f2(x) has the zero root of multiplicity one and the root

2kρ+ 2− β of multiplicity k larger than the radius 3/4. Furthermore, for |x| = 3/4 we have that

|f2(x)| = |x(2kρ+ 2− β − x)k| ≥ 3

4
(2kρ+ 2− |β| − 3

4
)k

=
3

4
(2kρ+

5

4
− |β|)k =

3

4
(2kρ)k(1 +

5

8kρ
− |β|

2kρ
)k

>
3

4
(2kρ)k(1 +

5

8kρ
− ρ

4k
)k > (2kρ)k

3

4
(1 +

5

16
− 1

8
)2 > (2kρ)k.

Hence, by Rouché’s theorem f2(x) − (2kρ)k has exactly one root in |x| < 3/4, which completes the

proof. �
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