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Abstract

We consider an extension of the classical machine-repair model, also known as the computer-terminal model
or time-sharing model. As opposed to the classical model, we assume that the machines, apart from receiving
service from the repairman, supply service themselves to queues of products. The extended model can be viewed
as a two-layered queueing network, of which the first layer consists of two separate queues of products. Each of
these queues is served by its own machine. The marginal and joint queue length distributions of the first-layer
queues are hard to analyse in an exact fashion. Therefore, we apply the power-series algorithm to this model to
obtain the light-traffic behaviour of the queue lengths symbolically. This leads to two accurate approximations
for the marginal mean queue length. The first approximation, based on the light-traffic behaviour, is in closed
form. The second approximation is based on an interpolation between the light-traffic behaviour and heavy-traffic
results for the mean queue length. The obtained approximations are shown to work well for arbitrary loaded sys-
tems. The proposed numerical algorithm and approximations may prove to be very useful for system design and
optimisation purposes in application areas such as manufacturing, computer systems and telecommunications.

1 Introduction

In this paper, we study a layered queueing network (LQN) consisting of two layers. We define an LQN to be a
queueing network where in addition to the traditional “servers” and “customers”, there exist customer units that
act as servers for upper-layer customers. Thus, the network can be decomposed into multiple layers, in each of
which units act as either strictly a customer or a server. Layered queueing networks occur naturally in information
and e-commerce systems, grid systems, and real-time systems such as telecom switches, see [10] and references
therein for an overview.

The LQN under consideration is motivated by a two-fold extension of the traditional machine-repair model. This
model, also known as the computer terminal model (cf. [2]) or as the time sharing system (cf. [16, Section 4.11]),
is a well-studied problem in the literature. In the machine-repair model, there is a number of machines (two in
our case) working in parallel, and one repairman. As soon as a machine fails, it joins a repair queue in order to be
repaired by the repairman. It is one of the key models to describe problems with a finite input population. A fairly
extensive analysis of the machine-repair model can be found in Takács [19, Chapter 5].
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Figure 1: The two-layered model under consideration.

We extend this model in two directions. First, we allow different machines to have mutually different uptime
or repair time distributions. As observed in [12], this leads to technical complications. For example, the arrival
theorem (cf. [17]) cannot be used any more to derive the stationary downtime distribution of the machines as is
done for the original model in [21]. Secondly, we assume that each of the machines processes a stream of products,
which leads to the addition of queues in front of the machines. Observe that in this case a machine has a dual
role. As in the traditional model, the machine has a customer role with respect to the repairman, but it now also
has a server role with respect to the products. This leads to the formulation of a LQN with two layers, which we
also refer to as the two-layered model or simply the layered model. This extension has immediate applications in
manufacturing, but is also of interest for other application areas, such as telecommunication systems. For instance,
this extension of the machine-repair model occurs naturally in the modelling of middleware technology, where
multi-threaded application servers compete for access to shared object code. Access of threads to the object code
is typically handled by a portable object adapter (POA) that serialises the threads trying to access a shared object.
During the complete duration of the serialisation and execution time a thread typically remains blocked, and upon
finalizing the execution, the thread is de-activated and ready to process pending requests [13]. In this setting, the
application servers and the shared object code are analogous to the machines and the repairman respectively in the
machine-repair model.

Although applications of the two-layered model are not restricted to manufacturing, we refer to the entities in the
model as products, machines and the repairman respectively. The first layer of the resulting LQN contains two
queues of products, see Figure 1. Each of these queues is served by its own machine. At any point in time, a
machine is subject to breakdowns, irrespective of the state of the first-layer queue. When a machine breaks down,
the service of a product in progress is aborted and starts anew once the machine becomes operational again. For
ease of discussion, we assume that there are two machines only, as opposed to the classical machine-repair model.
As will be evident in the sequel, the approach we follow can be readily extended to more machines or repairmen,
but certain computations become increasingly cumbersome. The second layer consists of a repairman and a repair
buffer. If, upon breakdown of a machine, the repairman is idle, the machine is immediately taken into service.
Once the machine is again operational, it starts serving products once more. When the repairman is busy repairing
another machine however, the machine waits in the buffer. As soon as the second machine is repaired, the repair
of the current machine starts.

An important feature of both the classical machine-repair model and the two-layered model under consideration
is the fact that machines compete for repair facilities. As concluded in [8], this introduces significant positive
dependencies in their downtimes and thus in the lengths of the queues in the first layer. The dependence between
these queues makes exact analysis of their queue length distribution difficult. The amount of work present in a first-
layer queue can be modelled as a reflected Markov modulated Lévy process, but its distribution is not easily derived
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from that. Numerical evaluation, e.g. by simulation, may also be challenging. Especially when the model involves
breakdowns and repairs occurring on a larger time scale than actual product arrivals and services, the computation
time needed to achieve accurate results may be unacceptably long. Moreover, numerical methods are typically not
transparent and provide little insight into parameter effects. Therefore, there is a need for symbolic, accurate and
transparent queue length approximations which are easy to implement and are suitable for optimisation purposes.

In this paper, we derive two approximations for the mean queue length by applying the power-series algorithm
(PSA) on the two-layered model. PSA is used to compute the steady-state distribution of multiple-queue systems,
which fit in the class of multi-dimensional quasi birth-and-death processes (QBDs). The basic idea of this algo-
rithm stems from Hooghiemstra et al. [14]. The algorithm has been further developed by Blanc (see e.g. [3, 4]).
For an overview of PSA, as well as the initial literature on PSA, see [5]. The use of PSA is, in many regards,
advantageous over numerical methods such as simulation. The computation time needed to achieve accurate nu-
merical results is generally much less, especially for lightly loaded systems. More importantly, the computational
scheme provided by PSA can also be executed symbolically to obtain closed-form expressions for moments and
cross-moments of the queue length distributions, in theory up to arbitrary precision. In practice, symbolically only
the light-traffic (LT) behaviour can be computed. Based on this behaviour, we obtain two approximations for the
mean queue length, which is the main result of this paper.

In Section 2, the two-layered model is described explicitly and the notation required is given. Then, we explain
how to implement PSA for this model in Section 3. The resulting symbolic expressions for the light-traffic be-
haviour are described in Section 4. Based on the light-traffic behaviour, we propose two approximations for the
mean queue length in Section 5. The first one, as provided in Section 5.1, is in closed form. It is therefore suitable
for implementation and optimisation purposes. Moreover, the approximation is exact in light traffic and performs
well for general loaded systems. To improve the accuracy of the approximation even further, we provide a second
approximation in Section 5.2 that is also exact when the queue is fully saturated. This approximation is based
on an interpolation between the light-traffic behaviour and heavy-traffic (HT) results. This approximation is very
accurate. It competes with the numerical errors made by simulation or PSA. Moreover, the two approximations
greatly illustrate the effects of the model parameters onto the queue length.

2 Model description and notation

The model considered in this paper consists of two layers, see Figure 1. The first layer consists of two machines
M1 and M2 as well as the corresponding queues Q1 and Q2, which we will refer to as first-layer queues. Products
arrive at Qi according to a Poisson process with rate λi. The service requirement of a product in Qi is exponen-
tially distributed with parameter µi. We denote the load offered to Qi by ρi = λi

µi
. The steady-state queue length

of Qi, including the product in service, is denoted by Li. The delay, or the waiting time, incurred by a type-i
product before it enters service is denoted by Di. Furthermore, the time between the arrival of a type-i product
and the end of its service is referred to as the sojourn time Si. After an exponentially (σi) distributed uptime or
lifetime, denoted by Ui, the machine Mi serving Qi will break down, and the service of Qi stops. The service
of a product in progress is then aborted, and will be resumed once the machine is operational again. When a
machine breaks down, it moves to the repair queue, where it will wait if the repairman is busy repairing the other
machine; otherwise the repair will start immediately. Thus, a downtime of a machine consists of a repair time and
possibly a waiting time. The time needed for a repairman to return Mi to an operational state is exponentially (νi)
distributed. After a repair, the machine returns to Qi and commences service again.

In various computations throughout this paper, we need to keep track of the background environment, namely
whether the two machines are working or not. To this end, let {Φ(t), t ≥ 0} be the Markov process describing the
state of the machines M1 and M2. More specifically, Φ(t) = {Φ1(t),Φ2(t)} specifies for each machine whether
it is up (U ), in repair (R) or waiting for repair (W ) at time t. This Markov process operates on the state space
S := {(U,U), (U,R), (R,U), (R,W ), (W,R)} with generator matrix QΦ. Its stationary distribution vector πΦ

is uniquely determined by the equations πΦQΦ = 0 and
∑
j∈S π

Φ
j = 1.

The queue length of a first-layer queue depends heavily on the availability of its machine in the past. To keep track
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of the latter, let C(t) represent the amount of time M1 has been in an up state in the time period [0, t). Assuming
the process {Φ(t), t ≥ 0} is already in stationarity at t = 0, C(t) is defined as

C(t) =

∫ t

s=0

1{Φ1(s)=U}ds. (1)

The long-run time-averaged mean of the process {C(t), t ≥ 0} is given by

mC := lim
t→∞

E[C(t)]

t
= lim
t→∞

∫ t
s=0

P(Φ1(s) = U)ds

t
= πΦ

(U,U) + πΦ
(U,R).

Note that by standard renewal arguments we also have that mC = E[U1]
E[U1]+E[D1] . Furthermore, the long-run time-

averaged variance is given by

σ2
C := lim

t→∞

Var[C(t)]

t
.

To determine Var[C(t)], view {(C(t),Φ(t)), t ≥ 0} as a Markov additive process (MAP) with matrix exponent
F (s) = diag(−s,−s, 0, 0, 0) + QΦ. By standard theory on MAPs (see [1, p. 311–312], the matrix Z(s, t) with
elements Zi,j(s, t) = E[e−sC(t)1{Φ(t)=j}|Φ(0) = i] = P(Φ(t) = j|Φ(0) = i)E[e−sC(t)|Φ(0) = i,Φ(t) = j],
is determined by

Z(s, t) = etF (s). (2)

Note that P(Φ(t) = j|Φ(0) = i) is obtained by computing Zi,j(0, t). By conditioning, the Laplace-Stieltjes
transform (LST) E[e−sC(t)] is consequently easily derived from Z(s, t), out of which Var[C(t)] follows by differ-
entiation with respect to s.

To keep track of the level of saturation of Q1, we introduce the notion of normalised load. If M1 never breaks
down, then the stability condition for Q1 reads ρ1 < 1. However, in the case of breakdowns, this condition is not
sufficient any longer, as M1 only works for a fraction mC of the time. We therefore define ρ̂ := ρ1

mC
. We also

refer to ρ̂ as the normalised load of Q1. Taking the breakdowns of M1 into account, the stability condition for Q1

is ρ̂ < 1.

Throughout this paper, we denote the L1-norm of a vector v consisting of n elements by |v| = v1 + · · · + vn.
The vector 0 ∈ Nn represents the n-th dimensional vector which consists only of zeros. The vector ej ∈ Nn
represents the unit vector of which the j-th entry equals one. We denote the indicator function on the event A by
1{A}. Finally, for two functions f(x) and g(x), we write f(x) = O(g(x)) if limx↓0 |f(x)/g(x)| <∞.

3 Application of the Power-Series Algorithm

In this section, we show how PSA can be used to analyse the two-layered model. PSA is typically used to compute
the steady-state distribution of multiple-queue systems, which fit in the class of quasi birth-and-death processes
(QBDs). The two-layered model is such a multi-dimensional QBD and consists of two components. The first
component, L(t) = {L1(t), L2(t)}, describes the queue length at each of the queues. The second component
models any non-exponentiality in the system. In our system, non-exponentiality is caused by the fact that the
machines alternate between up-times and downtimes and is represented by Φ(t). Thus, {(L(t),Φ(t)), t ≥ 0} can
be seen as a Markov process on the state space N2 × S. When the system is stable, the steady-state probabilities
p(l,ϕ), (l,ϕ) ∈ N2 × S can be obtained in principle by solving the set of global balance equations. However,
due to the multi-dimensionality of this process, this set of equations cannot be solved recursively, and is therefore
hard to solve in practice. The intrinsic idea behind PSA is the transformation of the non-recursively solvable set
of balance equations into a recursively solvable set of equations by adding one dimension into the state space.
This is achieved by expressing the steady-state probabilities as power series in some variable based on the model
parameters, and allows practical calculation of steady-state probabilities. As a result, performance measures of
the form E[g(L,Φ)] can be computed, where g(·) is an arbitrary function, and (L,Φ) = limt→∞(L(t),Φ(t)).
We first define the one-step transition rates and the global balance equations corresponding to the Markov process
{(L(t),Φ(t)), t ≥ 0} in Section 3.1. Then, we apply PSA directly to the two-layered model in Section 3.2.
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3.1 Preliminaries

Before applying PSA, we study the Markov Process {(L(t),Φ(t)), t ≥ 0} and consider its one-step transition
rates and global balance equations.

The one-step transition rate corresponding to the transition from state (l,ϕ) ∈ N2 × S to state (l+ ei,ϕ) equals
the arrival rate λi. However, in order to fully exploit the flexibility that PSA provides, we specify each of the
arrival rates by a “relative” arrival rate a(i)(l,ϕ) times a constant χ. The quantity χ will be used by PSA to
introduce another dimension to the state space. For (l,ϕ) ∈ N2×S and ψ ∈ S, we define the one-step transition
rates as follows:

χa(j)(l,ϕ): the arrival rate at Qj at state (l,ϕ), leading to a transition to state (l+ ej ,ϕ), j = 1, 2,
d(j)(l,ϕ): the departure rate from Qj at state (l,ϕ), leading to a transition to state (l − ej ,ϕ), with

d(j)(l,ϕ) = 0 if nj = 0, j = 1, 2,
u(l,ϕ,ψ): the transition rate from (l,ϕ) to (l,ψ).

Linking this with the notation given in Section 2, this means that for (l,ϕ) ∈ N2 × S and j = 1, 2:

χa(j)(l,ϕ) = λj ,

d(j)(l,ϕ) = µj1{nj>0}1{ϕj=U},

u(l, (U,U), (R,U)) = u(l, (U,R), (W,R)) = σ1,

u(l, (U,U), (U,R)) = u(l, (R,U), (R,W )) = σ2,

u(l, (R,U), (U,U)) = u(l, (R,W ), (U,R)) = ν1,

u(l, (U,R), (U,U)) = u(l, (W,R), (R,U)) = ν2.

It remains to choose an appropriate value for χ. For the application of PSA, it is generally required that there
exists a positive real χ∗ such that both Q1 and Q2 are stable for 0 ≤ χ < χ∗. To satisfy this requirement, we
choose

χ = ρ̂ =
λ1

µ1mC
. (3)

This leads to a(1)(l,ϕ) = µ1mC and a(2)(l,ϕ) = λ2

λ1
µ1mC . Note that for the current choice of χ, there indeed

exists an upper bound below which both queues are stable. Evidently, when the normalised workload does not
exceed one, Q1 is stable. Moreover, the ratio between µ1 and µ2, as well as the ratio between the fraction of
time M2 is up and mC are assumed to be finite; i.e., we assume that none of the service rates and time fractions
are zero. Thus, there must exist a positive real c, such that Q2 is stable whenever 0 ≤ χ ≤ c. As a result, the
requirement is satisfied when taking χ∗ = max{1, c}.

The global balance equations of the Markov process {(L(t),Φ(t)), t ≥ 0}, expressed in the steady-state proba-
bilities p(l,ϕ), are as follows: 2∑

j=1

[χa(j)(l,ϕ) + d(j)(l,ϕ)] +
∑
ψ∈S

u(l,ϕ,ψ)

 p(l,ϕ) =

χ

2∑
j=1

a(j)(l− ej ,ϕ)p(l− ej ,ϕ)1{lj>0} +

2∑
j=1

d(j)(l+ ej ,ϕ)p(l+ ej ,ϕ)

+
∑
ψ∈S

u(l,ψ,ϕ)p(l,ψ), (l,ϕ) ∈ N2 × S. (4)

We also have the normalisation equation∑
(l,ϕ)∈N2×S

p(l,ϕ) = 1. (5)
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To substitute the steady-state probabilities, we observe the following property.

Property 3.1. For each state (l,ϕ), it holds that p(l,ϕ) = O(χ|l|). As is illustrated in [20], this property is valid
for any QBD, where for each state (l,ϕ) with l 6= 0, either p(l,ϕ) = 0, or there exists a pathϕ(0),ϕ(1), . . . ,ϕ(ν)

in S for some ν, 0 ≤ ν < |S|, such that

ϕ(0) = ϕ, u(l,ϕ(i−1),ϕ(i)) > 0, i = 1, . . . , ν,

and there is at least one queue with a non-zero departure rate in the state (l,ϕ(ν)). This condition is obviously
met here, since there always exists such a path from any ϕ ∈ S to the auxiliary state (U,U). In this state, both
machines are up and departure rates for both of the queues are non-zero.

Based on Property 3.1, we introduce the following power series substitution for the steady-state probabilities:

p(l,ϕ) = χ|l|
∞∑
k=0

χkb(k; l,ϕ), (l,ϕ) ∈ N2 × S. (6)

3.2 Computational Scheme

In this section, we apply PSA to the two-layered model and derive a recursive, computational scheme for it.
We obtain and solve a recursive set of equations for the coefficients b(k; l,ϕ) in (6). From this, all steady-
state probabilities can be computed as well as any performance measures derived from them. We first substitute
the power series expansion (6) into the balance equations (4). This leads to a polynomial expression in χ for
both sides of the equations. By equating corresponding powers of χ, we obtain a recursion in the coefficients
b(k; l,ϕ) for k ∈ N, (l,ϕ) ∈ N2 × S. As a result, we can compute many performance measures by writing
them as a power series in χ with different coefficients, but still involving the obtained values for b(k; l,ϕ) for
k ∈ N, (l,ϕ) ∈ N2×S . Numerical computation of the performance measures is possible up to arbitrary precision,
by starting the computational scheme with numerical values for the system parameters and applying the recursion
until the desired accuracy is achieved. In theory, the performance measures can also be computed in a symbolic
fashion. In practice however, only coefficients of very small order can be computed symbolically. Solving the
recursive scheme becomes increasingly hard and the expressions involved become prohibitively complex as the
corresponding order of χ increases.

We start by substituting the power-series expansion (6) into the balance equations (4). This implies the following
set of equations for the coefficients b(k; l,ϕ):

χ|l|
∞∑
k=0

χk

 2∑
j=1

[χa(j)(l,ϕ) + d(j)(l,ϕ)] +
∑
ψ∈S

u(l,ϕ,ψ)

 b(k; l,ϕ) =

χ|l|−1
∞∑
k=0

χk
2∑
j=1

χa(j)(l− ej ,ϕ)b(k; l− ej ,ϕ)1{lj>0}

+ χ|l|+1
∞∑
k=0

χk
2∑
j=1

d(j)(l+ ej ,ϕ)b(k; l+ ej ,ϕ)

+ χ|l|
∞∑
k=0

χk
∑
ψ∈S

u(l,ψ,ϕ)b(k; l,ψ), (l,ϕ) ∈ N2 × S.

After eliminating the factor χ|l| from both sides of this set of equations, we obtain a polynomial equation of the
form

∑∞
i=0 ciχ

i =
∑∞
j=0 cjχ

j . Since this equation holds for every χ ∈ [0, χ∗), the coefficients of corresponding
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powers of χ are equal. Thus, we have that ci = cj for all i = j:

( 2∑
j=1

d(j)(l,ϕ) +
∑
ψ∈S

u(l,ϕ,ψ)
)
b(k; l,ϕ) =

2∑
j=1

a(j)(l− ej ,ϕ)b(k; l− ej ,ϕ)1{lj>0} −
2∑
j=1

a(j)(l,ϕ)b(k − 1; l,ϕ)1{k>0}

+

2∑
j=1

d(j)(l+ ej ,ϕ)b(k − 1; l+ ej ,ϕ)1{k>0} +
∑
ψ∈S

u(l,ψ,ϕ)b(k; l,ψ), (k; l,ϕ) ∈ N3 × S. (7)

The resulting set of equations now forms a recursive scheme with respect to the partial ordering ≺ of the vectors
(k; l,ϕ), where (k; l,ϕ) ≺ (k̂; l̂, ϕ̂) if[

k + |l| < k̂ + |̂l|
]

or
[
k + |l| = k̂ + |̂l| ∧ k < k̂

]
.

Indeed, we see that (7) expresses the coefficients b(k; l,ϕ) in terms of coefficients of lower order than (k; l,ϕ)
with respect to ≺, except for the coefficient b(k; l,ψ) in the last line. Therefore, the coefficients b(k; l,ϕ) can be
calculated recursively in increasing order with respect to ≺, where for each combination (k; l) a set of at most |S|
linear equations must be solved. This set of equations generally possesses a unique solution. The only exception
is when the system is totally empty (l = 0), and thus all departure rates vanish. For l = 0,ϕ ∈ S, the set of
equations (7) reduces to∑

ψ∈S

u(0,ϕ,ψ)b(k; 0,ϕ) =
∑
ψ∈S

u(0,ψ,ϕ)b(k; 0,ψ) + y(k;ϕ), (8)

where

y(k;ϕ) = −
2∑
j=1

a(j)(0,ϕ)b(k − 1; 0,ϕ)1{k>0} +

2∑
j=1

d(j)(ej ,ϕ)b(k − 1; ej ,ϕ)1{k>0}.

By summing the equations of (8) over all ϕ ∈ S, we observe that these are dependent sets of equations for the
coefficients b(k; 0, ϕ). The dependent sets are not contradictory, since we have that

∑
ϕ∈S y(k;ϕ) = 0, due to

a necessary balance between the empty states and the states with one product in the system. However, due to the
dependence, additional equations are needed. The law of total probability provides an additional equation between
the coefficients b(k; l,ϕ), for (k; l,ϕ) ∈ N3×S when the system is empty. Namely, observe that if we put χ = 0
in (6), which corresponds to zero arrival rates, all terms vanish except for the one for k = 0. Thus, from the law
of total probability (i.e., the normalisation equation (5)), we have

∑
ϕ∈S

b(0; 0,ϕ) =
∑
ϕ∈S

p(0,ϕ) =
∑

(l,ϕ)∈N2×S

p(l,ϕ) = 1, (9)

where the first equality follows from (6) and the second equality follows due to the fact that if all arrival rates are
zero, then the only transition probabilities are the p(0,ϕ). Similarly, (5) implies for higher orders of k > 0 that∑

ϕ∈S
b(k; 0,ϕ) = −

∑
0<|l|≤k

∑
ψ∈S

b(k − |l|; l,ψ). (10)

In order to see how (10) is derived, we argue as follows. First, we substitute (6) into (5), and thus write the
normalisation equation as a power series in χ. As this equation needs to be true for all values of χ, we have
that the coefficients of χ for all powers of χ need to be equal to zero. Last, observe that (10) gives actually the
coefficient for the k-th power in this series. The only modification is that the terms in the k-th coefficient that
correspond to an empty system have been accumulated in the left-hand side of (10), while the remaining terms
appear in the right-hand side.
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Note now that the right hand side of (10) consists of terms of lower order than b(k; 0,ϕ) with respect to≺. All but
one of the equations of (8) in combination with (9) or (10) determine b(k; 0,ϕ). In general, this set of equations
has a unique solution, if the process, conditioned on the event that both queues are empty and no arrivals occur at
all, is irreducible on the subset of S of reachable states. This condition holds for the current model, as the Markov
process {Φ(t), t ≥ 0} on the state space S = {(U,U), (U,R), (R,U), (R,W ), (W,R)} is evidently irreducible.

With the equations above, one can now compute all the coefficients b(k;n,ϕ), for k ∈ N, (n,ϕ) ∈ N2 × S
recursively. This not only allows for the computation of the steady-state probabilities, but also of any function of
the state probabilities. More specifically, let g(l,ϕ) represent a function which maps values from the state space
N2 × S to a real value. Most common performance measures, including moments of the queue lengths, can be
expressed in the form E[g(L,Φ)]. Using (6), the expectation of g(L,Φ) is defined as

E[g(L,Φ)] =
∑

(l,ϕ)∈N2×S

g(l,ϕ)p(l,ϕ) =

∞∑
m=0

∑
|l|=m

∑
ϕ∈S

g(l,ϕ)

∞∑
k=0

χk+mb(k; l,ϕ).

By changing the index of the last sum, substituting k for k−m, and subsequently changing the order of summation
we obtain

E[g(L,Φ)] =

∞∑
k=0

χk
k∑

m=0

∑
|l|=m

∑
ϕ∈S

g(l,ϕ)b(k −m; l,ϕ).

This implies that performance measures of the form E[g(L,Φ)] can also be written as a power series in χ:

E[g(L,Φ)] =

∞∑
k=0

χkf(k), (11)

with coefficients given by

f(k) :=
∑

0≤|l|≤k

∑
ϕ∈S

g(l,ϕ)b(k − |l|; l,ϕ), k = 0, 1, . . . (12)

While the computation of E[g(L,Φ)] involves the computation of an infinite number of coefficients, in practice
only a finite number of coefficients can be computed. Since the term χkf(k) often converges to zero as k → ∞,
we can compute E[g(L,Φ)] up to arbitrary precision by truncating the series after a finite number M . We thus
obtain the following computational scheme to evaluate E[g(L,Φ)]:

1. Determine b(0; 0,ϕ) by solving the set of equations consisting of all but one of the equations (8) together
with (9). Compute f(0) according to (12), i.e.

f(0) =
∑
ϕ∈S

g(0,ϕ)b(0; 0,ϕ). (13)

2. Let f(k) := 0, k = 1, 2, . . .

3. Set m := 1.

4. For all (k; l,ϕ) ∈ N3 × S with l 6= 0 and with k + |l| = m, compute b(k; l,ϕ) by iteratively solving the
equation set (7) in increasing order of (k; l,ϕ) with respect to ≺. Update f(m) according to (12).

5. For all ϕ ∈ S, compute b(k; l,ϕ) by solving the set of equations consisting of all but one of the equations
(7) in combination with (10). Update f(m) according to (12).

6. Set m := m+ 1. If m ≤M , return to step 4, otherwise stop.

With this computational scheme, performance measures such as the r-th moment of Li or the cross-moment
E[L1L2] can be computed by taking g(l,ϕ) = lri or g(l,ϕ) = l1l2 respectively. Moreover, note that the steady-
state probabilities p(n,ψ) themselves can be computed through this scheme by taking g(l,ϕ) = 1{l=n,ϕ=ψ}.
We end this section with several remarks.
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Remark 3.1. For the numerical evaluation of the performance measures, we compute (11) using the corresponding
function g(l,ϕ) and truncate the power series after the M -th order term. In general, it is hard to say exactly how
to choose the value of M in order to achieve a certain degree of accuracy. First, this number depends on the
‘degree of symmetry’. If the rates of arrival, service, breakdown and repair do not differ between the first-layer
queues and machines, the power series (11) generally converges faster than for systems, where these rates are
queue-dependent or machine-dependent. Secondly, the choice of M also depends heavily on the load offered to
the system. For small χ, only a small number of terms have to be computed for the truncated power series to be
accurate.

Remark 3.2. It is not guaranteed that the power series (6) and (11) converge for every value of χ. Therefore, it
may happen that PSA, as presented in this section, will fail for very asymmetric systems, because (6) and (11)
are divergent. There are two techniques available in the literature to improve the convergence properties of these
power series. For an extensive discussion of these methods, see e.g. [5]. The conformal mapping technique
tries to enlarge the radius of convergence by mapping any singularities out of the circle |χ| < χ∗. Alternatively,
the epsilon algorithm accelerates convergence of a slowly convergent power series or determines a value for a
divergent series. This is done by approximating the performance measure under consideration by a sequence of
polynomials.

Remark 3.3. Observe that we have assumed exponentiality in the interarrival times, service times, breakdown
times and repair times. However, this is not strictly needed to apply PSA. In order to use PSA, we only need
phase-type distributions. For phase-type distributions, the supplementary vector Φ(t) must be expanded to include
information on the phase each of the running times is in, in order to preserve the Markov property of the process
{(L(t),Φ(t)), t ≥ 0}. Therefore, the size of the supplementary state space S increases. This may lead to a
considerable increase in complexity of the computational scheme, since the equation set (7) now contains more
equations and more unknowns. For Coxian distributions however, the increased complexity is limited, since the
phases of a Coxian distribution are placed in sequence. Therefore, (7) will be a relatively sparse set of equations.

Remark 3.4. In this section, we have applied PSA to a layered model with two machines (resulting in two first-
layer queues) and one repairman. PSA is also applicable to a similar model with a larger number of machines
and repairmen. For a larger number of machines and first-layer queues, information on the order in which the
machines are waiting for repair needs to be included into the supplementary vector Φ(t). Because the dimension
of the vector L(t) and the size of the state space S will increase, the computational complexity will increase
accordingly. For a larger number of repairmen, no additional non-exponentiality is introduced to the system and
thus no additional information needs to be included into Φ(t), however the state space S and the rates u(l,ϕ,ψ)
will evidently change.

4 Light traffic behaviour

In Section 3, we have derived a computational scheme to numerically compute performance measures. These
computations can be performed up to arbitrary precision, by truncating the power series in (11) and subsequently
computing recursively the coefficients f(k). This leads to the question whether PSA can also be used to obtain
similar computations in a symbolic fashion. In theory, this is possible by running the computational scheme as
before, but now using parameter values instead of numerical values for the rates of arrival, service, breakdown
and repair. However, from a practical point of view, only coefficients f(k) up to a small number of k can be
computed symbolically. The set of equations (7) becomes increasingly hard to solve, as the expressions for the
terms b(k; l,ϕ) become very large very fast.

The number of coefficients that can be computed symbolically is generally not enough to obtain an accurate ap-
proximation for general values of χ. However, as χ becomes smaller, the higher-order terms become increasingly
negligible. Therefore, the so-called light-traffic (LT) behaviour of a performance measure as χ → 0 can be iden-
tified symbolically. We do so for the performance measures E[L1] in Section 4.1 and E[L1L2] in Section 4.2. For
the sake of clarity, we will refer to the k-th coefficients f(k) in (11) corresponding to g(l,ϕ) = l1 as f1(k) in the
sequel. Similarly, f2(k) denotes the k-th coefficient corresponding to g(l,ϕ) = l1l2.
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4.1 Marginal queue length

We are interested in the LT behaviour of the marginal queue length L1 in the variable χ = ρ̂. More specifically, we
regard the behaviour of the mean of L1 as a function of the relative load, as ρ̂ goes to zero. By taking g(l,ϕ) = l1,
and running PSA with M = 2, we obtain the following expression for E[g(L,Φ)] = E[L1]:

E[L1] = f1(0) + f1(1)ρ̂+ f1(2)ρ̂2 +O(ρ̂3), (14)

where O(ρ̂3) represents third- and higher order terms in ρ̂ for which the computation of the coefficients is not
feasible symbolically. Furthermore, we have that f1(0) = 0, since g(0,ϕ) = 0r = 0 in (13). This is explained
by the fact that there are no arrivals for ρ̂ = 0, and thus there never is any product in the system. The coefficient
f1(1) equals d

dρ̂E[L1]|ρ̂↓0, the derivative of the mean of L1 with respect to ρ̂ evaluated at ρ̂ ↓ 0. Computing f1(1)
leads to a closed-form expression in the service rate of M1 as well as the breakdown and repair rates of each of
the machines. Since this term is too large to display in full, we give the expressions for d

dρ̂E[L1]|ρ̂↓0 in each of
the model parameters separately. When giving the derivative in each rate of these parameters, we assume all other
parameters to be equal to one:

Model parameter d
dρ̂E[L1]|ρ̂↓0 = f1(1)

µ1
26
25 + 8µ1

25 −
3

25(3+µ1)

σ1 1 + 9
49(3+σ1) −

36
7(2+3σ1)2 + 120

49(2+3σ1)

σ2
4
3 −

3
49(3+σ2) −

13
21(2+3σ2)2 + 9

49(2+3σ2)

ν1
75
64 + 135

256(1+2ν1)2 + 21
256(1+2ν1) + 567

256(3+2ν1)2 −
21

256(3+2ν1)

ν2
5
4 −

13
75(3+ν2) + 27

20(1+2ν2)2 −
57

100(1+2ν2) −
1

2(3+2ν2)2 + 11
12(3+2ν2)

From these results, we see that d
dρ̂E[L1]|ρ̂↓0 is increasing in µ1, and decreasing in ν1 and ν2. This is not surprising,

as it intuitively makes sense that the queue length generally increases in the service rates and decreases in the repair
rates. Moreover, we note that the denominators of the terms in the expressions only involve the model parameters
in the form of polynomials of at most second order; there are no higher powers involved.

It is important to observe that the expression f1(1) also represents the first-order derivative of higher moments of
L1 as ρ̂ ↓ 0. In other words, the first-order derivative of E[Lri ] with respect to ρ̂, evaluated at ρ̂ ↓ 0 is independent
of r. This can be explained by careful inspection of f(1) in (12). The first-order term f1(1) only involves values
of g(l,ϕ) for which |l| ∈ {0, 1}, which implies that l1 ∈ {0, 1} too. To inspect E[Lri ], we take g(l,ϕ) = lr1.
Since l1 ∈ {0, 1}, the function g(l,ϕ) can only evaluate to the values 0r = 0 or 1r = 1, irrespective of r > 0.

The application of PSA in a symbolic manner also allows us to find closed-form expressions for the second-
order derivative d2

dρ̂2E[L1]|ρ̂↓0 = 2f1(2). Again, we give this expression in each of the model parameters, while
assuming the other parameters to be equal to one:

Model parameter d2

dρ̂2E[L1]|ρ̂↓0 = 2f1(2)

µ1
226
125 + 88µ1

125 −
108

125(3+µ1)3 −
18

125(3+µ1)2 + 18
25(3+µ1)

σ1 2− 36
343(3+σ1)3 + 222

2401(3+σ1)2 + 4538
16807(3+σ1) + 272

343(2+3σ1)3

− 26800
2401(2+3σ1)2 + 87228

16807(2+3σ1)

σ2
8
3 −

12
343(3+σ2)3 −

500
2401(3+σ2)2 −

3784
16807(3+σ2) −

68
343(2+3σ2)3

− 10952
7203(2+3σ2)2 + 11352

16807(2+3σ2)

ν1
2385
1024 −

459
8192(1+2ν1)3 + 22725

16384(1+2ν1)2 −
11673

16384(1+2ν1) + 19683
8192(3+2ν1)3

+ 105309
16384(3+2ν1)2 + 12249

16384(3+2ν1)

ν2
5
2 −

52
1125(3+ν2)3 −

2312
5625(3+ν2)2 −

48194
84375(3+ν2) −

1107
4000(1+2ν2)3 + 110367

40000(1+2ν2)2

− 106017
100000(1+2ν2) −

283
288(3+2ν2)3 −

59
64(3+2ν2)2 + 1903

864(3+2ν2)

Again, we see that d2

dρ̂2E[L1]|ρ̂↓0 is increasing in µ1, and decreasing in ν1 and ν2. Furthermore, note that the
denominators of the expressions only involve the model parameters in a polynomial fashion up to order three.
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This is not surprising, as the expressions for the first derivative only involve the parameters up to a second order.

Remark 4.1. If we wish to compute the LT behaviour of the moments of L2, we perform similar computations to
the above, or we simply renumber the queues.

Remark 4.2. Note that the computation of f1(1) = d
dρ̂E[L1]|ρ̂↓0 is also possible through Little’s law:

E[S1]|ρ̂↓0 =
E[L1]|ρ̂↓0

λ1
=
f1(1)ρ̂+O(ρ̂2)

λ1

∣∣∣
ρ̂↓0

=
f1(1)

µ1mC
=

d
dρ̂E[L1]|ρ̂↓0
µ1mC

, (15)

where E[S1]|ρ̂↓0 is the mean sojourn time of a type-1 product conditioned on the event there are no other products
in the system. This sojourn time consists of the actual service requirement, the time the product needs to wait
before M1 takes the product into service, and the downtime M1 suffers during the service of the product. The
mean of the first term obviously equals µ−1

1 . The means of the latter two terms can be computed by studying the
Markov process {Φ(t), t > 0}. Eventually, this leads to an expression for E[S1]|ρ̂↓0, which on its turn leads to an
expression for d

dρ̂E[L1]|ρ̂↓0 due to (15).

4.2 Joint queue length

In this section, we discuss the LT behaviour of E[L1L2], the cross-moment of the queue lengths in the layered
model, as a function of ρ̂. We regard instances of the model for which both of the arrival rates tend to zero, while
we preserve the relative values, i.e., we assume that

λ2 = dλ1

at all times for a constant d > 0. This means that we set a(1)(l,ϕ) = µ1mC and a(2)(l,ϕ) = dµ1mC , while we
let λ1 (or ρ̂) go to zero. Furthermore, we take g(l,ϕ) = l1l2. By running the computational scheme as given in
Section 3.2 with M = 2, we obtain the following expression for E[L1L2]:

E[L1L2] = f2(0) + f2(1)ρ̂+ f2(2)ρ̂2 +O(ρ̂3). (16)

Like before, we have that f2(0) = 0, because g(0,ϕ) = 0 for all ϕ ∈ S in (13). We also have that f2(1) = 0,
due to (12). The coefficient f2(1) only involves values of g(l,ϕ) for which 0 ≤ l1 + l2 ≤ 1. Within this domain,
there is no combination (l1, l2) for which l1l2 > 0. Therefore, the most prominent LT behaviour is captured by
the term f2(2).

Going back to the derivatives of the cross-moment, we have that the first order derivative of E[L1L2] for ρ̂ ↓ 0

vanishes, since f2(1) = 0. By (16), we have for the second-order derivative that d2

dρ̂2E[L1L2]|ρ̂↓0 = 2f2(2). By
evaluation of the computational scheme up to M = 2, we obtain a closed-form expression for this second-order
derivative evaluated at χ ↓ 0. Again, we give the expression separately in each of the model parameters, while
assuming each of the others to be equal to one:

Model parameter d2

dρ̂2E[L1L2]|ρ̂↓0 = 2f2(2)

µ1 − 1816d
3375 + 3646dµ1

1125 +
413dµ2

1

375 + 36d
125(3+µ1) + 32(373d+143dµ1)

3375(8+13µ1+3µ2
1)

µ2
413d
375 + 133d

50µ2
+ 4d

125(3+µ2) + 4357d+1235dµ2

750(8+13µ2+3µ2
2)

σ1 − 20d
1+σ1

+ 96d
343(3+σ1)2 −

3560d
2401(3+σ1) −

120d
2197(5+σ1) −

110360d
1911(2+3σ1)3

− 5295776d
173901(2+3σ1)2 + 425228092d

5274997(2+3σ1)

σ2
97d
27 + 4dσ2

3 + 96d
343(3+σ2)2 −

4232d
2401(3+σ2) −

480d
2197(5+σ2)

− 27590d
17199(2+3σ2)3 −

235012d
57967(2+3σ2)2 −

5574427d
5274997(2+3σ2)

ν1
4779d
896 −

364d
125(3+ν1) + 3267d

5120(1+2ν1)3 + 357131d
51200(1+2ν1)2 −

3557887d
6912000(1+2ν1)

− 189855d
13312(3+2ν1)3 + 5779335d

346112(3+2ν1)2 −
78477979d

4499456(3+2ν1) + 17756000d
415233(17+7ν1)

ν2
531d
224 + 34d

1+ν2
− 364d

1125(3+ν2) + 3267d
1280(1+2ν2)3 + 313571d

12800(1+2ν2)2 −
60000667d

1728000(1+2ν2)

− 21095d
3328(3+2ν2)3 −

4655195d
259584(3+2ν2)2 −

291320479d
10123776(3+2ν2) + 710240d

415233(17+7ν2)
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As in the previous case, we note that the numerators and the denominators of the terms in d2

dρ̂2E[L1L2]|ρ̂↓0 only
involve the model parameters in a polynomial fashion up to order two. For the service rates µ1 and µ2, the
expressions are equivalent. If we let λ2 scale along with λ1 such that ρ1 = ρ2, we even have that the expressions
for µ1 and µ2 in the table above are the same. In this case, it holds that ρ̂ = λ1

µ1mC
= λ2

µ2mC
and d = µ2/µ1.

The parameter ρ̂, thus, depends on the service rates µ1 and µ2 in the same way. Hence, by assuming d = µ2/µ1,
we have that d2

dρ̂2E[Lr1]|ρ̂↓0 also depends on µ1 and µ2 in a similar manner. Also the corresponding equations for
the breakdown rates σ1 and σ2, as well as those for the repair rates ν1 and ν2, are equivalent. When multiplying
these expressions with m−2

C , the results for σ1 and σ2 are exactly the same, as well as those for ν1 are ν2. This is
not surprising, because E[L1L2] behaves symmetrically with respect to both of the queue lengths, and is therefore
equally sensitive to characteristics of either of the machines.

5 Approximations for the mean queue length

Based on the LT-behaviour found in Section 4, we propose two approximations for E[L1], the mean queue length
of Q1. Note that this does not imply a loss of generality, as one can simply renumber the queues in order to study
Q2. The first one is based on f1(0), f1(1) and f1(2), i.e. the first few coefficients of f(k) in (11) corresponding to
g(l,ϕ) = l1 up to k = 2. This approximation is derived in Section 5.1.1. A numerical study in Section 5.1.2 shows
that the approximation already achieves a very good accuracy. In the worst case of the model instances tested, the
relative difference between the approximated mean queue length and the simulated value is 1.7%. Moreover, since
the coefficients f1(0), f1(1) and f1(2) are still tractable in a symbolic fashion, as we have seen in Section 4.1, the
approximation is in closed form. Therefore, it is easily implementable and suitable for optimisation purposes. The
first approximation is only based on LT-results obtained by the application of PSA.

In an effort to further increase accuracy, we also study the heavy-traffic (HT) behaviour in Section 5.2.1; i.e., the
behaviour of the mean queue length as the queue becomes fully saturated. We subsequently propose a second
approximation for the mean queue length in Section 5.2.2, based on an interpolation between the same LT-limits
already used in the closed-form approximation and the HT behaviour of the queue length. This second approx-
imation is therefore also exact when the queue is fully saturated. The interpolation approximation works even
better in terms of accuracy, being indistinguishable from simulation results. However, it is not in closed form, and
is thus slightly harder to implement. Finally, we present a number of limiting cases in Section 5.3, where both
approximations turn out to be exact.

5.1 Closed-form approximation

In this section, we derive a closed-form approximation for the mean queue length ofQ1 based on symbolic closed-
form expressions of the first three PSA-coefficients f1(0), f1(1) as well as f1(2), which we denote by E[LCF

1,app]
and then numerically assess its accuracy.

5.1.1 Derivation of the closed-form approximation

We first develop a closed-form approximation for E[L1], by observing the mean queue length as a function h of ρ̂.
We assume this function to be analytic on [0, 1); i.e., we have that

h(ρ̂) =

∞∑
n=0

f1(n)ρ̂n =
z(ρ̂)

1− ρ̂
0 ≤ ρ̂ < 1, (17)

where

f1(n) =
h(n)(0)

n!
, z(ρ̂) = f1(0) +

∞∑
n=1

(f1(n)− f1(n− 1))ρ̂n (18)
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Parameter Considered parameter values
ρ1 {0.25, 0.5, 0.75}

δ1 {1}

(σ1, σ2) aσi · bσj ∀i, j
where aσ = {0.1, 1, 10} and

bσ = {(1, 1), (1, 2), (2, 1), (1, 5), (5, 1)}

(ν1, ν2) aνi · bνj ∀i, j
where aν = {0.1, 1, 10} and

bν = {(1, 1), (1, 2), (2, 1), (1, 5), (5, 1)}

Table 1: Parameter values of the test bed used to compare the closed-form approximation to exact results.

and h(n)(ρ̂) is the n-th derivative of h with respect to ρ̂. Note that the power series (11) and (17) are equal
when taking g(l,ϕ) = l1 and χ = ρ̂. As a consequence, although an exact expression for h(ρ̂) is not known,
the coefficients f1(n), n = 0, 1, . . . can be computed using the computational scheme as given in Section 3.2.
Numerically, we can do this for large n. Symbolically, however, only f1(0) = 0, f1(1) and f1(2) lead to tractable
closed-form expressions in the model parameters µ1, σ1, σ2, ν1 and ν2. Note that we have already studied these
expressions in detail in Section 4.1. Since h(ρ̂) is guaranteed to exist, we have that the sum in z(ρ̂) must converge.
When observing numerically the first few terms of the series {f1(i) − f1(i − 1), i > 0} using the computational
scheme of Section 3.2, we generally see that they are moderate in absolute value, but more importantly, alternate
in sign rapidly. This even seems to be the case when this series is divergent. Because of this, and the decreasing
nature of ρ̂n in n, we may assume that the first two terms alone already approximate this sum well. In other words,
since f1(0) is 0, we have that z(ρ̂) is well approximated by f1(1)ρ̂+ (f1(2)− f1(1))ρ̂2. Out of this observation,
a closed-form approximation for E[L1] follows immediately.

Approximation 5.1. In the two-layered model, an accurate closed-form approximation for the mean queue length
of Qi is given by

E[LCF
1,app] =

aρ̂+ bρ̂2

1− ρ̂
, (19)

where a = f1(1), b = f1(2)− f1(1) and ρ̂ = λ1

µ1(πΦ
(U,U)

+πΦ
(U,R)

)
.

An extensive numerical study in the next section shows that Approximation 5.1 performs very well in terms
of accuracy. Furthermore, because the approximation is given in a simple and closed form, it is very easy to
implement and suitable for optimisation purposes.

5.1.2 Accuracy of the closed-form approximation

In this section, we apply Approximation 5.1 on a number of systems and compare it to “exact” values of the
mean queue length of Q1, obtained by simulation. The complete test bed of instances that we analysed contains
675 different combinations of parameter values, all listed in Table 1. This table lists multiple values for the
normalised workload of Q1(ρ̂), the breakdown rates of M1 and M2 (σ1 and σ2) and the repair rates of M1 and
M2 (ν1 and ν2). In particular, these rates are varied in the order of magnitude through the values aσi and aνi and
in the imbalance, through the values bσj and bνj , all specified in the table. As a consequence, the breakdown rates
(σ1, σ2) and the repair rates (ν1, ν2) run from (0.1, 0.1), being small and perfectly balanced, to (50, 10), being
large and significantly imbalanced. The service requirements of type-1 products are assumed to be exponentially
(1) distributed.

For each of the systems corresponding to each of the parameter combinations in Table 1, we compare the approx-
imated mean queue length of Q1, E[LCF

1,app], to the “exact” mean queue length E[L1]. Subsequently, we compute
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the relative error of these approximations, i.e.,

∆ := 100%×
∣∣∣E[LCF

1,app]− E[L1]

E[L1]

∣∣∣.
The average value for ∆ in this test bed is roughly 0.07%. The system for which the error ∆ is largest with a value
of 1.7%, is given for the model parameters ρ̂ = 0.75 and σ1 = σ2 = ν1 = ν2 = 0.1, i.e., the system for which
the breakdowns and repairs occur on the slowest time scale compared to the interarrival times and service times
of the products in the first queue.

In Table 2, the mean value of ∆ is given for each category of the variables in Table 1. We see in Table 2(a)
that the accuracy of the approximation increases as the load offered to Q1 decreases. This is not surprising, as
the approximation is exact in LT by construction. From Tables 2(b) and 2(c), it is clear that the approximation
is sensitive to the magnitude of the breakdown rates and repair rates. As will be evident in Section 5.3, the
approximation becomes exact as some of these variables tend to zero or infinity. Moreover, according to Tables
2(d) and 2(e) the approximation is not very sensitive to imbalance in the second layer of the system.

(a)

ρ̂ 0.25 0.5 0.75
Mean rel. error 0.017% 0.064% 0.127%

(b)

aσi 0.1 1 10
Mean rel. error 0.200% 0.007% 0.001%

(c)

aνi 0.1 1 10
Mean rel. error 0.202% 0.005% 0.001%

(d)

bσj (1, 1) (1, 2) (2,1) (1, 5) (5, 1)
Mean rel. error 0.083% 0.073% 0.072% 0.079% 0.038%

(e)

bνj (1, 1) (1, 2) (2,1) (1, 5) (5, 1)
Mean rel. error 0.091% 0.080% 0.029% 0.045% 0.101%

Table 2: Mean relative error categorised in ρ1 (a), aσi (b), aνi (c), bσj (d) and bνj (e).

From these results, we conclude that the approximation works very well in general. The accuracy may degrade
slightly when breakdown rates and repair rates are very small compared to the arrival and service rate of type-1
products. To illustrate this, regard a system with µ1 = 1 and σ1 = σ2 = ν1 = ν2 = 0.001. In Figure 2,
we plot the closed-form approximation E[LCF

1,app] along with the numerical values for E[L1] versus ρ̂. In this
extreme example, ∆ grows up to roughly 6% as ρ̂ nears one. However, the closed-form approximation remains
very well suited for optimisation purposes. The shapes of the curves of E[LCF

1,app] and E[L1] still match each other
well. Therefore, using the derived closed-form approximation into an optimisation function, instead of an exact
expression if it had been available, should result in an optimum that is close to the true optimum.

5.2 Interpolation approximation

Approximation 5.1 satisfies the light-traffic limits found by PSA and already performs very well. To further
increase performance, we refine the approximation so that it also satisfies the heavy-traffic behaviour of the mean

14



0.0 0.2 0.4 0.6 0.8

Ρ
`

1000

2000

3000

4000

5000

6000

7000

E@L1D

Figure 2: E[LCF
1,app] (solid curve) and E[L1] (dashed curve) versus ρ̂.

queue length. More specifically, based on the form of the performance measure h(ρ̂) in (17), we construct an
approximation h̃(ρ̂) so that it matches every limit that is known about h(ρ̂); i.e., for light traffic

h(i)(0) = h̃(i)(0), i = 0, 1, . . . , k − 1, (20)

and for heavy traffic

lim
ρ̂↑1

(1− ρ̂)h(ρ̂) = lim
ρ̂↑1

(1− ρ̂)h̃(ρ̂). (21)

In literature [9, 18, 22], such interpolation approximations of the form

h̃(ρ̂) =

∑k
n=0 r(n)ρ̂n

1− ρ̂
(22)

have been proposed and used successfully to approximate performance measures in the GI/G/1 queue and in
queueing systems with Poisson input. More recently, an interpolation approximation of this sort has been success-
fully applied to approximate the mean waiting time in polling systems with renewal arrivals [6], which has acted
as a basis for a distributional waiting-time approximation in such systems [7].

Note that Approximation 5.1 already is of the form of (22), with k = 3, r(0) = r(3) = 0, r(1) = f1(1) and
r(2) = f1(2)− f1(1). The closed-form approximation already satisfies the LT limits; however it does not satisfy
the HT limit. Therefore, we refine the approximation by taking r(3) such that the approximation is also exact
in heavy traffic. To this end, we first determine heavy-traffic limits in Section 5.2.1, after which we discuss the
resulting interpolation approximation in Section 5.2.2.

5.2.1 Heavy-traffic limit

In this section, we present the heavy-traffic limit for the mean queue length of Q1; i.e., limρ̂↑1 E[(1− ρ̂)L1]. This
result is one of the ingredients for the intended interpolation approximation, see (21). We also provide the outline
of a proof leading to this result. A complete proof is beyond the scope of the current paper and will be presented
in a forthcoming paper.

Theorem 5.1. The random variable limρ̂↑1(1− ρ̂)L1 is exponentially distributed with mean 1 +
µ1σ

2
C

2mC
, where

mC = lim
t→∞

E[C(t)]

t
= πΦ

(U,U) + πΦ
(U,R) and σ2

C = lim
t→∞

Var[C(t)]

t
.
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Outline of proof. Before considering the queue length, first regard the stationary amount of work W1 in Q1. Let
A(λ1t) be the cumulative amount of work which has entered the queue in [0, t), i.e.,

A(λ1t) =

N(λ1t)∑
i=1

Bi,

where N(t) is a Poisson distributed random variable with rate t and the Bi are i.i.d. exponentially distributed with
rate µ1. By inspection of the one-sided reflection of the net-input process {A(λ1t)−C(t), t ≥ 0}, the distribution
of the stationary amount of work in Q1 is determined by

W1
d
= sup

t≥0
{A(λ1t)− C(t)}. (23)

Let R := 1
1−ρ̂ . Dividing both sides of (23) by R and scaling time by R2, we obtain

(1− ρ̂)W1
d
= sup

t≥0

{A(λ1R
2t)− C(R2t)

R

}
= sup

t≥0

{A(λ1R
2t)− E[A(λ1R

2t)]

R
− C(R2t)− E[C(R2t)]

R
− E[C(R2t)]− E[A(λ1R

2t)]

R

}
.

Taking the limit R → ∞ (or equivalently, ρ̂ ↑ 1) on both sides, one can show that we are allowed to interchange
limit and supremum operators in the right hand side. Due to the functional central limit theorem [23], we subse-
quently have that the first two terms converge to Brownian motions with zero drift and variances µ1mCσ

2
A = 2mC

µ1

and σ2
C respectively. The third term converges to mCt as R → ∞. Thus, we have for the stationary amount of

work in the system that the random variable limρ̂↑1(1− ρ̂)W1 is in distribution equal to the all-time supremum of
a Brownian motion with drift −mC and variance 2mC

µ1
+ σ2

C . By standard theory on the Brownian motion, this is

known to be exponentially distributed with mean 1
µ1

+
σ2
C

2mC
.

Now that a HT limit for the stationary amount of work in Q1 is known, HT limits for the waiting time D1, the
sojourn time S1 and ultimately the queue length L1 follow. By the HT limit for W1 and the relation

P(D1 > t) = P(W1 > C(t)),

one can prove that limρ̂↑1(1 − ρ̂)D1 is exponentially distributed with mean 1
µ1mC

+
σ2
C

2µ2
C

. The sojourn time S1

is composed of the waiting time D1 and the service period E1 (including service interruptions). The duration of
the latter is independent to the load offered to the system. Therefore, the dynamics of E1 are negligible in HT;
i.e. limρ̂↑1(1− ρ̂)E1 = 0. Thus, limρ̂↑1(1− ρ̂)S1 follows the same distribution as limρ̂↑1(1− ρ̂)D1. Finally, an
application of the distributional form of Little’s law (cf. [15]) leads to the theorem.

5.2.2 Resulting interpolation approximation

Now that the HT limit of the mean queue length is known, we finalise the construction of the interpolation ap-
proximation. In order to satisfy the known limiting regimes, we impose several constraints on the interpolation
approximation. First, as stated in (20), we require the approximated mean waiting time at ρ̂ = 0, as well as its first
two derivatives with respect to ρ̂ evaluated at that point, to be equal to the corresponding exact values obtained by
PSA:

1. E[LIP
1,app]|ρ̂=0 = E[L1]|ρ̂=0 = f1(0) = 0,

2. d
dρ̂E[LIP

1,app]|ρ̂=0 = d
dρ̂E[L1]|ρ̂=0 = f1(1),

3. d2

dρ̂2E[LIP
1,app]|ρ̂=0 = d2

dρ̂2E[L1]|ρ̂=0 = 2f1(1) + 2f1(2).
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The terms f1(0), f1(1) and f1(2) are defined in (18) and, as we have seen before, allow for tractable closed-form
expressions. Moreover, we require the interpolation approximation to satisfy the HT limit as derived in Theorem
5.1:

4. limρ̂↑1 E[(1− ρ̂)LIP
1,app] = limρ̂↑1 E[(1− ρ̂)L1] = 1 +

µ1σ
2
C

2mC
.

We adhere to the form of (22) with k = 3. Then, the four constraints above fully determine the following
approximation.

Approximation 5.2. In the two-layered model, an accurate approximation for the mean queue length ofQi, based
on an interpolation between LT and HT limits, is given by

E[LIP
1,app] =

aρ̂+ bρ̂2 + cρ̂3

1− ρ̂
, (24)

where a = f1(1), b = f1(2)− f1(1), c = 1 +
µ1σ

2
C

2mC
− f1(2),

mC = lim
t→∞

E[C(t)]

t
= πΦ

(U,U) + πΦ
(U,R) and σ2

C = lim
t→∞

Var[C(t)]

t
.

We still need to compute σ2
C . A formal expression for Var[C(t)] is given in Section 2. However, it is hard to obtain

an exact, closed-form expression for σ2
C . Therefore, we sketch an approach to obtain this value numerically. We

approximate σ2
C by numerically computing

σ2
C ≈

E[C2(2n)]− (E[C(2n)])2

2n
(25)

for a large value of n. The computation of the first moment E[C(t)] is simple and feasible in closed form:
E[C(t)] = mCt. The second moment E[C2(t)] can theoretically be obtained by computing Z(s, t) as given in
(2), differentiating twice with respect to s and conditioning as desired. However, in practice it is hard to obtain an
exact, closed-form expression for Z(s, t). Although numerical values for σ1, σ2, ν1 and ν2 are known, s remains
a variable. Therefore, we choose to approximate Z(s, t) = etF (s) by truncating its Taylor series after k terms:

Z(s, t) ≈
k−1∑
i=0

tiF i(s)

i!
. (26)

When taking t large, the number k of terms needed becomes prohibitively large to obtain fairly accurate approxi-
mations of Z(s, t). However, for t = 1, truncation after k = 21 terms generally already produces a very accurate
result for Z(s, 1). From this, we derive:

Ei,j [C(1)] =
− d
dsZi,j(s, 1)

Pi,j(1)
and Ei,j [C2(1)] =

d2

ds2Zi,j(s, 1)

Pi,j(1)
(27)

for all i, j ∈ {1, . . . , |S|}, where Pi,j(t) and Ei,j [C(t)] are short-hand notations for P(Φ(t) = j|Φ(0) = i)
and E[C(t)|Φ(0) = i,Φ(t) = j]. The probabilities Pi,j(t) are obtained by performing transient analysis on the
Markov process {Φ(t) : t ≥ 0}, or by simply computing Zi,j(0, t). Now that we know how to compute Ei,j [C(1)]
and Ei,j [C2(1)] arbitrarily accurately, we can compute Ei,j [C(t)] and Ei,j [C2(t)] through a recursion. Under the
assumption that the Markov process is already in stationarity at t = 0, we obviously have that for 0 < s < t,
C(t)−C(s) is independent of C(s) and has the same distribution as C(t− s). Therefore, the following recursion
holds for t > 0 by standard probabilistic arguments:

Ei,j [C(2t)] =
∑
k∈S

Pi,k(t)Pk,j(t)

Pi,j(2t)

(
Ei,k[C(t)] + Ek,j [C(t)]

)
,

Ei,j [C2(2t)] =
∑
k∈S

Pi,k(t)Pk,j(t)

Pi,j(2t)

(
Ei,k[C2(t)] + 2Ei,k[C(t)]Ek,j [C(t)] + Ek,j [C2(t)]

)
.
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Starting with t = 1 by using the values in (27), n of these recursion steps provide a value for Ei,j [C2(2n)] for all
i, j ∈ S. By conditioning over i, j, this results in

E[C2(2n)] =
∑
i∈S

∑
j∈S

πΦ
i Pi,j(2

n)Ei,j [C2(2n)].

By plugging this expression, together with E[C(2n)] = mC2n, into (25), we can now numerically compute σ2
C .

As the right-hand side of (25) converges very rapidly as n increases, virtually the only numerical error we make
stems from (26), which can be made arbitrarily small.

We end this section by observing that Approximation 5.2 performs extremely well. The results equivalent to Table
2 do not show any substantial errors. Like the closed-form approximation obtained in Section 5.1, the interpo-
lation approximation satisfies the LT limits obtained by means of PSA. However, as opposed to the closed-form
approximation, the interpolation approximation is also exact when ρ̂ ↑ 1. It is therefore intuitively not surprising
that the interpolation approximation performs even better than the closed-form approximation, especially for large
values of ρ̂. Systems for which the interpolation approximation does show substantial errors typically involve
fairly loaded queues (ρ̂ ≈ 0.7), and breakdowns and repairs that occur on a far larger time scale than product
arrivals and services. For these systems, numerical methods (including simulation) generally fail to work well.
When applying PSA numerically, the power series (11) may not converge. Even if it does, one would still have
the problem of noticeable truncation errors. Moreover, the time needed to simulate the queue length up to a
very accurate degree becomes prohibitively large. We therefore conclude that the accuracy of the interpolation
approximation competes with the precision of numerical methods.

Remark 5.1. We derived Approximations 5.1 and 5.2 for a model with two queues and one repairman. However,
similar strategies to those used in this section lead to accurate approximations for models with larger numbers of
queues and repairmen. To obtain the light-traffic terms a and b, the implementation of PSA must be adapted, as
suggested in Remark 3.4. For the heavy-traffic term, Theorem 5.1 still holds. However, since the cardinality of
the auxiliary state space S obviously increases, the computation of σ2

C may be computationally more demanding.
Similarly, when relaxing the model to allow for phase-type distributed interarrival times, service times, breakdown
times and repair times, we can still apply PSA to obtain LT results, as explained in Remark 3.3. To compute
the HT-term, Theorem 5.1 needs to be expanded, but this introduces no extra complexity. However, again, the
computation of σ2

C may be more demanding.

5.3 Behaviour at asymptotic regimes

We conclude by commenting on the behaviour of Approximation 5.1 and Approximation 5.2 in asymptotic in-
stances of the two-layered model.

Light traffic and heavy traffic. By construction, both the closed-form and the interpolation approximations are
exact for systems where Q1 is lightly loaded; i.e., systems where λ1 tends to zero. Furthermore, the interpolation
approximation is by construction exact for systems whereQ1 is fully saturated; i.e., systems where the normalised
workload ρ̂ tends to one. The latter property is very desirable from a practical perspective, as one is often interested
in cases where the queues are heavily loaded. For example, in manufacturing, one is typically interested in
maximising the utilisation of machines, without deteriorating significantly the performance of the system.

No M1-breakdowns. In the asymptotic case where M1 never breaks down; i.e. σ1 = 0, both the closed-form
approximation and the interpolation approximation are exact. When there are no M1-breakdowns, Q1 behaves
like a regular M/M/1 queue. For the M/M/1 model, it is known that

E[L1] =

∞∑
n=0

ρ̂n+1 =
ρ̂

1− ρ̂
. (28)

Since M1 never breaks down, we obviously have that mC = 1 and σ2
C = 0. Moreover, we have that f1(1)|σ1=0 =

f1(2)|σ2=0 = 1. Therefore, it is easy to see that (19), (24) and (28) coincide when there are no M1-breakdowns.
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No M2-breakdowns or instant M2-repairs. In the asymptotic case, where M2 does not require any repair time
from the repairman, both approximations become exact. Downtimes of Q1 then only consist of the actual repair
times, and are exponentially (ν1) distributed. Let the completion time C of a type-1 product be the time between
the start of its service period and the moment it leaves the system. It is easily verified that Q1 in isolation can
be modelled as an M/G/1 queue with server vacations starting at epochs when the queue becomes empty. We
refer to this vacation queue as Y . We obtain the expected queue length of Q1 in this limited regime by studying
the mean queue length E[LY ] of the equivalent vacation queue Y . The service times in Y correspond to the
completion times in Q1 and the vacation times in Y are composed of the idle times of M1, plus the downtimes
corresponding to breakdowns, which occurred when there was no product in Q1. Due to the Fuhrmann-Cooper
decomposition property [11] applied on Y , the mean queue length of Y can be decomposed as follows:

E[LY ] = E[LM/G/1] + E[LY |Y in vacation period]. (29)

The former term E[LM/G/1] corresponds to the mean queue length in an M/G/1 queue similar to Y , but without
any server vacations. The latter term E[LY |Y in vacation period] is the mean queue length in Y observed at a
point in time where the server is on vacation. Obviously, this equals the mean number of Poisson (λ1) arrivals
during a residual of a downtime D1. Since D1 is exponentially (ν1) distributed,

E[LY |Y in vacation period] =
λ1

ν1
.

Moreover, it is well-known that

E[LM/G/1] = λ1E[C] +
λ1E[C2]

2(1− λ1E[C])
,

where the moments E[C] and E[C2] of the completion time can be determined through the relation C = B1 +∑N
i=1 Vi. The random variableN is the (geometric) number of repairs needed within a completion time. The repair

times Vi are now exponentially (ν1) distributed. This relation leads to the following Laplace-Stieltjes transform of
the completion time:

E[e−sC ] = E[e−(s+σ(1−E[e−sV1 ]))B1 ] =
µ1

µ1 + s+ σ(1− ν1
ν1+s )

,

out of which the moments of C follow by differentiation with respect to s:

E[C] =
ν1 + σ1

µ1ν1
and E[C2] =

2
(
µ1σ1 + (ν1 + σ1) 2

)
µ2

1ν
2
1

.

Since M2 requires no repair time, we have that mC = ν1
σ1+ν1

and ρ̂ = λ1

µ1

σ1+ν1
ν1

. By combining the results above,

E[L1] =

(
1 + σ1µ1

(σ1+ν1)2

)
ρ̂

1− ρ̂
. (30)

For the PSA coefficients, we have that f1(1)|σ2=0 = f1(2)|σ2=0 = f1(1)|ν2↑∞ = f1(2)|ν2↑∞ = 1 + σ1µ1

(σ1+ν1)2 .

Since (30) is also exact in HT, Theorem 5.1 implies that 1 +
µ1σ

2
C

2mC
= 1 + σ1µ1

(σ1+ν1)2 . Because of these observations,
(19), (24) and (30) coincide whenever there are no M2-breakdowns or M2-repairs are instant.
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