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Abstract

The partition function of the random energy model at inverse temperature β

is defined by ZN (β) =
∑N
k=1 exp(β

√
nXk), where X1, X2, . . . are independent real

standard normal random variables, and n = logN . We identify the asymptotic
structure of complex zeros of ZN , as N → ∞, confirming predictions made in the
theoretical physics literature. Also, we describe the limiting complex fluctuations
for a model generalizing ZN (β).

1. Introduction and statement of results

1.1. Introduction. Let X,X1, X2, . . . be independent real standard normal ran-
dom variables. The partition function of Derrida’s random energy model (REM)
[6] at inverse temperature β is defined by

(1.1) ZN (β) =

N∑
k=1

eβ
√
nXk .

Here, N is a large integer, and we use the notation n = logN . Under the assumption
β > 0, the limiting fluctuations of (1.1), as N → ∞ (or equivalently, as n → ∞),
have been extensively studied in the literature; see [4, 1]. In particular, it was
shown in these works that the asymptotic behavior of the fluctuations of (1.1)
depends strongly on the parameter β and displays phase transitions. Specifically,
upon suitable rescaling, for β < 1/

√
2, the fluctuations of (1.1) become Gaussian,

whereas, for β > 1/
√

2, they become stable non-Gaussian, as N →∞.
Using heuristic arguments, Derrida [7] studied the REM at complex inverse tem-

perature β = σ + iτ . The motivation here is to identify the mechanisms causing
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phase transitions in the asymptotic behavior of (1.1). These transitions mani-
fest themselves in the analyticity breaking of the logarithm of the partition func-
tion (1.1) in the limit N →∞. In this respect, complex inverse temperatures allow
for a cleaner identification of analyticity breaking. Using non-rigorous methods,
Derrida [7] derived the following logarithmic asymptotics of (1.1):

(1.2) lim
N→∞

1

n
log |ZN (β)| =


1 + 1

2 (σ2 − τ2), β ∈ B1,√
2|σ|, β ∈ B2,

1
2 + σ2, β ∈ B3,

where B1, B2, B3 are three subsets of the complex plane defined by

B1 = C\B2 ∪B3,(1.3)

B2 = {β ∈ R2 : 2σ2 > 1, |σ|+ |τ | >
√

2},(1.4)

B3 = {β ∈ R2 : 2σ2 < 1, σ2 + τ2 > 1}.(1.5)

Here, A denotes the closure of the set A. It has long been realized that analyticity
breaking of the log-partition function (1.2) is closely related to the complex zeros of
ZN . Based on (1.2) and on the numerical simulations of Moukarzel and Parga [16],
Derrida made predictions concerning the distribution of zeros of ZN on the complex
plane. To cite Derrida [7], “there should be no zeros (or at least the density of zeros
vanishes) in phases B1 and B2” and “the density of zeros is uniform in phase B3”.
For the REM in an exterior magnetic field, similar non-rigorous analysis has been
done by Moukarzel and Parga [17, 18]. For directed polymers with complex weights
on a tree, which is another related model, the logarithmic asymptotics (1.2) has
been derived in [8]; see also [2].

Our contribution is two-fold. First, we confirm the predictions of [7, 16] rigor-
ously. Moreover, we derive further results on the asymptotic distribution of complex
zeros of ZN , as N → ∞. We relate the zeros of ZN to the zeros of two random
analytic functions: G, a Gaussian analytic function, and ζP , a zeta-function asso-
ciated to the Poisson process. Second, we identify the limiting fluctuations for a
complex-valued generalization of ZN . Both questions are, in fact, closely related
to each other.

The paper is organized as follows. In Sections 1.2 and 1.3, we state our results
on zeros and fluctuations, respectively. Proofs can be found in Sections 2 and 3.
In Section 1.4, we discuss possible extensions and open problems related to our
results.

Notation. We will write the complex inverse temperature β in the form β =
σ + iτ , where σ, τ ∈ R. We use the notation n = logN , where N is a large integer
and the logarithm is natural. Note that in the physics literature on the REM, it is
customary to take the logarithm at basis 2. Replacing β by β/

√
log 2 in our results

we can easily switch to the physics notation. We denote by NR(0, s2) the real
Gaussian distribution with variance s2 > 0 and by NC(0, s2) the complex Gaussian

distribution with density 1/(πs2)e−|z/s|
2

w.r.t. the Lebesgue measure on C. Note
that Z ∼ NC(0, s2) iff Z = X + iY , where X,Y ∼ NR(0, s2/2) are independent.
The distribution is referred to as standard if s = 1.

1.2. Results on zeros. Our first result describes the global structure of complex
zeros of ZN , as N →∞. Confirming the predictions of [7], we show that the zeros
of ZN are distributed approximately uniformly with density n/π in the set B3,
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whereas outside B3 the density of zeros is of order o(n). Let λ be the Lebesgue
measure on C.

Theorem 1.1. For every continuous function f : C→ R with compact support,

π

n

∑
β∈C:ZN (β)=0

f(β)
P−→

N→∞

∫
B3

f(β)λ(dβ).

Remark 1.2. As a consequence, the random measure assigning weight π/n to each
zero of ZN converges weakly to the Lebesgue measure restricted to B3.

In the next theorem, we look more closely at the zeros of ZN located in B3. We
describe the local structure of zeros of ZN in a neighborhood of area 1/n of a fixed
point β0 ∈ B3. Let {G(t), t ∈ C} be a random analytic function given by

(1.6) G(t) =

∞∑
k=0

Nk
tk√
k!
,

where N1, N2, . . . are independent standard complex Gaussian random variables.
The complex zeros of G form a remarkable point process which has intensity 1/π
and is translation invariant. Up to rescaling, this is the only translation invariant
zero set of a Gaussian analytic function; see [11, Section 2.5]. This and related zero
sets have been much studied; see the monograph [11].

Theorem 1.3. Let β0 ∈ B3 be fixed. For every continuous function f : C → R
with compact support,∑

β∈C:ZN (β)=0

f(
√
n(β − β0))

d−→
N→∞

∑
β∈C:G(β)=0

f(β).

Remark 1.4. Equivalently, the point process consisting of the points
√
n(β − β0),

where β is a zero of ZN , converges weakly to the point process of zeros of G.

Derrida [7] predicted that the set B1 should be free of zeros. The next result
makes this statement rigorous.

Theorem 1.5. Let K be a compact subset of B1. Then, there exists ε > 0 depending
on K such that

P[ZN (β) = 0, for some β ∈ K] = O(N−ε), N →∞.

Consider now the zeros of ZN in the set B2. We will show that in the limit
as N → ∞ the zeros of ZN in B2 look like the zeros of certain random analytic
function ζP . This function may be viewed as a zeta-function associated to the
Poisson process. It is defined as follows. Let P1 < P2 < . . . be the arrival times
of a unit intensity homogeneous Poisson process on the positive half-line. That is,
Pk = ε1 + . . .+εk, where ε1, ε2, . . . are i.i.d. standard exponential random variables,
i.e., P[εk > t] = e−t, t ≥ 0. For T > 1, define the random process

(1.7) ζ̃P (β;T ) =

∞∑
k=1

1

P βk
1Pk∈[0,T ] −

∫ T

1

t−βdt, β ∈ C.

Theorem 1.6. With probability 1, the sequence ζ̃P (β;T ) converges as T → ∞ to

a limit function denoted by ζ̃P (β). The convergence is uniform on compact subsets
of the half-plane {β ∈ C : Reβ > 1/2}.
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Corollary 1.7. With probability 1, the Poisson process zeta-function

(1.8) ζP (β) =

∞∑
k=1

1

P βk

defined originally for Reβ > 1, admits a meromorphic continuation to the domain
Reβ > 1/2. The function ζ̃P (β) = ζP (β)− 1

β−1 is a.s. analytic in this domain.

The next theorem describes the limiting structure of zeros of ZN in B2.

Theorem 1.8. Let f : B2 → R be a continuous function with compact support.

Let ζ
(1)
P and ζ

(2)
P be two independent copies of ζP . Then,∑

β∈B2:ZN (β)=0

f(β)
d−→

N→∞

∑
β∈B2:

ζ
(1)
P (β/

√
2)=0

f(β) +
∑
β∈B2:

ζ
(2)
P (β/

√
2)=0

f(−β).

Remark 1.9. The theorem tells that the zeros of ZN in the domain σ > 1/
√

2, |σ|+
|τ | >

√
2 (which constitutes one half of B2) have approximately the same law as

the zeros of ζP , as N → ∞. Let us stress that the approximation breaks down in
the triangle σ > 1/

√
2, |σ|+ |τ | <

√
2. Although the function ζP is well-defined and

may have zeros there, the function ZN has, with high probability, no zeros in any
compact subset of the triangle by Theorem 1.5.

Next we state some properties of the function ζP . Let β > 1/2 be real. For
β 6= 1, the random variable ζP (β) is stable with index 1/β and skewness parameter
1. In fact, (1.7) is just the series representation of this random variable; see [22,

Theorem 1.4.5]. For β = 1, the random variable ζ̃P (1) (which is the residuum of
ζP at 1) is 1-stable with skewness 1. For general complex β, we have the following
stability property.

Proposition 1.10. If ζ
(1)
P , . . . , ζ

(k)
P are independent copies of ζP , then we have the

following distributional equality of stochastic processes:

ζ
(1)
P + . . .+ ζ

(k)
P

d
= kβζP .

To see this, observe that the union of k independent unit intensity Poisson pro-
cesses has the same law as a single unit intensity Poisson process scaled by the factor
1/k. As a corollary, the distribution of the random vector (Re ζP (β), Im ζP (β)) be-
longs to the family of operator stable laws; see [15].

Proposition 1.11. Fix τ ∈ R. As σ ↓ 1/2, we have

√
2σ − 1 ζP (σ + iτ)

d−→

{
NC(0, 1), if τ 6= 0,

NR(0, 1), if τ = 0.

As a corollary, there is a.s. no meromorphic continuation of ζP beyond the line
σ = 1/2. Using the same method of proof it can be shown that for every different
τ1, τ2 > 0 the random variables

√
2σ − 1 ζP (σ+iτj), j = 1, 2, become asymptotically

independent as σ ↓ 1/2. Thus, the function ζP looks like a näıve white noise near
the line σ = 1/2.
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1.3. Results on fluctuations. We state our results on fluctuations for a general-
ization of (1.1) which we call complex random energy model. This model involves
complex phases and allows for a dependence between the energies and the phases.
Let (X,Y ), (X1, Y1), . . . be i.i.d. zero-mean bivariate Gaussian random vectors with

VarXk = 1, VarYk = 1, Corr(Xk, Yk) = ρ.

Here, −1 ≤ ρ ≤ 1 is fixed. Recall that n = logN . We consider the following
partition function:

ZN (β) =

N∑
k=1

e
√
n(σXk+iτYk), β = (σ, τ) ∈ R2.(1.9)

For τ = 0, this is the REM of Derrida [6] at real inverse temperature σ. For ρ = 1,
we obtain the REM at the complex inverse temperature β = σ+iτ considered above.
For ρ = 0, the model is a REM with independent complex phases considered in [8].

Define the log-partition function as

pN (β) =
1

n
log |ZN (β)|, β = (σ, τ) ∈ R2.(1.10)

Theorem 1.12. The limit

(1.11) p(β) := lim
N→∞

pN (β)

exists in probability and in Lq, q ≥ 1, and is explicitly given as

(1.12) p(β) =


1 + 1

2 (σ2 − τ2), β ∈ B1,√
2|σ|, β ∈ B2,

1
2 + σ2, β ∈ B3.

The next theorem shows that ZN (β) satisfies the central limit theorem in the
domain σ2 < 1/2.

Theorem 1.13. If σ2 < 1/2 and τ 6= 0, then

(1.13)
ZN (β)−N1+ 1

2 (σ2−τ2)+iστρ

N
1
2 +σ2

d−→
N→∞

NC(0, 1).

Remark 1.14. If σ2 < 1/2 and τ = 0, then the limiting distribution is real normal,
as was shown in [4].

Remark 1.15. If in addition to σ2 < 1/2 we have σ2 + τ2 > 1, then N1+ 1
2 (σ2−τ2) =

o(N
1
2 +σ2

) and, hence, the theorem simplifies to

(1.14)
ZN (β)

N
1
2 +σ2

d−→
N→∞

NC(0, 1).

Eq. (1.14) explains the difference between phases B1 and B3: in phase B1 the
expectation of ZN (β) is of larger order than the mean square deviation, in phase
B3 otherwise.

In the boundary case σ2 = 1/2, the limiting distribution is normal, but it has
truncated variance.

Theorem 1.16. If σ2 = 1/2 and τ 6= 0, then

ZN (β)−N1+ 1
2 ( 1

2−τ
2)+iστρ

N

d−→
N→∞

NC(0, 1/2).
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Next, we describe the fluctuations of ZN (β) in the domain σ2 > 1/2. Since
ZN (β) has the same law as ZN (−β), it is not a restriction of generality to assume

that σ > 0. Let bN be a sequence such that
√

2πbNeb
2
N/2 ∼ N as N →∞. We can

take

(1.15) bN =
√

2n− log(4πn)

2
√

2n
.

Theorem 1.17. Let σ > 1/
√

2, τ 6= 0, and |ρ| < 1. Then,

(1.16)
ZN (β)−NE[e

√
n(σX+iτY )

1X<bN ]

eσ
√
nbN

d−→
N→∞

S√2/σ,

where Sα denotes a complex isotropic α-stable random variable with a characteristic
function of the form E[eiRe(Sαz)] = e−const·|z|α , z ∈ C.

Remark 1.18. If σ > 1/
√

2 and τ = 0, then the limiting distribution is real totally

skewed α-stable; see [4]. If σ > 1/
√

2 and ρ = 1 (resp., ρ = −1), then it follows
from Theorem 3.7 below that

(1.17)
ZN (β)−NE[eβ

√
nX

1X<bN ]

eβ
√
nbN

d−→
N→∞

ζ̃P

(
β√
2

) (
resp., ζ̃P

(
β̄√
2

))
.

Remark 1.19. We will compute asymptotically the truncated expectation on the
left-hand side of (1.16) in Section 2.2 below. We will obtain that under the as-
sumptions of Theorem 1.17,

ZN (β)

eσ
√
nbN

d−→
N→∞

S√2/σ, if σ + |τ | >
√

2,(1.18)

ZN (β)−N1+ 1
2 (σ2−τ2)+iστρ

eσ
√
nbN

d−→
N→∞

S√2/σ, if σ + |τ | ≤
√

2.(1.19)

Similarly, if σ > 1/
√

2, but ρ = 1, then we have

ZN (β)

eβ
√
nbN

d−→
N→∞

ζP

(
β√
2

)
, if σ + |τ | >

√
2,(1.20)

ZN (β)−N1+ 1
2 (σ2−τ2)+iστ

eβ
√
nbN

d−→
N→∞

ζ̃P

(
β√
2

)
, if σ + |τ | ≤

√
2.(1.21)

For ρ = −1, we have to replace β by β̄.

1.4. Discussion, extensions and open questions. The results on fluctuations
are closely related, at least on the heuristic level, to the results on the zeros of
ZN . In Section 1.3, we claimed that regardless of the value of β 6= 0 we can find
normalizing constants mN (β) ∈ C, vN (β) > 0 such that (ZN (β) −mN (β))/vN (β)
converges in distribution to a non-degenerate random variable Z(β). It turns out
that in phase B1 the sequence mN (β) is of larger order than vN (β), which suggests
that there should be no zeros in this phase. In phases B2 and B3, the sequence
vN (β) dominates mN (β), which suggests that there should be zeros in these phases.
The main difference between the phases B2 and B3 is the density of zeros. The
density of zeros is essentially determined by the correlation structure of the process
ZN . In phase B3, it can be seen from Theorem 3.5 below that ZN (β1) and ZN (β2)
become asymptotically decorrelated if the distance between β1 and β2 is of order
larger than 1/

√
n. This suggests that the distances between the close zeros in

phase B3 should be of order 1/
√
n and hence, the density of zeros should be of
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order n. Similarly, in phase B2 the variables ZN (β1) and ZN (β2) remain non-
trivially correlated at distances of order 1 by Theorem 3.7 below, which suggests
that the density of zeros in this phase should be of order 1. All these heuristics are
rigorously confirmed by our results.

Our results suggest the following approximate picture of zeros of ZN for large
N . Generate independently three objects: the zero set of the Gaussian analytic
function G scaled down by the factor 1/

√
n, and two copies of the zero set of the

Poisson process zeta-function ζP . Use the zeros of G to fill the phase B3 and the
two copies of the zero set of ζP to fill the phase B2. Leave the phase B1 empty.
Given this description, it is natural to ask about the behavior of zeros on the
boundaries between the phases. Derrida [7] stated that “the boundaries between
phases B1 and B2, and between phases B1 and B3 are lines of zeros whereas the
separation between phases B2 and B3 is not”. We were unable to find a satisfactory
interpretation of these statements. On the rigorous side, it is possible to prove the
following results. Take some point β on the boundary between B1 and B3. This
means that σ2 < 1/2 and σ2 + τ2 = 1. In an infinitesimal neighborhood of β
with linear size of order 1/

√
n, the boundary (which is a circular arc) looks like

a straight line dividing the plane into two half-planes. It can be shown that in
one of the half-planes (located in B3) the zeros of ZN converge to the zeros of the
Gaussian analytic function G, whereas in the other half-plane (located in B1) the
zeros converge to the empty point process. Our results suggest that the probability
that there is a zero in the ε-neighborhood of the boundary between B1 and B2

(which consists of 4 straight line segments) converges to 0 as N → ∞ and then
ε ↓ 0. If β is on the boundary between B3 and B2 meaning that σ2 = 1/2 and
τ2 > 1/2, then it can be shown by combining the proofs of Theorems 1.3 and 1.16
that the zeros of ZN in an infinitesimal neighborhood of β converge to the zeros of
G. The behavior of zeros is thus the same as inside B2.

The intensity of complex zeros of the function ζP at β can be computed by
the formula g(β) = 1

2πE∆ log |ζP (β)|, where ∆ is the Laplace operator; see [11,

Section 2.4]. Proposition 1.11 suggests that g(σ + iτ) ∼ 1
π

1
(2σ−1)2 as σ ↓ 1/2. In

particular, every point of the line σ = 1/2 should be an accumulation point for the
zeros of ζP with probability 1.

It is possible to extend or strengthen our results in several directions. The
statements of Theorem 1.1 and Theorem 1.12 should hold almost surely, although
it seems difficult to prove this. It seems also that Theorem 1.5 can be strengthened
as follows: the probability that ZN has zeros in B1 goes to 0 as N → ∞. Several
authors considered models involving sums of random exponentials generalizing the
REM; see [1, 3, 13, 5]. They analyze the case of real β only. We believe that our
results (both on zeros and on fluctuations) hold after appropriate modifications
for these models. In particular, the assumption of Gaussianity can be relaxed.
It is plausible that, for our results to hold, it suffices to require that eX is in the
Gumbel max-domain of attraction, and that a minor technical assumption as in [13,
Corollary 5.1] holds.

2. Proofs of the results on fluctuations

2.1. Truncated exponential moments. We will often need estimates for the
truncated exponential moments of the normal distribution. In the next lemmas,
we denote by X a real standard normal random variable and by Φ the distribution
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function of X. It is well-known that

(2.1) Φ(t) ∼ 1√
2π|t|

e−
t2

2 , t→ −∞

Lemma 2.1. Let w, a ∈ R. The following estimates hold.

(1) If w > a, then E[ewX1X<a] < eaw−
a2

2 .

(2) If w < a, then E[ewX1X>a] < eaw−
a2

2 .

Proof. Consider only the case w > a, case (2) being similar. We have
(2.2)

E[ewX1X<a] =
1√
2π

∫ a

−∞
ewz−

z2

2 dz =
e
w2

2

√
2π

∫ a

−∞
e−

(z−w)2

2 dz = e
w2

2 Φ(a− w).

Using the inequality Φ(t) < e−t
2/2 valid for t ≤ 0, we obtain the statement. �

Lemma 2.2. Let F (λ) = E[eλwX1X<λa(λ)], where w = u + iv ∈ C and a(λ) is a
real-valued function with limλ→+∞ a(λ) = a. The following holds, as λ→ +∞:

(2.3) F (λ) ∼

{
1√

2π(w−a)λ
exp

{
λ2
(
a(λ)w − 1

2a
2(λ)

)}
, if a < u+ v

exp
{

1
2λ

2w2
}
, if a > u+ v.

Remark 2.3. If w ∈ R and a(λ) = w + c
λ + o( 1

λ ) for some c ∈ R, then

(2.4) F (λ) ∼ Φ(c) exp

{
1

2
λ2w2

}
.

Proof. Let first w ∈ R. By the identity (2.2), we have F (λ) = e
λ2w2

2 Φ(λa(λ) −
λw). The lemma and the remark follow readily. In the case a < w, we apply the
formula (2.1).

Therefore, we may restrict ourselves to the case w ∈ C\R. With S(z) = wz−z2/2
write

F (λ) =
λ√
2π

∫ a(λ)

−∞
eλ

2S(z)dz.

If a(λ) ≤ u, then the maximum of ReS(z) on the interval z ≤ a(λ) is attained at the
boundary point z = a(λ). A standard application of the stationary phase method,
see [9, Chapter III, Theorem 1.1], yields the first formula of (2.3). Assume that
a(λ) > u. Then, the maximum is attained at the interior point z = u. However,
we have

(2.5) F (λ)− eλ
2w2/2 = − λ√

2π

∫ ∞
a(λ)

eλ
2S(z)dz ∼ 1√

2π(w − a)λ
eλ

2(a(λ)w− 1
2a

2(λ)),

where the last step is by the same stationary phase argument. If a < u + v, the

right-hand side dominates the term eλ
2w2/2 on the left-hand side and we have the

first case in (2.3). If a > u+ v, then the term eλ
2w2/2 becomes dominating and we

arrive at the second formula in (2.3). �

Lemma 2.4. If (X,Y ) is a real Gaussian vector with standard margins and cor-
relation ρ, then, for s, a ∈ R, it holds that

E[es(σX+iτY )
1X<a] = e−s

2τ2(1−ρ2)/2E[es(σ+iτρ)X
1X<a].

In particular, E[es(σX+iτY )] = es
2(σ2−τ2+2iστρ)/2.



9

Proof. We have a distributional equality (X,Y ) = (X, ρX +
√

1− ρ2W ), where
(X,W ) are independent standard normal real random variables. It follows that

E[es(σX+iτY )
1X<a] = E[es(σ+iτρ)X+isτ

√
1−ρ2W

1X<a]

= e−s
2τ2(1−ρ2)/2E[es(σ+iτρ)X

1X<a],

where we have used that E[etW ] = et
2/2 and that W and X are independent. �

2.2. Proof of Theorems 1.13, 1.16, 1.17. The main tool to prove the results
on the fluctuations is the summation theory of triangular arrays of random vectors;
see [10] and [15]. The following theorem can be found in [10, § 25] in the one-
dimensional setting and in [21], [15, Theorem 3.2.2] in the d-dimensional setting.
Denote by | · | the Euclidean norm and by 〈·, ·〉 the Euclidean scalar product.

Theorem 2.5. For every N ∈ N, let a series W1,N , . . . ,WN,N of independent ran-
dom d-dimensional vectors be given. Assume that, for some locally finite measure ν
on Rd\{0}, and some positive semidefinite matrix Σ, the following conditions hold:

(1) limN→∞
∑N
k=1 P[Wk,N ∈ B] = ν(B), for every Borel set B ⊂ Rd\{0} such

that ν(∂B) = 0.
(2) The following limits exist:

Σ = lim
ε↓0

lim sup
N→∞

N∑
k=1

Var[Wk,N1|Wk,N |<ε] = lim
ε↓0

lim inf
N→∞

N∑
k=1

Var[Wk,N1|Wk,N |<ε].

Then, the random vector SN :=
∑N
k=1(Wk,N − E[Wk,N1|Wk,N |<R]) converges, as

N →∞, to an infinitely divisible random vector S whose characteristic function is
given by the Lévy–Khintchine representation

logE[ei〈t,S〉] = −1

2
〈t,Σt〉+

∫
Rd

(ei〈t,s〉 − 1− i〈t, s〉1|s|<R)ν(ds), t ∈ Rd.

Here, R > 0 is any number such that ν does not charge the set {s ∈ Rd : |s| = R}.

Proof of Theorem 1.13. For k = 1, . . . , N , define

Wk,N = N−
1
2−σ

2

e
√
n(σXk+iτYk).

Let WN be a random variable having the same law as the Wk,N ’s. Note that

NE[WN ] = N (1−σ2−τ2+2iστρ)/2 by Lemma 2.4. To prove the theorem, we need to
show that

N∑
k=1

(Wk,N − EWk,N )
d−→

N→∞
NC(0, 1).

The proof is based on the two-dimensional Lindeberg central limit theorem. We
consider Wk,N as an R2-valued random vector (ReWk,N , ImWk,N ). Let ΣN be the
covariance matrix of this vector. First, we show that

(2.6) lim
N→∞

NΣN =

(
1/2 0
0 1/2

)
.

We have

(2.7) NE[(ReWN )2 + (ImWN )2] = NE[|WN |2] = N−2σ2

E[e2σ
√
nX ] = 1.
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Also, we have NE[W 2
N ] = N−2τ2+4iστρ by Lemma 2.4. Since we assume that τ 6= 0,

this implies that limN→∞NE[W 2
N ] = 0. By taking real and imaginary parts, we

obtain that

(2.8) lim
N→∞

NE[(ReWN )2 − (ImWN )2] = lim
N→∞

NE[(ReWN )(ImWN )] = 0.

Combining (2.7) and (2.8), we get

(2.9) lim
N→∞

NE[(ReWN )2] = lim
N→∞

NE[(ImWN )2] = 1/2.

Also, by Lemma 2.4, we have

(2.10) lim
N→∞

√
NE[WN ] = lim

N→∞
N−(σ2+τ2−2iστρ)/2 = 0.

It follows from (2.8), (2.9), (2.10) that (2.6) holds. Fix an arbitrary ε > 0. We
complete the proof of the theorem by verifying the Lindeberg condition

(2.11) lim
N→∞

NE[|WN − EWN |21|WN−EWN |>ε] = 0.

Assume first that σ 6= 0, say σ > 0. Write aN = σ+ 1
2σ + log ε

σn . Then, limN→∞ aN =

σ+ 1
2σ > 2σ by the assumption σ2 < 1/2. Hence, by Part 2 of Lemma 2.1, we have

(2.12) lim
N→∞

NE[|WN |21|WN |>ε] = lim
N→∞

e−2σ2nE[e2σ
√
nX

1X>
√
naN ] = 0.

This also trivially holds for σ = 0. Together with (2.10), (2.12) implies (2.11). �

Proof of Theorem 1.16. Without loss of generality let σ = 1/
√

2. For k = 1, . . . , N ,
define

Wk,N = N−1e
√
n(σXk+iτYk).

Let WN be a random variable with the same distribution as the Wk,N ’s. To prove
the theorem, we need to verify that

N∑
k=1

(Wk,N − EWk,N )
d−→

N→∞
NC(0, 1/2).

As we will see in Eqn. (2.13) below, the Lindeberg condition (2.11) is not satisfied.

We are going to apply Theorem 2.5 instead. Fix ε > 0 and let aN =
√

2 +
√

2 log ε
n .

By Remark 2.3, we have

(2.13) lim
N→∞

NE[|WN |21|WN |<ε] = lim
N→∞

N−1E[e
√

2nX
1X<

√
naN ] = 1/2.

Also, by Lemma 2.4 and Lemma 2.2 (first part of (2.3)),
(2.14)

lim
N→∞

NE[W 2
N1|WN |<ε] = lim

N→∞
e−2n(1−ρ2)τ2

N−1E[e2
√
n(σ+iτρ)X

1X<
√
naN ] = 0.

By Part 2 of Lemma 2.1,

(2.15) lim
N→∞

NE[|WN |1|WN |>ε] = lim
N→∞

E[e
√
nσX

1X>
√
naN ] = 0.

We consider WN as an R2-valued random vector (ReWN , ImWN ). It follows
from (2.13), (2.14), (2.15) that the covariance matrix ΣN := Var[WN1|WN |<ε] sat-
isfies

(2.16) lim
N→∞

NΣN =

(
1/4 0
0 1/4

)
.
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It follows from (2.15) that limN→∞NP[|WN | > ε] = 0. Therefore, the conditions of
Theorem 2.5 are satisfied with ν = 0 and Σ given by the right-hand side of (2.16).
Applying Theorem 2.5, we obtain the required statement. �

Proof of Theorem 1.17. Recall that α =
√

2/σ ∈ (0, 2). For k = 1, . . . , N , define
random variables

Wk,N = e
√
n(σXk+iτYk−σbN ).

Let WN be a random variable having the same law as the Wk,N ’s. We will verify
the conditions of Theorem 2.5. To verify the first condition, fix 0 < r1 < r2,
0 < θ1 < θ2 < 2π and consider the set

B = {z ∈ C : r1 < |z| < r2, θ1 < arg z < θ2}.

We will show that

(2.17) lim
N→∞

NP[WN ∈ B] =

(
1

rα1
− 1

rα2

)
· θ2 − θ1

2π
.

Define a set

AN =
⋃
j∈Z

(
2πj + θ1

τ
√
n

,
2πj + θ2

τ
√
n

)
⊂ R.

We have

P[WN ∈ B] = P[eσ
√
n(X−bN ) ∈ (r1, r2), Y ∈ AN ]

=

∫ r2

r1

P[Y ∈ AN |σ
√
n(X − bN ) = log r]fN (r)dr.

Here, fN (r) is the density of the log-normal random variable e
√
nσ(X−bN ):

(2.18) fN (r) =
1√

2πnσr
exp

{
−1

2

(
log r

σ
√
n

+ bN

)2
}
∼ 1

N
αr−(1+α), N →∞,

where the asymptotic equivalence holds uniformly in r ∈ [r1, r2]. To prove (2.18),

recall that
√

2πbNeb
2
N/2 ∼ N and bN ∼

√
2n. Conditionally on σ

√
n(X − bN ) =

log r, the random variable Y is normal with mean µN = ρ( log r
σ
√
n

+ bN ) and variance√
1− ρ2. The variance is strictly positive by the assumption |ρ| 6= 1. It follows

easily that

lim
N→∞

P[Y ∈ AN |σ
√
n(X − bN ) = log r] =

θ2 − θ1

2π
.

Bringing everything together, we arrive at (2.17). So, the first condition of Theo-
rem 2.5 holds with

ν(dxdy) =
α

2π
· dxdy

r2+α
, r =

√
x2 + y2.

To verify the second condition of Theorem 2.5 with Σ = 0, it suffices to show that

(2.19) lim
ε↓0

lim sup
N→∞

NE[|WN |21|WN |≤ε] = 0.

Condition |WN | ≤ ε is equivalent to X < aN , where aN = bN + log ε
σ
√
n
∼
√

2n. By

Lemma 2.2 (first case of (2.3)) with λ =
√
n, w = 2σ, we have

E[e2σ
√
nX

1X<aN ] ∼ Cn−1/2e2σ
√
naN−a2N/2 ∼ CN−1e2σ

√
nbN ε2−

√
2/σ, N →∞,
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where we have again used that
√

2πbNeb
2
N/2 ∼ N . We obtain that

lim
N→∞

NE[|WN |21|WN |≤ε] = lim
N→∞

Ne−2σ
√
nbNE[e2σ

√
nX

1X<aN ] = Cε2−
√

2/σ.

Recalling that 2 >
√

2/σ, we arrive at (2.19). By Theorem 2.5,

N∑
k=1

(Wk,N − E[WN1|WN |<1])
d−→

N→∞
Sα,

where the limiting random vector Sα is infinitely divisible with a characteristic
function given by

ψ(z) := logE[ei〈Sα,z〉] =
α

2π

∫
R2

(ei〈u,z〉 − 1− i〈u, z〉1|u|<1)
dxdy

|u|2+α
, z ∈ C.

Here, u = x+iy and 〈u, z〉 = Re(uz̄). Clearly, ψ(z) depends on |z| only and satisfies
ψ(λz) = λαψ(z) for every λ > 0. It follows that ψ(z) = const · |z|α. �

Proof of Remark 1.19. We assume that τ 6= 0. By Lemma 2.4, we have

mN := NE[e
√
n(σX+iτY )

1X<bN ] = N1−τ2(1−ρ2)/2E[e
√
n(σ+iτρ)X

1X<bN ].

Write w = σ + iτρ. Applying Lemma 2.2, we have

E[e
√
n(σ+iτρ)X

1X<bN ] ∼

{
1

(w/
√

2)−1
N−1ebN

√
nw, σ + τρ >

√
2,

ew
2n/2, σ + τρ ≤

√
2.

Strictly speaking, the case σ+ τρ =
√

2 is not contained in Lemma 2.2, but an easy

computation shows that that the term ew
2n/2 is dominating in (2.5).

�

2.3. Proof of Theorem 1.12. We will deduce the stochastic convergence of the
log-partition function pN (β) = 1

n log |ZN (β)| from the weak convergence of ZN (β).
This will be done via the following lemma.

Lemma 2.6. Let Z,Z1, Z2, . . . be random variables with values in C and let mN ∈
C, vN ∈ C\{0} be sequences of normalizing constants such that

(2.20)
ZN −mN

vN

d−→
N→∞

Z.

The following two statements hold:

(1) If |vN | = o(|mN |) and |mN | → ∞ as N →∞, then log |ZN |
log |mN |

P−→
N→∞

1.

(2) If |mN | = O(|vN |), |vN | → ∞ as N → ∞ and Z has no atoms, then
log |ZN |
log |vN |

P−→
N→∞

1.

Proof of (1). Fix ε > 0. For sufficiently large N , we have |mN | > 1 and, hence,

P
[
1− ε < log |ZN |

log |mN |
< 1 + ε

]
= P[|mN |1−ε < |ZN | < |mN |1+ε]

≥ P
[∣∣∣∣ZN −mN

vN

∣∣∣∣ < 1

2

|mN |
|vN |

]
.

The right-hand side converges to 1 by our assumptions. �
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Proof of (2). Fix ε > 0. For sufficiently large N ,

P
[

log |ZN |
log |vN |

> 1 + ε

]
= P

[
|ZN |
|vN |

> |vN |ε
]
≤ P

[∣∣∣∣ZN −mN

vN

∣∣∣∣ > 1

2
|vN |ε

]
.

The right hand-side converges to 0 by our assumptions. Consider now

P
[

log |ZN |
log |vN |

< 1− ε
]

= P
[
|ZN |
|vN |

< |vN |−ε
]

= P
[∣∣∣∣ZN −mN

vN
+
mN

vN

∣∣∣∣ < |vN |−ε] .
Assume that there is δ > 0 such that the right-hand side is > δ for infinitely many
N ’s. Recall that mN/vN is bounded. Taking a subsequence, we may assume that
−mN/vN converges to some a ∈ C. Recall that |vN | → ∞. But then, for every
η > 0,

P[|Z − a| < η] ≥ lim sup
N→∞

P
[∣∣∣∣ZN −mN

vN
− a
∣∣∣∣ < η

2

]
> δ.

This contradicts the assumption that Z has no atoms. �

Proof of Theorem 1.12. We may assume that τ 6= 0, since otherwise the result is
known [19]. Let p(β) be defined by (1.12). First, we show that limN→∞ pN (β) =
p(β) in probability. It follows from Theorems 1.13, 1.17, 1.16 and Remark 1.18 that
condition (2.20) is satisfied with ZN = ZN (β) and an appropriate choice of mN , vN .
Straightforward calculation (see in particular Remarks 1.15 and 1.19) shows that
the normalizing constants mN and vN satisfy the first condition of Lemma 2.6 if
β ∈ B1 and the second condition if β ∈ B2 ∪B3. Applying Lemma 2.6, we obtain
that pN (β)→ p(β) in probability.

Let us show that pN (β)→ p(β) in Lq, where q ≥ 1 is fixed. From the fact that
pN (β) → p(β) in probability, and since p(β) > 0, for every β ∈ C, we conclude
that, for every C > p(β),

lim
N→∞

pN (β)10≤pN (β)≤C+1 = p(β) in Lq.

For every u ∈ R, we have

P[pN (β) ≥ u] ≤ e−nuE|ZN (β)| ≤ e−nuNE[eσ
√
nX ] = en(C−u),

where C = 1 + σ2/2. From this, we conclude that

E
[
|pN (β)|q1pN (β)>C+1

]
=

∞∑
k=1

E[|pN (β)|q1C+k<pN (β)≤C+k+1]

≤
∞∑
k=1

e−nk(C + k + 1)q,

which converges to 0, as N →∞. To complete the proof, we need to show that

(2.21) lim
N→∞

E
[
|pN (β)|q1pN (β)<0

]
= 0.

The problem is to bound the probability of small values of ZN (β), where the loga-
rithm has a singularity and |pN (β)| becomes large. Fix a small ε > 0. Clearly,

(2.22) E
[
|pN (β)|q1−εσ2≤pN (β)≤0

]
≤ (εσ2)q.

To prove (2.21), we would like to estimate from above the probability P[|ZN (β)| ≤ r]
for 0 < r < e−εσ

2n. Recall that ZN (β) is a sum of N independent copies of the

random variable e
√
n(σX+iτY ). Unfortunately, the distribution of the latter random

variable does not possess nice regularity properties. For example, in the most
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interesting case ρ = 1 it has no density. This is why we need a smoothing argument.
Denote by Br(t) the disc of radius r centered at t ∈ C. Fix a large A > 1. We will

show that uniformly in t ∈ C, 1/A < |β| < A, n > (2A)2, and 0 < r < e−εσ
2n,

(2.23) P[e
√
n(σX+iτY ) ∈ Br(t)] < Cr

ε
20 .

This inequality is stated in a form which will be needed later in the proof of Theo-
rem 1.1.

Let |t| ≥
√
r and τ ≥ 1/(2A). The argument arg t of a complex number t is

considered to have values in the circle T = R/2πZ. Let P : R→ T be the canonical
projection. Denote by Ir(t) be the sector {z ∈ C : | arg z− arg t| ≤ 2

√
r}, where we

take the geodesic distance between the arguments. A simple geometric argument
shows that the disc Br(t) is contained in the sector Ir(t). The density of the random
variable P (τ

√
nY ) at θ ∈ T is given by

P[P (τ
√
nY ) ∈ dθ] =

1√
2πnτ

∑
k∈Z

e−(θ+2πk)2/(2τ2n)dθ.

By considering the right-hand side as a Riemann sum and recalling that τ ≥ 1/(2A),
we see that the density converges to 1/(2π) uniformly in θ ∈ T as N → ∞. We
have

P[e
√
n(σX+iτY ) ∈ Br(t)] ≤ P[e

√
n(σX+iτY ) ∈ Ir(t)] < C

√
r,

which implies (2.23).
Let now |t| <

√
r. Then, recalling that log r < −εσ2n, we obtain

P[e
√
n(σX+iτY ) ∈ Br(t)] ≤ P[eσ

√
nX < r1/4] = P

[
X <

log r

4σ
√
n

]
< e−

(log r)2

16σ2n < r
ε
16 .

It remains to consider the case t ≥
√
r, |σ| ≥ 1/(2A). The density of the random

variable eσ
√
nX is given by

g(x) =
1√

2πnσx
e−

(log x)2

2σ2n , x > 0.

It attains its maximum at x0 = e−σ
2n. The maximum is equal to g(x0) =

1√
2πnσ

eσ
2n/2. Let r ≤ (2πn)σ2e−σ

2n. Then,

P[e
√
n(σX+iτY ) ∈ Br(t)] ≤ P[t− r ≤ eσ

√
nX ≤ t+ r] ≤ Cr√

nσ
eσ

2n/2 ≤ Cr1/2.

Let r ≥ (2πn)σ2e−σ
2n, which, together with |σ| > 1/(2A), implies that r > e−σ

2n.
Using the unimodality of the density g and the inequality t− r > r, we have

P[e
√
n(σX+iτY ) ∈ Br(t)] ≤ P[t− r ≤ eσ

√
nX ≤ t+ r] < 2rg(r) < e−

(log r)2

2σ2n < r
ε
2 .

The last inequality follows from r < e−σ
2n. This completes the proof of (2.23).

Now we are in position to complete the proof of (2.21). Let Ur be a random
variable distributed uniformly on the disc Br(0). It follows from (2.23) that the

density of the random variable e
√
n(σX+iτY ) +Ur is bounded above by Cr−2+(ε/20).

Hence, the density of ZN (β) +Ur is bounded by the same term Cr−2+(ε/20). With
the notation r = e−kn it follows that, for every k ≥ εσ2,

P[pN (β) ≤ −k] = P[|ZN (β)| ≤ e−kn] ≤ P[|ZN (β) + Ur| ≤ 2r] ≤ Cr ε
20 .
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From this, we obtain that

E[|pN (β)|q1pN (β)∈[−k−1,−k]] ≤ C(k + 1)qe−
kn
20 .

Taking the sum over all k = εσ2 + l, l = 0, 1, . . ., we get

E[|pN (β)|q1pN (β)<−εσ2 ] ≤ Ce−
εσ2n
20

∞∑
l=1

lqe−
ln
20 ≤ Ce−

εσ2n
20 .

Recalling (2.22), we arrive at (2.21). �

Remark 2.7. As a byproduct of the proof, we have the following statement. For
every A > 0, there is a constant C = C(A) such that E|pN (β)| < C, for all
1/A < |β| < A and sufficiently large N .

3. Proofs of the results on zeros

3.1. Convergence of random analytic functions. In this section, we collect
some lemmas on weak convergence of stochastic processes whose sample paths are
analytic functions. As we will see, the analyticity assumption simplifies the things
considerably. For a metric space M denote by C(M) the space of complex-valued
continuous functions on M endowed with the topology of uniform convergence on
compact sets. Let D ⊂ C be a simply connected domain.

Lemma 3.1. Let {U(t), t ∈ D} be a random analytic function defined on D. Let
Γ ⊂ D be a closed differentiable contour and let K be a compact subset located
strictly inside Γ. Then, for every p ∈ N0, there is a constant C = Cp(K,Γ) such
that

E
[

sup
t∈K
|U (p)(t)|

]
≤ C

∮
Γ

E|U(w)||dw|.

Proof. By the Cauchy formula, |U (p)(t)| ≤ C
∮

Γ
|U(w)||dw|, for all t ∈ K. Take the

supremum over t ∈ K and then the expectation. �

It is easy to check that a sequence of stochastic processes with paths in C(D) is
tight (resp., weakly convergent) if and only if it is tight (resp., weakly convergent)
in C(K), for every compact set K ⊂ D.

Lemma 3.2. Let U1, U2, . . . be random analytic functions on D. Assume that there
is a continuous function f : D → R such that E|UN (t)| < f(t), for all t ∈ D, and
all N ∈ N. Then, the sequence UN is tight on C(D).

Proof. Let K ⊂ D be a compact set. Let Γ be a contour enclosing K and located
inside D. By Lemma 3.1,

E
[

sup
t∈K
|UN (t)|

]
≤ C

∮
Γ

f(w)|dw|, E
[

sup
t∈K
|U ′N (t)|

]
≤ C

∮
Γ

f(w)|dw|.

By standard arguments, this implies that the sequence UN is tight on C(K). �

Lemma 3.3. Let U,U1, U2, . . . be random analytic functions on D such that UN
converges as N → ∞ to U weakly on C(D) and P[U ≡ 0] = 0. Then, for every
continuous function f : D → R with compact support, we have∑

z∈C:UN (z)=0

f(z)
d−→

N→∞

∑
z∈C:U(z)=0

f(z).
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Remark 3.4. Equivalently, the zero set of UN , considered as a point process on D,
converges weakly to the zero set of U .

Proof. LetH be a closed linear subspace of C(D) consisting of all analytic functions.
Consider a functional Ψ : H → R mapping an analytic function ϕ which is not
identically 0 to

∑
z f(z), where the sum is over all zeros of ϕ. Define also Ψ(0) = 0.

It is an easy consequence of Rouché’s theorem that Ψ is continuous on H\{0}.
Note that H\{0} is a set of full measure with respect to the law of U . Recall that
UN → U weakly on H. By the continuous mapping theorem [20, § 3.5], Ψ(UN )
converges in distribution to Ψ(U). This proves the lemma. �

3.2. Proof of Theorem 1.1. Let f : C → R be a continuous function with
compact support. We need to show that

(3.1)
π

n

∑
β∈C:ZN (β)=0

f(β)
P−→

N→∞

∫
B3

f(β)λ(dβ).

We need to restrict somewhat the class of f under consideration. A standard
approximation argument shows that we can assume that f is smooth. We may
represent f as a sum of two functions, the first one vanishing on |β| < 1/4 and the
second one vanishing outside |β| < 1/2. The second function makes no contribution
to (3.1) by Theorem 1.5. So, we may assume that f vanishes on |β| < 1/4.

Denote by ∆ the Laplace operator (interpreted in the distributional sense) and
by δ(β) the unit point mass at β ∈ C. It is well known, see [11, Section 2.4], that

(3.2) ∆ log |ZN | = 2π
∑

β∈C:ZN (β)=0

δ(β).

Recall that pN (β) = 1
n log |ZN (β)| and p(β) have been defined in Theorem 1.12.

An easy computation shows that ∆p = 2 ·1B3 . Using (3.2) and the self-adjointness
of the Laplacian, we conclude that (3.1) is equivalent to∫

C
pN (β)∆f(β)λ(dβ)

P−→
N→∞

∫
C
p(β)∆f(β)λ(dβ).

We will show that this holds even in L1. By Fubini’s theorem, it suffices to show
that

(3.3) lim
N→∞

∫
C
E|pN (β)− p(β)||∆f(β)|λ(dβ) = 0.

We know from Theorem 1.12 that limN→∞ E|pN (β) − p(β)| = 0, for every β ∈ C.
To complete the proof of (3.3), we use the dominated convergence theorem, which
is justified by Remark 2.7.

3.3. Proof of Theorem 1.5. Let Γ be a differentiable contour enclosing the set
K and located inside B1. We have

P[ZN (β) = 0, for some β ∈ K] ≤ P

[
sup
β∈K

∣∣∣∣ZN (β)− EZN (β)

EZN (β)

∣∣∣∣ ≥ 1

]

≤ E sup
β∈K

∣∣∣∣ZN (β)− EZN (β)

EZN (β)

∣∣∣∣
≤ C

∮
Γ

E
∣∣∣∣ZN (β)− EZN (β)

EZN (β)

∣∣∣∣ |dw|,
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where the last step is by Lemma 3.1. Note that |EZN (β)| = N1+ 1
2 (σ2−τ2). To

complete the proof, we need to show that there exist ε > 0 and C > 0 depending
on Γ such that, for every β ∈ Γ, N ∈ N,

(3.4) E |ZN (β)− EZN (β)| < CN1−ε+ 1
2 (σ2−τ2).

Since Γ ⊂ B1, we can choose ε > 0 so small that Γ ⊂ B′1(ε) ∪B′′1 (ε), where

B′1(ε) = {β ∈ C : σ2 + τ2 < 1− 2ε},

B′′1 (ε) = {β ∈ C : (|σ| −
√

2)2 − τ2 > 2ε, 1/2 < σ2 < 2}.
We have

E|ZN (β)− EZN (β)|2 = NE|eβ
√
nX − Eeβ

√
nX |2 ≤ NEe2σ

√
nX = N1+2σ2

.

If β ∈ B′1(ε), then it follows that

E |ZN (β)− EZN (β)| ≤ N 1
2 +σ2

≤ N1−ε+ 1
2 (σ2−τ2).

This implies (3.4). Assume now that β ∈ B′′1 (ε) and σ > 0. For k = 1, . . . , N ,
define random variables

Uk,N = eβ
√
nXk−σ

√
2n
1Xk≤

√
2n, Vk,N = eβ

√
nXk−σ

√
2n
1Xk>

√
2n,

By Part 1 of Lemma 2.1, we have

(3.5) E

∣∣∣∣∣
N∑
k=1

(Uk,N − EUk,N )

∣∣∣∣∣
2

≤ NE|U1,N |2 = Ne−2
√

2σnE[e2σ
√
nX

1X<
√

2n] < 1.

Similarly, By Part 2 of Lemma 2.1,

(3.6) E

∣∣∣∣∣
N∑
k=1

(Vk,N − EVk,N )

∣∣∣∣∣ ≤ 2NE|Vk,N | = 2Ne−σ
√

2nE[eσ
√
nX

1X>
√

2n] < 2.

Combining (3.5) and (3.6), we obtain E |ZN (β)− EZN (β)| ≤ 3eσ
√

2n. Since β ∈
B′′1 (ε) this implies the required estimate (3.4).

3.4. Proof of Theorem 1.3. Recall that G is the Gaussian analytic function
defined in (1.6). Theorem 1.3 will be deduced from the following result.

Theorem 3.5. Fix some β0 = σ0 +iτ0 with σ2
0 < 1/2 and τ0 6= 0. Define a random

process {GN (t) : t ∈ C} by

GN (t) :=
ZN

(
β0 + t√

n

)
−N1+ 1

2 (β0+ t√
n

)2

N
1
2 +(σ0+ t√

n
)2

.

Then, the process GN converges weakly, as N → ∞, to the process e−t
2/2G(t) on

C(C).

Proof. For k = 1, . . . , N , define a random process {Wk,N (t) : t ∈ C} by

Wk,N (t) = N−1/2e(β0
√
n+t)Xk−(σ0

√
n+t)2 .

Then, GN (t) =
∑N
k=1(Wk,N (t) − EWk,N (t)). First, we show that the convergence

stated in Theorem 3.5 holds in the sense of finite-dimensional distributions. Take
t1, . . . , td ∈ C. Write Wk,N = (Wk,N (t1), . . . ,Wk,N (td)). We need to prove that

(3.7)

N∑
k=1

(Wk,N − EWk,N )
d−→

N→∞
(e−t

2
1/2G(t1), . . . , e−t

2
d/2G(td)).
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Let WN be a process having the same law as the Wk,N ’s and define WN =
(WN (t1), . . . ,WN (td)). A straightforward computation shows that for all t, s ∈ C,

NE[WN (t)WN (s)] = e−(t−s)2/2,(3.8)

lim
N→∞

N |E[WN (t)WN (s)]| = 0.(3.9)

Also, we have

(3.10) lim
N→∞

√
N |E[WN (t)]| = e−t

2/2 lim
N→∞

e−τ
2n = 0.

Note that by (1.6),

E[e−t
2/2G(t)e−s2/2G(s)] = e−(t−s)2/2, E[e−t

2/2G(t)e−s
2/2G(s)] = 0.

We see that the covariance matrix of the left-hand side of (3.7) converges to the
covariance matrix of the right-hand side of (3.7) if we view both sides as 2d-
dimensional real random vectors. To complete the proof of (3.7), we need to verify
the Lindeberg condition: for every ε > 0,

(3.11) lim
N→∞

NE[|WN |21|WN |>ε] = 0.

For l = 1, . . . , d, let Al be the random event |WN (tl)| ≥ |WN (tj)| for all j = 1, . . . , d.
On Al, we have |WN |2 ≤ d|WN (tl)|2. It follows that

NE[|WN |21|WN |>ε] ≤ d
d∑
l=1

NE
[
|WN (tl)|21|WN (tl)|> ε√

l

]
→ 0,

where the last step is by the same argument as in (2.12). This completes the proof
of the finite-dimensional convergence stated in (3.7). The tightness follows from
Lemma 3.2 which can be applied since

E|GN (t)| ≤
√

E[|GN (t)|2] ≤
√
NE[|WN (t)|2] = e(Im t)2 .

The last equality follows from (3.8). �

Proof of Theorem 1.3. If β0 ∈ B3, then the expectation term in the definition of
GN can be ignored: we have limN→∞ |GN (t) − UN (t)| = 0 uniformly on compact
sets, where

UN (t) = N
− 1

2−(σ0+ t√
n

)2ZN
(
β0 +

t√
n

)
.

It follows from Theorem 3.5 that UN converges to G weakly on C(C). Applying
Lemma 3.3, we obtain the statement of Theorem 1.3. �

3.5. Proof of Theorems 1.6 and 1.8.

Proof of Theorem 1.6. Fix a compact set K contained in the half-plane σ > 1/2.
Define random C(K)-valued elements Sk(β) = s1(β) + . . .+ sk(β), where

sk(β) =

∞∑
j=1

P−βj 1k≤Pj<k+1 −
∫ k+1

k

t−βdt, β ∈ K.

Note that s1, s2, . . . are independent. By the properties of the Poisson process,

(3.12) E[sk(β)] = 0,

∞∑
k=1

E[|sk(β)|2] =

∫ ∞
1

t−2σdt <∞.
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Thus, as long as σ > 1/2, the sequence Sk(β), k ∈ N, is an L2-bounded martingale.
Hence, Sk(β) converges a.s. to a limiting random variable denoted by S(β). We need
to show that the convergence is uniform a.s. It follows from (3.12) and Lemma 3.2
that the sequence Sk, k ∈ N, is tight on C(K). Hence, Sk converges weakly on C(K)
to the process S. By the Itô–Nisio theorem [12], this implies that Sk converges to
S a.s. as a random element of C(K). This proves the theorem. �

Proof of Theorem 1.8. Let us first describe the idea. Consider the case σ > 1/
√

2.
Arrange the values X1, . . . , XN in an increasing order, obtaining the order statistics
X1:N ≤ . . . ≤ XN :N . It turns out that the main contribution to the sum ZN (β) =∑N
k=1 eβ

√
nXk comes from the upper order statistics XN−k:N , where k = 0, 1, . . ..

Their joint limiting distribution is well-known in the extreme-value theory, see [20,
Corollary 4.19(i)], and will be recalled now. Denote by M the space of locally finite
counting measures on R̄ = R ∪ {+∞}. We endow M with the (Polish) topology of
vague convergence. A point process on R̄ is a random element with values in M.
Let P1, P2, . . . be the arrivals of the unit intensity Poisson process on the positive
half-line. Define the sequence bN as in (1.15).

Proposition 3.6. The point process πN :=
∑N
k=1 δ(

√
n(Xk − bN )) converges as

N →∞ to the point process π∞ =
∑∞
k=1 δ(−(logPk)/

√
2) weakly on M.

Utilizing this result, we will show that it is possible to approximate ZN (β) (after

appropriate normalization) by ζ̃P (β/
√

2) in the half-plane σ > 1/
√

2. Consider

now the case σ < −1/
√

2. This time, the main contribution to the sum ZN (β)
comes from the lower order statistics Xk:N , k = 1, 2, . . .. Their joint limiting
distribution is the same as for the upper order statistics, only the sign should be
reversed. Moreover, it is known that the upper and the lower order statistics become
asymptotically independent as N → ∞. Thus, in the half-plane σ < −1/

√
2 it is

possible to approximate ZN (β) by an independent copy of ζP (−β/
√

2). In the
rest of the proof we make this idea rigorous. For simplicity of notation we restrict
ourselves to the half-plane D = {β ∈ C : σ > 1/

√
2}.

Theorem 3.7. The following convergence holds weakly on C(D):

ξN (β) :=
ZN (β)−NE[eβ

√
nX1X<bN ]

eβ
√
nbN

w−→
N→∞

ζ̃P

(
β√
2

)
.

The proof consists of two lemmas. Take A > 0 and write ξN (β) = ξAN (β) −
eAN (β) + ∆A

N (β), where

ξAN (β) =

N∑
k=1

eβ
√
n(Xk−bN )

1bN− A√
n
<Xk

,

eAN (β) = NE
[
eβ
√
n(Xk−bN )

1bN− A√
n
≤Xk<bN

]
,

∆A
N (β) =

N∑
k=1

(
eβ
√
n(Xk−bN )

1Xk≤bN− A√
n
− E

[
eβ
√
n(Xk−bN )

1Xk≤bN− A√
n

])
.

Lemma 3.8. Let ζ̃P (·; ·) be defined as in (1.7). Then, the following convergence
holds weakly on C(D):

ξAN (β)− eAN (β)
w−→

N→∞
ζ̃P

(
β√
2

; e
√

2A

)
.
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Proof. Recall from Proposition 3.6 that the point process πN converges to the
point process π∞ weakly on M. Consider a functional Ψ : M→ C(D) which maps
a locally finite counting measure ρ =

∑
i∈I δ(yi) ∈ M to the function Ψ(ρ)(β) =∑

i∈I eβyi1yi>−A, where β ∈ D. Here, I is at most countable index set. If ρ charges
the point +∞, define Ψ(ρ), say, as 0. The functional Ψ is continuous on the set
of all ρ ∈ M not charging the points −A and +∞, which is a set of full measure
with respect to the law of π∞. It follows from the continuous mapping theorem [20,
§ 3.5] that ξAN = Ψ(πN ) converges weakly on C(D) to Ψ(π∞). Note that

Ψ(π∞)(β) =

∞∑
k=1

P
−β/
√

2
k 1Pk<e

√
2A .

We prove the convergence of eAN (β). Using the change of variables
√
n(x− bN ) = y,

we obtain

eAN (β) =
N√
2π

∫ bN

bN− A√
n

eβ
√
n(x−bN )e−

x2

2 dx =
N√
2πn

∫ 0

−A
eβye

− 1
2 (bN+ y√

n
)2

dy.

Recalling that
√

2πbNeb
2
N/2 ∼ N and bN ∼

√
2n as N → ∞, we obtain that

limN→∞ eAN (β) =
∫ e
√

2A

1
t−β/

√
2dt, as required. �

Lemma 3.9. For every compact set K ⊂ D there is C > 0 such that, for all
sufficiently large N ,

E

[
sup
β∈K
|∆A

N (β)|

]
≤ Ce(1−

√
2σ)A/2.

Proof. Let Γ be a contour enclosing K and located inside D. First, E[∆A
N (β)] = 0

by definition. Second, uniformly in β ∈ Γ it holds that

E[|∆A
N (β)|2] ≤ NE

[
e2σ
√
n(X−bN )

1X<bN− A
bN

]
= Ne−2σ

√
nbN e2σ2nΦ

(
bN −

A

bN
− 2σ

√
n

)
≤ Ce(1−

√
2σ)A,

where the second step follows from (2.2) and the last step follows from (2.1). By
Lemma 3.1, we have

E

[
sup
β∈K
|∆A

N (β)|

]
≤ C

∮
Γ

E|∆A
N (β)||dβ| ≤ Ce(1−

√
2σ)A/2.

The proof is complete. �

Proof of Theorem 3.7. By Theorem 1.6, we have the weak convergence

ζ̃P

(
β√
2

; e
√

2A

)
d−→

A→∞
ζ̃P

(
β√
2

)
.

Together with Lemmas 3.8 and 3.9, this implies Theorem 3.7 by a standard argu-
ment; see for example [14, Lemma 6.7]. �
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The proof of Theorem 1.8 can be completed as follows. Let σ > 1/
√

2. By
Lemma 2.2, we have

lim
N→∞

Ne−β
√
nbNE[eβ

√
nX1X<bN ] =

{ √
2

β−
√

2
, if |σ|+ |τ | >

√
2,

∞, if |σ|+ |τ | ≤
√

2.

The first equality holds uniformly on compact subsets of B2. By Theorem 3.7, the
process e−β

√
nbNZN (β) converges to ζP (β/

√
2) weakly on the space of continuous

functions on the set B2∩{σ > 1/
√

2}. By Lemma 3.3, this implies Theorem 1.8. �

3.6. Proof of Proposition 1.11. Let τ 6= 0 be fixed. Let S(β) be a random
variable defined as in the proof of Theorem 1.6. Take a, b ∈ R. For σ > 1/2
consider a random variable

Y (σ) = aReS(β) + b ImS(β) = lim
k→∞

 ∞∑
j=1

f(Pj ;σ)11≤Pj<k −
∫ k

1

f(t;σ)dt

 ,

where f(t;σ) =
√
a2 + b2t−σ cos(τ log t− θ) and θ ∈ R is such that cos θ = a√

a2+b2

and sin θ = b√
a2+b2

.

We need to show that
√

2σ − 1Y (σ) converges, as σ ↓ 1/2, to a centered real
Gaussian distribution with variance (a2 + b2)/2. By the properties of the Poisson
process, the log-characteristic function of Y (σ) is given by

logEeizY (σ) =

∫ ∞
1

(
eizf(t;σ) − 1− izf(t;σ) +

z2

2
f2(t;σ)

)
dt− z2

2

∫ ∞
1

f2(t;σ)dt.

We will compute the second term and show that the first term is negligible. By
elementary integration we have∫ ∞

1

f2(t;σ)dt =
a2 + b2

2

∫ ∞
1

1 + cos(2τ log t− 2θ)

t2σ
dt(3.13)

=
a2 + b2

2

(
1

2σ − 1
− Re

e−2θi

(1− 2σ) + 2iτ

)
.

Using the inequalities |eix − 1− ix+ x2

2 | ≤ |x|
3 and |f(t;σ)| < Ct−σ we obtain

(3.14)

∣∣∣∣∫ ∞
1

(
eizf(t;σ) − 1− izf(t;σ) +

z2

2
f2(t;σ)

)
dt

∣∣∣∣ ≤ C

3σ − 1
|z|3.

Bringing (3.13) and (3.14) together and recalling that τ 6= 0 we arrive at

(3.15) lim
σ↓1/2

logEei
√

2σ−1 zY (σ) = −1

4
(a2 + b2)z2.

This proves the result for τ 6= 0. For τ = 0, the limit is (3.15) is −a2z2/2.
Acknowledgments. The authors are grateful to D. Zaporozhets for useful discus-
sions. AK thanks the Institute of Stochastics of Ulm University for kind hospitality.

References

[1] G. Ben Arous, L. Bogachev, and S. Molchanov. Limit theorems for sums of
random exponentials. Probab. Theory Related Fields, 132(4):579–612, 2005.

[2] J.D. Biggins. Uniform convergence of martingales in the branching random
walk. Ann. Probab., 20(1):137–151, 1992.



22

[3] L. Bogachev. Limit laws for norms of IID samples with Weibull tails. J.
Theoret. Probab., 19(4):849–873, 2006.
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