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Abstract.
We consider retrial queues with slow retrials for M/M/s/s loss systems in
the Halfin-Whitt regime. In this regime the service capacity s is large and
the arrival rate λ is related to s according to λ = s − γ

√
s with γ <

√
s.

We present s-uniform asymptotics for the inverse Poisson-Mills ratio fs(δ)
as δ → −∞. This fs occurs in Cohen’s equation a = fs(γ − a), γ > 0, for
the retrial factor a = as(γ) that determines the retrial rate Ω according to
Ω = a

√
s. We thus obtain approximation results for as(γ) with small γ > 0

(critical range) with uniform error assessment. Furthermore, we present uni-
form asymptotics of fs(δ) in the form of an asymptotic series in powers of
1/
√

s with coefficients expressed in terms of the inverse Gaussian Mills ratio
f∞(δ) in a range δ ≤ s1/6. This allows explicit corrections, in powers of 1/

√
s,

of the limiting retrial factor a = a∞(γ) that are valid uniformly in the range
0 < γ ≤ s1/6.
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1 Introduction

Loss systems with slow retrials in the Halfin-Whitt regime were considered
recently in [1]. Thus, there is considered the M/M/s/s queue (multi-server
loss model) with s servers under a heavy-traffic scaling with arrival rate λ
of the form λ = s − γ

√
s with γ a constant, often of order unity, less than√

s. Without retrials, system stability is guaranteed for any γ <
√

s, but
in the presence of (slow) retrials, one must assume γ to be positive. Under
the assumption of slow retrials, the additional load Ω on the system due to
retrials was shown by Cohen [2] to satisfy the equation

Ω = (λ + Ω) B(s, λ + Ω) . (1)

Here, B(s, λ) is the Erlang B expression

B(s, λ) =
λs/s!

s∑
k=0

λk/k!

=
e−λ(λ/s)2

∞∫
λ

e−λ′(λ′/s)s dλ′

(2)

that represents the steady-state blocking probability in the Erlang loss sys-
tem. In the Halfin-Whitt regime, we write

λ = s− γ
√

s , Ω = a
√

s , (3)

with a the retrial factor, and then Cohen’s equation (1) takes the form

a = fs(γ − a) , (4)

where fs is expressed in terms of B as

fs(δ) =
√

s
(
1− δ√

s

)
B(s, s− δ

√
s) , (5)

with δ <
√

s, and negative values of δ allowed. The function fs is called the
inverse Poisson-Mills ratio.

Cohen’s equation (4) in the Halfin-Whitt regime was studied in consider-
able detail in [1]. Key results are

– existence, uniqueness and monotonicity properties of the solutions a =
as(γ) for s ≥ 1 and 0 < γ <

√
s,

– asymptotics of as(γ) for fixed s according to

as(γ) =
1

γ
− 2√

s
−

(
1− 2

s

)
γ + O(γ2) , γ ↓ 0 , (6)
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– convergence as s →∞ of as(γ) to a∞(γ) according to

as(γ)− a∞(γ) = O
( 1√

s

)
, (7)

uniformly in γ on any compact interval [γ0, γ1] with 0 < γ0 < γ1 < ∞,

– analysis of a∞(γ) occurring in (7) as the unique solution a of the limiting
form of Cohen’s equation

a = f∞(γ − a) , (8)

with γ > 0 and f∞ the inverse of Mills ratio for the Gaussian distribution

f∞(δ) =
e−

1
2
δ2

δ∫
−∞

e−
1
2
(δ′)2 dδ′

(9)

– asymptotics of a∞(γ) according to

a∞(γ) =
1

γ
− γ + 2γ3 − 20γ5 + 82γ7 + O(γ9) , γ ↓ 0 . (10)

The results in [1] on the retrial factors as and a∞ were obtained by a
thorough study of the Mills ratios fs and f∞. In this study the following
facts were noted for f∞ and established for fs

– with f = fs or f∞, there holds

f(δ) > −δ , − 1 < f ′(δ) < 0 , f ′′(δ) > 0 , (11)

for δ <
√

s or δ < ∞ in the respective cases,

– for fixed s ≥ 1, there holds

fs(δ) = −δ − 1

δ
− 2

δ2
√

s
+

(
2− 6

s

) 1

δ3
+ O

( 1

δ4

)
, δ < 0 , (12)

and for the limiting case f∞, there holds

f∞(δ) = −δ − 1

δ
+

2

δ3
− 10

δ5
+

74

δ7
+ O

( 1

δ9

)
, δ < 0 , (13)
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– convergence as s →∞ of fs(δ) to f∞(δ) according to

fs(δ)− f∞(δ) = O
( 1√

s

)
(14)

uniformly in δ on any compact interval [δ0, δ1] with −∞ < δ1 < δ2 < ∞.

Cohen’s equation (4) is ill-posed, and this manifests itself by divergence
to +∞ of the solutions as(γ) and a∞(γ), see (6) and (10), as γ ↓ 0. This
ill-posedness stems from (11–13) showing that the graphs of fs(δ) and f∞(δ)
lie above and are tangent to the straight line {(δ,−δ) | δ < 0}. Hence, there
is no solution a of the equation a = f(γ − a) when γ ≤ 0 and f = fs or f∞,
and there is a unique solution a of this equation when 0 < γ <

√
s or γ > 0

in the respective cases. Moreover, the solution a increases to ∞ as γ tends
to 0. From the leading asymptotics of as(γ) and a∞(γ) as γ ↓ 0, one is led
to expect that as(γ) − a∞(γ) = O(1/

√
s), also, see (7), when γ ↓ 0. Such

information is interesting from the system point of view, since it means that
the Gaussian approximation is valid also in the critical regime γ ↓ 0 with
vanishing small overcapacity. However, the O(γ2) and O(γ9) terms at the
right-hand sides of (6) and (10) do not allow such a conclusion.

A second concern is the fact that convergence of as(γ) to a∞(γ) is rather
slow. One would be interested in being more precise about the O(1/

√
s) at

the right-hand side of (7), for instance, in the form of a series

as(γ) = a∞(γ) +
1√
s

b∞(γ) +
1

s
c∞(γ) + ... , (15)

with validity in a set γ ∈ (0, γs) with γs → ∞ as s → ∞. Evidently, an
expansion as in (15) can only be expected to exist when a corresponding
expansion

fs(δ) = f∞(δ) +
1√
s

g∞(δ) +
1

s
h∞(δ) + ... (16)

would be available on a range δ ∈ (−δ, δs) with δs → ∞ as s → ∞. An
expansion of the type (16) for B−1(s, s− δ

√
s) has been developed by Jager-

man, see [3], Theorem 14. However, there is no statement in [3], Theorem 14,
about uniform validity of the expansion with respect to δ, which is required
in our retrial setting where γ ↓ 0 implies that δ = γ − as(γ) → −∞ in
Cohen’s equation (4).

Overview of results
In Section 2 we consider, what is called in [1], Subsec. 4.1, the quasi-Gaussian
representation of fs(δ) in which fs(δ) is displayed in a form reminiscent of
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the expression for f∞ in (9). By using a substitution involving Lambert’s
W -function, see [4], Sec. 2, the integral contained in this quasi-Gaussian rep-
resentation is brought into a form that is appropriate for repeated partial
integrations, just as this is done when deriving the asymptotic series

l(x) :=
1

f∞(−x)
= e

1
2
x2

∞∫
x

e−
1
2
w2

dw ∼
∞∑

m=0

(−1)m(2m− 1)!!

x2m+1
=

=
1

x
− 1

x3
+

3

x5
− ... , x →∞ ,

(17)

see [5], 7.2.14, case n = 0, on p. 300. There results the asymptotic series

1

fs(δ)
∼ −1

δ
+

∞∑
l=0

{ l∑
j=0

(l + j + 1) clj

δl+3+j s
1
2
(l−j)

}
, δ → −∞ , (18)

in which the error after truncating the series after the term with l = L has
the same sign as and smaller modulus than the term with l = L + 1. The
coefficients cjl are given by means of a recursion and they are related to Ward
polynomials, see [6]. When in (18) the limit s →∞ is taken, so that all terms
with j < l vanish, the asymptotic expansion (17) for 1/f∞(−x) with x = −δ
is obtained. More generally, by formally summing the triangular array (l, j),
0 ≤ j ≤ l, along diagonals with constant value of l− j, one obtains a formal
expansion of 1/fs(δ) in powers of 1/

√
s with δ-dependent coefficients given

in the form of asymptotic series.
Alternatively, by collecting the finite number of terms l, j with common

value of l + j, one obtains an asymptotic expansion of 1/fs(δ) in powers
of 1/δ. This expansion is not just formal: a truncation error assessment
appropriate in the contact of asymptotic expansions can be made. In this
form, approximations for fs(δ) as δ → −∞, and, subsequently, for as(γ) as
γ ↓ 0 with uniform truncation error assessment can be found.

Interestingly, by employing the recursion satisfied by the clj, it can be
shown, see [5], that

1

B(s, s− δ
√

s)
=
√

s
1− δ/

√
s

fs(δ)
∼ 1−

∞∑
l=0

{ l∑
j=0

clj

δl+1+j s
1
2
(l−j−1)

}
,

δ → −∞ , (19)

with a similar truncation error assessment as in (18).
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In Section 3 we consider a representation of 1/fs(δ) in the form of a
Laplace transform that can be derived from an integral representation of
B−1(s, λ) as advocated by Jagers and Van Doorn in [7]. From this represen-
tation of 1/fs(δ), the asymptotic series for 1/fs(δ) in powers of 1/δ is readily
reestablished, and we use a method developed by Van Veen in [8] to handle
truncation errors. The same approach can be used to show rigourously that
1/fs(δ) − 1/f∞(δ) has an asymptotic series in powers of 1/δ as δ → −∞,
obtained from the one for 1/fs(δ) by deleting the s-independent parts of
the coefficients. In particular, we get 1/fs(δ) − 1/f∞(δ) = O(δ−4/

√
s), uni-

formly in δ < 0 and s ≥ 1. The latter result can be used to show that
as(γ)− a∞(γ) = O(1/

√
s) as s →∞ uniformly in γ ∈ (0, 1/3).

While both
√

s B(s, s − δ
√

s) and fs(δ) converge to f∞(δ) for any δ as
s →∞, it is striking to see how much smaller the error fs(δ)− f∞(δ) is than
the error

√
s B(s, s − δ

√
s) − f∞(δ) for negative δ : O(δ−2/

√
s) compared

to O(δ2/(−δ +
√

s)) when δ ≤ −1. It is apparently inclusion of the factor
1 − δ/

√
s at the right-hand side of (5) that brings about this accuracy im-

provement, a thing one would perhaps never have thought of to do when one
were unaware of the connection with Cohen’s equation in the Halfin-Whitt
regime.

In Section 4 we combine the representation of 1/fs(δ) as a Laplace trans-
form with Van Veen’s method in a form slightly different from the form that
was used in Section 3. This results into an asymptotic series

1

fs(δ)
∼

∞∑
m=0

s−
1
2
m Km(s) Im(δ) , −∞ < δ ≤ s1/6 , (20)

with term m = 0 given by 1/f∞(δ). In (20) we have that K0(s) = 1, K1(s) =
K2(s) = 0, and Km(s), m = 3, 4, ... , are given recursively as polynomials
in s with no constant term and of degree bm/3c. Furthermore, Im(δ) is a
function of the form

Im(δ) =
Pm(−δ)

f∞(δ)
−Qm(−δ) , (21)

with Pm and Qm polynomials of degree m and m − 1, respectively, that
occur as denominators and numerators of the continued fraction expansion
of Laplace for the function l(x), x > 0, in (17). For the series in (20), a
truncation error analysis, based on Van Veen’s method, can be made that
is appropriate in the context of asymptotic series. In particular, when we
truncate the summation in (20) after the term with m = 3, we get

1

f∞(δ)
+

1

3f∞(δ)
√

s
(δ3 + 3δ + (δ2 + 2) f∞(δ)) (22)
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as an approximation of 1/fs(δ) on a range −∞ < δ ≤ s1/6 with an error
O(E(δ)/s) with E(δ) expressible in the first few deleted terms of the series
in (20). As a consequence, approximations of fs(δ) in terms of f∞(δ) on a
range −∞ < δ ≤ s1/6, and subsequently, approximations of as(γ) in terms
of a∞(γ) on a range 0 < γ < s1/6 can be given. Here the fact that the
Im can be expressed according to (21) into f∞(δ) is convenient when using
δ = γ−a∞(γ) in the Gaussian limit form a = f∞(γ−a) of Cohen’s equation.
Thus we find explicit forms for the first two correction terms s−1/2b∞(γ) and
s−1c∞(γ) in the expansion of as(γ) in (15).

2 Uniform asymptotics of fs(δ), δ → −∞, from

quasi-Gaussian representation

We let for s ≥ 1 and δ <
√

s

α(δ) = αs(δ) =
(
−2s

( δ√
s

+ ln
(
1− δ√

s

))1/2

, (23)

where the square-root is taken such that sgn(αs(δ)) = sgn(δ). Using this in
the integral form (2) of B with λ = s − δ

√
s, remembering the definition of

fs in (5) and substituting λ′ = s− δ′
√

s, it follows that

fs(δ) =
(1− δ/

√
s) e−

1
2
α2

s(δ)

δ∫
−∞

e−
1
2
α2

s(δ′) dδ′

, δ <
√

s . (24)

From Taylor expansion in (23), one has for δ ∈ R

αs(δ) = δ
(
1 +

2δ

3
√

s
+

δ2

2s
+ ...

)1/2

= δ + O
( 1√

s

)
, s →∞ . (25)

This has been used in [1], Subsec. 5.9 to show that f∞(δ)− fs(δ) = O(1/
√

s)
uniformly in any compact set of δ ∈ R.

We have, see (17), when δ → −∞,

1

f∞(δ)
= e

1
2
δ2

δ∫
−∞

e−
1
2
(δ′)2 dδ′ ∼ −

∞∑
m=0

(−1)m(2m− 1)!!

δ2m+1
, (26)

in which the error after truncating the series after the term with m = M has
the same sign as and smaller modulus than the term with m = M + 1. This
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is obtained from the integral representation of 1/f∞(δ) in (26) by repeated
partial integration. We shall derive a similar result for 1/fs(δ).

We denote for x ∈ R the solution y ∈ (−∞, 1) of

−y − ln(1− y) = 1
2
x2 (27)

by y(x), where we choose signs according to sgn(y(x)) = sgn(x). This y is
closely related to Lambert’s W -function and is considered in detail in [4] and
in [9], Appendix. In particular, y is an increasing and concave function of
x ∈ R with y(0) = 0, y′(0) = 1. Noting from (23) that

− δ√
s
− ln

(
1− δ√

s

)
=

1

2
(αs(δ)/

√
s)2 , (28)

it is seen that
y(αs(δ)/

√
s) = δ/

√
s , δ <

√
s . (29)

We consider the integral

Is(δ) :=

δ∫
−∞

e−
1
2
α2

s(δ′) dδ′ (30)

that occurs in the quasi-Gaussian representation (24) of fs(δ), and we sub-
stitute x = α(δ′). By (29) we have

y′(α(δ)/
√

s) α′(δ) = 1 , δ <
√

s , (31)

from differentiation with respect to δ, and so

Is(δ) =

α(δ)∫
−∞

e−
1
2
x2

y′(x/
√

s) dx , δ <
√

s . (32)

The form (32) of Is(δ) lends itself for repeated partial integrations in
which (29) and

1

x
y′(x) =

1

y(x)
− 1 , x ∈ R , (33)

are instrumental in keeping the resulting expressions manageable. We first
need some definitions. For l = 0, 1, ... and integer j, we define clj recursively
by

c00 = 1 ; c0j = 0 , j < 0 or j > 0 , (34)

cl+1,j = (l + 1 + j) clj − (l + j) cl,j−1 , j = 0, 1, ..., l + 1 ;

cl+1,j = 0 , j < 0 or j > l + 1 . (35)

The following table gives (−1)j clj for j = 0, 1, ..., l and l = 0, 1, ..., 5 .
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j 0 1 2 3 4 5
l
0 1 0 0 0 0 0

1 1 1 0 0 0 0

2 2 5 3 0 0 0

3 6 26 35 15 0 0

4 24 154 340 315 105 0

5 120 1044 3304 4900 3465 945

Table 1. (−1)j clj for j = 0, 1, ..., l and l = 0, 1, 2, 3, 4, 5 .

It is not hard to show by induction that for l = 1, 2, ...

0 ≤ (−1)j clj ≤
(l + j)!

j! 2j

( l
j

)
, j = 0, 1, ..., l , (36)

cl0 = l! , (−1)l cll =
(2l)!

l! 2l
= (2l − 1)!! . (37)

Hence, (37) shows that there is equality in the second inequality in (36) for
j = 0 and j = l. It follows also by induction that for k ≥ 1

|cl,k−l| ≤ 1
3
(k + 2) k! , 0 ≤ l ≤ 1

2
k . (38)

The inequality (38) sharpens the second inequality in (36) for large l and
relatively small j 6= 0.

The relevance of the clj stems from the following result. We have for
l = 1, 2, ... that

(1

x

d

dx

)l (1

x
y′

( x√
s

))
= − 1− y(x/

√
s)

sl+1/2

l−1∑
j=0

(l + j) cl−1,j

yl+2+j(x/
√

s)
=

=
1

sl+1/2

l∑
j=0

clj

yl+1+j(x/
√

s)
. (39)

Indeed, from (33) we get

1

x

d

dx

(1

x
y′

( x√
s

))
=
−1

xs

y′(s/
√

s)

y2(x/
√

s)
=

= − 1− y(x/
√

s)

s3/2

1

y3(x/
√

s)
=

1

s3/2

( 1

y2(x/
√

s)
− 1

y3(x/
√

s)

)
, (40)

9



which shows (39) for l = 1, see Table 1. By induction, using (33) and the
definition of the clj in (34–35), the validity of (39) is established for general
l = 1, 2, ... . This leads to the following result.

Lemma 2.1. For k = 0, 1, ... and α < 0, we have

α∫
−∞

e−
1
2
x2

y′(x/
√

s) dx =
k∑

l=0

El(α) + Rk(α) , (41)

where

E0(α) = − 1− y(α/
√

s)

s1/2

1

y(α/
√

s)
e−

1
2
α2

, (42)

and, for l = 1, 2, ... ,

El(α) =
1− y(α/

√
s)

sl+1/2

l−1∑
j=0

(l + j) cl−1,j

yl+2+j(α/
√

s)
e−

1
2
α2

. (43)

Furthermore, Rk(α) is given by

Rk(α) =

α∫
−∞

d

dx

[(1

x

d

dx

)k (1

x
y′(x/

√
s)

)]
e−

1
2
x2

dx , (44)

and Rk(α) has the same sign as and smaller modulus than Ek+1(α).

Proof. We have by repeated partial integrations

α∫
−∞

e−
1
2
x2

y′(x/
√

s) dx =

= − 1

α
y′(α/

√
s) e−

1
2
α2

+

α∫
−∞

d

dx

(1

x
y′(x/

√
s)

)
e−

1
2
x2

dx = ... =

= −
k∑

l=0

[(1

x

d

dx

)l (1

x
y′(x/

√
s)

)
e−

1
2
x2

]
x=α

+ Rk(α) =

=
k∑

l=0

El(α) + Rk(α) (45)

by (39), and this establishes (41) with Rk(α) as in (44).
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Next, we have from (36), the last member of (39) and the fact that y(x) <
0 when x < 0 that

sgn
[(1

x

d

dx

)l (1

x
y′(x/

√
s)

)]
= (−1)l+1 . (46)

Therefore, sgn(El(α)) = (−1)l. By differentiating the last member of (39)
and using y′(x) > 0, it is also seen that

sgn
[ d

dx

[(1

x

d

dx

)l (1

x
y′(x/

√
s)

)]]
= (−1)l+1 , x < 0 . (47)

Therefore, sgn(Rk(α)) = (−1)k+1. Then from

Rk(α) = Ek+1(α) + Rk+1(α) (48)

and
sgn(Rk(α)) = sgn(Ek+1(α)) = −sgn(Rk+1(α)) , (49)

it follows that |Rk(α)| < |Ek+1(α)|, as required.

Theorem 2.2. We have

1

fs(δ)
∼ − 1

δ
+

∞∑
l=0

{ l∑
j=0

(l + j + 1) clj

δl+3+j s
1
2
(l−j)

}
, δ → −∞ . (50)

The error
1

fs(δ)
+

1

δ
−

k∑
l=0

{ l∑
j=0

(l + j + 1) clj

δl+3+j s
1
2
(l−j)

}
(51)

that occurs when the series in (50) is truncated after the term with l = k
has for any δ < 0 the same sign as and smaller modulus than the term in the
series over l with l = k + 1.

Proof. We use Lemma 2.1 in which we take α = αs(δ/
√

s) with δ < 0.
Then we recall the definition (30) of Is(δ) and the formula (32) and use that
in the expression (24) for fs(δ). Finally, the term with l = 0 in (41) is set
apart, we take k+1 instead of k in (41), and we write l+1 with l = 0, 1, ..., k
in the terms in the series instead of l with l = 1, ..., k + 1.

Notes.

1. For any l = 0, 1, ... , all terms in the series over j between { } in (50) have
sign (−1)l+1. Hence, the modulus of term with l = k + 1 equals

k+1∑
j=0

(k + j + 2) |ck+1,j|
|δ|k+4+j s

1
2
(k+1−j)

= O
[ 1

|δ|k+4 s
1
2
(k+1)

+
1

|δ|2k+5

]
(52)
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in which the constant implied bij O only depends on k when δ ≤ −1 and
s ≥ 1. The right-hand side of (52) accounts for the two extreme terms
with j = 0 and j = k + 1 in the series at the left-hand side.

2. Denote the terms in the double series in (50) by

Glj =
(l + j + 1) clj

δl+3+j s
1
2
(l−j)

, j = 0, 1, ..., j , l = 0, 1, ... . (53)

We have

Gll =
(2l + 1)!! (−1)l

δ2l+3
, l = 0, 1, ... , (54)

and this Gll coincides with the term with index m = l+1 in the asymptotic
series in (26) for 1/f∞(δ), δ → −∞. In Section 4 we shall identify the
terms Gl,l−1, l = 1, 2, ... , in a similar manner.

3. Summing the terms Glj in (50) by grouping the terms with constant value
k of l + j yields the expansion

1

fs(δ)
∼ − 1

δ
+

∞∑
k=0

k + 1

δk+3

{ k∑
l=d k

2
e

cl,k−l

sl−k/2

}
(55)

as δ → −∞. The truncation error when we truncate the series over k at
the right-hand side of (55) at k = K can be estimated by Theorem 2.2 by∑

l+j>K,
0≤j≤l≤K+1

|Glj| . (56)

The quantity in (56) is O(δ−K−4) when K is odd and O(δ−K−4 s−1/2) +
O(δ−K−5) when K is even and the O’s implicit constants only depend on
K when δ ≤ −1 and s ≥ 1. The asymptotic series (55) and its truncation
analysis shall be considered in more detail in Section 3, using a different
method to derive (55).

4. There holds

1

B(s, s− δ
√

s)
∼ 1−

∞∑
l=0

{ l∑
j=0

clj

δl+1+j s
1
2
(l−1−j)

}
(57)

as δ → −∞, and the truncation error when truncating the series over l
after the term with l = k has the same sign as and smaller modulus than
− the expression in { } with l = K + 1. This follows from

1√
s

1

B(s, s− δ
√

s)
=

1− δ/
√

s

fs(δ)
= e

1
2
α2(δ)

α(δ)∫
−∞

e−
1
2
x2

y′(x/
√

s) dx (58)
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and Lemma 2.1 where the recursion (34–35) for the clj is used to write

k∑
l=1

1− δ/
√

s

sl+1/2

l−1∑
j=0

(l + j) cl−1,j

(δ/
√

s)l+2+j
= −

k∑
l=1

1

sl+1/2

l∑
j=0

clj

(δ/
√

s)l+1+j
. (59)

5. As in 3, see (55), we have from (57) the asymptotic expansion, as δ →
−∞,

1

B(s, s− δ
√

s)
∼ 1−

∞∑
k=0

1

δk+1

k∑
l=d k

2
e

cl,k−l

sl− 1
2
(k+1)

. (60)

For integer s, we have that B−1(s, s − δ
√

s) is a rational function of δ
and thus possesses an absolutely convergent expansion in powers of 1/δ
when |δ| is large. The coefficients in this expansion coincide with what the
expansion in (60) gives. Hence, in that case the expansion (60) actually
converges for large values of |δ|.

6. There is the following connection with Ward polynomials (that occur in
the theory of Stirling numbers, see [6]). We have for l = 1, 2, ...

l∑
j=0

(−1)j clj tj =
l−1∑
r=0

(−1)r Hr
l (1 + t)l−r , (61)

where the positive integers Hr
l for l = 1, 2, ... and r = 0, 1, ..., l − 1 are

the coefficients that occur in the expression in [6], (3.31) for the Stirling
polynomials. These Hr

l are given in the table in [6] on p. 92 for 0 ≤ r ≤
l−1 ≤ 9. Thus a series

∑l
j=0 clj(δ/

√
s)−l−1−j, as occurs at the right-hand

side of (59), can be expressed directly in terms of the Ward polynomial∑l−1
r=0 Hr

l xl−r.

Approximation of fs(δ) as δ → −∞ and of as(γ) as γ ↓ 0
As an example, we consider the case that we truncate in (55) at k = 4.

Using Table 1, we thus have

1

fs(δ)
= − 1

δ
+

1

δ3
+

2

δ4
√

s
− 1

δ5

(
3− 6

s

)
− 1

δ6
√

s

(
20− 24

s

)
+

+
1

δ7

(
15− 130

s
+

124

s2

)
+ ε , (62)
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in which ε = O(δ−8 s−1/2)+O(δ−9) for δ ≤ −1 and s ≥ 1. Using (1−x)−1 =
1 + x + x2 + x3 + O(x4), |x| ≤ 1/2, we then compute the approximation

fs(δ) = −δ
(
1− 1

δ2
− 2

δ3
√

s
+

1

δ4

(
3− 6

s

)
+

1

δ5
√

s

(
20− 24

s

)
+

− 1

δ6

(
15− 130

s
+

124

s2

)
− ε

)−1

=

= − δ − 1

δ
− 2

δ2
√

s
+

(
2− 6

s

) 1

δ3
+

(
16− 24

s

) 1

δ4
√

s
+

−
(
10− 114

s2
+

120

s2

) 1

δ5
+ εf , (63)

where εf = O(δ−6 s−1/2) + O(δ−7) for δ ≤ −1 and s ≥ 1.
We use this approximation of fs(δ) for δ ≤ −1 and s ≥ 1 to compute

an approximation of as(γ) as γ ↓ 0, using the fact that as(γ) → +∞ as 1/γ
when γ ↓ 0. From Cohen’s equation as(γ) = fs(γ − as(γ)), we need to know
when γ − as(γ) ≤ −1 when we want to use (63). Now, by [1], Theorem 7,
as(γ) increases in s ≥ 1 and a1(γ) = (1− γ2) γ−1. Hence, γ− as(γ) ≤ −1 for
all s ≥ 1 when γ − (1− γ2) γ−1 ≤ −1, i.e., when 0 < γ ≤ 1/3. Thus, in this
region of γ, we approximate (ignoring terms like εf )

a = fs(γ − a) =

= a− γ +
1

a− γ
− 2

(a− γ)2
√

s
−

(
2− 6

s

) 1

(a− γ)3
+

+
(
16− 24

s

) 1

(a− γ)4
√

s
+

(
10− 114

s
+

120

s2

) 1

(a− γ)5
. (64)

With b = γ(a − γ), equation (64) can be written, after multiplication by
a− γ, as

b = 1− 2γ

b
√

s
−

(
2− 6

s

)
γ2

b2
+

(
16− 24

s

)
γ3

b3
√

s
+

(
10− 114

s
+

120

s2

) γ4

b4
. (65)

This form is appropriate for iteration and we find, by also keeping track of

14



terms like εf in (63), that

γ as(γ) = 1− 2γ√
s
−

(
1− 2

s

)
γ2 +

+ 4
(
1− 1

s

) γ3

√
s

+ 2
(
1− 1

s

)(
1− 8

s

)
γ4 +

+ O(γ5/
√

s) + O(γ6) , (66)

where the O’s hold uniformly in s ≥ 1 and 0 < γ ≤ 1/3.

3 Asymptotic expansion of 1/fs(δ) and 1/fs(δ)−
1/f∞(δ) as δ → −∞ from the Jagers-Van

Doorn representation of Erlang’s B using

Van Veen’s approach

With the substitution t = (λ′/λ)− 1 in (2), we have for s ≥ 1 and λ > 0

λ B(s, λ) =

 ∞∫
0

e−λt(1 + t)−s dt

−1

, (67)

see [7]. Therefore, from (5) and (67) with λ = s− δ
√

s, we have for δ <
√

s

1

fs(δ)
=

√
s

∞∫
0

e−(s−δ
√

s)t(1 + t)−s dt =

=

∞∫
0

eδv e
−s[ v√

s
−ln(1+ v√

s
)]

dv , (68)

where the substitution v = t
√

s has been used to obtain the last integral.
The representation of 1/fs(δ) in the form (68) as a Laplace transform gives
a direct way to get an asymptotic result in powers of 1/δ as δ → −∞. We
develop

C(z) = Cs(z) := (1 + z)s e−sz = e−s[z−ln(1+z)] =
∞∑

k=0

Ck(s) zk . (69)
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Using this expansion in (68) with z = v/
√

s, we get at once the asymptotic
expansion

1

fs(δ)
∼

∞∑
k=0

Ck(s)

sk/2

∞∫
0

eδv vk dv =

=
∞∑

k=0

k! Ck(s)

sk/2

(−1

δ

)k+1

, δ → −∞ . (70)

By identification of the terms in the asymptotic expansions in (55) and
(70), it is seen that C0(s) = 1, C1(s) = 0, and that for k = 0, 1, ...

Ck+2(s) = (−1)k+1

k∑
l=d k

2
e

cl,k−l

(k + 2) k!
sk+1−l . (71)

In particular, the coefficients in Ck+2(s) of sj with j = k +1, ..., k +2−d1
2
ke

vanish, and the Ck’s are closely related to Ward polynomials. Also recall the
bound (38).

We note that for fixed δ

lim
s→∞

1

fs(δ)
=

∞∫
0

eδv− 1
2
v2

dv = e
1
2
δ2

δ∫
−∞

e−
1
2
w2

dw =
1

f∞(δ)
, (72)

see (9). We aim at relating the asymptotic expansions of 1/fs(δ) and of
1/f∞(δ), see (26), and to that end a careful analysis of the truncation errors
in (70) has to be carried out. We follow for this a method developed by Van
Veen [8] in the 1930’s for obtaining uniform asymptotic expansions for the
Hermite polynomials. The actual case considered by Van Veen led to power
series expansion of (1 + z)s exp(−s [z− 1

2
z2]), with s = −n− 1 = −1,−2, ... ,

and, in fact we shall use his results for this case in Section 4. Also, see [10],
Ch. 19 and in particular Sec. 19.7 for expansions involving the exponential
function.

We have as in [8], §4,with C given in (69), for z ≥ 0

(1 + z) C ′(z) + sz C(z) = 0 , C(0) = C0 = 1 . (73)

From this it is readily seen that

C1 = 0 ; (m + 1) Cm+1 + m Cm + s Cm−1 = 0 , m = 1, 2, ... . (74)
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Setting Bm = (−1)m m Cm, we then find

B0 = 0 , B1 = 0 , B2 = −s ; Bm+1 = Bm−
s

m− 1
Bm−1 , m = 2, 3, ... .

(75)
The first 9 B’s are given by (75) and by

B3 = −s , B4 = −s + 1
2
s2 , B5 = −s + 5

6
s2 , B6 = −s + 13

12
s2 − 1

8
s3 ,

B7 = −s + 77
60

s2 − 7
24

s3 , B8 = −s + 29
20

s2 − 17
36

s3 + 1
48

s4 . (76)

From (71) and Bm = (−1)m m Cm, we have

Bk+2 = −
k∑

l=d k
2
e

1

k!
cl,k−l s

k+1−l , (77)

and one can check (76) with Table 1 for the c’s.
We next set for z ≥ 0 and k = 0, 1, ...

C(z) =
k∑

m=0

Cm zm + Rk(z) . (78)

Inserting this into (73) and using (74), we get

(1 + z) R′
k(z) + sz Rk(z) = −k Ck zk − s(Ck−1 zk + Ck zk+1) . (79)

Again using (74) and Bm = (−1)m m Cm, we finally get

(1 + z) R′
k(z) + sz Rk(z) = (−1)k+1 {Bk+1 zk(1 + z)−Bk+2 zk+1} , (80)

i.e., we have for z ≥ 0

R′
k(z) +

sz

1 + z
Rk(z) = (−1)k+1

{
Bk+1 zk −Bk+2

zk+1

1 + z

}
. (81)

Solving this first order ODE for Rk, using

C(0) = 1 , Rk(0) = 0 ;
sz

1 + z
= − C ′(z)

C(z)
, z ≥ 0 , (82)

we then get for z ≥ 0

Rk(z) = (−1)k+1

z∫
0

C(z)

C(z̄)

{
Bk+1 z̄k −Bk+2

z̄k+1

1 + z̄

}
dz̄ . (83)
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From

C(z)

C(z̄)
= exp

−s

z∫
z̄

x

1 + x
dx

 ≤ 1 , 0 ≤ z̄ ≤ z , (84)

it is then see that for z ≥ 0

|Rk(z)| ≤ |Bk+1|
zk+1

k + 1
+ |Bk+2|

zk+2

k + 2
. (85)

We now use (85) in (68) with z = v/
√

s, so that for v ≥ 0

exp(−s [v/
√

s− ln(1 + v/
√

s)]) =
k∑

m=0

Cm

sm/2
vm + Rk(v/

√
s) , (86)

with Rk bounded according to (85). We thus obtain

1

fs(δ)
=

k∑
m=0

m! Cm

sm/2

(−1

δ

)m+1

+ Ek , (87)

where for δ < 0 and s ≥ 1

|Ek| ≤ |Bk+1|
k + 1

1

s
1
2
(k+1)

v∫
0

vk+1 eδv dv +

+
|Bk+2|
k + 2

1

s
1
2
(k+2)

v∫
0

vk+2 eδv dv =

=
(k + 1)! |Ck+1|
s

1
2
(k+1)(−δ)k+2

+
(k + 2)! |Ck+2|
s

1
2
(k+2)(−δ)k+3

. (88)

Thus we have reestablished the result (55) in Section 2 with a better and
simpler estimate for the remainder than what is provided by (56).

We now proceed with applying Van Veen’s approach to estimating trun-
cation errors in the asymptotic expansion of 1/fs(δ)− 1/f∞(δ) as δ → −∞.
We let

Dm(s) =
Cm(s)

sm/2
, Dm = lim

s→∞
Dm(s) , (89)

so that, see (86),

C(v/
√

s) =
k∑

m=0

Dm(s) vm + Rk(v/
√

s) , (90)
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and we write

H(v) := lim
s→∞

C(v/
√

s) = e−
1
2
v2

=
k∑

m=0

Dm vm + Sk(v) . (91)

In Table 2 we display Dm(s) and Dm, noting that Dm(s) is given by (89) and
(71) and that

D2j = (−1/2)j/j! , D2j+1 = 0 , j = 0, 1, ... . (92)

m Dm(s) Dm

0 1 1

1 0 0

2 −1/2 −1/2

3
1

3
√

s
0

4 1/8− 1

4s
1/8

5
−1

6
√

s
+

1

5s
√

s
0

6 −1/48 +
13

72s
− 1

6s2
−1/48

Table 2. Dm(s) and Dm for m = 0, 1, ..., 6.

From (83) with z = v/
√

s and substituting z̄ = v̄/
√

s we have

Rk(v/
√

s) =
1√
s

v∫
0

Qk

( v̄√
s

) C(v/
√

s)

C(v̄/
√

s)
dv̄ , (93)

where

Qk

( v̄√
s

)
= (−1)k+1

{
Bk+1(s)

( v̄√
s

)k

−Bk+2(s)
(v̄/

√
s)k+1

1 + v̄/
√

s

}
=

=
√

s
{

(k + 1) Dk+1(s) v̄k + (k + 2) Dk+2(s)
v̄k+1

1 + v̄/
√

s

}
. (94)

Furthermore, by letting s →∞, we have

Sk(v) := lim
s→∞

Rk(v/
√

s) =

v∫
0

T (v̄)
H(v)

H(v̄)
dv̄ , (95)
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where

T (v̄) = lim
s→∞

1√
s

Qk

( v̄√
s

)
= (k + 1) Dk+1 v̄k + (k + 2) v̄k+1 . (96)

Therefore, for δ < 0,

1

fs(δ)
− 1

f∞(δ)
=

k∑
m=0

m!(Dm(s)−Dm)
(−1

δ

)m+1

+

+

∞∫
0

eδv(Rk(v/
√

s)− Sk(v)) dv , (97)

with Sk given by (95) and Rk given by (93–94). We write for v ≥ 0, using
(94) and (96)

Rk(v/
√

s)− Sk(v) =

=

v∫
0

(C(v/
√

s)

C(v̄/
√

s)
− H(v)

H(v̄)

)
v̄k

{
(k+1) Dk+1(s)−(k + 2) Dk+2(s)

v̄

1+v̄/
√

s

}
dv̄ +

+

v∫
0

H(v)

H(v̄)
v̄k

{
(k + 1)(Dk+1(s)−Dk+1) + (k + 2) v̄(Dk+2(s)−Dk+2) +

− 1√
s

(k + 2) v̄2 Dk+2(s)

1 + v̄/
√

s

}
dv̄ . (98)

The second term at the right-hand side of (98), T2, can be estimated using

v∫
0

H(v)

H(v̄)
v̄l dv̄ =

v∫
0

v̄l e−
1
2
(v2−v̄2) dv̄ ≤ vl+1

l + 1
. (99)

Hence

|T2| ≤ |Dk+1(s)−Dk+1| vk+1 + |Dk+2(s)−Dk+2| vk+2 +

+
1√
s

k + 2

k + 3
|Dk+2(s)| vk+3 . (100)

As to the first term at the right-hand side of (98), T1, we use
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C(v/
√

s)

C(v̄/
√

s)
− H(v)

H(v̄)
=

= exp

− v∫
v̄

w

1 + w/
√

s
dv

− exp

− v∫
v̄

w dw

 =

= exp

− v∫
v̄

w

1 + w/
√

s
dw

 1− exp

− 1√
s

v∫
v̄

w2

1 + w/
√

s
dw

 ≤

≤ exp

− v∫
v̄

w

1 + w/
√

s
dw

 1√
s

v∫
v̄

w2 dw . (101)

By concavity of the function w ≥ 0 7→ w/(1 + w/
√

s), we have

v∫
v̄

w

1 + w/
√

s
dw ≥ 1

2
(v − v̄)

( v

1 + v/
√

s
+

v̄

1 + v̄/
√

s

)
≥

≥ 1
2
(v − v̄)

v

1 + v/
√

s
. (102)

Also,
v∫

v̄

w2 dw ≤ v2(v − v̄) . (103)

Therefore,

C(v/
√

s)

C(v̄/
√

s)
− H(v)

H(v̄)
≤ 1√

s
(v − v̄) v2 exp

(
− 1

2

v

1 + v/
√

s
(v − v̄)

)
. (104)

It follows that the first term T1 can be estimated as

|T1| ≤
1√
s

v2((k + 1) |Dk+1(s)| Ik + (k + 2) |Dk+2(s)| Ik+1) , (105)
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where, with α = v/2(1 + v/
√

s),

Ij =

v∫
0

(v − v̄) v̄j e−α(v−v̄) dv̄ ≤

≤
v∫

0

(v − w)j w dw =
vj+2

(j + 1)(j + 2)
. (106)

It follows that

|T1| ≤
1√
s

|Dk+1(s)|
k + 2

vk+3 +
1√
s

|Dk+2(s)|
k + 3

vk+4 . (107)

We then finally find from (98) and (100), (107) that

|Rk(v/
√

s)− Sk(v)| ≤ 1√
s

|Dk+1(s)|
k + 2

vk+3 +
1√
s

|Dk+2(s)|
k + 3

vk+4 +

+ |Dk+1(s)−Dk+1| vk+1 + |Dk+2(s)−Dk+2| vk+2 +
1√
s
|Dk+2(s)| vk+3 .

(108)

This estimate should now be inserted in the integral at the right-hand side
of (97). We observe now that, see (89) and (71) and Table 2.

|Dk+1(s)−Dk+1|, |Dk+2(s)−Dk+2| = O
( 1√

s

)
. (109)

Furthermore, from
∞∫

0

vj eδv dv = j!(−1/δ)j+1 , (110)

it is seen that the contributions of the terms at the right-hand side of (108)
to the integral in (97) are all O(δ−k−2 s−1/2) in which the constant implied
by the O only depends on k when s ≥ 1 and δ ≤ −1. Therefore,

1

fs(δ)
− 1

f∞(δ)
=

k∑
m=0

m!(Dm(s)−Dm)
(−1

δ

)m+1

+ O
( 1

δk+2
√

s

)
(111)

uniformly in s ≥ 1 and δ ≤ −1. That is, the asymptotic expansion of
1/fs(δ)−1/f∞(δ) as δ → −∞ is obtained from the expansions of 1/fs(δ) and
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1/f∞(δ) by subtracting them termwise, and the remainder after truncation
at the kth term is of the order of the term with index k + 1, uniformly in
s ≥ 1 and δ ≤ −1.

We use this result to estimate f∞(δ) − fs(δ) when δ ≤ −1 and s ≥ 1.
With k = 3 in (111), using Table 2, we get for s ≥ 1 and δ ≤ −1

1

fs(δ)
− 1

f∞(δ)
=

2

δ4
√

s
+ O

( 1

δ5
√

s

)
. (112)

Therefore,

fs(δ) =
( 1

f∞(δ)
+

2

δ4
√

s
+ O

( 1

δ5
√

s

))−1

=

= f∞(δ)− 2f 2
∞(δ)

δ4
√

s
+ O

(f 2
∞(δ)

δ5
√

s

)
, (113)

where it has been used that f∞(δ) = −δ + O(1/δ), δ < 0.
We can use (113) to approximate as(γ) as γ ↓ 0. From

as(γ) = fs(γ − as(γ)) , a∞(γ) = f∞(γ − a∞(γ)) ;

as(γ), a∞(γ) =
1

γ
+ O(γ) , γ > 0 , (114)

we get

as(γ) = fs(γ − as(γ)) =

= f∞(γ − as(γ))− 2

(γ − as(γ))2
√

s
+ O

( 1

(γ − as(γ))3
√

s

)
=

= f∞(γ − a∞(γ)) + (a∞(γ)− as(γ)) f ′∞(γ − a∞(γ)) +

− 2γ2

√
s

+ O
( γ3

√
s

)
=

= a∞(γ) + (a∞(γ)− as(γ)) f ′∞(γ − a∞(γ))− 2γ2

√
s

+ O
( γ3

√
s

)
.

(115)

Hence,

a∞(γ)− as(γ) =
(2γ2

√
s

+ O
( γ3

√
s

)) 1

1 + f ′∞(γ − a∞(γ))
. (116)
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Now

f ′∞(δ) = −f∞(δ)(δ + f∞(δ)) = −1 +
1

δ2
+ O

( 1

δ4

)
, δ < 0 , (117)

where (13) has been used. With δ = γ − a∞(γ) = −1/γ + O(γ), this gives

1

1 + f ′∞(γ − a∞(γ))
=

1

γ2
+ O(1) , γ > 0 . (118)

Thus finally

a∞(γ)− as(γ) =
2√
s

+ O
( γ√

s

)
, γ > 0 . (119)

We conclude this section by showing the following consequence of (112).

Proposition 3.1. f∞(δ) − fs(δ) = O(1/
√

s) uniformly in δ ∈ R (where
we set fs(δ) = 0 for δ ≥

√
s).

Proof. It has been shown in [1], Subsec. 5.9 that f∞(δ)− fs(δ) = O(1/
√

s)
uniformly in any compact set of δ ∈ R. From (112) we have that f∞(δ) =
fs(δ) = O(1/

√
s) uniformly in δ ≤ −1, and so it is sufficient to consider the

range δ ≥ 0. For this range we consider the quasi-Gaussian representation
(24) of fs(δ). It was shown in [1], Subsec. 5.9 that

δ∫
−∞

e−
1
2
(δ′)2 dδ′ −

δ∫
−∞

e−
1
2
α2

s(δ′) dδ′ = O
( 1√

s

)
(120)

uniformly in δ <
√

s while either integral at the left-hand side of (120) is
bounded away from 0 when 0 ≤ δ <

√
s. Hence, it is sufficient to show that

e−
1
2
δ2 −

(
1− δ√

s

)
e−

1
2
α2

s(δ) = O
( 1√

s

)
, 0 ≤ δ <

√
s . (121)

The left-hand side of (121) is positive when 0 < δ <
√

s by [1], (5.64),

and e−
1
2
δ2 ≤ 18/s when δ ≥ 1

3
δs. So, it is sufficient to consider the range

0 ≤ δ ≤ 1
3

√
s.
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We have, when 0 ≤ δ ≤ 1
3

√
s,

−1
2
α2

s(δ) + ln
(
1− δ√

s

)
= s

( δ√
s

+ ln
(
1− δ√

s

))
+ ln

(
1− δ√

s

)
=

= − 1
2
δ2 − δ3

3
√

s
− δ4

4s
− ...− δ√

s
− δ2

2s
− ... ≥

≥ − 1
2
δ2 − δ3

3
√

s

(
1− δ√

s

)−1

− δ√
s

(
1− δ√

s

)−1

≥ −1
2
δ2 − δ3 + 3δ

2
√

s
.

(122)

Hence, when 0 ≤ δ ≤ 1
3

√
s,

e−
1
2
δ2 −

(
1− δ√

s

)
e−

1
2
α2

s(δ) ≤ e−
1
2
δ2 δ3 + 3δ

2
√

s
≤ M

2
√

s
, (123)

with M = maxδ≥0(δ
3 + 3δ) e−

1
2
δ2

, which is assumed at δ = 31/4. This com-
pletes the proof.

4 Approximation of 1/fs(δ) in terms of 1/f∞(δ)

on a range δ ≤ s1/6 using Van Veen’s ap-

proach

We write now for δ <
√

s, compare (68),

1

fs(δ)
=

∞∫
0

eδv− 1
2
v2

e−s[v/
√

s− 1
2
(v/

√
s)2−ln(1+v/

√
s)] dv . (124)

Consider with z = v/
√

s the expansion

K(z) := (1 + z)s e
1
2
s(z2−2z) = e−s[z− 1

2
z2−ln(1+z)] =

= e−s[ 1
3
z3− 1

4
z4+...] =

∞∑
m=0

Km(s) zm = 1 +
∞∑

m=1

(−1)m

m
Lm(s) zm ,

(125)

just as Van Veen does in [8], §4. The Lm(s) are given recursively by

L0 = L1 = L2 = 0 , L3 = −s , (126)
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Lm+1 = Lm − s

m− 2
Lm−2 , m = 3, 4, ... . (127)

Van Veen shows the following result in [8], §5. There holds for z ≥ 0 and
k = 0, 1, ...

K(z) =
k∑

m=0

Km(s) zm + Tk(z) , (128)

where

Tk(z) =

z∫
0

K(z)

K(z̄)
Qk(z̄) dz̄ , (129)

and

Qk(z) = (−1)k+1 zk
{

Lk+1 − Lk+2 z + Lk+3
z2

1 + z

}
. (130)

Now

K(z)/K(z̄) = exp

s

z∫
z̄

w2

1 + w
dw

 ≤ K(z) , 0 ≤ z̄ ≤ z , (131)

and so

|Tk(z)| ≤ K(z)

z∫
0

z̄k(|Lk+1|+ |Lk+2| z̄ + |Lk+3| z̄2) =

= K(z)(|Kk+1|+ |Kk+2| z + |Kk+3| z2) zk+1 , z ≥ 0 . (132)

We shall restrict attention to the range 1
3
sz2 ≤ 1 which ensures that 1 ≤

K(z) ≤ e when z ≥ 0, see (131). Recalling that z = v/
√

s, this means that
v is restricted by

0 ≤ v ≤ v(s) := 31/3 s1/6 . (133)

We next find out for which δ <
√

s truncation of the integral in (68) and
(124) to the range 0 ≤ v ≤ v(s) leads to exponentially small errors. Thus we
consider

ϕ(v) := δv − s [v/
√

s− ln(1 + v/
√

s)] , v ≥ 0 . (134)

When δ ≤ 0, we have that ϕ(v) is maximal 0 at v = 0, and when 0 ≤ δ <
√

s,
the maximum of ϕ(v) is assumed at

v̂ = v̂(δ, s) =
δ

1− δ/
√

s
. (135)
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We have
ϕ(v̂) = −δ

√
s− s ln(1− δ/

√
s) ≥ 1

2
δ2 , (136)

while for v ≥ 0

ϕ(v) = δv − s

v/
√

s∫
0

z

1 + z
dz ≤ δv −

1
2
v2

1 + v/
√

s
. (137)

Therefore,

ϕ(v̂)− ϕ(v(s)) ≥ 1
2
δ2 − δv(s) +

1
2
v2(s)

1 + v(s)/
√

s
=

= 1
2
(v(s)− δ)2 − v3(s)/2

√
s

1 + v(s)/
√

s
≥ 1

2
(v(s)− δ)2 − 3/2 . (138)

Then choosing δ ≤ 1
2
v(s) = 2−1 31/3 s1/6 produces relative errors in truncat-

ing
∞∫
0

exp(ϕ(v)) dv as
v(s)∫
0

exp(ϕ(v)) dv of the order exp(−1
8
32/3 s1/3). Here

it has also been used that ϕ(v) is a concave function of v ≥ 0 and that for
δ ≤ 1

2
v(s), we have

ϕ′(v(s)) ≤ −1
2
v(s)

1− v(s)/
√

s

1 + v(s)/
√

s
= −1

2
31/3 s1/6 1− (3/s)1/2

1 + (3/s)1/2
(139)

which is negative when s > 3.
We therefore have, with uniformly exponentially small error when δ ≤

1
2
v(s), that

1

fs(δ)
=

v(s)∫
0

eδv− 1
2
v2

K(v/
√

s) dv =

=
k∑

m=0

s−
1
2
m Km(s)

v(s)∫
0

vm eδv− 1
2
v2

dv +

v(s)∫
0

Tk(z) eδv− 1
2
v2

dv ,

(140)

with Tk bounded as in (132) and K0 = 1, Km = m−1(−1)m Lm where Lm

is given through (126–127). The asymptotic analysis is now completed by

replacing the integrals
v(s)∫
0

vm exp [δv − 1
2
v2] dv by

Im(δ) :=

∞∫
0

vm eδv− 1
2
v2

dv , (141)
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at the expense of exponentially small errors, and by bounding |Tk(z)| by

e

s
1
2
(k+1)

(
|Kk+1| Ik+1(δ) +

1√
s
|Kk+2| Ik+2(δ) +

1

s
|Kk+3| Ik+3

)
. (142)

We thus arrive at an asymptotic series

1

fs(δ)
∼

∞∑
m=0

s−
1
2
m Km(s) Im(δ) , (143)

with uniform relative truncation error assessment in the range −∞ < δ ≤
2−1 31/3 s1/6 = (9s/8)1/6.

We next consider the quantities Km(s) and Im(δ) in (143) in more detail.
For the first few Km(s) we have Table 3, and as to the Im(δ) we shall be
concerned in expressing them in terms of 1/f∞(δ). We have

I0(δ) = e
1
2
δ2

∞∫
0

e−
1
2
(v−δ)2 dv = e

1
2
δ2

∞∫
−δ

e−
1
2
w2

dw =
1

f∞(δ)
. (144)

m s−
1
2
m Km(s) m s−

1
2
m Km(s)

1 0 5
1

5s3/2

2 0 6
−1

6s2
+

1

18s

3
1

3s1/2
7

1

7s5/2
− 1

12s3/2

4
−1

4s
8

−1

8s3
+

37

480s2

Table 3. s−
1
2
m Km(s) with K0(s) = 1 and Km(s) = (−1)m m−1 Lm(s),

m = 1, 2, ... where Lm(s) given by (126–127).

Furthermore, Im(δ) = I
(m)
0 (δ). With x = −δ, we let

l(x) =
1

f∞(−x)
= e

1
2
x2

∞∫
x

e−
1
2
w2

dw . (145)

Then
Im(δ) = (−1)m l(m)(−δ) = m! e

1
4
δ2

U(m + 1
2
,−δ) (146)
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with U(a, x) the parabolic cylinder function, see [5], Ch. 19. Now there holds
for m = 0, 1, ...

l(m)(x) = Pm(x) l(x)−Qm(x) , (147)

where Pm and Qm are polynomials defined recursively by

P0(x) = 1 , Q0(x) = 0 , (148)

and for m = 0, 1, ... ,

Pm+1(x) = x Pm(x) + P ′
m(x) , Qm+1(x) = Pm(x) + Q′

m(x) . (149)

In Table 4 we display the first few polynomials P , Q. The polynomials Pm

can be expressed in terms of the Hermite polynomials Hem, see [5], Ch. 22,
as

Pm(x) =
1

im
(Hem)(ix) , m = 0, 1, ... , (150)

but for the Qm such a simple closed form does not seem to exist. Alterna-
tively, the Pm and Qm occur in the mth convergent lm(x) = Qm(x)/Pm(x) of
the continued fraction expansion of Laplace for Mills ratio,

l(x) =
1

x+

1

x+

2

x+

3

x+
...

m

x+
... , (151)

see [11], Sec. 3 and Appendix, [12], pp. 83–84.

m Pm(x) Qm(x)

0 1 0

1 x 1

2 x2 + 1 x

3 x3 + 3x x2 + 2

4 x4 + 6x2 + 3 x3 + 5x

5 x5 + 10x3 + 15x x4 + 9x2 + 8

6 x6 + 15x4 + 45x2 + 15 x5 + 14x3 + 33x

7 x7 + 21x5 + 105x3 + 105x x6 + 20x4 + 87x2 + 48

8 x8 + 28x6 + 210x4 + 420x2 + 105 x7 + 27x5 + 185x3 + 279x

Table 4. Pm(x) and Qm(x) for m = 0, 1, ..., 8.

We use (143) to find approximations of fs(δ) in terms of f∞(δ). Truncat-
ing (143) at m = 3, we get

1

fs(δ)
= K0(s) I0(δ) +

1

s3/2
K3(s) I3(δ) + ε , (152)
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where ε accounts for a relative order of O(exp(−s1/3)) uniformly in the range
δ ≤ s1/6 together with T4, bounded as in (142). Hence, 1/fs(δ) is approxi-
mated by

1

f∞(δ)
+

1

3
√

s
(−1)3 l(3)(−δ) =

1

f∞(δ)
− 1

3
√

s
(P3(−δ) l(−δ)−Q3(−δ)) =

=
1

f∞(δ)
+

1

3f∞(δ)
√

s
(δ3 + 3δ + (δ2 + 2) f∞(δ)) , (153)

where the Table 4 and l(−δ) = 1/f∞(δ) has been used.
The 1√

s
-correction in (153) has the asymptotic series

1

3

(
δ2 + 2 +

δ3 + 3δ

f∞(δ)

)
∼

∼ 1

3

(
δ2 + 2− (δ3 + 3δ)

∞∑
m=0

(−1)m (2m− 1)!! δ−2m−1
)

=

=
∞∑

m=2

(−1)m 2
3
(m− 1)(2m− 1)!! δ−2m , (154)

where (17) has been used. On the other hand, when we collect in (50)
all terms containing a factor 1/

√
s, i.e., all terms (l, j) with j = l − 1 and

l = 1, 2, ... , we get for the coefficients of 1/
√

s in 1/fs(δ) the formal expression

∞∑
l=1

2l cl,l−1

δ2l+2
. (155)

It can be shown from the recursion (34–35) and from (37) that

cl−1,l−2 = 1
3
(−1)l (2l − 1)!! , l = 2, 3, ... , (156)

confirming formal equality of the respective 1√
s
-corrections.

From (153), we find a 1√
s
-correction on the approximation f∞(δ) of fs(δ)

as

f∞(δ)− 1

3
√

s
f∞(δ) (δ3 + 3δ + (δ2 + 2) f∞(δ)) . (157)

We shall use this to find a 1√
s
-correction

a∞(γ) +
1√
s

b∞(γ) (158)
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to the Gaussian limit approximation a∞(γ) of as(γ). With

g∞(δ) := − 1
3
f∞(δ)(δ3 + 3δ + (δ2 + 2) f∞(δ)) , (159)

we thus consider the approximated version

a = f∞(γ − a) +
1√
s

g∞(γ − a) (160)

of the finite-s Cohen equation (4). Ignoring errors O(1/s), we get (γ sup-
pressed in a∞(γ) and b∞(γ))

a∞ +
1√
s

b∞ = f∞

(
γ − a∞ − 1√

s
b∞

)
+

1√
s

g∞

(
γ − a∞ − 1√

s
b∞

)
=

= f∞(γ − a∞)− 1√
s

b∞ f ′∞(γ − a∞) +
1√
s

g∞(γ − a∞) .

(161)

Using a∞ = f∞(γ − a∞), we then see that

b∞ =
g∞(γ − a∞)

1 + f ′∞(γ − a∞)
. (162)

This can be elaborated further, using

f ′∞(δ) = −f∞(δ)(δ + f∞(δ)) (163)

and f∞(γ − a∞) = a∞. This yields

f ′∞(γ − a∞) = −γ a∞ . (164)

Furthermore, from (159) and f∞(γ − a∞) = a∞, we compute

g∞(γ − a∞) = − 1
3
a∞(3γ − a∞ + γ(γ − a∞)2) .

Therefore, we get as our final result

b∞(γ) = b∞ =
− 1

3
a∞(3γ − a∞ + γ(γ − a∞)2)

1− γ a∞
. (165)

Using that, see (10),

γ a∞(γ) = 1− γ2 + 2γ4 + O(γ6) , γ > 0 ,

it can be shown that b∞(γ) → −2 as γ ↓ 0, compare (6).
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Further corrections can be considered as well. Thus, with

f∞(δ) +
1√
s

g∞(δ) +
1

s
h∞(δ) , a∞(γ) +

1√
s

b∞(γ) +
1

s
c∞(γ) (166)

being the 1
s
-correction of fs(δ) and as(γ), respectively, we get upon ignoring

errors 1/s3/2 and suppressing γ in a∞(γ), b∞(γ), c∞(γ),

a∞ +
1√
s

b∞ +
1

s
c∞ = f∞

(
γ − a∞ − 1√

s
b∞ − 1

s
c∞

)
+

+
1√
s

g∞

(
γ−a∞ − 1√

s
b∞ − 1

s
c∞

)
+

1

s
h∞

(
γ−a∞ − 1√

s
b∞ − 1

s
c∞

)
=

= f∞(γ − a∞)−
( 1√

s
b∞ +

1

s
c∞

)
f ′∞(γ − a∞) +

1

2s
b2
∞ f ′′∞(γ − a∞) +

+
1√
s

(
g∞(γ − a∞)− 1√

s
b∞ g′∞(γ − a∞)

)
+

1

s
h∞(γ − a∞) . (167)

Using a∞ = f∞(γ − a∞) and equating terms with factors 1/
√

s and 1/s, we
again get (162) for b∞ and

c∞ =
1
2
b2
∞ f ′′∞ − b∞ g′∞ + h∞

1 + f ′∞
(168)

with f ′∞, f ′′∞, g′∞, h∞ evaluated at γ − a∞ and b∞ evaluated at γ.
Again, this can be elaborated. Using f∞(γ − a∞) = a∞ and (163–164),

we find
f ′′∞(γ − a∞) = γ a∞(γ + a∞)− a∞ . (169)

Furthermore, b∞ was already found in (165), and we can compute g′∞(γ−a∞)
from (159) and (163–164) using f∞(γ−a∞) = a∞. This is still feasible, with
the final result

g′∞(γ − a∞) = 1
3
a [γ(γ − a)2 (γ + a) + 5γa− a3 − 3] , (170)

where we have written a = a∞ at the right-hand side. Finally, we should
compute h∞(γ − a∞). For this, we write down all terms at the right-hand
side of (143) comprising factors s0, s−1/2, s−1. Using Table 3, it is seen that
we should include the terms with m = 0, 3, 4 and 6. The 1/s-correction to
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1/fs(δ) is then obtained by adding to (153)

− 1

4s
I4(δ) +

1

18s
I6(δ) = − 1

4s
l(4)(−δ) +

1

18s
l(6)(−δ) =

= − 1

4s
[P4(−δ) l(−δ)−Q4(−δ)] +

1

18s
[P6(−δ) l(−δ)−Q6(−δ)] =

=
1

36s
[(2δ6 + 21δ4 + 36δ2 + 3) l(−δ) + 2δ5 + 19δ3 + 21δ] , (171)

where Table 4 has been used. Recalling that l(−δ) = 1/f∞(δ), we then get

− 1

4s
I4(δ) +

1

18s
I6(δ) =

=
1

36s f∞(δ)
[2δ6 + 21δ4 + 36δ2 + 3 + (2δ5 + 19δ3 + 21δ) f∞(δ)] .

(172)

The expression (172) should be added to the right-hand side of (153) to
obtain the 1/s-correction of 1/fs(δ) in terms of f∞(δ) and δ. The two cor-
recting terms being small compared to 1/f∞(δ), the 1/s-correction of fs(δ)
is obtained by expanding ( 1

f
+ ε)−1 = f − εf 2 + ε2f 3 with ε small compared

to f . The coefficient h∞(δ) of 1/s in this 1/s-correction of fs(δ) is then given
as

h∞(δ) = f∞(δ)
[

1
9
(δ3 + 3δ + (δ2 + 2) f∞(δ))2 +

− 1
36

(2δ6 + 21δ4 + 36δ2 + 3 + (2δ5 + 19δ3 + 21δ) f∞(δ))
]

.

(173)

This works out to

h∞(δ) =

=
f∞(δ)

36
[2δ6 + 3δ4 − 3 + (6δ5 + 21δ3 + 27δ) f∞(δ) + 4(δ2 + 2)2 f 2

∞(δ)] ,

(174)

and in this expression we should set δ = γ−a∞ and use that f∞(γ−a∞) = a∞.
Therefore, the computation of the term 1

s
c∞(γ) in the 1/s-correction in (166)

of as(γ) according to (168) is feasible but quite involved.
The corrections based on (165) and on (168–170), (174) have been checked

for the case that γ = 1 and s = 10, 20, 50, 100, 1000, see Table 5.
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s as(1) a∞(1) +
1√
s

b∞(1) a∞(1) +
1√
s

b∞(1) +
1

s
c∞(1)

10 0.2563620 0.2105055 0.2575139

20 0.3239228 0.3008443 0.3243485

50 0.3902951 0.3810048 0.3904065

100 0.4260664 0.4214055 0.4261064

1000 0.4885668 0.4880980 0.4885680

Table 5. 1√
s
-correction and 1

s
-correction of a∞(1) = 0.5189416 as an

approximation of as(1), s = 10, 20, 50, 100, 1000 , using
b∞(1) = −0.9753608 from (165) and c∞(1) = 0.4700844 from
(168–170), (174). J.S.H. van Leeuwaarden is acknowledged
for providing the numerical values of as(1).
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