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A CLASS OF ASYMPTOTICALLY SELF-SIMILAR STABLE

PROCESSES WITH STATIONARY INCREMENTS

SAMI UMUT CAN

Abstract. We generalize the BM-local time fractional symmetric α-stable

motion introduced by Cohen and Samorodnitksy by replacing the local time
with a general continuous additive functional (CAF). We show that the result-

ing process is symmetric α-stable and has stationary increments. Depending

on the CAF considered, the process is either self-similar or asymptotically
self-similar, lying in the domain of attraction of the BM-local time fractional

symmetric α-stable motion. We also show that the process arises as a weak

limit of a discrete “random rewards scheme” similar to the one described by
Cohen and Samorodnitsky.

1. Introduction

α-stable self-similar processes with stationary increments (or α-stable sssi pro-
cesses, for short) are attractive theoretical models for various natural phenomena
exhibiting both heavy-tailed marginal distributions and invariant statistical behav-
ior under suitable scaling. Recall that a stochastic process {X(t), t ≥ 0} is called
α-stable if its finite-dimensional distributions are multivariate α-stable, and self-
similar with index H > 0 if

{X(ct), t ≥ 0} d
= {cHX(t), t ≥ 0}

for any c > 0. Stationary increments simply means that

{X(t+ c)−X(t), t ≥ 0} d
= {X(t)−X(0), t ≥ 0}

for any c > 0. There is an extensive literature on α-stable sssi processes; we refer
the reader to Samorodnitsky and Taqqu (1994), Chapter 7 and Embrechts and
Maejima (2002), Chapter 3, for introductory expositions and references.

In the Gaussian case (α=2), fractional Brownian motions and their constant
multiples are known to be the only non-trivial sssi processes; see, for example, §7.2
of Samorodnitsky and Taqqu (1994). More precisely, for any given index of self-
similarity H ∈ (0, 1), there is a unique Gaussian H-sssi process (up to multiplicative
constants), namely the fractional Brownian motion with index H. (There are no
non-degenerate Gaussian H-sssi processes with H ≥ 1.)

In contrast, when 0 < α < 2, there are typically many different α-stable H-sssi
processes for any given feasible pair of indices (α,H). The feasible range of the pair
(α,H) is given by {

0 < H ≤ 1/α if 0 < α ≤ 1,

0 < H < 1 if 1 < α < 2.

Classification and understanding of α-stable sssi processes for 0 < α < 2 is an on-
going and fruitful project. Well-known examples of such processes include α-stable
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Lévy motions, linear fractional stable motions introduced in Taqqu and Wolpert
(1983) and Maejima (1983), and real harmonizable fractional stable motions intro-
duced in Cambanis and Maejima (1989). The latter two classes of processes are
defined for 0 < α ≤ 2, 0 < H < 1, and both reduce to the fractional Brownian mo-
tion in the case α = 2. The α-stable Lévy motion is defined for 0 < α ≤ 2, H = 1/α,
and reduces to the Brownian motion when α = 2.

In Cohen and Samorodnitsky (2006), the authors constructed a new class of
symmetric α-stable (SαS) sssi processes. (The focus on symmetric α-stable dis-
tributions was for simplicity only, and we will adopt the same convention in this
paper.) The construction is based on the local time process of a fractional Brow-
nian motion with index of self-similarity H, so the authors called their model the
FBM-H-local time fractional stable motion. They also showed that, in the case
H = 1/2, this model arises naturally as a limiting process in a situation where
many “users” perform independent symmetric random walks on distinct copies of
the integer line and collect i.i.d. heavy-tailed random “rewards” associated with the
integers that they visit. As the number of users increases, the properly normalized
and time-scaled total reward process of all users converges weakly to the FBM-
1/2-local time fractional stable motion, which can also be called the BM-local time
fractional stable motion. The Brownian local time appearing in the limiting model
can be regarded heuristically as a replacement for the local times of the random
walks.

This paper extends the construction of Cohen and Samorodnitsky (2006) in the
case H = 1/2, by considering a general continuous additive functional of Brownian
motion instead of the Brownian local time. Following the authors’ terminology,
this model can be called the BM-CAF fractional stable motion, where CAF stands
for continuous additive functional. CAFs of Brownian motion can be thought of
as generalizations of the local time concept, since they include the local time as a
special case. In fact, every Brownian CAF is a unique mixture of local times at
different levels along R, in a sense that will be made precise. This suggests that
the BM-CAF fractional stable motion will be similar in structure to the BM-local
time fractional motion, and in particular, it will be a natural approximating model
for a generalized version of the random rewards scheme described in Cohen and
Samorodnitsky (2006). Our aim is to show that this is indeed the case. We will
formally introduce the BM-CAF fractional stable motion, explore its similarities
and differences with the BM-local time stable motion, and prove that it is a limiting
model in a situation where many independent users collect moving averages of i.i.d.
heavy-tailed random rewards associated with the nodes around them.

In Section 2, we briefly discuss the construction of the FBM-H-local time frac-
tional SαS motion and describe the random rewards scheme converging to it. Sec-
tion 3 gives some preliminary information on Brownian continuous additive func-
tionals, including a fundamental representation theorem which states that each
Brownian continuous additive functional can be associated with a unique Radon
measure on R. The BM-CAF fractional SαS motion is formally defined in Section
4 for a large class of associated Radon measures; the conditions on the associated
measures are stronger in the case α ∈ (0, 1] than in the case α ∈ (1, 2]. In Section 5
we show that the BM-CAF fractional SαS motion has stationary increments, and
in Section 6, we turn to the question of self-similarity. It turns out that, unlike
the BM-local time fractional SαS motion, the BM-CAF fractional SαS motion is
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not always self-similar: under certain assumptions on the associated measure, the
latter process will lie in the domain of attraction of the first one, in a sense that will
be made precise. In Section 7 we study the smoothness of sample paths through
their Hölder continuity properties. In Section 8 we state and prove a random re-
wards convergence result similar to the one presented in Cohen and Samorodnitsky
(2006), once again under certain limitations on the associated measure. Finally, in
Section 9 we study a special class of BM-CAF fractional SαS motions for which the
associated measure takes on a particular form, and we use it to demonstrate that
some of the sufficient conditions introduced in earlier results are merely sufficient
and not necessary.

2. The FBM-H-Local Time Fractional Stable Motion

Let {BH(t), t ≥ 0} be a fractional Brownian motion with index of self-similarity
H, defined on a probability space (Ω′,F′,P′), and let {l(x, t), x ∈ R, t ≥ 0} be its
jointly continuous local time process

l(x, t) = lim
ε↓0

1

2ε

∫ t

0

1 {BH(s) ∈ (x− ε, x+ ε)} ds,

which is known to exist as an almost sure limit (see, for example, Berman (1970)).
Also let M be an independently scattered SαS random measure on the space Ω′×R
with control measure P′×Leb, where Leb denotes the Lebesgue measure on R. M
is assumed to be defined on another probability space (Ω,F ,P). (See Chapter 3 of
Samorodnitsky and Taqqu (1994) for information on integrals with respect to stable
random measures.) The FBM-H-local time fractional stable motion {Γ(t), t ≥ 0}
is then defined as

(1) Γ(t) =

∫
Ω′×R

l(x, t)M(dω′, dx), t ≥ 0.

This is a SαS H ′-sssi process with index of self-similarity H ′ = 1−H +H/α. For
H = 1/2, it arises as a weak limit of the following discrete scheme.

Let {Wk, k ∈ Z} be a sequence of i.i.d. symmetric random variables satisfying
P (W0 > x) ∼ cx−α as x→∞, for some c > 0 and 0 < α < 2. Also let {V1, V2, . . .}
be a sequence of i.i.d. integer valued random variables having zero mean and unit
variance, independent of {Wk, k ∈ Z}. Consider the random walk Sn = V1 + . . .+
Vn, n ≥ 1. If one views Sn as describing the “position” of a “user” along the
integer line at time n, and Wk as a “reward” associated with position k that will
be collected whenever k is visited, then the total reward earned by time n will be

(2) Rn =

n∑
j=1

WSj , n ≥ 1.

Assuming that there are many such users performing independent random walks
and earning independent rewards, the properly normalized and time-scaled total
reward process of all users will converge weakly to the BM-local time fractional
stable motion as the number of users increases. A heuristic explanation for this
result can be obtained by rewriting (2) as

(3) Rn =

∞∑
k=∞

ϕ(k, n)Wk, n ≥ 1,
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where ϕ(k, n) =
∑n
j=1 1{Sk = j} is the local time of the random walk {Sn, n ≥ 1}.

Comparing (1) and (3), one observes that the limiting procedure turns the sum into
an integral, the local time of the random walk into that of a Brownian motion, and
the heavy-tailed random rewards into a SαS random measure.

The construction of the FBM-H-local time fractional stable motion was likely
motivated by a very similar process introduced in Kesten and Spitzer (1979), hence-
forth called the Kesten-Spitzer process. It is defined as

(4) ∆(t) =

∫
R
l(x, t)M(dx), t ≥ 0,

where {l(x, t), x ∈ R, t ≥ 0} is the local time of a Brownian motion as before, and
M is a SαS random measure defined on R with Lebesgue control measure, assumed
to be independent of the Brownian motion. This is a sssi process that can be seen
as a mixture of stable processes; it is not a stable process. The random rewards
scheme of Cohen and Samorodnitsky (2006) yields the Kesten-Spitzer process in
the limit if one considers the total reward of a single user rather than that of many
users. (Kesten and Spitzer called the random rewards scheme with a single user a
“random walk in a random environment.”) Once again, heuristic support for this
convergence is provided by the similarity of (3) and (4).

Cohen and Dombry (2009) generalized the convergence result of Cohen and
Samorodnitsky (2006) to H 6= 1/2, by considering random walks with depen-
dent steps. More precisely, they assumed that each user performs a random walk
Sn = [V1 + ... + Vn], n ≥ 1, where [·] denotes the usual “floor” function and the
sequence of steps {V1, V2, . . .} forms a stationary Gaussian sequence satisfying

n∑
i=1

n∑
j=1

E(ViVj) ∼ n2H as n→∞

for some 0 < H < 1. The properly normalized and time-scaled cumulative reward
process of all users then converges weakly to the FBM-H-local time fractional stable
motion as the number of users increases.

Dombry and Guillotin-Plantard (2009) replaced the fractional Brownian local
time l(x, t) in (1) by the local time of a β-stable Lévy motion with β ∈ (1, 2], while
still assuming M to be a SαS random measure, 0 < α < 2, independent of the Lévy
motion. They showed that the resulting process is again α-stable sssi, and that the
random rewards scheme of Cohen and Samorodnitsky (2006) yields their process in
the limit if one allows the i.i.d. steps {V1, V2, . . .} to be in the domain of attraction
of a β-stable law, rather than having unit variance. Following the terminology of
Cohen and Samorodnitsky, they named their process the “β-stable Lévy motion
local time fractional α-stable motion.”

Our aim is to generalize the construction (1) in the case H = 1/2 by replacing the
integrand local time l(x, t) by a general continuous additive functional of Brownian
motion, study the resulting process, and in particular construct a modified version
of the random rewards scheme of Cohen and Samorodnitsky (2006) that yields the
generalized process in the scaling limit. We start by reviewing some preliminaries
on Brownian continuous additive functionals.



A CLASS OF ASYMPTOTICALLY SELF-SIMILAR STABLE PROCESSES WITH STATIONARY INCREMENTS5

3. Preliminaries on Brownian Continuous Additive Functionals

Let B = {B(t), t ≥ 0} be a Brownian motion defined on a probability space
(Ω,F,P). A continuous additive functional of B is a real-valued process A =
{A(t), t ≥ 0} such that

(i) A is adapted to the natural filtration of B,
(ii) A is a.s. continuous, non-decreasing and vanishing at zero,

(iii) for each pair (s, t), A(s+ t) = A(t) +A(s) ◦ θt a.s.,
where θt : Ω→ Ω is the right-shift operator satisfying B(s, θt(ω)) = B(t+ s, ω) for
each ω ∈ Ω.

Clearly, the local time {l(x, t), t ≥ 0} at any point x ∈ R is a continuous additive
functional, and so is the occupation time of any Borel set Γ,

A(t) =

∫ t

0

1Γ(B(s))ds.

For any continuous additive functional A of Brownian motion, there exists a unique
Radon measure νA on R (called the measure associated with A) such that

(5) {A(t), t ≥ 0} d
=
{∫

R
l(y, t)νA(dy), t ≥ 0

}
.

Conversely, any Radon measure νA on R defines a continuous additive functional
A through (5). In view of this result, we see that the local time at x ∈ R is the
continuous additive functional with associated measure δx, the Dirac point measure
of mass 1 concentrated at x. Similarly, the associated measure of the occupation
time of a Borel set Γ is the restriction of the Lebesgue measure on Γ. These results
and more on Brownian continuous additive functionals can be found in Chapter X
of Revuz and Yor (1999).

In order to replace the local time l in (1) with a continuous additive functional
A, we need to introduce dependence on a space variable x for A. We do that in the
“obvious” way, by defining

(6) A(x, t) =

∫
R
l(x+ y, t)νA(dy), x ∈ R, t ≥ 0,

i.e. we define A(x, t) to be the value of A(t) for the vertically shifted Brownian
motion {B(t)− x, t ≥ 0}.

4. The BM-CAF Fractional Stable Motion

Let (Ω′,F′,P′) be a probability space supporting a Brownian motion {B(t), t ≥
0} with local time process {l(x, t), x ∈ R, t ≥ 0}, and let {A(x, t), t ≥ 0} be an
arbitrary continuous additive functional (CAF) of B with associated measure νA.
Let M be a SαS random measure on Ω′×R with control measure P′×Leb. Suppose
M itself lives on some other probability space (Ω,F,P). We define the BM-CAF
fractional stable motion by

Y (t) =

∫
Ω′×R

A(x, t)M(dω′, dx)

=

∫
Ω′×R

∫
R
l(x+ y, t)νA(dy)M(dω′, dx), t ≥ 0.

(7)

The first issue that needs to be addressed is that of well-definedness. The following
two results identify sufficient conditions on the measure νA under which the process
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(7) is a well-defined SαS process. The conditions are more restrictive in the case
0 < α ≤ 1 than in the case 1 < α ≤ 2.

Theorem 4.1. Suppose 0 < α ≤ 1 and νA satisfies

(8)

∞∑
i=0

β(1−α)iνA
(
[βi, βi+1)

)α
+

∞∑
i=0

β(1−α)iνA
(
[−βi+1,−βi)

)α
<∞

for some constant β > 1. Then, {Y (t), t ≥ 0} in (7) is a well-defined SαS process.

Remark 4.2. The value of β in (8) does not matter, in the sense that (8) holds
for all β > 1 if it holds for one. Indeed, given γ = βc for some c > 0,

∞∑
i=0

γ(1−α)iνA
(
[γi, γi+1)

)α
=

∞∑
i=0

βc(1−α)iνA
(
[βci, βci+c)

)α
≤
∞∑
i=0

β(1−α)([ci]+1)νA
(
[β[ci], β[ci]+[c]+2)

)α
≤ const

∞∑
i=0

β(1−α)([ci]+1)

[c]+1∑
j=0

νA
(
[β[ci]+j , β[ci]+j+1)

)α
≤ const

[c]+1∑
j=0

∞∑
i=0

β(1−α)([ci]+j)νA
(
[β[ci]+j , β[ci]+j+1)

)α
≤ const

∞∑
i=0

β(1−α)iνA
(
[βi, βi+1)

)α
.

Proof of Theorem 4.1. We need to check that, for any fixed t ≥ 0,

(9) E′
(∫

R

(∫
R
l(x+ y, t) νA(dy)

)α
dx

)
<∞ .

It will suffice to prove

(10) E′
(
l∗(t)

α

∫
R

(∫
R
1{|x+ y| ≤M(t)} νA(dy)

)α
dx

)
<∞ ,

with

l∗(t) = sup
x∈R

l(x, t),(11)

M(t) = sup
0≤s≤t

|B(s)|.(12)

It is known that for any fixed t ≥ 0, l∗(t) has finite moments of all orders; see, for
example, Theorem 1.7 of Borodin (1986). It is also known that M(t) has Gaussian-
like probability tails, or more precisely,

P′ (M(t) ≥ x) ≤ const
∫ ∞
x/
√

2t

e−u
2

du ≤ const e−x
2/2t

for x > 0; see, for example, §10.2 of Ross (2006). In particular, for any fixed
t ≥ 0, M(t) has finite moments of all orders as well. In the following, we will make
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frequent use of these facts without explicitly mentioning them each time. Let us
denote I(x, y) = 1{|x+ y| ≤M(t)} for notational convenience. We first prove

(13) E′
(
l∗(t)

α

∫
R

(∫ ∞
1

I(x, y) νA(dy)

)α
dx

)
<∞ .

The left hand side of (13) can be decomposed as

I1 + I2 := E′
(
l∗(t)

α

∫ ∞
0

(∫ ∞
1

I(x, y)νA(dy)

)α
dx

)
+ E′

(
l∗(t)

α

∫ ∞
0

(∫ ∞
1

I(−x, y)νA(dy)

)α
dx

)
.

Defining Bi = [βi, βi+1), we have

I1 = E′
(
l∗(t)

α

∫ ∞
0

( ∞∑
i=0

∫
Bi

I(x, y) νA(dy)

)α
dx

)

≤ E′
(
l∗(t)

α

( ∞∑
i=0

νA(Bi)

)α ∫ ∞
0

1{x ≤M(t)} dx
)

(14)

≤
∞∑
i=0

νA(Bi)
α E′ (l∗(t)

αM(t)) <∞ ,

where the finiteness follows from Cauchy-Schwarz inequality and (8). The term I2
can be further decomposed as

I2 = E′
(
l∗(t)

α

∫ β2

0

(∫ ∞
1

I(−x, y) νA(dy)

)α
dx

)
+ E′

(
l∗(t)

α

∫ ∞
β2

(∫ ∞
1

I(−x, y) νA(dy)

)α
dx

)
:= I21 + I22 .

Note that

I21 = E′
(
l∗(t)

α

∫ β2

0

( ∞∑
i=0

∫
Bi

I(−x, y) νA(dy)

)α
dx

)

≤ E′
(
l∗(t)

α

∫ β2

0

( ∞∑
i=0

νA(Bi)

)α
dx

)
(15)

= β2

( ∞∑
i=0

νA(Bi)
α

)
E′(l∗(t)

α) <∞

by (8), so it remains to prove that I22 <∞. We write

I22 =

∞∑
j=2

E′
(
l∗(t)

α

∫
Bj

( ∞∑
i=0

∫
Bi

I(−x, y) νA(dy)

)α
dx

)
:=

∞∑
j=2

rj .

For j ≥ 2,

rj ≤ E′
(
l∗(t)

α

∫
Bj

( j−2∑
i=0

∫
Bi

I(−x, y) νA(dy)

)α
dx

)
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+ E′
(
l∗(t)

α

∫
Bj

( j+1∑
i=j−1

∫
Bi

I(−x, y) νA(dy)

)α
dx

)

+ E′
(
l∗(t)

α

∫
Bj

( ∞∑
i=j+2

∫
Bi

I(−x, y) νA(dy)

)α
dx

)
:= r

(1)
j + r

(2)
j + r

(3)
j .

We will show that

(16)

∞∑
j=2

r
(k)
j <∞ for k = 1, 2, 3.

Let Zj(t) = 1{βj − βj−1 ≤M(t)} and note that

r
(1)
j = E′

(
Zj(t) l∗(t)

α

∫
Bj

( j−2∑
i=0

∫
Bi

I(−x, y) νA(dy)

)α
dx

)

≤
∫
Bj

j−2∑
i=0

νA(Bi)
α dx E′ (Zj(t) l∗(t)

α)

≤ (βj+1 − βj)E′(Zj(t) l∗(t)α)

∞∑
i=0

νA(Bi)
α

≤ c1(βj+1 − βj)E′(l∗(t)2α)1/2P′
(
βj − βj−1 ≤M(t)

)1/2
= c1β

j P′
(
c2β

j−1 ≤M(t)
)1/2

≤ c1βj exp
(
− c2β2(j−1)

)
,

where c1 and c2 are positive constants that may change from instance to instance
and may depend on t. Since the last expression is summable over j, (16) is true for
k = 1. Next, note that

∞∑
j=2

r
(2)
j ≤

∞∑
j=2

E′
(
l∗(t)

α

∫
Bj

j+1∑
i=j−1

(∫
Bi

I(−x, y) νA(dy)

)α
dx

)

≤
∞∑
j=2

(βj+1 − βj)1−αE′
(
l∗(t)

α

j+1∑
i=j−1

(∫
Bj

∫
Bi

I(−x, y) νA(dy) dx

)α)

≤
∞∑
j=2

(βj+1 − βj)1−αE′
(
l∗(t)

α

j+1∑
i=j−1

(∫
Bi

∫
R
I(−x, y) dx νA(dy)

)α)

≤
∞∑
j=2

(βj+1 − βj)1−αE′(2l∗(t)
αM(t)α)

j+1∑
i=j−1

νA(Bi)
α

≤ const E′ (2l∗(t)αM(t)α)

∞∑
j=0

βj(1−α) νA(Bj)
α,
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where the expectation is finite by Cauchy-Schwarz inequality and the sum over j
is finite by (8). Thus (16) is established for k = 2 as well. Finally,

r
(3)
j = E′

(
Zj+2(t) l∗(t)

α

∫
Bj

( ∞∑
i=j+2

∫
Bi

I(−x, y) νA(dy)

)α
dx

)

≤
∫
Bj

∞∑
i=j+2

νA(Bi)
α dx E′ (Zj+2(t) l∗(t)

α)

≤ (βj+1 − βj)E′(Zj+2(t) l∗(t)
α)

∞∑
i=0

νA(Bi)
α

≤ c1(βj+1 − βj)E′(l∗(t)2α)1/2P′
(
βj+2 − βj+1 ≤M(t)

)1/2
= c1β

j P′
(
c2β

j ≤M(t)
)1/2

≤ c1βj exp
(
− c2β2j

)
,

where c1 and c2 are positive constants that may change from instance to instance
and may depend on t. Since the last expression is summable over j, (16) is true for
k = 3. It now follows that I22 < ∞, and combined with (15), this yields I2 < ∞.
Thus we have shown (13).

Now, it can be shown by analogous arguments that

(17) E′
(
l∗(t)

α

∫
R

(∫ −1

−∞
I(x, y) νA(dy)

)α
dx

)
<∞ ,

and also note that

E′
(
l∗(t)

α

∫
R

(∫ 1

−1

I(x, y) νA(dy)

)α
dx

)
≤ E′

(
l∗(t)

α

∫ M(t)+1

−M(t)−1

νA ([−1, 1))
α
dx

)
= νA ([−1, 1))

α
E′ (2l∗(t)

α(M(t) + 1)) <∞.

(18)

Combining (13), (17) and (18) yields (10), and well-definedness follows. �

Theorem 4.3. Suppose 1 < α ≤ 2 and νA satisfies

(19)

∞∑
i=0

νA
(
[βi, βi+1)

)α
+

∞∑
i=0

νA
(
[−βi+1,−βi)

)α
<∞

for some constant β > 1. Then, (Y (t), t ≥ 0) in (7) is a well-defined SαS process.

Remark 4.4. As in condition (8) of Theorem 4.1, condition (19) holds for all β > 1
if it holds for one. We omit the proof.

Proof of Theorem 4.3. The proof is similar to that of Theorem 4.1. Using the same
notation as in that proof, it will suffice to prove that

(20) E′
(
l∗(t)

α

∫
R

(∫
R
I(x, y) νA(dy)

)α
dx

)
<∞ ,

and the first step is to show that

(21) E′
(
l∗(t)

α

∫
R

(∫ ∞
1

I(x, y) νA(dy)

)α
dx

)
<∞ .
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The left hand side of (21) can be decomposed as

I1 + I2 := E′
(
l∗(t)

α

∫ ∞
0

(∫ ∞
1

I(x, y)νA(dy)

)α
dx

)
+ E′

(
l∗(t)

α

∫ ∞
0

(∫ ∞
1

I(−x, y)νA(dy)

)α
dx

)
.

Defining Bi = [βi, βi+1) and N(t) = max{i ≥ 0 : βi ≤M(t)}, we have

I1 = E′
(
l∗(t)

α

∫ ∞
0

(
N(t)∑
i=0

∫
Bi

I(x, y) νA(dy)

)α
dx

)

≤ E′
(
l∗(t)

α

(N(t)∑
i=0

νA(Bi)

)α ∫ ∞
0

1{x ≤M(t)} dx
)

≤ E′
(
l∗(t)

αN(t)α−1

N(t)∑
i=0

νA(Bi)
α

∫ ∞
0

1{x ≤M(t)} dx
)

≤
( ∞∑
i=0

νA(Bi)
α

)
E′
(
l∗(t)

αN(t)α−1M(t)
)
<∞ ,

(22)

since the sum over i ≥ 0 is finite by (19) and the random variables l∗(t),M(t) and
N(t) have all moments finite. (Finite moments for N(t) are implied by the fact
that N(t) ≤ logM(t)/ log β.)

The term I2 can be further decomposed as

I2 = E′
(
l∗(t)

α

∫ β2

0

(∫ ∞
1

I(−x, y) νA(dy)

)α
dx

)
+ E′

(
l∗(t)

α

∫ ∞
β2

(∫ ∞
1

I(−x, y) νA(dy)

)α
dx

)
:= I21 + I22 .

Defining Ñ(t) = max{i ≥ 0 : βi ≤M(t) + β2}, we see that

I21 ≤ E′
(
l∗(t)

α

∫ β2

0

( Ñ(t)∑
i=0

∫
Bi

I(−x, y) νA(dy)

)α
dx

)

≤ E′
(
l∗(t)

α

( Ñ(t)∑
i=0

νA(Bi)

)α)∫ β2

0

1 dx

≤ β2 E′
(
l∗(t)

α Ñ(t)α−1

Ñ(t)∑
i=0

νA(Bi)
α

)

≤ β2

( ∞∑
i=0

νA(Bi)
α

)
E′
(
l∗(t)

α Ñ(t)α−1
)
<∞

(23)

as before, so it remains to prove that I22 <∞. We write

I22 =

∞∑
j=2

E′
(
l∗(t)

α

∫
Bj

( ∞∑
i=0

∫
Bi

I(−x, y) νA(dy)

)α
dx

)
:=

∞∑
j=2

rj .



A CLASS OF ASYMPTOTICALLY SELF-SIMILAR STABLE PROCESSES WITH STATIONARY INCREMENTS11

For j ≥ 2,

rj ≤ 3α−1

[
E′
(
l∗(t)

α

∫
Bj

( j−2∑
i=0

∫
Bi

I(−x, y) νA(dy)

)α
dx

)

+ E′
(
l∗(t)

α

∫
Bj

( j+1∑
i=j−1

∫
Bi

I(−x, y) νA(dy)

)α
dx

)

+ E′
(
l∗(t)

α

∫
Bj

( ∞∑
i=j+2

∫
Bi

I(−x, y) νA(dy)

)α
dx

)]
:= 3α−1

(
r

(1)
j + r

(2)
j + r

(3)
j

)
.

We will show that

(24)

∞∑
j=2

r
(k)
j <∞ for k = 1, 2, 3.

Let Zj(t) = 1{βj − βj−1 ≤M(t)} and note that

r
(1)
j = E′

(
Zj(t) l∗(t)

α

∫
Bj

( j−2∑
i=0

∫
Bi

I(−x, y) νA(dy)

)α
dx

)

≤ (j − 1)α−1E′
(
Zj(t) l∗(t)

α

∫
Bj

j−2∑
i=0

νA(Bi)
α−1

∫
Bi

I(−x, y)ανA(dy) dx

)

≤ (j − 1)α−1E′ (Zj(t) l∗(t)
α)

j−2∑
i=0

νA(Bi)
α

∫
Bj

1 dx

≤ (j − 1)α−1
(
βj+1 − βj

)
E′(Zj(t) l∗(t)

α)

∞∑
i=0

νA(Bi)
α

≤ c1(j − 1)α−1
(
βj+1 − βj

)
E′
(
l∗(t)

2α
)1/2

P′
(
βj − βj−1 ≤M(t)

)1/2
= c1(j − 1)α−1βj P′

(
c2β

j−1 ≤M(t)
)1/2

≤ c1(j − 1)α−1βj exp
(
− c2β2(j−1)

)
,

where c1 and c2 are positive constants that may change from instance to instance
and may depend on t. Since the last expression is summable over j, (24) is true for
k = 1. Next, note that

∞∑
j=2

r
(2)
j ≤ 3α−1

∞∑
j=2

E′
(
l∗(t)

α

∫
Bj

j+1∑
i=j−1

(∫
Bi

I(−x, y) νA(dy)

)α
dx

)

≤ 3α−1
∞∑
j=2

E′
(
l∗(t)

α

∫
Bj

j+1∑
i=j−1

(
νA(Bi)

α−1

∫
Bi

I(−x, y) νA(dy)

)
dx

)

≤ 3α−1
∞∑
j=2

E′
(
l∗(t)

α

j+1∑
i=j−1

(
νA(Bi)

α−1

∫
Bi

∫
R
I(−x, y) dx νA(dy)

))
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= 3α−1
∞∑
j=2

2E′(l∗(t)
αM(t))

j+1∑
i=j−1

νA(Bi)
α

≤ const E′(l∗(t)αM(t))

∞∑
j=0

νA(Bj)
α,

where the last expression is finite by Cauchy-Schwarz inequality and by the as-
sumption (19), so that (24) is true for k = 2 as well. It remains to prove (24) for
k = 3. Letting

K(t) = min
{
i ≥ 0 : βi+1 − βi > M(t)

}
,

we see that

r
(3)
j = E′

(
Zj+2(t) l∗(t)

α

∫
Bj

( ∞∑
i=j+2

∫
Bi

I(−x, y) νA(dy)

)α
dx

)

≤ E′
(
Zj+2(t) l∗(t)

αK(t)α−1

∫
Bj

∞∑
i=j+2

(∫
Bi

I(−x, y) νA(dy)

)α
dx

)

≤ E′
(
Zj+2(t) l∗(t)

αK(t)α−1

∫
Bj

∞∑
i=j+2

(
νA(Bi)

α−1

∫
Bi

I(−x, y) νA(dy)

)
dx

)

≤
(
βj+1 − βj

)
E′
(
Zj+2(t) l∗(t)

αK(t)α−1
) ∞∑
i=j+2

νA(Bi)
α

≤ const βj E′
(
l∗(t)

2αK(t)2(α−1)
)1/2

P′
(
βj+2 − βj+1 ≤M(t)

)1/2
= const βj P′

(
βj+2 − βj+1 ≤M(t)

)1/2
,

where we use the fact that l∗(t) and K(t) have all moments finite. The last ex-
pression is summable over j as before, so we conclude that (24) holds for k = 3. It
follows that I22 <∞, and combined with (23), this yields I2 <∞. Thus we obtain
(21).

Now, it can be shown by analogous arguments that

(25) E′
(
l∗(t)

α

∫
R

(∫ −1

−∞
I(x, y) νA(dy)

)α
dx

)
<∞ .

Moreover,

E′
(
l∗(t)

α

∫
R

(∫ 1

−1

I(x, y) νA(dy)

)α
dx

)
≤ E′

(
l∗(t)

α

∫ M(t)+1

−M(t)−1

νA ([−1, 1))
α
dx

)
= νA ([−1, 1))

α
E′ (2l∗(t)

α(M(t) + 1)) <∞.

(26)

Combining (21), (25) and (26) yields (20), and well-definedness follows. �

5. Stationary Increments

We will need the following lemma, which is proved for d = 1 in the Appendix of
Samorodnitsky (2010). The proof for d > 1 is analogous.
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Lemma 5.1. Let (B(t), t ≥ 0) be a Brownian motion defined on (Ω,F, P ), with
local time process (l(x, t), x ∈ R, t ≥ 0). Then for any y1, . . . , yd ∈ R, the law of

((l(x+ yi, t+ s)− l(x+ yi, s), i = 1, . . . , d), x ∈ R, t ≥ 0)

under Leb× P does not depend on s ≥ 0.

The following is the main result of this section.

Theorem 5.2. Let (Y (t), t ≥ 0) be a BM-CAF fractional stable motion as defined
in (7), with α and νA satisfying the hypotheses of Theorem 4.1 or Theorem 4.3.
Then, (Y (t), t ≥ 0) has stationary increments.

Proof. Let ν1, ν2, . . . be a sequence of discrete measures defined as follows:

νn =

n2∑
i=−n2

νA

([
i

n
,
i+ 1

n

))
δ i
n
,

with δx denoting the Dirac point measure of mass 1 concentrated at x. Also let
θ1, . . . , θk ∈ R, 0 ≤ t1 < . . . < tk and s ≥ 0. We have

E exp

(
i

k∑
j=1

θj
(
Y (tj + s)− Y (s)

))

= exp

(
−
∫
R
E′
∣∣∣∣ k∑
j=1

θj

∫
R

(
l(x+ y, tj + s)− l(x+ y, s)

)
νA(dy)

∣∣∣∣α dx)(27)

= exp

(
−
∫
R
E′ lim

n→∞

∣∣∣∣ k∑
j=1

θj

∫
R

(
l(x+ y, tj + s)− l(x+ y, s)

)
νn(dy)

∣∣∣∣α dx).
Now note that for each n ≥ 1,∣∣∣∣ k∑

j=1

θj

∫
R

(
l(x+ y, tj + s)− l(x+ y, s)

)
νn(dy)

∣∣∣∣α
≤ const

(∫
R

(
l(x+ y, tk + s)− l(x+ y, s)

)
νn(dy)

)α
≤ const l∗(tk + s)α

(∫
R
1{|x+ y| ≤M(tk + s)} νn(dy)

)α
≤ const l∗(tk + s)α

(∫
R
1{|x+ y| ≤M(tk + s) + 1} νA(dy)

)α
,

where M is as defined in (12). The last expression is integrable with respect to
Leb×P′; the proof is analogous to that of (10) or (20), depending on the value of α.
Therefore we can apply the dominated convergence theorem to the last expression
in (27) and conclude that it is the same as

lim
n→∞

exp

(
−
∫
R
E′
∣∣∣∣ k∑
j=1

θj

∫
R

(
l(x+ y, tj + s)− l(x+ y, s)

)
νn(dy)

∣∣∣∣α dx),
which is in turn equal to

(28) lim
n→∞

exp

(
−
∫
R
E′
∣∣∣∣ k∑
j=1

θj

∫
R
l(x+ y, tj) νn(dy)

∣∣∣∣α dx),
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by Lemma 5.1. Another application of the dominated convergence theorem now
allows us to move the limit in (28) back under the expectation and conclude that

E exp

(
i

k∑
j=1

θj
(
Y (tj + s)− Y (s)

))

= exp

(
−
∫
R
E′
∣∣∣∣ k∑
j=1

θj

∫
R
l(x+ y, tj) νA(dy)

∣∣∣∣α dx)

= E exp

(
i

k∑
j=1

θjY (tj)

)
,

which proves the theorem. �

6. Asymptotic Self-Similarity

A natural question to ask is whether the self-similarity of the BM-local time
fractional stable motion carries over to the BM-CAF fractional stable motion. The
following result identifies a class of BM-CAF fractional stable motions that are in
the domain of attraction of the BM-local time fractional stable motion, in the sense
that they converge to it in finite dimensional distributions under proper scaling of
time and space. Thus the processes in this class are generally not self-similar, but
they can be considered asymptotically self-similar.

Theorem 6.1. Suppose 0 < α ≤ 2 and νA satisfies

(29)

∞∑
i=0

βiνA
(
[βi, βi+1)

)α
+

∞∑
i=0

βiνA
(
[−βi+1,−βi)

)α
<∞

for some constant β > 1. Then, for H = 1
2 + 1

2α ,

(
1

cH
Y (ct), t ≥ 0

)
f.d.−→ (|νA|Γ(t), t ≥ 0) as c→∞ ,

where
f.d.→ denotes convergence in finite-dimensional distributions, |νA| = νA(R)

and (Γ(t), t ≥ 0) is the BM-local time fractional SαS motion defined in (1).

Proof. We will take advantage of the following scaling property of the Brownian
local time, which follows immediately from the self-similarity of Brownian motion.
For any c > 0,

(30)
(
l(
√
cx, ct), x ∈ R, t ≥ 0

) d
=
(√
c l(x, t), x ∈ R, t ≥ 0

)
.
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Now, let 0 ≤ t1 < t2 < . . . < tm and θ1, . . . , θm ∈ R. By (30), we have for any c > 0

E exp

(
i

m∑
j=1

θj
1

cH
Y (ctj)

)

= exp

(
−
∫
R
E′
∣∣∣∣ m∑
j=1

θj
cH

∫
R
l(x+ y, ctj) νA(dy)

∣∣∣∣αdx)

= exp

(
− cα

(
1
2−H

) ∫
R
E′
∣∣∣∣ m∑
j=1

θj

∫
R
l
(x+ y√

c
, tj

)
νA(dy)

∣∣∣∣αdx)

= exp

(
−
∫
R
E′
∣∣∣∣ m∑
j=1

θj

∫
R
l
(
x+

y√
c
, tj

)
νA(dy)

∣∣∣∣αdx).

(31)

We want to take the limit of this expression as c→∞. We claim that

lim
c→∞

∫
R
E′
∣∣∣∣ m∑
j=1

θj

∫
R
l
(
x+

y√
c
, tj

)
νA(dy)

∣∣∣∣αdx
=

∫
R
E′
∣∣∣∣ m∑
j=1

θj

∫
R

lim
c→∞

l
(
x+

y√
c
, tj

)
νA(dy)

∣∣∣∣αdx
=

∫
R
E′
∣∣∣∣ m∑
j=1

θj

∫
R
l(x, tj) νA(dy)

∣∣∣∣αdx
=

∫
R
E′
∣∣∣∣ m∑
j=1

θj |νA| l(x, tj)
∣∣∣∣αdx,

(32)

so that

lim
c→∞

E exp

(
i

m∑
j=1

θj
1

cH
Y (ctj)

)
= exp

(
−
∫
R
E′
∣∣∣∣ m∑
j=1

θj |νA| l(x, tj)
∣∣∣∣αdx)

= E exp

(
i

m∑
j=1

θj |νA|Γ(tj)

)
,

which proves the theorem. The only step that requires justification is the first
equality in (32), and we now prove it using Lebesgue’s Dominated Convergence
Theorem.

For the rest of the proof, we will assume that 0 < α < 1. The arguments for the
case 1 ≤ α ≤ 2 will be identical, up to different constants in some bounds. Note
that

E′
∣∣∣∣ m∑
j=1

θj

∫
R
l
(
x+

y√
c
, tj

)
νA(dy)

∣∣∣∣α

≤ E′
(∫

R

m∑
j=1

|θj |l
(
x+

y√
c
, tj

)
νA(dy)

)α

≤ E′
(∫ −√c
−∞

m∑
j=1

|θj |l
(
x+

y√
c
, tj

)
νA(dy)

)α



16 SAMI UMUT CAN

+ E′
(∫ √c
−
√
c

m∑
j=1

|θj |l
(
x+

y√
c
, tj

)
νA(dy)

)α

+ E′
(∫ ∞
√
c

m∑
j=1

|θj |l
(
x+

y√
c
, tj

)
νA(dy)

)α
:= h1(c, x) + h2(c, x) + h3(c, x).

We will show that each of these components is bounded uniformly over c by an
integrable function of x, which will justify passing the limit through the outer
integral in (32). Let M(t) = sup0≤s≤t |B(s)| and l∗(t) = supx∈R l(x, t) as before.
Then,

h2(c, x)

≤ max{|θ1|, . . . , |θm|}E′
(∫ √c
−
√
c

m∑
j=1

l∗(tj)1
{∣∣∣x+

y√
c

∣∣∣ ≤M(tj)
}
νA(dy)

)α

≤ mmax{|θ1|, . . . , |θm|}E′l∗(tm)α
(∫ √c
−
√
c

1
{∣∣∣x+

y√
c

∣∣∣ ≤M(tm)
}
νA(dy)

)α
≤ constE′

(
l∗(tm)α1 {|x| ≤M(tm) + 1}

)
νA
(
[−
√
c,
√
c)
)α

≤ constE′
(
l∗(tm)α1 {|x| ≤M(tm) + 1}

)
,

and the last expression is integrable over x since both M(tm) and l∗(tm) have all
moments finite.

Next, note that

h3(c, x) = h3(c, x)1{x > −β2}+ h3(c, x)1{x ≤ −β2}.

We have

h3(c, x)1{x > −β2}

= E′
(∫ ∞
√
c

m∑
j=1

|θj |l
(
x+

y√
c
, tj

)
νA(dy)

)α
1{−β2 < x < M(tm)}

≤ constE′
(
l∗(tm)ανA

(
[
√
c,∞)

)α
1{−β2 < x < M(tm)}

)
≤ constE′

(
l∗(tm)α1{−β2 < x < M(tm)}

)
,

where the last expression is integrable as before. Now, let Bk = [βk, βk+1) and√
cBk =

[√
cβk,
√
cβk+1

)
. Then,

h3(c, x)1{x ≤ −β2} =

∞∑
k=2

h3(c, x)1{−x ∈ Bk} :=

∞∑
k=2

gk(c, x),

with

gk(c, x) ≤ E′
( k−2∑
i=0

∫
√
cBi

m∑
j=1

|θj |l
(
x+

y√
c
, tj

)
νA(dy)

)α
1{−x ∈ Bk}

+ E′
( k+1∑
i=k−1

∫
√
cBi

m∑
j=1

|θj |l
(
x+

y√
c
, tj

)
νA(dy)

)α
1{−x ∈ Bk}
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+ E′
( ∞∑
i=k+2

∫
√
cBi

m∑
j=1

|θj |l
(
x+

y√
c
, tj

)
νA(dy)

)α
1{−x ∈ Bk}

:= g
(1)
k (c, x) + g

(2)
k (c, x) + g

(3)
k (c, x).

Letting Zk(t) = 1{βk − βk−1 ≤M(t)}, we see that

∞∑
k=2

g
(1)
k (c, x) ≤ const

∞∑
k=2

E′
(
Zk(tm) l∗(tm)α

)( k−2∑
i=0

∫
√
cBi

νA(dy)

)α
1{−x ∈ Bk}

≤ const
∞∑
i=0

νA(
√
cBi)

α
∞∑
k=2

E′
(
Zk(t) l∗(tm)α

)
1{−x ∈ Bk}(33)

≤ const
∞∑
i=0

νA(Bi)
α
∞∑
k=2

E′
(
Zk(t) l∗(tm)α

)
1{−x ∈ Bk},

where the last inequality follows from the fact that, for βn ≤
√
c < βn+1,

(34) νA(
√
cBi)

α ≤ νA(Bn+i)
α + νA(Bn+i+1)α.

The last expression in (33) is integrable since∫
R

∞∑
k=2

E′
(
Zk(tm) l∗(tm)α

)
1{−x ∈ Bk} dx

=

∞∑
k=2

(
βk+1 − βk

)
E′
(
Zk(tm) l∗(tm)α

)
≤ c1

∞∑
k=2

βkE′
(
l∗(tm)2α

)1/2
P′
(
βk − βk−1 ≤M(tm)

)1/2
= c1

∞∑
k=2

βkP′
(
c2β

k−1 ≤M(tm)
)1/2

= c1

∞∑
k=2

βk exp
(
− c2β2(k−1)

)
<∞,

where c1 and c2 are positive constants that may change from instance to instance.
Also,

∞∑
k=2

g
(2)
k (c, x) ≤ const

∞∑
k=2

E′
(
l∗(tm)α

)( k+1∑
i=k−1

∫
√
cBi

νA(dy)

)α
1{−x ∈ Bk}

≤ const
∞∑
k=2

1{−x ∈ Bk}
∞∑

i=k−1

νA(
√
cBi)

α

≤ const
∞∑
k=2

1{−x ∈ Bk}
∞∑

i=k−1

νA(Bi)
α,

where the last inequality follows from (34) as before. The last expression is inte-
grable because∫

R

∞∑
k=2

1{−x ∈ Bk}
∞∑

i=k−1

νA(Bi)
α dx =

∞∑
k=2

(
βk+1 − βk

) ∞∑
i=k−1

νA(Bi)
α
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= const

∞∑
k=1

βk
∞∑
i=k

νA(Bi)
α

= const

∞∑
i=1

νA(Bi)
α

i∑
k=1

βk

≤ const
∞∑
i=1

βiνA(Bi)
α
∞∑
k=0

β−k

= const

∞∑
i=1

βiνA(Bi)
α <∞,

by (29). Finally, we also have

∞∑
k=2

g
(3)
k (c, x) ≤

∞∑
k=2

E′
(
Zk+2(tm) l∗(tm)α

)( ∞∑
i=k+2

∫
√
cBi

νA(dy)

)α
1{−x ∈ Bk}

≤
∞∑
i=0

νA(
√
cBi)

α
∞∑
k=2

E′
(
Zk+2(tm) l∗(tm)α

)
1{−x ∈ Bk}

≤ 2

∞∑
i=0

νA(Bi)
α
∞∑
k=2

E′
(
Zk+2(tm) l∗(tm)α

)
1{−x ∈ Bk},

and the last expression is integrable as before. We have thus shown that h3(c, x)
is bounded uniformly over c by an integrable function of x. It can be shown by
analogous arguments that h1(c, x) is similarly bounded.

We conclude that we are justified in exchanging the limit with the outer integral
in (32). But once we do that, we can also interchange the limit with the expectation
since for any x ∈ R, c > 0, and P′-a.s.,∣∣∣∣ m∑

j=1

θj

∫
R
l
(
x+

y√
c
, tj

)
νA(dy)

∣∣∣∣α ≤ ∣∣∣∣ m∑
j=1

θj

∣∣∣∣ανA(R)αl∗(tm)α ,

where the right-hand side has finite expectation under P′. Finally, the limit also
goes through the inner integral since for any y ∈ R, x ∈ R, c > 0, j ≤ m and
P′-a.s.,

l
(
x+

y√
c
, tj

)
≤ l∗(tm) ,

and the right-hand side is integrable with respect to νA. �

Theorem 6.1 identifies a class of BM-CAF fractional stable motions that yield
the BM-local time fractional stable motion (up to a multiplicative constant) in
the large time scale limit, or under “shrinking” of the time scale. It turns out
that a subclass of those processes yield the same limiting process, up to different
multiplicative constants, in the small time scale limit as well. Being attracted to
the same limiting process in both large and small time scale limits is an interesting
behavior that, to our knowledge, has not been described in literature before.

Theorem 6.2. Suppose 0 < α ≤ 2 and νA is of the form

νA =

n∑
i=1

µi δai ,
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where µ1, . . . , µn > 0, a1, . . . , an ∈ R and δai is the Dirac point measure of mass 1
concentrated at ai. Then, for H = 1

2 + 1
2α ,

(35)

(
1

cH
Y (ct), t ≥ 0

)
f.d.−→

(( n∑
i=1

µαi

)1/α

Γ(t), t ≥ 0

)
as c ↓ 0 ,

where
f.d.→ denotes convergence in finite-dimensional distributions and (Γ(t), t ≥ 0)

is the BM-local time fractional SαS motion defined in (1).

Proof. Let 0 ≤ t1 < t2 < . . . < tm and θ1, . . . , θm ∈ R. As in (31), we have for any
c > 0

E exp

(
i

m∑
j=1

θj
1

cH
Y (ctj)

)

= exp

(
−
∫
R
E′
∣∣∣∣ m∑
j=1

θj

∫
R
l
(
x+

y√
c
, tj

)
νA(dy)

∣∣∣∣αdx)

= exp

(
−
∫
R
E′
∣∣∣∣ m∑
j=1

θj

n∑
i=1

µil
(
x+

ai√
c
, tj

)∣∣∣∣αdx)

:= exp

(
−
∫
R
E′S(c, x)dx

)
.

(36)

We want to take the limit of this expression as c ↓ 0. We decompose S(c, x) as

S(c, x) =

n∑
i=1

µαi

∣∣∣∣ m∑
j=1

θj l
(
x+

ai√
c
, tj

)∣∣∣∣α1{l(x+
ai′√
c
, tm

)
= 0 for all i′ 6= i

}

+

n−1∑
k=1

∣∣∣∣ n∑
i=1

µi

m∑
j=1

θj l
(
x+

ai√
c
, tj

)∣∣∣∣α1Gk(c,x)(37)

:= S1(c, x) + S2(c, x)

where Gk(c, x) denotes the event that

l
(
x+

ak′√
c
, tm

)
= 0 for all k′ < k,

l
(
x+

ak√
c
, tm

)
l
(
x+

ak′′√
c
, tm

)
6= 0 for some k′′ > k.

We first show that

(38)

∫
R
E′S2(c, x)dx→ 0 as c ↓ 0.
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Observe that

∫
R
E′S2(c, x)dx

≤ const
n−1∑
k=1

∫
R
E′
( n∑
i=1

µi

m∑
j=1

|θj | l
(
x+

ai√
c
, tj

))α
1Gk(c,x) dx

≤ const
n−1∑
k=1

∫
R
E′
(
l∗(tm)α1Gk(c,x)

)
dx

≤ const
n−1∑
k=1

∫
R

(
E′l∗(tm)2α

)1/2
P′(Gk(c, x))1/2dx,

by Cauchy-Schwarz inequality. Since l∗(tm) has finite moments of all orders, we see
that

∫
R
E′S2(c, x)dx

≤ const
n−1∑
k=1

∫
R
P′(Gk(c, x))1/2dx

≤ const
n−1∑
k=1

∫
R
P′
{
l
(
x+

ak√
c
, tm

)
l
(
x+

ak′′√
c
, tm

)
6= 0 for some k′′ > k

}1/2

dx

≤ const
n−1∑
k=1

∫
R
P′
{
l(x, tm)l

(
x+

ak′′ − ak√
c

, tm

)
6= 0 for some k′′ > k

}1/2

dx

:= const
n−1∑
k=1

∫
R
pk(c, x)1/2dx.

(39)

Fix k ∈ {1, . . . , n − 1}. It is clear that for any x ∈ R, pk(c, x) → 0 as c ↓ 0. Also,
for any c > 0, pk(c, x) ≤ P′ {l(x, tm) 6= 0}, with

∫
R
P′ {l(x, tm) 6= 0}1/2 dx ≤

∫
R
P′ {|x| ≤M(tm)}1/2 dx <∞,

since M(tm) has Gaussian-like probability tails. It now follows, by the Dominated
Convergence Theorem, that the last expression in (39) vanishes as c ↓ 0, and (38)
is established.
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Next, note that

lim
c↓0

∫
R
E′S1(c, x)dx

=

n∑
i=1

µαi lim
c↓0

∫
R
E′
∣∣∣∣ m∑
j=1

θj l(x, tj)

∣∣∣∣α1{l(x+
ai′ − ai√

c
, tm

)
= 0 for all i′ 6= i

}
dx

=

n∑
i=1

µαi

∫
R
E′
∣∣∣∣ m∑
j=1

θj l(x, tj)

∣∣∣∣α lim
c↓0

1
{
l
(
x+

ai′ − ai√
c

, tm

)
= 0 for all i′ 6= i

}
dx

=

n∑
i=1

µαi

∫
R
E′
∣∣∣∣ m∑
j=1

θj l(x, tj)

∣∣∣∣αdx,
(40)

where once again the Dominated Convergence Theorem provides justification for
moving the limit:∣∣∣∣ m∑

j=1

θj l(x, tj)

∣∣∣∣α1{l(x+
ai′ − ai√

c
, tm

)
= 0 for all i′ 6= i

}
≤ const l(x, tm)α,

and the right-hand side is integrable over R× Ω′ with respect to Leb×P′.
By the decomposition (37) and the convergences (39), (40), we conclude that

lim
c↓0

∫
R
E′S(c, x)dx =

n∑
i=1

µαi

∫
R
E′
∣∣∣∣ m∑
j=1

θj l(x, tj)

∣∣∣∣αdx
= E exp

(
i

m∑
j=1

θj

( n∑
i=1

µi

)1/α

Γ(tj)

)
,

or, in view of (36),

lim
c↓0

E exp

(
i

m∑
j=1

θj
1

cH
Y (ctj)

)
= E exp

(
i

m∑
j=1

θj

( n∑
i=1

µi

)1/α

Γ(tj)

)
,

which completes the proof. �

7. Hölder Continuity

Theorem 7.1. Let (Y (t), t ≥ 0) be a BM-CAF fractional SαS motion as defined
in (7), with α and νA satisfying the hypotheses of Theorem 4.1 or Theorem 4.3.
Then, (Y (t), t ≥ 0) has a version with continuous sample paths satisfying

(41) sup
0≤s<t≤1/2

|Y (t)− Y (s)|

(t− s)1/2 log
(

1
t−s

) <∞ a.s.

Proof. We use the series representation

(42) Y (t)
d
= Cα

∞∑
j=1

GjΓ
−1/α
j eX

2
j /2α

∫
R
lj(Xj + y, t) dy ,

where Cα is a constant determined by α, (Gj), (Γj), (Xj), (lj) are independent se-
quences, (Gj), (Xj) are i.i.d. standard normal random variables, (Γj) are arrival
times of a unit rate Poisson process, and (lj) are i.i.d. copies of Brownian local
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time. We refer to §3.10 of Samorodnitsky and Taqqu (1994) for information on the
series representation of stable stochastic integrals.

Assume that (Gj) are defined on some probability space (Ω1,F1,P1), while the
other random variables on the right-hand side of (42) are defined on some other
probability space (Ω2,F2,P2), so that (Y (t), t ≥ 0) is defined on the product of
these two spaces.

We let

Kj = sup
x∈R

0≤s<t≤1/2

lj(x, t)− lj(x, s)

(t− s)1/2
(

log
(

1
t−s

))1/2
, j = 1, 2, . . .

As mentioned in Cohen and Samorodnitsky (2006), Kj has finite moments of all
orders. Note that, for fixed ω2 ∈ Ω2, Y (t) is a centered Gaussian process with
incremental variance

E1(Y (t)− Y (s))2

= C2
α

∞∑
j=1

Γ
−2/α
j eX

2
j /α

(∫
R

(lj(Xj + y, t)− lj(Xj + y, s)) νA(dy)

)2

≤ C2
α

∞∑
j=1

Γ
−2/α
j eX

2
j /αK2

j (t− s) log

(
1

t− s

)

×
(∫

R
1 {Mj(t) ≥ |Xj + y|} νA(dy)

)2

:= J(ω2)(t− s) log

(
1

t− s

)
for all 0 ≤ s < t ≤ 1/2, with Mj(t) = sup0≤r≤t |Bj(r)|. We will prove that J is a
P2-a.s. finite random variable on (Ω2,F2, P2). By Theorem 1.4.2 of Samorodnitsky
and Taqqu (1994), it will suffice to show that

(43) E2 e
X2
j /2Kα

j

(∫
R
1 {Mj(t) ≥ |Xj + y|} νA(dy)

)α
<∞ ,

or equivalently,

(44) E2K
α
j

∫
R

(∫
R
1 {Mj(t) ≥ |x+ y|} νA(dy)

)α
dx <∞ .

But the proof of (44) is identical to that of (10) if 0 < α < 1, and that of (20) if
1 ≤ α ≤ 2, provided that one replaces l∗(t) with Kj and E′ with E2.

We now conclude, by classical results on moduli of continuity of Gaussian pro-
cesses (see, e.g., Corollary 2.3 of Dudley (1973)), that (Y (t), t ≥ 0) has a version
with continuous paths satisfying

sup
0≤s<t≤1/2

s,t∈Q

|Y (t)− Y (s)|

(t− s)1/2 log
(

1
t−s

) <∞ P1-a.s.

For such a version, we also have, by Fubini’s Theorem,

sup
0≤s<t≤1/2

s,t∈Q

|Y (t)− Y (s)|

(t− s)1/2 log
(

1
t−s

) <∞ P1 ×P2-a.s. ,

which is equivalent to the statement of the theorem. �
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8. A Limit Theorem

Our aim in this section is to generalize the “random rewards” scheme presented
in Cohen and Samorodnitsky (2006) and outlined in Section 2. We start by setting
up the notation.

Let (W
(i)
k , k ∈ Z, i ≥ 1) be an array of i.i.d. SαS random variables with scale

parameter 1. Further, let (V
(i)
k , k ≥ 1, i ≥ 1) be an array of i.i.d. mean zero and

unit variance integer-valued random variables, independent of (W
(i)
k , k ∈ Z, i ≥ 1).

Let S
(i)
n = V

(i)
1 + . . .+ V

(i)
n , n ≥ 0 be the ith random walk, i = 1, 2, . . ., and define

for j ∈ Z and n ≥ 1

ϕ(i)(j, n) =

n∑
k=1

1{S(i)
k = j} ,

the number of times the ith random walk visits state j by time n. Define ϕ(i)(j, t)
for noninteger values of t by linear interpolation, i.e. for n < t < n+ 1, let

ϕ(i)(j, t) = (t− n)ϕ(i)(j, n+ 1) + (1− t+ n)ϕ(i)(j, n) .

We note here that the results presented below can likely be generalized to an

array (W
(i)
k , k ∈ Z, i ≥ 1) of i.i.d. infinite-variance random variables that are in the

domain of attraction of a SαS distribution, but we do not pursue that goal in order
to keep the technicalities at a minimum.

Theorem 8.1. Let (bn, n ≥ 1) be a sequence of positive integers with bn →∞, let
νA be a finite measure on R whose support is contained in [−κ, κ) for some positive
integer κ, and define, for n ≥ 1 and t ≥ 0,

(45) Yn(t) =
1(

nbα+1
n

)1/α n∑
i=1

∞∑
k=−∞

ϕ(i)(k, b2nt)

∞∑
j=−∞

W
(i)
k−jνA

([
j

bn
,
j + 1

bn

))
.

Then we have, as n→∞,(
Yn(t), t ≥ 0

)
=⇒

(
Y (t), t ≥ 0

)
weakly in C([0,∞)), where Y is the BM-CAF fractional stable motion with associ-
ated measure νA.

Remark 8.2. One way to interpret this result is the following. Suppose many
independent “users,” indexed by i ≥ 0, are performing independent random walks

(S
(i)
n , n ≥ 0) on distinct integer lines. The numbers (or “positions”) along each

integer line are assigned i.i.d. SαS random “rewards” (W
(i)
k , n ≥ 0). Whenever

user i visits position k, she collects a weighted average

∞∑
j=−∞

W
(i)
k−jνA

([
j

bn
,
j + 1

bn

))
of the rewards around k, where the weighting is determined by the measure νA
and does not depend on k. In other words, the collected amounts form a “mov-
ing average” of the i.i.d. rewards. If there are many such users earning rewards
independently, their cumulative total reward process can be approximated by the
BM-CAF fractional stable motion, up to proper scaling of time and space.
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Proof of Theorem 8.1. Note that Yn(t) in (45) can also be written as

Yn(t) =
1(

nbα+1
n

)1/α n∑
i=1

∞∑
k=−∞

W
(i)
k

∞∑
j=−∞

ϕ(i)(k + j, b2nt) νA

([
j

bn
,
j + 1

bn

))
,

since all the sums involved have finitely many non-zero terms. In the following, we
will work with this representation.

Let (B(i)(t), t ≥ 0), i = 1, 2, . . . be a sequence of i.i.d. Brownian motions with
jointly continuous local time processes (l(i)(x, t), x ∈ R, t ≥ 0), i = 1, 2, . . ., such
that for every T > 0,

(46) sup
x∈R,0≤t≤nT

∣∣∣∣ϕ(i)([x], t)−
√
n l(i)

(
x√
n
,
t

n

)∣∣∣∣ −→ 0

in probability as n→∞, i = 1, 2, . . .. (Such a sequence of Brownian motions exists,
by Borodin (1982).) Define, for n ≥ 1 and t ≥ 0,

(47) Xn(t) =
1

(nbn)1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k

∫
R
l(i)
(
k

bn
+ y, t

)
νA(dy).

We first show that for any t ≥ 0,

(48) En(t) := Yn(t)−Xn(t) −→ 0 in probability

as n→∞. For notational simplicity, we take t = 1. We have

En(1)

=
1(

nbα+1
n

)1/α n∑
i=1

∞∑
k=−∞

W
(i)
k

( ∞∑
j=−∞

ϕ(i)(k + j, b2n) νA

([
j

bn
,
j + 1

bn

))

− bn
∫
R
l(i)
(
k

bn
+ y, 1

)
νA(dy)

)
=

1(
nbα+1
n

)1/α n∑
i=1

∞∑
k=−∞

W
(i)
k

∫
R

(
ϕ(i)

(
[k + ybn], b2n

)
− bnl(i)

(
k

bn
+ y, 1

))
νA(dy)

:=
1(

nbα+1
n

)1/α n∑
i=1

∞∑
k=−∞

W
(i)
k D

(i)
k,n.

Since the last expression is equal in distribution to(
1

nbα+1
n

n∑
i=1

∞∑
k=−∞

∣∣D(i)
k,n

∣∣α)W (1)
1 ,

the convergence (48) will be proven if we can show that

(49)
1

nbα+1
n

n∑
i=1

∞∑
k=−∞

∣∣D(i)
k,n

∣∣α −→ 0 in probability
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as n→∞. The expectation of the left-hand side of (49) is

1

bα+1
n

E

∞∑
k=−∞

∣∣D(1)
k,n

∣∣α
=

1

bα+1
n

E

∞∑
k=−∞

∣∣D(1)
k,n

∣∣α1{∣∣D(1)
k,n

∣∣ ≤ 1
}

+
1

bα+1
n

E

∞∑
k=−∞

∣∣D(1)
k,n

∣∣α1{∣∣D(1)
k,n

∣∣ > 1
}

:= p1 + p2 .

Now, letting

M (i)(m) = max
{
κm+ sup

0≤k≤m2

∣∣S(i)
k

∣∣,m( sup
0≤t≤1

∣∣B(i)(t)
∣∣+ κ

)}
for positive integers m, we see that

p1 =
1

bα+1
n

E

M(1)(bn)∑
k=−M(1)(bn)

∣∣D(1)
k,n

∣∣α1{∣∣D(1)
k,n

∣∣ ≤ 1
}

≤ 1

bα+1
n

E
(
2M (1)(bn) + 1

)
.

(50)

It is an easy consequence of Doob’s martingale inequalities that

(51) E
(
M (1)(m)r

)
≤ const mr

for integers m ≥ 1 and real numbers r ≥ 1, where the constant depends on r.
Therefore, continuing from (50), we obtain

p1 ≤ const
1

bα+1
n

bn −→ 0

as n→∞.
Next, we consider p2. By repeated use of Hölder’s inequality,

p2 ≤
1

bα+1
n

E

( ∞∑
k=−∞

∣∣D(1)
k,n

∣∣2)α
2
( ∞∑
k=−∞

1
{∣∣D(1)

k,n

∣∣ > 1
})1−α2

≤ 1

bα+1
n

E

( ∞∑
k=−∞

∣∣D(1)
k,n

∣∣2)α
2 (

2M (1)(bn) + 1
)1−α2 1{ sup

k

∣∣D(1)
k,n

∣∣ > 1
}1−α2

≤ 1

bα+1
n

(
E

∞∑
k=−∞

∣∣D(1)
k,n

∣∣2)α
2 (
E
(
2M (1)(bn) + 1

)
1
{

sup
k

∣∣D(1)
k,n

∣∣ > 1
})1−α2 .

But note that

E

∞∑
k=−∞

∣∣D(1)
k,n

∣∣2
≤ const

∫
R
E

∞∑
k=−∞

(
ϕ(1)

(
[k + ybn], b2n

)
− bnl(1)

( k
bn

+ y, 1
))2

νA(dy)

≤ const
∫
R

(
E

∞∑
k=−∞

ϕ(1)
(
k, b2n

)2
+ b2nE

∞∑
k=−∞

l(1)
( k
bn

+ y, 1
)2
)
νA(dy)

≤ const b3n,
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where the last inequality follows from Lemma 1 of Kesten and Spitzer (1979) and
from the fact that the largest value of a Brownian local time at time 1 has all
moments finite. Furthermore,

sup
k

∣∣D(1)
k,n

∣∣ ≤ |νA| sup
x∈R

∣∣∣ϕ(1)([x], b2n)− bn l(1)
( x
bn
, 1
)∣∣∣ := |νA|∆(1)(bn),

where |νA| = νA(R). Thus we obtain

p2 ≤ const
1

bα+1
n

b
3α
2
n

(
EM (1)(bn)3/2

) 2−α
3
(
P
(

∆(1)(bn) > |νA|−1
))(1−α2 )/3

≤ const 1

bα+1
n

b
3α
2
n

(
b3/2n

) 2−α
3
(
P
(

∆(1)(bn) > |νA|−1
))(1−α2 )/3

= const
(
P
(

∆(1)(bn) > |νA|−1
))(1−α2 )/3

−→ 0,

by (46). Note that in the middle line we take advantage of the inequality (51).
Thus (49) follows, and (48) is established.

The next step is to show that the finite-dimensional distributions of the process
(Xn(t), t ≥ 0) in (47) converge to those of (Y (t), t ≥ 0). For this, it is enough to
show that, for every m ≥ 1, 0 < t1 < . . . < tm and θ1, . . . , θm ∈ R,

m∑
j=1

θjXn(tj)
d−→

m∑
j=1

θjY (tj) as n→∞ .

We will see that this is true for m = 1 and t1 = 1; the general case is similar. So
we will show that

(52)
1

(nbn)1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k

∫
R
l(i)
( k
bn

+ y, 1
)
νA(dy)

d−→ Y (1).

Since both sides of (52) are conditionally SαS random variables, it will suffice to
show the convergence in probability of the scale parameters. That is, it will suffice
to show that

1

nbn

n∑
i=1

∞∑
k=−∞

(∫
R
l(i)
( k
bn

+ y, 1
)
νA(dy)

)α
−→ E

∫
R

(∫
R
l (x+ y, 1) νA(dy)

)α
dx

(53)

in probability. Let us denote the absolute difference∣∣∣∣∣ 1

nbn

n∑
i=1

∞∑
k=−∞

(∫
R
l(i)
( k
bn

+ y, 1
)
νA(dy)

)α

− 1

bn
E

∞∑
k=−∞

(∫
R
l
( k
bn

+ y, 1
)
νA(dy)

)α∣∣∣∣∣
by δn. By Chebyshev’s inequality,

P (δn > ε) ≤ 1

ε2nb2n
E

( ∞∑
k=−∞

(∫
R
l(1)
( k
bn

+ y, 1
)
νA(dy)

)α)2
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≤ c

ε2nb2n
E
(
2M (1)(bn) + 1

)2
l∗(1)2α

≤ c

ε2n
−→ 0.

Moreover,

1

bn
E

∞∑
k=−∞

(∫
R
l
( k
bn

+ y, 1
)
νA(dy)

)α
−→ E

∫
R

(∫
R
l (x+ y, 1) νA(dy)

)α
dx

by the Dominated Convergence Theorem. Hence the convergence (53) follows, and
(52) is proven.

It remains to prove the tightness of the sequence (Yn(t), t ≥ 0) in C([0,∞)).
Given K > 0, we write

Yn(t) =
1(

nbα+1
n

)1/α n∑
i=1

∞∑
k=−∞

W
(i)
k 1

{∣∣W (i)
k

∣∣ > K(nbn)1/α
}

×
∞∑

j=−∞
ϕ(i)(k + j, b2nt) νA

([ j
bn
,
j + 1

bn

))
+

1(
nbα+1
n

)1/α n∑
i=1

∞∑
k=−∞

W
(i)
k 1

{∣∣W (i)
k

∣∣ ≤ K(nbn)1/α
}

×
∞∑

j=−∞
ϕ(i)(k + j, b2nt) νA

([ j
bn
,
j + 1

bn

))
:= Y1,n(t) + Y2,n(t).

Note that

P
(

sup
0≤t≤1

∣∣Y1,n(t)
∣∣ = 0

)1/n

≥ P
(

for all |k| ≤M (1)(bn),
∣∣W (1)

k

∣∣ ≤ K(nbn)1/α
)

= E P
(∣∣W (1)

1

∣∣ ≤ K(nbn)1/α
)2M(1)(bn)+1

≥ E
(
1− cK−α(nbn)−1

)2M(1)(bn)+1

≥ 1 + E
(

2M (1)(bn) + 1
)

log
(
1− cK−α(nbn)−1

)
≥ 1 + c1bn log

(
1− c2K−α(nbn)−1

)
,

where c, c1, c2 are, as usual, positive constants that may change from instance to
instance. It now follows that

P
(

sup
0≤t≤1

∣∣Y1,n(t)
∣∣ > 0

)
≤ 1−

(
1 + c1 log

(
1− c2K−α(nbn)−1

)bn)n
.

Letting n go to infinity, we obtain

lim sup
n→∞

P
(

sup
0≤t≤1

∣∣Y1,n(t)
∣∣ > 0

)
≤ 1− exp

(
−c2K−α

)
.

Since the right-hand side converges to zero as K →∞, it follows from the decom-
position of Yn(t) above that it will suffice to prove the tightness of the processes
(Y2,n(t), 0 ≤ t ≤ 1) for each fixed K.
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Now, for any 0 ≤ s ≤ t ≤ 1, we have

E (Y2,n(t)− Y2,n(s))
2

=
1

n
2
α−1b

2
α+2
n

E
((
W

(1)
1

)2
1
{∣∣W (1)

1

∣∣ ≤ K(nbn)1/α
})

× E
∞∑

k=−∞

( ∞∑
j=−∞

(
ϕ(i)(k + j, b2nt)− ϕ(i)(k + j, b2ns)

)
νA

([ j
bn
,
j + 1

bn

)))2

.

Since, for large x,

E
(
W

(1)
1

)2
1
{∣∣W (1)

1

∣∣ ≤ x} ≤ 4

∫ x

0

yP
(
W

(1)
1 > y

)
dy ≤ cx2−α,

we see that, for large n,

E (Y2,n(t)− Y2,n(s))
2

≤ c b−3
n E

∞∑
k=−∞

( ∞∑
j=−∞

(
ϕ(i)(k + j, b2nt)− ϕ(i)(k + j, b2ns)

)
νA

([ j
bn
,
j + 1

bn

)))2

= c b−3
n E

∞∑
k=−∞

(∫
R

(
ϕ(i)

(
[k + ybn], b2nt

)
− ϕ(i)

(
[k + ybn], b2ns

))
νA(dy)

)2

≤ c b−3
n

∫
R
E

∞∑
k=−∞

(
ϕ(i)

(
[k + ybn], b2nt

)
− ϕ(i)

(
[k + ybn], b2ns

))2

νA(dy)

≤ c b−3
n

∫
R

(
b2n(t− s)

)3/2
νA(dy)

= c(t− s)3/2,

as in the proof of Lemma 7 in Kesten and Spitzer (1979). We can now appeal to
Theorem 12.3 in Billingsley (1968) to conclude the tightness of (Y2,n(t), 0 ≤ t ≤ 1)
and, hence, complete the proof. �

9. A Special Case

In this section we study BM-CAF fractional SαS motions whose associated mea-
sures are of the form νA(dy) = y−λ1[0,∞)(y) dy for some 0 < λ < 1. That is, we
study processes of the form

(54) Y (t) =

∫
Ω′×R

∫ ∞
0

l(x+ y, t) y−λ dyM(dω′, dx), t ≥ 0,

where (l(x, t), x ∈ R, t ≥ 0) is the local time of a Brownian motion (B(t), t ≥ 0)
defined on (Ω′,F′,P′), and M is a SαS random measure on Ω′ × R with control
measure P′ × Leb. M lives on a probability space (Ω,F,P).

Theorem 9.1. Suppose 1 < α ≤ 2 and 1/α < λ < 1. Then, the process (Y (t), t ≥
0) in (54) is a well-defined SαS process. It is self-similar with exponent

(55) H = 1− λ

2
+

1

2α
= 1− 1

2

(
λ− 1

α

)
.
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Remark 9.2. Well-definedness does not follow from Theorem 4.3 in the present
case, since condition (19) is violated. Indeed, for any β > 1,

∞∑
i=0

νA
(
[βi, βi+1)

)α
=

∞∑
i=0

(∫ βi+1

βi
y−λ dy

)α
= const

∞∑
i=0

βα(1−λ)i =∞ .

Hence Theorem 9.1 shows that in the case 1 < α ≤ 2, condition (19) is not neces-
sary for well-definedness. Also, the self-similarity result proves that the BM-CAF
fractional stable motion is not always in the domain of attraction of the BM-local
time fractional stable motion.

Proof of Theorem 9.1. For well-definedness, we need to check that

(56) E′
∫
R

(∫ ∞
0

l(x+ y, t) y−λ dy

)α
dx <∞ .

It will suffice to prove

(57) E′ l∗(t)
α

∫
R

(∫ ∞
0

1{|x+ y| ≤M(t)} y−λ dy
)α

dx <∞ ,

with l∗(t) and M(t) as defined in (11) and (12). The left hand side of (57) can be
decomposed as

E′ l∗(t)
α

∫ −M(t)

−∞

(∫ M(t)−x

−M(t)−x
y−λ dy

)α
dx+ E′ l∗(t)

α

∫ M(t)

−M(t)

(∫ M(t)−x

0

y−λ dy

)α
dx

:= I1 + I2.

Note that

I1 = E′ l∗(t)
α

∫ ∞
M(t)

(∫ x+M(t)

x−M(t)

y−λ dy

)α
dx

= const E′ l∗(t)
α

∫ ∞
M(t)

(
(x+M(t))1−λ − (x−M(t))1−λ)α dx

= const E′ l∗(t)
αM(t)1+(1−λ)α

∫ ∞
1

(
(u+ 1)1−λ − (u− 1)1−λ)α du

= const E′ l∗(t)
αM(t)1+(1−λ)α <∞ ,

since
(
(u+ 1)1−λ − (u− 1)1−λ)α ∼ u−αλ as u→∞, and l∗(t) and M(t) have finite

moments of all orders. Also,

I2 = const E′ l∗(t)
α

∫ M(t)

−M(t)

(M(t)− x)(1−λ)α dx

= const E′ l∗(t)
αM(t)1+(1−λ)α <∞ ,

and (57) follows.
For self-similarity, note that for any c > 0, θ1, . . . , θm ∈ R and t1, . . . , tm ≥ 0 we

have, using (30),

E exp

(
i

m∑
j=1

θjY (ctj)

)

= exp

(
−
∫
R
E′
∣∣∣∣ m∑
j=1

θj

∫ ∞
0

l(x+ y, ctj) y
−λ dy

∣∣∣∣αdx)
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= exp

(
−
∫
R
E′
∣∣∣∣ m∑
j=1

θj

∫ ∞
0

√
c l
(x+ y√

c
, tj

)
y−λ dy

∣∣∣∣αdx)

= exp

(
−
∫
R
E′
∣∣∣∣ m∑
j=1

θjc
1−λ2 + 1

2α

∫ ∞
0

l(u+ v, tj) v
−λ dv

∣∣∣∣αdu)

= E exp

(
i

m∑
j=1

θjc
1−λ2 + 1

2αY (tj)

)
.

Therefore, (Y (t), t ≥ 0) is H-self-similar, with H as defined in (55). �

Next, we prove a finite-dimensional analogue of Theorem 8.1 for the process
(Y (t), t ≥ 0) defined in (54). Note that Theorem 8.1 does not apply in this case,
since the measure νA(dy) = y−λ1[0,∞)(y) dy clearly does not satisfy its hypotheses.

As in Section 8.1, let (W
(i)
k , k ∈ Z, i ≥ 1) be an array of i.i.d. SαS random

variables with scale parameter 1. Further, let (V
(i)
k , k ≥ 1, i ≥ 1) be an array of

i.i.d. mean zero and unit variance integer-valued random variables, independent of

(W
(i)
k , k ∈ Z, i ≥ 1). Let S

(i)
n = V

(i)
1 + . . . + V

(i)
n , n ≥ 0 be the ith random walk,

i = 1, 2, . . ., and define for j ∈ Z and n ≥ 1

ϕ(i)(j, n) =

n∑
k=1

1{S(i)
k = j} ,

the number of times the ith random walk visits state j by time n. Define ϕ(i)(j, t)
for noninteger values of t by linear interpolation, i.e. for n < t < n+ 1, let

ϕ(i)(j, t) = (t− n)ϕ(i)(j, n+ 1) + (1− t+ n)ϕ(i)(j, n) .

Theorem 9.3. Let (bn, n ≥ 1) be a sequence of positive integers with bn → ∞,
1 < α ≤ 2 and 1/α < λ < 1. Define, for n ≥ 1 and t ≥ 0,

(58) Yn(t) =
1

n1/αb
2−λ+1/α
n

n∑
i=1

∞∑
k=−∞

ϕ(i)(k, b2nt)

∞∑
j=0

W
(i)
k−j

(
(j + 1)1−λ − j1−λ) .

Then we have, as n→∞,(
Yn(t), t ≥ 0

) f.d.−→
(
Y (t), t ≥ 0

)
,

where
f.d.−→ denotes convergence in finite-dimensional distributions and (Y (t), t ≥ 0)

is the process defined in (54).

Proof. The outline of the proof is the same as in Theorem 8.1. We work with the
representation

Yn(t) =
1

n1/αb
2−λ+1/α
n

n∑
i=1

∞∑
k=−∞

W
(i)
k

∞∑
j=0

ϕ(i)(k + j, b2nt)
(
(j + 1)1−λ − j1−λ) .

Let (B(i)(t), t ≥ 0), i = 1, 2, . . . be a sequence of i.i.d. Brownian motions with
jointly continuous local time processes (l(i)(x, t), x ∈ R, t ≥ 0), i = 1, 2, . . ., such
that for every T > 0,

(59) sup
x∈R,0≤t≤nT

∣∣∣∣ϕ(i)([x], t)−
√
n l(i)

( x√
n
,
t

n

)∣∣∣∣ L2

−→ 0
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as n→∞, i = 1, 2, . . .. Such a sequence of Brownian motions exists, by Kang and
Wee (1997). Define, for n ≥ 1 and t ≥ 0,

(60) Xn(t) =
1

(nbn)1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k

∫ ∞
0

l(i)
( k
bn

+ y, t
)
y−λ dy.

We first show that for any t ≥ 0,

(61) En(t) := Yn(t)−Xn(t) −→ 0 in probability

as n→∞. For notational simplicity, we take t = 1. We have

En(1)

=
1(

nbα+1
n

)1/α n∑
i=1

∞∑
k=−∞

W
(i)
k

( ∞∑
j=0

ϕ(i)(k + j, b2n) bλ−1
n

(
(j + 1)1−λ − j1−λ)
− bn

∫ ∞
0

l(i)
( k
bn

+ y, 1
)
y−λ dy

)

=
1(

nbα+1
n

)1/α n∑
i=1

∞∑
k=−∞

W
(i)
k

∫ ∞
0

(
ϕ(i)

(
[k + ybn], b2n

)
− bnl(i)

( k
bn

+ y, 1
))
y−λ dy

=
1

n1/αb
2−λ+1/α
n

n∑
i=1

∞∑
k=−∞

W
(i)
k

∫ ∞
k

(
ϕ(i)

(
[u], b2n

)
− bnl(i)

( u
bn
, 1
))

(u− k)−λ du

:=
1

n1/αb
2−λ+1/α
n

n∑
i=1

∞∑
k=−∞

W
(i)
k

∫ ∞
k

D(i)(u, bn)(u− k)−λ du.

Thus, in order to prove (61), it will suffice to show that

(62)
1

nb
(2−λ)α+1
n

n∑
i=1

∞∑
k=−∞

∣∣∣∣∫ ∞
k

D(i)(u, bn)(u− k)−λ du

∣∣∣∣α −→ 0 in probability

as n→∞. For integers m ≥ 1, we define

K(i)(m) = max

{
1 + sup

0≤k≤m2

∣∣S(i)
k

∣∣,m( sup
0≤t≤1

∣∣B(i)(t)
∣∣)}.

Then, the expectation of the left-hand side of (62) is

1

b
(2−λ)α+1
n

E

( ∞∑
k=−∞

∣∣∣∣ ∫ ∞
k

D(1)(u, bn)(u− k)−λ du

∣∣∣∣α)

=
1

b
(2−λ)α+1
n

E

(−K(1)(bn)−1∑
k=−∞

∣∣∣∣ ∫ K(1)(bn)

−K(1)(bn)

D(1)(u, bn)(u− k)−λ du

∣∣∣∣α)

+
1

b
(2−λ)α+1
n

E

( K(1)(bn)∑
k=−K(1)(bn)

∣∣∣∣ ∫ K(1)(bn)

k

D(1)(u, bn)(u− k)−λ du

∣∣∣∣α)
:= p1 + p2 .

(63)
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Defining D
(i)
∗ (m) = supu∈R

∣∣D(i)(u,m)
∣∣ and omitting the superscript “(1)” for no-

tational convenience, we see that

p1 ≤
1

b
(2−λ)α+1
n

E

(
D∗(bn)α

−K(bn)−1∑
k=−∞

(∫ K(bn)

−K(bn)

(u− k)−λ du

)α)
,

with

−K(bn)−1∑
k=−∞

(∫ K(bn)

−K(bn)

(u− k)−λ du

)α
=

∞∑
k=K(bn)+1

(
(k +K(bn))1−λ − (k −K(bn))1−λ)α

= K(bn)(1−λ)α+1 1

K(bn)

∞∑
k=K(bn)+1

((
k

K(bn)
+ 1

)1−λ

−
(

k

K(bn)
− 1

)1−λ)α
≤ K(bn)(1−λ)α+1

∫ ∞
1

(
(u+ 1)1−λ − (u− 1)1−λ)α du

= const K(bn)(1−λ)α+1,

since (u+ 1)1−λ − (u− 1)1−λ ∼ u−λ as u→∞. Thus we obtain

p1 ≤ const
1

b
(2−λ)α+1
n

E
(
D∗(bn)αK(bn)(1−λ)α+1

)
≤ const 1

b
(2−λ)α+1
n

(
E(D∗(bn)2)

)α/2 (
E
(
K(bn)

2(1−λ)α+2
2−α

))1−α/2
(64)

≤ const b
(1−λ)α+1
n

b
(2−λ)α+1
n

(
E(D∗(bn)2)

)α/2 −→ 0 as n→∞ ,

by (59).
The term p2 can be bounded similarly:

p2 ≤
1

b
(2−λ)α+1
n

E

(
D∗(bn)α

K(bn)∑
k=−K(bn)

(∫ K(bn)

k

(u− k)−λ du

)α)
,

with

K(bn)∑
k=−K(bn)

(∫ K(bn)

k

(u− k)−λ du

)α
≤

K(bn)∑
k=−K(bn)

(∫ 2K(bn)

0

u−λ du

)α

= const

K(bn)∑
k=−K(bn)

K(bn)(1−λ)α

= const K(bn)(1−λ)α+1.

It follows that

p2 ≤ const
1

b
(2−λ)α+1
n

E
(
D∗(bn)αK(bn)(1−λ)α+1

)
−→ 0 as n→∞ ,

as in (64). Thus we have established (62).
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The next step is to show that the finite-dimensional distributions of the process
(Xn(t), t ≥ 0) in (60) converge to those of (Y (t), t ≥ 0). For this, it is enough to
show that, for every m ≥ 1, 0 < t1 < . . . < tm and θ1, . . . , θm ∈ R,

m∑
j=1

θjXn(tj)
d−→

m∑
j=1

θjY (tj) as n→∞ .

We will see that this is true for m = 1 and t1 = 1; the general case is similar. So
we will show that

(65)
1

(nbn)1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k

∫ ∞
0

l(i)
( k
bn

+ y, 1
)
y−λ dy

d−→ Y (1).

Since both sides of (65) are conditionally SαS random variables, it will suffice to
show the convergence in probability of the scale parameters. That is, it will suffice
to show that

1

nbn

n∑
i=1

∞∑
k=−∞

(∫ ∞
0

l(i)
( k
bn

+ y, 1
)
y−λ dy

)α
−→ E

∫
R

(∫ ∞
0

l (x+ y, 1) y−λ dy

)α
dx

(66)

in probability. Let us denote the absolute difference∣∣∣∣∣ 1

nbn

n∑
i=1

∞∑
k=−∞

(∫ ∞
0

l(i)
(
k

bn
+ y, 1

)
y−λ dy

)α

− 1

bn
E

∞∑
k=−∞

(∫ ∞
0

l

(
k

bn
+ y, 1

)
y−λ dy

)α∣∣∣∣∣
by δn. Now, by Chebyshev’s inequality,

P (δn > ε) ≤ 1

ε2nb2n
E

( ∞∑
k=−∞

(∫ ∞
0

l
( k
bn

+ y, 1
)
y−λ dy

)α)2

≤ 1

ε2nb
2+2(1−λ)α
n

E

( ∞∑
k=−∞

(∫ ∞
0

l
( u
bn
, 1
)

(u− k)−λ du

)α)2

≤ const

ε2nb
2+2(1−λ)α
n

E

(−K(bn)−1∑
k=−∞

(∫ K(bn)

−K(bn)

l
( u
bn
, 1
)

(u− k)−λ du

)α)2

+
const

ε2nb
2+2(1−λ)α
n

E

( K(bn)∑
k=−K(bn)

(∫ K(bn)

k

l
( u
bn
, 1
)

(u− k)−λ du

)α)2

:= p′1 + p′2 .

Note the similarity of p′1, p
′
2 to p1, p2 in (63). By arguments analogous to the ones

used for p1 and p2, one can show that

p′1 + p′2 ≤ const
b
2+2(1−λ)α
n

ε2nb
2+2(1−λ)α
n

−→ 0
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as n→∞, hence δn → 0 in probability. Moreover, we have

1

bn
E

∞∑
k=−∞

(∫
R
l
( k
bn

+ y, 1
)
y−λ dy

)α
−→ E

∫
R

(∫
R
l (x+ y, 1) y−λ dy

)α
dx

by the Dominated Convergence Theorem. The convergence (66) follows, hence (65)
is proven, and so is the theorem. �

Corollary 9.4. Let (bn, n ≥ 1) be a sequence of positive integers with bn → ∞,
1 < α ≤ 2 and 1/α < λ < 1. Define, for n ≥ 1 and t ≥ 0,

(67) Yn(t) =
1− λ

n1/αb
2−λ+1/α
n

n∑
i=1

∞∑
k=−∞

ϕ(i)(k, b2nt)

∞∑
j=0

j−λW
(i)
k−j .

Then we have, as n→∞,(
Yn(t), t ≥ 0

) f.d.−→
(
Y (t), t ≥ 0

)
,

where
f.d.−→ denotes convergence in finite-dimensional distributions and (Y (t), t ≥ 0)

is the process defined in (54).

Proof. The proof is analogous to that of Theorem 9.3. �
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