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Abstract

We consider a memoryless loss system with servers S = {1, . . . , J}, and with customer
types C = {1, . . . , I}. Servers are multi-type: server j works at rate µj , and can serve a
subset of customer types C(j). An arriving customer will go to the longest idling server
which can serve him, or be lost. We obtain a simple explicit steady state distribution for
this system, and calculate various performance measures of this system in steady state. We
provide some illustrative examples. We compare this system with a similar system discussed
recently by Adan, Hurkens and Weiss [2]. We also show that this system is insensitive, the
results hold also for general processing time distributions.

Keywords: Service system; loss system; multi type customers; multi type servers; product
form solution; go to longest waiting server policy; insensitivity.

1 Model

We consider a loss system with servers S = {1, . . . , J}, and with customer types C = {1, . . . , I}.
Arrivals are Poisson. Customers of type i arrive at rate λi. Service is skill based, so that server
j can serve a subset of customer types C(j). The service times of server j are independent and
exponentially distributed with mean 1/µj . We use the following notation: for a subset of servers
S we let µS =

∑
j∈S µj be the combined service rate of servers in S, and we let C(S) =

⋃
j∈S C(j)

be the set of customer types that can be served by one or more servers in S. For a set of customer
types C we define λC and S(C) similarly, i.e., λC is the combined arrival rate of customers in C
and S(C) is the set of servers that can serve one or more customer types in C.

The system is a loss system: customers that arrive, and do not find an idle server which
can serve them, are lost. Customers that find more than one server that can serve them, go to
the server that has been idle for the longest time. We call this a loss system with assign to the
longest idle server (ALIS) regime.

We define the state of the system at time t as X(t) = s, where s = (j1, j2, . . . , jm) is the list
of idle servers at time t, ordered by their order of becoming idle, so that server j1 has been idle
for the longest time, and so on. With this state definition, under the assign to the longest idle
server regime, X(t) is a continuous time finite state Markov chain (CTMC).
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We derive the stationary distribution of this system, given by:

π(j1, . . . , jm) = π(∅) µj1
λC(j1)

µj2
λC({j1,j2})

· · · µjm
λC({j1,...,jm})

. (1)

in Section 2. We then derive expressions for various performance measures of the system in
Section 3. In Section 4 we give some examples. These illustrate the effect of different skill
levels of the servers, and the degree of overlap in skills. A similar system was studied in [2]. In
that system arriving customers choose servers according to some special assignment probability
distributions that depend on the type of the arrival and on the set of idle servers, but not on
the order in which servers became idle. Surprisingly, we show in Section 5 that the stationary
distribution of the set of idle servers is the same in both models. Finally, in Section 6 we show
that these results are insensitive to the service time distributions.

This paper was motivated by the recent interest in service systems which provide skill based
service. Such systems are common in communication and internet applications, in call centers,
and in health systems. Our results here are part of a project in which we study the behavior of
service systems with several types of customers and several types of servers, where a bipartite
graph describes compatibility of server with customer type. In these skill based service systems
customers can obtain specialized service, while the overlap in server skills may provide for server
pooling and more efficient utilization of servers. In the present paper we consider loss systems,
under a policy of assigning customers to the longest idle server. Related results for similar
systems under ALIS and FCFS are presented in [6, 4, 1, 3, 7].

2 Partial balance and the stationary distribution

The equilibrium equations are, for an ordered list of idle servers (j1, . . . , jm), 1 ≤ m ≤ J ,

π(j1, . . . , jm)
(
µ{k:k 6=j1,...,jm} + λC({j1,...,jm})

)
= π(j1, . . . , jm−1)µjm

+
∑

k 6=j1,...,jm

(
π(k, j1, . . . , jm)λC(k) + π(j1, k, . . . , jm)λC(k)\C(j1) + · · · (2)

+π(j1, . . . , jm, k)λC(k)\C({j1,...,jm})

)
.

We show that they hold for π given by (1), and in fact partial balance holds, i.e.,

π(j1, . . . , jm)λC({j1,...,jm}) = π(j1, . . . , jm−1)µjm (3)

and for all k 6= j1, . . . , jm:

π(j1, . . . , jm)µk =
(
π(k, j1, . . . , jm)λC(k) + π(j1, k, . . . , jm)λC(k)\C(j1) + · · · (4)

+π(j1, . . . , jm, k)λC(k)\C({j1,...,jm})

)
.

Theorem 1 The stationary distribution π is given by (1), and it obeys the partial balance equa-
tions (3) and (4).

Proof. The verification of (3) is immediate: we substitute (1) to get

π(j1, . . . , jm)λC({j1,...,jm})
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= π(∅) µj1
λC(j1)

µj2
λC({j1,j2})

· · · µjm
λC({j1,...,jm})

× λC({j1,...,jm})

= π(∅) µj1
λC(j1)

µj2
λC({j1,j2})

· · ·
µjm−1

λC({j1,...,jm−1})
× µjm

= π(j1, . . . , jm−1)µjm .

To show (4) we first show that (1) satisfies the equation

π(k, j1, . . . , jm)λC(k) + · · ·+ π(j1, . . . , jl, k, jl+1 . . . , jm)λC(k)\C({j1,...,jl}) (5)
= π(j1, . . . , jl, k, jl+1 . . . , jm)λC({k,j1,...,jl}).

We prove (5) by induction on l. There is nothing to prove for l = 0. Assuming (5) holds for l
we get for l + 1:

π(k, j1, . . . , jm)λC(k) + · · ·+ π(j1, . . . , jl, jl+1, k, . . . , jm)λC(k)\C({j1,...,jl+1})

= π(j1, . . . , jl, k, jl+1 . . . , jm)λC({k,j1,...,jl}) + π(j1, . . . , jl, jl+1, k, . . . , jm)λC(k)\C({j1,...,jl+1})

= π(∅) µj1 · · ·µjmµk
λC(j1) · · ·λC({j1,...,jl})λC({k,j1,...,jl}) λC({k,j1,...,jl,jl+1}) · · ·λC({k,j1,...,jm})

× λC({k,j1,...,jl})

+π(∅) µj1 · · ·µjmµk
λC(j1) · · ·λC({j1,...,jl})λC({j1,...,jl,jl+1}) λC({k,j1,...,jl,jl+1}) · · ·λC({k,j1,...,jm})

× λC(k)\C({j1,...,jl+1})

= π(∅) µj1 · · ·µjmµk
λC(j1) · · ·λC({j1,...,jl}) λC({k,j1,...,jl,jl+1}) · · ·λC({k,j1,...,jm})

[
1 +

λC(k)\C({j1,...,jl+1})

λC({j1,...,jl,jl+1})

]
= π(∅) µj1 · · ·µjmµk

λC(j1) · · ·λC({j1,...,jl})λC({j1,...,jl,jl+1})λC({k,j1,...,jl,jl+1}) · · ·λC({k,j1,...,jm})
× λC({k,j1,...,jl+1})

= π(j1, . . . , jl, jl+1, k, . . . , jm)× λC({k,j1,...,jl+1}),

which is what we needed to show for (5).
We now get that the right hand side of (4), when substituting (1) and using (5) for l = m

equals:

π(k, j1, . . . , jm)λC(k) + π(j1, k, . . . , jm)λC(k)\C(j1) + · · ·+ π(j1, . . . , jm, k)λC(k)\C({j1,...,jm})

= π(j1, . . . , jm, k)λC({k,j1,...,jm})

= π(∅) µj1
λC(j1)

µj2
λC({j1,j2})

· · · µjm
λC({j1,...,jm})

µk
λC(k,{j1,...,jm})

× λC({k,j1,...,jm})

= π(∅) µj1
λC(j1)

µj2
λC({j1,j2})

· · · µjm
λC({j1,...,jm})

µk,

which is exactly the left hand side of (4), when substituting (1). This completes the proof. �

3 Calculation of various performance measures

In this section we use the steady state distribution of the system to calculate various performance
measures. These include the fraction of time each server is busy, the fraction of customers of
each type that are lost, and the rate at which customers of type i are served by servers of type
j.
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3.1 The fraction of busy time of each server

Let νj be the fraction of time that server j is busy. Then:

νj =
∑

(j1,...,jm):j 6∈{j1,...,jm}

π(j1, . . . , jm),

i.e., we sum up all the steady state probabilities of all the states in which j is not idle.
For a subset of servers S denote by

BS = 1
/ ∑

(j1,...,jm):{j1,...,jm}⊂S

µj1
λC(j1)

µj2
λC({j1,j2})

· · · µjm
λC({j1,...,jm})

.

Clearly
π(∅) = B{1,...,J} = 1

/ ∑
all (j1,...,jm)

µj1
λC(j1)

µj2
λC({j1,j2})

· · · µjm
λC({j1,...,jm})

and we see that

νj = π(∅)
∑

(j1,...,jm):j 6∈{j1,...,jm}

µj1
λC(j1)

µj2
λC({j1,j2})

· · · µjm
λC({j1,...,jm})

= B{1,...,J}/B{1,...,J}\{j}.

3.2 The fraction of customers of each type that are lost

Let θi be the fraction of customers of type i which are lost.
Arrivals occur as a Poisson stream, hence an arrival of type i sees the system in its time

average steady state. A customer of type i will be lost if the set of idle servers does not contain
any server from S(i), hence, similar to the derivation of νj :

θi =
∑

(j1,...,jm):S(i)∩{j1,...,jm}=∅

π(j1, . . . , jm) = B{1,...,J}/B{1,...,J}\S(i).

3.3 The matching rate of server customer pairs

Let ri,j be the rate at which customer of type i are matched with servers of type j. A customer
of type i arrives at rate λi, and will be matched with the first (longest idle) server available with
which it is compatible. The calculation of ri,j/λi will then consist of summation over of all the
steady state probabilities of states in which an arriving customer of type i is matched to a server
of type j, where j ∈ S(i). This summation includes first all the states (i1, . . . , im) in which
i1 = j, second all the states in which i1 6∈ S(i) and i2 = j, and so on, where for any k ≤ J the
summation is over all states in which there are at least k idle servers, and {i1, . . . , ik−1}∩S(i) = ∅
while ik = j.

For state s = (j1, . . . , jm) we define 1i→j|s as the indicator that an i, j match occurs in state
s, and this is the sum of the indicators:

1i→j|s = 1j1=j + 1j1 6∈S(i) and j2=j + · · ·+ 1{j1,...,jm−1}∩S(i)=∅ and jm=j

and we then have:
ri,j = λi

∑
s

π(s)1i→j|s.
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4 Examples

The calculation of the steady state probabilities and of the additional performance measures
involves summation over all permutations of all subsets, which is quite laborious. It may well be
that this computation is ]P -complete. We have programmed these calculations, and are able to
perform them for reasonably small J . We consider here three examples. The first is an example
of a network with servers of three different skill levels. The second example is a symmetric
system where each server serves two types of customers. The third example extends the second
example, by considering symmetric systems with varying degrees of overlap in the server skills,
and the resulting performance for the different degrees of overlap is compared.

4.1 Example 1: An example of servers with different skill levels

We consider a system with 3 types of customers and 3 servers. The servers have different skill
levels, with server 1 serving only customers of type 1, server 2 serving customers of types 1 and
2, and server 3 serving all types of customers, i.e. C(1) = {1}, C(2) = {1, 2}, C(3) = {1, 2, 3},
as in Figure 1. The arrival rates of the 3 types are λ1 = 2, λ2 = 1, λ3 = 1 and the service rates
are µ1 = 1, µ2 = 1, µ3 = 2.

λ1 = 2 λ2 = 1 λ3 = 1

µ1 = 1 µ2 = 1 µ3 = 2

Figure 1: A system with 3 servers of different skill levels

There is a total of 16 states. For the different states of the system we get the following steady
state probabilities:

π(∅) = 12
43 ,

π(1) = 6
43 , π(2) = 4

43 , π(3) = 6
43 ,

π(1, 2) = 2
43 , π(1, 3) = 3

43 , π(2, 1) = 4
129 , π(2, 3) = 2

43 , π(3, 1) = 3
86 , π(3, 2) = 3

86 ,
π(1, 2, 3) = 1

43 , π(1, 3, 2) = 3
172 , π(2, 1, 3) = 2

129 , π(2, 3, 1) = 1
86 , π(3, 1, 2) = 3

344 , π(3, 2, 2) = 3
344 .

The matching rates for customer server pairs are given in the following table:
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i \ j 1 2 3 Lost

1 0.593 0.395 0.454 0.558

2 — 0.267 0.314 0.419

3 — — 0.411 0.589

Idle 0.407 0.337 0.821

Table 1: Matching rates ri,j for the example in Figure 1

In the table above, the column for loss is the rate at which calls are lost, and the row for idle
is the lost service rate due to idleness. Rows add up to λi, columns to µj .

4.2 Example 2: A symmetric system with small overlap of skills

We consider a system with 5 types of customers and 5 servers, where each server can serve 2
types of customers, C(j) = {j, j + 1} where in this example all indices are taken modulo 5, as
shown in Figure 2.

µ

λ

µ

µ µ

µ

λ

λ

λ

λ

Figure 2: A symmetric system with 5 types of customers and 5 servers, with small overlap

The total number of states is J !
∑J
k=0

1
k! = 326, but by the symmetry we need to consider

only a few configurations of idle servers as shown in Figure 3.
The calculation of steady state probabilities is summarized in Table 2. Note that the con-

figurations in Figure 3 may correspond to multiple states, and states corresponding to the same
configuration may have different steady state probabilities (such as states corresponding to (v)).

From this we get that

π(∅) = 240
/(

240 + 600
µ

λ
+ 700

(µ
λ

)2

+ 475
(µ
λ

)3

+ 190
(µ
λ

)4

+ 38
(µ
λ

)5
)
,
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 3: Configurations of idle (black) and busy (white) servers

from which one can also read the steady state probabilities of the number of idle servers.
To calculate the probability that server j is busy, we use:

ν = νj =
B{1,2,3,4,5}

B{1,2,3,4}
=

240 + 480µλ + 420
(
µ
λ

)2 + 190
(
µ
λ

)3 + 38
(
µ
λ

)4
240 + 600µλ + 700

(
µ
λ

)2 + 475
(
µ
λ

)3 + 190
(
µ
λ

)4 + 38
(
µ
λ

)5 ,
where the calculation of B{1,2,3,4} is similar to that of B{1,2,3,4,5}.

The probability that a customer of type i will not obtain service is obtained similarly:

θ = θi =
B{1,2,3,4,5}

B{1,2,3}
=

240 + 360µλ + 220
(
µ
λ

)2 + 55
(
µ
λ

)3
240 + 600µλ + 700

(
µ
λ

)2 + 475
(
µ
λ

)3 + 190
(
µ
λ

)4 + 38
(
µ
λ

)5 .
By the symmetry, for i compatible with j:

ri,j =
1
2
λ(1− θ).

4.3 Example 3: Performance of symmetric system as influenced by
level of overlap

It is interesting to compare the performance of our system for various levels of overlap of skills.
We consider again the symmetric system of the last example, with 5 types of customers and 5
servers, and with equal arrival rates and equal service rates, but with different levels of overlap
of skills. To be clear, we mean by the level of overlap the number of types that each server can
serve. We then have overlap level ranging from 1 to 5, where for overlap level 1 each server serves
only one type of customers and there is no overlap, while for overlap level of 5 each server serves
all customer types for maximal overlap.

The system with overlap level 1 server j serves only customers of type j. Here the system
uncouples into 5 single server loss systems.

The system with overlap level 5 each server serves all types and the system is the Erlang loss
system with 5 servers.

The system with overlap level L = 2, 3, 4 server j serves customer types j, j+ 1, . . . , j+L− 1
(modulo 5), where we already discussed the symmetric system with overlap level 2.

The following table compares the performance of these systems. We include the following
performance measures: The loss rate, fraction of customers lost of each type; the idleness rate,
fraction of time that each server is idle; the distribution of the number of idle servers. The
table lists these performance measures for three traffic intensities: light traffic, µ/λ = 2, medium
traffic, µ/λ = 1, and heavy traffic, µ/λ = 0.5.

The above table shows that performance strongly improves by increasing overlap, most promi-
nently from no overlap to an overlap of 2. As expected, the loss rate is most strongly influenced
by the level of overlap in light traffic, whereas the idle time is most strongly influenced by the
level of overlap in heavy traffic.
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No. of Configuration No. of Probability Total
idle servers states

0 (i) 1 π(∅) π(∅)

1 (ii) 5 π(∅)µλ
1
2 π(∅)µλ

5
2

2 (iii) 10 π(∅)
(
µ
λ

)2 1
2

1
3 π(∅)

(
µ
λ

)2 10
6

2 (iv) 10 π(∅)
(
µ
λ

)2 1
2

1
4 π(∅)

(
µ
λ

)2 10
8

3 (iii) then (v) 20 π(∅)
(
µ
λ

)3 1
2

1
3

1
4 π(∅)

(
µ
λ

)3 20
24

3 (iii) then (vi) 10 π(∅)
(
µ
λ

)3 1
2

1
3

1
5 π(∅)

(
µ
λ

)3 10
30

3 (iv) then (v) 10 π(∅)
(
µ
λ

)3 1
2

1
4

1
4 π(∅)

(
µ
λ

)3 10
32

3 (iv) then (vi) 20 π(∅)
(
µ
λ

)3 1
2

1
4

1
5 π(∅)

(
µ
λ

)3 20
40

4 (vii) 120 π(j1, j2, j3, j4) = π(j1, j2, j3)µλ
1
5 π(∅)

(
µ
λ

)4 190
240

5 (vii) 120 π(j1, j2, j3, j4, j5) = π(j1, j2, j3, j4)µλ
1
5 π(∅)

(
µ
λ

)5 38
240

Table 2: Calculation of steady state probabilities for the example in Figure 2

5 Comparison with a random assignment model

In [2] the same loss system is considered under a different regime. Instead of choosing the longest
idle server, an arriving customer of type i which finds a set of idle servers S will choose server
j ∈ S with probability P (i, j|S). This is different from our ALIS (assign to longest idle server)
regime in two ways: first, the assignment does not depend on the order in which idle servers
became available, and second, the assignment is random. Because only the set of idle servers
is of interest in the system of [2], it can be described by a CTMC Y (t) with state given by
the set of idle servers S. It is shown in [2] that one can choose the assignment probabilities
P (i, j|S) so as to make Y (t) reversible, in which case its steady state distribution is for every
subset S = {j1, . . . , jm} given by:

πY ({j1, . . . , jm}) = πY (∅) µj1
ηj1({j1})

µj2
ηj2({j1, j2})

µj3
ηj3({j1, j2, j3})

· · · µjm
ηjm(S)

. (6)

Here we use the notation
η(S) =

∑
k∈S

ηk(S) = λC(S),
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Customer Server Distribution of the number of idle servers
µ/λ Overlap loss rate idle time 0 1 2 3 4 5

1 0.333 0.667 0.00412 0.0412 0.1646 0.3292 0.3292 0.1317

2 0.185 0.593 0.0195 0.0976 0.228 0.309 0.347 0.0989

2 3 0.117 0.559 0.0391 0.130 0.234 0.281 0.225 0.090

4 0.0849 0.542 0.0566 0.141 0.226 0.272 0.217 0.0869

5 0.0697 0.535 0.0697 0.139 0.223 0.268 0.214 0.0857

1 0.5 0.5 0.03125 0.15625 0.3125 0.3125 0.15625 0.03125

2 0.390 0.390 0.107 0.267 0.312 0.212 0.0847 0.0169

1 3 0.333 0.333 0.182 0.303 0.273 0.164 0.0655 0.0131

4 0.302 0.302 0.242 0.302 0.242 0.145 0.058 0.0116

5 0.285 0.285 0.285 0.285 0.228 0.137 0.055 0.011

1 0.667 0.333 0.1317 0.3292 0.3292 0.1646 0.0412 0.00412

2 0.612 0.224 0.305 0.381 0.222 0.0754 0.0151 0.0015

0.5 3 0.586 0.172 0.426 0.355 0.160 0.48 0.0096 0.00096

4 0.572 0.144 0.509 0.318 0.127 0.0381 0.0076 0.00076

5 0.564 0.128 0.564 0.282 0.113 0.0338 0.0068 0.0007

Table 3: Performance as a function of overlap

and the values of ηj(S) are the rates at which server j ∈ S gets activated by arrivals that are
assigned to him, which can be recusively calculated by:

ηk(S) = η(S)
/(

1 +
∑

j∈S\{k}

ηj(S\{k})
ηk(S\{j})

)
.

Let P({j1, . . . , jm}) be the set of all the permutations of j1, . . . , jm. Relevant to our derivation
here is the property that for every (j̃1, . . . , j̃m) ∈ P({j1, . . . , jm}),

ηj̃1({j̃1})ηj̃2({j̃1, j̃2}) · · · ηj̃m({j̃1, . . . , j̃m}) = ηj1({j1})ηj2({j1, j2}) · · · ηjm({j1, . . . , jm}).
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To distinguish between the two models we will now denote the stationary probabilities for the
ALIS system by πX .

Theorem 2 The stationary distributions of X(t) and of Y (t) coincide in the sense that:

πY ({j1, . . . , jm}) =
∑

(j̃1,...,j̃m)∈P({j1,...,jm})

πX(j̃1, . . . , j̃m). (7)

Proof. We wish to show that for every subset S = {j1, . . . , jm},

πY (∅) µj1
ηj1({j1})

µj2
ηj2({j1, j2})

µj3
ηj3({j1, j2, j3})

· · · µjm
ηjm(S)

=
∑

(j̃1,...,j̃m)∈P({j1,...,jm})

πX(∅)
µj̃1
λC(j̃1)

µj̃2
λC({j̃1,j̃2})

· · ·
µj̃m

λC({j̃1,...,j̃m})
.

We note first that λC(S) = η(S), and hence we need to verify that∑
(j̃1,...,j̃m)∈P({j1,...,jm})

(
η({j̃1})η({j̃1, j̃2}) · · · η({j̃1, . . . , j̃m})

)−1

(8)

=
(
ηj1({j1})ηj2({j1, j2}) · · · ηjm({j1, . . . , jm})

)−1

.

Note that if (8) is valid for every subset S = {j1, . . . , jm}, then this implies equality of πY (∅)
and πX(∅). We prove (8) by induction on m. The case m = 1 is immediate. Assume now that
(8) holds for m− 1. Then∑

(j̃1,...,j̃m)∈P({j1,...,jm})

(
η({j̃1})η({j̃1, j̃2}) · · · η({j̃1, . . . , j̃m})

)−1

=
(
η({j1, . . . , jm})

)−1
m∑
k=1

∑
(j̃1,...,j̃m−1)∈P({j1,...,jm}\{jk})

(
η({j̃1})η({j̃1, j̃2}) · · · η({j̃1, . . . , j̃m−1})

)−1

=
(
η({j1, . . . , jm})

)−1
m∑
k=1

(
ηj̃1({j̃1})ηj̃2({j̃1, j̃2}) · · · ηj̃m−1

({j̃1, . . . , j̃m−1})
)−1

=
(
η({j1, . . . , jm})

)−1
m∑
k=1

ηjk({j1, . . . , jm})(
ηj̃1({j̃1})ηj̃2({j̃1, j̃2}) · · · ηj̃m−1

(j̃1, . . . , j̃m−1)ηjk({jk, j̃1, . . . , j̃m−1})
)−1

=
(
η({j1, . . . , jm})

)−1
m∑
k=1

ηjk({j1, . . . , jm})
(
ηj1({j1})ηj2({j1, j2}) · · · ηjm({j1, . . . , jm})

)−1

=
(
ηj1({j1})ηj2({j1, j2}) · · · ηjm({j1, . . . , jm})

)−1

.

The first equality is obtained by writing all the permutations of {j1, . . . , jm} in terms of the
permutations of {j1, . . . , jm}\{jk} and adding them over k, and taking out of the sum the
common term of

(
η({j1, . . . , jm})

)−1. The second equality uses the induction hypothesis for
m−1. In the third equality we multiply and divide each term in the sum by ηjk({j1, . . . , jm}). The
fourth equality uses the property that ηj̃1({j̃1})ηj̃2({j̃1, j̃2}) · · · ηj̃m({j̃1, . . . , j̃m}) has the same
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value for all permutations of {j1, . . . , jm}. Finally, for the last equality we use η({j1, . . . , jm}) =∑m
k=1 ηjk({j1, . . . , jm}). This completes the proof. �
Note: The process X(t) is not time reversible, since new idle servers always join the current

state as the last component, but servers which are activated may be from any component in the
state, and are in fact the first server in the state which is compatible with an arriving customer,
and may come from any position, mostly not from the last position.

6 Insensitivity

It is shown in [2] that the reversible loss system in insensitive. One can ask if the same property
also holds for the loss system under ALIS regime. In this section we show that indeed our
loss system under ALIS regime is insensitive, in that the stationary distribution depends on the
service time distributions only through their means. This property can be expected because our
system obeys partial balance. In fact we also show that for arbitrary service time distributions
with finite means, at stationarity all busy servers have attained service and remaining service
which are distributed according to the equilibrium distribution of the processing time. To show
insensitivity we proceed as in [2]. We use the supplementary variable method, and our proof
closely follows the 1957 proof of Sevastyanov [5], for the Erlang loss system.

We now assume that service times of server j are i.i.d. with distribution Fj with Fj(0) = 0,
and finite mean 1/µj . We supplement the description of the state of the system at time t by
specifying the attained service times of the busy servers. We let Z(t) be the supplemented process,
with Zj(t) = (X(t),W (t)) where X(t) is the list of idle servers at time t, ordered according to
longest idle first, and W (t) gives the attained service times of the busy servers, so that wj = ∗
if j ∈ X(t), to denote the server is idle, while wj ≥ 0 if server j is serving a customer, and the
attained service time of the customer is wj . Here we slightly abuse notation by writing j ∈ X(t)
where we mean that j ∈ the set of elements of the list X(t). We will denote by Pt(s, w) the
distribution of Z(t),

Pt(s, w) = P (X(t) = s, Wj(t) ≤ wj , j 6∈ s)
For better readability we do not write that also Wj(t) = ∗, j ∈ s, which is understood from s.
We will denote by pt(s, w) its density (which is shown in the proof to exist). We will denote by
P (s, w) and p(s, w) the stationary distribution and density, respectively.

Proposition 3 The process Z(t) is ergodic with stationary probability density given by:

p(s, w) = π(s)
∏
j 6∈s

µj(1− Fj(wj)) (9)

with π(s) given in (1).

Proof. Let Pt(s, w) be the distribution of Z(t), with initial distribution P0. It follows exactly
as in Theorem 2 of [5] that for arbitrary P0 and for any state (s, w), Pt has a density at the
coordinates wj , j 6∈ s, if t > max{wj : j 6∈ s}.

The process Z(t) is a Markov process with transitions for large t and small ∆ given by:

pt+∆

(
(j1, . . . , jm), wj , j 6∈ {j1, . . . , jm}

)
=

pt

(
(j1, . . . , jm), wj −∆, j 6∈ {j1, . . . , jm}

)
(1− λC({j1,...,jm})∆)

∏
j 6∈S

1− Fj(wj)
1− Fj(wj −∆)

+
∫ ∞

0

pt

(
(j1, . . . , jm−1),Wjm = y, wj −∆, j 6∈ {j1, . . . , jm}

)
11



×
∏

j 6∈{j1,...,jm}

1− Fj(wj)
1− Fj(wj −∆)

Fjm(y + ∆)− Fjm(y)
1− Fjm(y)

dy + o(∆)

and for any k 6∈ {j1, . . . , jm},

pt+∆

(
(j1, . . . , jm), wk = 0, wj , j 6∈ {k, j1, . . . , jm}

)
∆ =∏

j 6∈{k,j1,...,jm}

1− Fj(wj)
1− Fj(wj −∆)

[
pt

(
(k, j1, . . . , jm), wj −∆, j 6∈ {k, j1, . . . , jm}

)
λC(k)∆

+pt
(

(j1, k, . . . , jm), wj −∆, j 6∈ {k, j1, . . . , jm}
)
λC(k)\C(j1)∆ + · · ·

+pt
(

(j1, . . . , jm, k), wj −∆, j 6∈ {k, j1, . . . , jm}
)
λC(k)\C({j1,...,jm})∆

]
+ o(∆).

Define now
p∗t (s, w) = pt(s, w)

/∏
j /∈s

(1− Fj(wj)),

to obtain:

p∗t+∆

(
(j1, . . . , jm), wj , j 6∈ {j1, . . . , jm}

)
=

p∗t

(
(j1, . . . , jm), wj −∆, j 6∈ {j1, . . . , jm}

)
(1− λC({j1,...,jm})∆)

+
∫ ∞

0

p∗t

(
(j1, . . . , jm−1),Wjm = y, wj −∆, j 6∈ {j1, . . . , jm}

)
×
(
Fjm(y + ∆)− Fjm(y)

)
dy + o(∆)

and for any k 6∈ {j1, . . . , jm},

p∗t+∆

(
(j1, . . . , jm), wk = 0, wj , j 6∈ {k, j1, . . . , jm}

)
∆ =

p∗t

(
(k, j1, . . . , jm), wj −∆, j 6∈ {k, j1, . . . , jm}

)
λC(k)∆

+p∗t
(

(j1, k, . . . , jm), wj −∆, j 6∈ {k, j1, . . . , jm}
)
λC(k)\C(j1)∆ + · · ·

+p∗t
(

(j1, . . . , jm, k), wj −∆, j 6∈ {k, j1, . . . , jm}
)
λC(k)\C({j1,...,jm})∆ + o(∆).

From these equations (and assuming that p∗t (z) is differentiable) we get a set of integro-differential
equations:

∂p∗t (s, w)
∂t

+
∑

j 6∈{j1,...,jm}

∂p∗t (s, w)
∂wj

= −λC({j1,...,jm})p
∗
t (s, w)

+
∫ ∞

0

p∗t
(
(j1, . . . , jm−1),Wjm = y, w

)
dFjm(y)

with boundary conditions for all k 6∈ {j1, . . . , jm}:

p∗t
(
(j1, . . . , jm), wk = 0, w

)
= p∗t

(
(k, j1, . . . , jm), w

)
λC(k)

+p∗t
(
(j1, k, . . . , jm), w

)
λC(k)\C(j1) + · · ·+ p∗t

(
(j1, . . . , jm, k), w

)
λC(k)\C({j1,...,jm}).
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In stationarity the derivatives with respect to t cancel, so that we have:∑
j 6∈{j1,...,jm}

∂p∗(s, w)
∂wj

= −λC({j1,...,jm})p
∗(s, w)

+
∫ ∞

0

p∗
(
(j1, . . . , jm−1),Wjm = y, w

)
dFjm(y)

with boundary conditions:

p∗
(
(j1, . . . , jm), wk = 0, w

)
= p∗

(
(k, j1, . . . , jm), w

)
λC(k)

+p∗
(
(j1, k, . . . , jm), w

)
λC(k)\C(j1) + · · ·+ p∗

(
(j1, . . . , jm, k), w

)
λC(k)\C({j1,...,jm}).

We now put in the trial solution

p∗(s, w) = π(s)
∏
j 6∈s

µj .

Note that wj do not appear in this trial solution, so the partial differentials in the first equation
are zero, and the integral is over a constant. We obtain for the first equation:

π(j1, . . . , jm)
∏

j 6∈{j1,...,jm}

µj λC({j1,...,jm}) = π(j1, . . . , jm−1) µjm
∏

j 6∈{j1,...,jm}

µj ,

which is exactly the partial balance equation (3), satisfied by π for any s. In the second equation
we obtain, for any (j1, . . . , jm) and k 6∈ {j1, . . . , jm}:

π(j1, . . . , jm)µk
∏

j 6∈{k,j1,...,jm}

µj

=
[
π(k, j1, . . . , jm)λC(k) + π(j1, k, . . . , jm)λC(k)\C(j1) + · · ·

+π(j1, . . . , jm, k)λC(k)\C({j1,...,jm})
] ∏
j 6∈{k,j1,...,jm}

µj .

which is exactly the partial balance equation (4) satisfied by π for each s and k 6∈ s.
This confirms that (9) is a stationary density for the Markov process Z(t). It can now be

shown exactly as in [5] that Z(t) is ergodic with a unique stationary density. �
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