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Abstract

This paper studies a polymer chain in the vicinity of a linear interface separating two
immiscible solvents. The polymer consists of random monomer types, while the interface carries
random charges. Both the monomer types and the charges are given by i.i.d. sequences of
random variables. The configurations of the polymer are directed paths that can make i.i.d.
excursions of finite length above and below the interface. The Hamiltonian has two parts: a
monomer-solvent interaction (“copolymer”) and a monomer-interface interaction (“pinning”).
The quenched and the annealed version of the model each undergo a transition from a localized
phase (where the polymer stays close to the interface) to a delocalized phase (where the polymer
wanders away from the interface). We exploit the approach developed in [5] and [3] to derive
variational formulas for the quenched and the annealed free energy per monomer. These
variational formulas are analyzed to obtain detailed information on the critical curves separating
the two phases and on the typical behavior of the polymer in each of the two phases. Our main
results settle a number of open questions.
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1 Introduction and main results

1.1 The model

1. Polymer configuration. The polymer is modeled by a directed path drawn from the set

Π =
{
π = (k, πk)k∈N0 : π0 = 0, sign(πk−1) + sign(πk) 6= 0, πk ∈ Z ∀ k ∈ N

}
(1.1)

of directed paths in N0×Z that start at the origin and visit the interface N0×{0} when switching
from the lower halfplane to the upper halfplane, and vice versa. Let P ∗ be the path measure on
Π under which the excursions away from the interface are i.i.d., lie above and below the interface
with equal probability, and have a length distribution ρ on N with

∑
n∈N ρ(n) = 1, with infinite

support and with a polynomial tail :

lim
n→∞
ρ(n)>0

log ρ(n)

log n
= −α for some α ∈ [1,∞). (1.2)

Denote by Πn, P∗n the restriction of Π, P ∗ to n-step paths that end at the interface.

2. Disorder. Let Ê and Ē be subsets of R. The edges of the paths in Π are labeled by an i.i.d.
sequence of Ê-valued random variables ω̂ = (ω̂i)i∈N with common law µ̂, modeling the random
monomer types. The sites at the interface are labeled by an i.i.d. sequence of Ē-valued random
variables ω̄ = (ω̄i)i∈N with common law µ̄, modeling the random charges. In the sequel we
abbreviate ω = (ωi)i∈N with ωi = (ω̂i, ω̄i) and assume that ω̂ and ω̄ are independent. We further
assume, without loss of generality, that both ω̂1 and ω̄1 have zero mean, unit variance, and satisfy

M̂(t) = log

∫
Ê
e−tω̂1 µ̂(dω̂1) <∞ ∀ t ∈ R, M̄(t) = log

∫
Ē
e−tω̄1 µ̄(dω̄1) <∞ ∀ t ∈ R. (1.3)

We write P for the law of ω, and Pω̂ and Pω̄ for the laws of ω̂ and ω̄.

3. Path measure. Given n ∈ N and ω, the quenched copolymer with pinning is the path measure
given by

P̃ β̂,ĥ,β̄,h̄,ωn (π) =
1

Z̃ β̂,ĥ,β̄,h̄,ωn

exp
[
H̃ β̂,ĥ,β̄,h̄,ω
n (π)

]
P ∗n(π), π ∈ Πn, (1.4)

where β̂, ĥ, β̄ ≥ 0 and h̄ ∈ R are parameters, Z̃ β̂,ĥ,β̄,h̄,ωn is the normalizing partition sum, and

H̃ β̂,ĥ,β̄,h̄,ω
n (π) = β̂

n∑
i=1

(ω̂i + ĥ) ∆i +
n∑
i=1

(β̄ ω̄i − h̄)δi (1.5)

is the interaction Hamiltonian, where δi = 1{πi=0} ∈ {0, 1} and ∆i = sign(πi−1, πi) ∈ {−1, 1} (the
i-th edge is below or above the interface).

Key example: The choice Ê = Ē = {−1, 1} corresponds to the situation where the upper
halfplane consists of oil, the lower halfplane consists of water, the monomer types are either
hydrophobic (ω̂i = 1) or hydrophilic (ω̂i = −1), and the charges are either positive (ω̄i = 1) or
negative (ω̄i = −1); see Fig. 1. In (1.5), β̂ and β̄ are the strengths of the monomer-solvent and
monomer-interface interactions, while ĥ and h̄ are the biases of these interactions. If P ∗ is the
law of the directed simple random walk on Z, i.e., the uniform distribution on Π, then (1.2) holds
with α = 3

2 .
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Figure 1: A directed polymer near a linear interface, separating oil in the upper halfplane and water in the
lower halfplane. Hydrophobic monomers in the polymer are light shaded, hydrophilic monomers are dark
shaded. Positive charges at the interface are light shaded, negative charges are dark shaded.

In the literature, the model without the monomer-interface interaction (β̄ = h̄ = 0) is called
the copolymer model, while the model without the monomer-solvent interaction (ĥ = β̂ = 0) is
called the pinning model (see Giacomin [11] and den Hollander [12] for an overview). The model
with both interactions is referred to as the copolymer with pinning model. In the sequel, if k is a
quantity associated with the combined model, then k̂ and k̄ denote the analogous quantities in the
copolymer model, respectively, the pinning model.

1.2 Quenched excess free energy and critical curve

The quenched free energy per monomer

fque(β̂, ĥ, β̄, h̄) = lim
n→∞

1

n
log Z̃ β̂,ĥ,β̄,h̄,ωn (1.6)

exists ω-a.s. and in P-mean (see e.g. Giacomin [7]). By restricting the partition sum Z̃ β̂,ĥ,β̄,h̄,ωn to
paths that stay above the interface up to time n, we obtain, using the law of large numbers for ω̂,
that fque(β̂, ĥ, β̄, h̄) ≥ β̂ ĥ. The quenched excess free energy per monomer

gque(β̂, ĥ, β̄, h̄) = fque(β̂, ĥ, β̄, h̄)− β̂ ĥ (1.7)

corresponds to the Hamiltonian

H β̂,ĥ,β̄,h̄,ω
n (π) = β̂

n∑
i=1

(ω̂i + ĥ) [∆i − 1] +
n∑
i=1

(β̄ ω̄i − h̄)δi (1.8)

and has two phases

Lque =
{

(β̂, ĥ, β̄, h̄) ∈ [0,∞)3 × R : gque(β̂, ĥ, β̄, h̄) > 0
}
,

Dque =
{

(β̂, ĥ, β̄, h̄) ∈ [0,∞)3 × R : gque(β̂, ĥ, β̄, h̄) = 0
}
,

(1.9)

called the quenched localized phase (where the strategy of staying close to the interface is optimal)
and the quenched delocalized phase (where the strategy of wandering away from the interface is
optimal). The map ĥ 7→ gque(β̂, ĥ, β̄, h̄) is non-increasing and convex for every β̂, β̄ ≥ 0 and h̄ ∈ R.
Hence, Lque and Dque are separated by a single curve (or rather single surface)

hque
c (β̂, β̄, h̄) = inf

{
ĥ ≥ 0: gque(β̂, ĥ, β̄, h̄) = 0

}
, (1.10)
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called the quenched critical curve.

In the sequel we write ĝque(β̂, ĥ), ĥque
c (β̂), L̂que, D̂que for the analogous quantities in the copoly-

mer model (β̄ = h̄ = 0), and ḡque(β̄, h̄), h̄que
c (β̄), L̄que, D̄que for the analogous quantities in the

pinning model (β̂ = ĥ = 0).

1.3 Annealed excess free energy and critical curve

The annealed excess free energy per monomer is given by

gann(β̂, ĥ, β̄, h̄) = lim
n→∞

1

n
logZ β̂,ĥ,β̄,h̄n = lim

n→∞

1

n
logE

(
Z β̂,ĥ,β̄,h̄,ωn

)
, (1.11)

where E is the expectation w.r.t. the joint disorder distribution P. This also has two phases,

Lann =
{

(β̂, ĥ, β̄, h̄) ∈ [0,∞)3 × R : gann(β̂, ĥ, β̄, h̄) > 0
}
,

Dann =
{

(β̂, ĥ, β̄, h̄) ∈ [0,∞)3 × R : gann(β̂, ĥ, β̄, h̄) = 0
}
,

(1.12)

called the annealed localized phase and the annealed delocalized phase, respectively. The two phases
are separated by the annealed critical curve

hann
c (β̂, β̄, h̄) = inf

{
ĥ ≥ 0: gann(β̂, ĥ, β̄, h̄) = 0

}
. (1.13)

Let N (g) =
∑

n∈N e
−ng ρ(n). We will show in Section 3.2 that

gann(β̂, ĥ, β̄, h̄) is the unique g-value at which

log
[

1
2N (g) + 1

2N
(
g − [M̂(2β̂)− 2β̂ĥ]

)]
+ M̄(−β̄)− h̄ changes sign.

(1.14)

It follows from (1.14) that for the copolymer model (β̄ = h̄ = 0)

ĝ ann(β̂, ĥ) = 0 ∨ [M̂(2β̂)− 2β̂ĥ],

ĥann
c (β̂) = (2β̂)−1M̂(2β̂),

(1.15)

and for the pinning model (β̂ = ĥ = 0)

ḡann(β̄, h̄) is the unique g-value for which N (g) = e−(0∨[M̄(−β̄)−h̄]),

h̄ann
c (β̄) = M̄(−β̄).

(1.16)

For more details on these special cases, see Giacomin [11] and den Hollander [12], and references
therein.

1.4 Main results

Our variational characterization of the excess free energies and the critical curves is contained in
the following theorem. For technical reasons, in the sequel we exclude the case β̂ > 0, ĥ = 0 for
the quenched version.
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Theorem 1.1 Assume (1.2) and (1.3).
(i) For every α ≥ 1 and β̂, ĥ, β̄ ≥ 0, there are lower semi-continuous, convex and non-increasing
functions

g 7→ Sque(β̂, ĥ, β̄; g),

g 7→ Sann(β̂, ĥ, β̄; g),
(1.17)

given by explicit variational formulas such that, for every h̄ ∈ R,

gque(β̂, ĥ, β̄, h̄) = inf{g ∈ R : Sque(β̂, ĥ, β̄; g)− h̄ < 0},
gann(β̂, ĥ, β̄, h̄) = inf{g ∈ R : Sann(β̂, ĥ, β̄; g)− h̄ < 0}.

(1.18)

(ii) For every α ≥ 1, β̂ > 0, β̄ ≥ 0 and h̄ ∈ R,

hque
c (β̂, β̄, h̄) = inf

{
ĥ > 0: Sque(β̂, ĥ, β̄; 0)− h̄ ≤ 0

}
,

hann
c (β̂, β̄, h̄) = inf

{
ĥ ≥ 0: Sann(β̂, ĥ, β̄; 0)− h̄ ≤ 0

}
.

(1.19)

The variational formulas for Sque(β̂, ĥ, β̄; g) and Sann(β̂, ĥ, β̄; g) are given in Theorems 3.1–3.2 in
Section 3. Figs. 6–9 in Sections 3 and 5 show how these functions depend on β̂, ĥ, β̄ and g, which
is crucial for our analysis.

Next, we state seven corollaries that are consequences of the variational formulas. The content
of these corollaries will be discussed in Section 1.5. The first corollary looks at the excess free
energies. Put

h̄∗(β̂, ĥ, β̄) = M̄(−β̄) + log
(

1
2

[
1 +N

(
|M̂(2β̂)− 2β̂ĥ|

)])
,

Lann
1 =

{
(β̂, ĥ, β̄, h̄) ∈ [0,∞)3 × R : (β̂, ĥ) ∈ L̂ann

}
,

Lann
2 =

{
(β̂, ĥ, β̄, h̄) ∈ [0,∞)3 × R : (β̂, ĥ) ∈ D̂ann, h̄ < h̄∗(β̂, ĥ, β̄)

}
.

(1.20)

Corollary 1.2 (i) For every α ≥ 1, β̂ > 0 and β̄ ≥ 0, gque(β̂, ĥ, β̄, h̄) and gann(β̂, ĥ, β̄, h̄) are the
unique g-values that solve the equations

Sque(β̂, ĥ, β̄; g) = h̄, if h̄ ∈ R, 0 < ĥ ≤ hque
c (β̂, β̄, h̄),

Sann(β̂, ĥ, β̄; g) = h̄, if ĥ ≥ 0, h̄ ≤ h̄∗(β̂, ĥ, β̄).
(1.21)

(ii) The annealed localized phase Lann admits the decomposition Lann = Lann
1 ∪ Lann

2 .
(iii) On Lann,

gque(β̂, ĥ, β̄, h̄) < gann(β̂, ĥ, β̄, h̄), (1.22)

with the possible exception of the case where mρ =
∑

n∈N nρ(n) =∞ and h̄ = h̄∗(β̂, ĥ, β̄).

(iv) For every α ≥ 1 and β̂, ĥ, β̄ ≥ 0,

gann(β̂, ĥ, β̄, h̄)

{
= ĝann(β̂, ĥ), if h̄ ≥ h̄∗(β̂, ĥ, β̄),

> ĝann(β̂, ĥ), otherwise.
(1.23)

The next four corollaries look at the critical curves.
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Corollary 1.3 For every α ≥ 1, β̂ > 0 and β̄ ≥ 0 , the maps

ĥ 7→ Sque(β̂, ĥ, β̄; 0),

ĥ 7→ Sann(β̂, ĥ, β̄; 0),
(1.24)

are convex and non-increasing on (0,∞). Both critical curves are continuous and non-increasing
in h̄. Moreover (see Figs. 2–3),

hque
c (β̂, β̄, h̄) =


∞, if h̄ ≤ h̄que

c (β̄)− log 2,

ĥann
c (β̂/α), if h̄ > s∗(β̂, β̄, α),

hque
∗ (β̂, β̄, h̄), otherwise,

(1.25)

and

hann
c (β̂, β̄, h̄) =


∞, if h̄ ≤ h̄ann

c (β̄)− log 2,

ĥann
c (β̂), if h̄ > h̄ann

c (β̄),

hann
∗ (β̂, β̄, h̄), otherwise,

(1.26)

where
s∗(β̂, β̄, α) = sque

(
β̂, ĥann

c (β̂/α), β̄; 0
)
∈ (h̄que

c (β̄)− log 2,∞] (1.27)

is defined in (3.15), and hque
∗ (β̂, β̄, h̄) and hann

∗ (β̂, β̄, h̄) are the unique ĥ-values that solve the
equations

Sque(β̂, ĥ, β̄; 0) = h̄,

Sann(β̂, ĥ, β̄; 0) = h̄.
(1.28)

∞

s∗(β̂, β̄, α)

hque
c (β̂, β̄, h̄)

h̄

ĥann
c ( β̂α)

h̄que
c (β̄)− log 2

(a)

∞
hque
c (β̂, β̄, h̄)

h̄

ĥann
c ( β̂α)

h̄que
c (β̄)− log 2

(b)

Figure 2: Qualitative picture of the map h̄ 7→ hquec (β̂, β̄, h̄) for β̂ > 0 and β̄ ≥ 0 when: (a) s∗(β̂, β̄, α) <∞;

(b) s∗(β̂, β̄, α) =∞.

Corollary 1.4 For every α > 1, β̂ > 0 and β̄ ≥ 0,

hque
c (β̂, β̄, h̄)

{
< hann

c (β̂, β̄, h̄) ≤ ∞, if h̄ > h̄que
c (β̄)− log 2,

= hann
c (β̂, β̄, h̄) =∞, otherwise.

(1.29)

Corollary 1.5 For every α > 1, β̂ > 0 and β̄ ≥ 0,

hque
c (β̂, β̄, h̄)

{
> ĥann

c (β̂/α), if h̄ < s∗(β̂, β̄, α),

= ĥann
c (β̂/α), otherwise.

(1.30)
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∞

h̄ann
c (β̄)

hann
c (β̂, β̄, h̄)

ĥann
c (β̂)

h̄
h̄ann
c (β̄)− log 2

Figure 3: Qualitative picture of the map h̄ 7→ hannc (β̂, β̄, h̄) for β̂, β̄ ≥ 0.

Corollary 1.6 (i) For every α ≥ 1 and β̂, β̄ ≥ 0,

inf
{
h̄ ∈ R : gann(β̂, ĥann

c (β̂), β̄, h̄) = 0
}

= h̄ann
c (β̄),

inf
{
ĥ ≥ 0: gann(β̂, ĥ, β̄, h̄ann

c (β̄)) = 0
}

= ĥann
c (β̂).

(1.31)

(ii) For every α ≥ 1, β̂ > 0 and β̄ = 0,

inf
{
h̄ ∈ R : gque(β̂, ĥque

c (β̂), β̄, h̄) = 0
}

= ĥann
c (β̂). (1.32)

The last two corollaries concern the typical path behavior. Let P β̂,ĥ,β̄,h̄,ωn denote the path

measure associated with the Hamiltonian H β̂,ĥ,β̄,h̄,ω
n defined in (1.8). WriteMn =Mn(π) = |{1 ≤

i ≤ n : πi = 0}| to denote the number of times the polymer returns to the interface up to time n.
Define

Dque
1 =

{
(β̂, ĥ, β̄, h̄) ∈ Dque : h̄ ≤ s∗(β̂, β̄, α)

}
. (1.33)

Corollary 1.7 For every (β̂, ĥ, β̄, h̄) ∈ int(Dque
1 ) ∪ (Dque \ Dque

1 ) and c > α/[−(Sque(β̂, ĥ, β̄; 0) −
h̄)] ∈ (0,∞),

lim
n→∞

P β̂,ĥ,β̄,h̄,ωn (Mn ≥ c log n) = 0 ω − a.s. (1.34)

Corollary 1.8 For every (β̂, ĥ, β̄, h̄) ∈ Lque,

lim
n→∞

P β̂,ĥ,β̄,h̄,ωn

(
| 1nMn − C| ≤ ε

)
= 1 ω − a.s. ∀ ε > 0, (1.35)

where

− 1

C
=

∂

∂g
Sque

(
β̂, ĥ, β̄; gque(β̂, ĥ, β̄, h̄)

)
∈ (−∞, 0), (1.36)

provided this derivative exists. (By convexity, at least the left-derivative and the right-derivative
exist.)
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1.5 Discussion

1. The copolymer and pinning versions of Theorem 1.1 are obtained by putting β̄ = h̄ = 0 and
β̂ = ĥ = 0, respectively. The copolymer version of Theorem 1.1 was proved in Bolthausen, den
Hollander and Opoku [3].

2. Corollary 1.2(i) identifies the range of parameters for which the free energies given by (1.18)
are the g-values where the variational formulas equal h̄. Corollary 1.2(ii) shows that the annealed
combined model is localized when the annealed copolymer model is localized. On the other hand,
if the annealed copolymer model is delocalized, then a sufficiently attractive pinning interaction
is needed for the annealed combined model to become localized, namely, h̄ < h̄∗(β̂, ĥ, β̄). It is an
open problem to identify a similar threshold for the quenched combined model.

3. In Bolthausen, den Hollander and Opoku [3] it was shown with the help of the variational
approach that for the copolymer model there is a gap between the quenched and the annealed
excess free energy in the localized phase of the annealed copolymer model. It was argued that
this gap can also be deduced with the help of a result in Giacomin and Toninelli [9, 10], namely,
the fact that the map ĥ 7→ ĝque(β̂, ĥ) drops below a quadratic as ĥ ↑ ĥque

c (β̂) (i.e., the phase
transition is “at least of second order”). Indeed, gque ≤ gann, ĥ 7→ ĝque(β̂, ĥ) is convex and strictly
decreasing on (0, ĥque

c (β̂)], and ĥ 7→ ĝann(β̂, ĥ) is linear and strictly decreasing on (0, ĥann
c (β̂)].

The quadratic bound implies that the gap is present for ĥ slightly below ĥann
c (β̂), and therefore

it must be present for all ĥ below ĥann
c (β̂). Now, the same arguments as in [9, 10] show that also

ĥ 7→ gque(β̂, ĥ, β̄, h̄) drops below a quadratic as ĥ ↑ hque
c (β̂, β̄, h̄). However, ĥ 7→ gann(β̂, ĥ, β̄, h̄) is

not linear on (0, hann
c (β̂, β̄, h̄)] (see (1.14)), and so there is no similar proof of Corollary 1.2(iii).

Our proof underscores the robustness of the variational approach. We expect the gap to be present
also when mρ =∞ and h̄ = h̄∗(β̂, ĥ, β̄), but this remains open.

4. Corollary 1.2(iv) gives a natural interpretation for h̄∗(β̂, ĥ, β̄), namely, this is the critical value
below which the pinning interaction has an effect in the annealed model and above which it has
not.

5. The precise shape of the quenched critical curve for the combined model was not well understood
(see e.g. Giacomin [11], Section 6.3.2, and Caravenna, Giacomin and Toninelli [4], last paragraph
of Section 1.5). In particular, in [11] two possible shapes were suggested for β̄ = 0, as shown in
Fig. 4. Corollary 1.3 rules out line 2, while it proves line 1 in the following sense: (1) this line holds
for all β̄ ≥ 0; (2) for h̄ < h̄que

c (β̄) − log 2, the combined model is fully localized ; (3) conditionally
on s∗(β̂, β̄, α) < ∞, for h̄ ≥ s∗(β̂, β̄, α) the quenched critical curve concides with ĥann

c (β̂/α) (see
Fig. 2). In the literature ĥann

c (β̂/α) is called the Monthus-line. Thus, when we sit at the far
ends of the h̄-axis, the critical behavior of the quenched combined model is determined either by
the copolymer interaction (on the far right) or by the pinning interaction (on the far left). Only
in-between is there a non-trivial competition between the two interactions.

6. The threshold values h̄ = h̄que(β̄)− log 2 and h̄ = h̄ann(β̄)− log 2 (see Figs. 2–3) are the critical
points for the quenched and the annealed pinning model when the polymer is allowed to stay in
the upper halfplane only. In the literature this restricted pinning model is called the wetting model
(see Giacomin [11], den Hollander [12]). These values of h̄ are the transition points at which the
quenched and the annealed critical curves of the combined model change from being finite to being
infinite. Thus, we recover the critical curves for the wetting model from those of the combined
model by putting ĥ =∞.

8



hque
c (β̂, 0, h̄)

ĥque
c (β̂)

ĥann
c (β̂/α)

h̄

1

2

Figure 4: Possible qualitative pictures of the map h̄ 7→ hquec (β̂, 0, h̄) for β̂ > 0.

7. It is known from the literature that the pinning model undergoes a transition between disorder
relevance and disorder irrelevance. In the former regime, there is a gap between the quenched
and the annealed critical curve, in the latter there is not. The transition depends on α, β̄ and
µ̄. In particular, if α > 3

2 , then the disorder is relevant for all β̄ > 0, while if α ∈ (1, 3
2), then

there is a critical threshold β̄c ∈ (0,∞] such that the disorder is irrelevant for β̄ ≤ β̄c and relevant
for β̄ > β̄c. The transition is absent in the copolymer model, where the disorder is relevant for
all α > 1. However, Corollary 1.4 shows that in the combined model the transition occurs for all
α > 1, β̂ > 0 and β̄ ≥ 0. Indeed, the disorder is relevant for h̄ > h̄que(β̄)− log 2 and is irrelevant
for h̄ ≤ h̄que(β̄)− log 2.

8. The quenched critical curve is bounded from below by the Monthus-line (as the critical curve
moves closer to the Monthus-line, the copolymer interaction more and more dominates the pinning
interaction). Corollary 1.5 and Fig. 2 show that the critical curve stays above the Monthus-line as
long as h̄ < s∗(β̂, β̄, α). If s∗(β̂, β̄, α) = ∞, then the quenched critical curve is everywhere above
the Monthus-line (see Fig. 2(b)). A sufficient condition for s∗(β̂, β̄, α) <∞ is∑

n∈N
ρ(n)

1
α <∞. (1.37)

We do not know whether s∗(β̂, β̄, α) < ∞ always. For β̄ = 0, Toninelli [14] proved that, under
condition (1.37), the quenched critical curve coincides with the Monthus-line for h̄ large enough.

9. Corollary 1.6(i) shows that the critical curve for the annealed combined model taken at the
h̄-value where the annealed copolymer model is critical coincides with the annealed critical curve of
the pinning model, and vice versa. For the quenched combined model a similar result is expected,
but this remains open. One of the questions that was posed in Giacomin [11], Section 6.3.2, for
the quenched combined model is whether an arbitrary small pinning bias −h̄ > 0 can lead to
localization for β̄ = 0, β̂ > 0 and ĥ = ĥque

c (β̂). This question is answered in the affirmative by
Corollary 1.6(ii).

10. Giacomin and Toninelli [8] showed that in Lque the longest excursion under the quenched

path measure P β̂,ĥ,β̄,h̄,ωn is of order log n. No information was obtained about the path behavior in
Dque. Corollary 1.7 says that in Dque (which is the region on or above the critial curve in Fig. 2),
with the exception of the piece of the critical curve over the interval (−∞, s∗(β̂, β̄, α)), the total
number of visits to the interface up to time n is at most of order log n. On this piece, the number
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may very well be of larger order. Corollary 1.8 says that in Lque this number is proportional to n,
with a variational formula for the proportionality constant. Since on the piece of the critical curve
over the interval [s∗(β̂, β̄, α),∞) the number is of order log n, the phase transition is expected to
be first order on this piece.

11. Smoothness of the free energy in the localized phase, finite-size corrections, and a central limit
theorem for the free energy can be found in [8]. Pétrélis [13] studies the weak interaction limit of
the combined model.

1.6 Outline

The present paper uses ideas from Cheliotis and den Hollander [5] and Bolthausen, den Hollander
and Opoku [3]. The proof of Theorem 1.1 uses large deviation principles derived in Birkner [1] and
Birkner, Greven and den Hollander [2]. The quenched variational formula and its proof are given
in Section 3.1, the annealed variational formula and its proof in Section 3.2. Section 3.3 contains
the proof of Theorem 1.1. The proofs of Corollaries 1.2–1.8 are given in Sections 4–6. The latter
require certain technical results, which are proved in Appendices A–C.

2 Large Deviation Principle (LDP)

Let E be a Polish space, playing the role of an alphabet, i.e., a set of letters. Let Ẽ = ∪k∈NEk be
the set of finite words drawn from E, which can be metrized to become a Polish space.

Fix ν ∈ P(E), and ρ ∈ P(N) satisfying (1.2). Let X = (Xk)k∈N be i.i.d. E-valued random
variables with marginal law ν, and τ = (τi)i∈N i.i.d. N-valued random variables with marginal law
ρ. Assume that X and τ are independent, and write P⊗ P ∗ to denote their joint law. Cut words
out of the letter sequence X according to τ (see Fig. 5), i.e., put

T0 = 0 and Ti = Ti−1 + τi, i ∈ N, (2.1)

and let
Y (i) =

(
XTi−1+1, XTi−1+2, . . . , XTi

)
, i ∈ N. (2.2)

Under the law P⊗ P ∗, Y = (Y (i))i∈N is an i.i.d. sequence of words with marginal distribution qρ,ν
on Ẽ given by

P⊗ P ∗
(
Y (1) ∈ (dx1, . . . , dxn)

)
= qρ,µ̄

(
(dx1, . . . , dxn)

)
= ρ(n) ν(dx1)× · · · × ν(dxn), n ∈ N, x1, . . . , xn ∈ E.

(2.3)

The reverse operation of cutting words out of a sequence of letters is glueing words together
into a sequence of letters. Formally, this is done by defining a concatenation map κ from ẼN to
EN. This map induces in a natural way a map from P(ẼN) to P(EN), the sets of probability
measures on ẼN and EN (endowed with the topology of weak convergence). The concatenation
q⊗Nρ,ν ◦ κ−1 of q⊗Nρ,ν equals ν⊗N, as is evident from (2.3).

2.1 Annealed LDP

Let P inv(ẼN) be the set of probability measures on ẼN that are invariant under the left-shift
θ̃ acting on ẼN. For N ∈ N, let (Y (1), . . . , Y (N))per be the periodic extension of the N -tuple

10



Figure 5: Cutting words out of a sequence of letters according to renewal times.

(Y (1), . . . , Y (N)) ∈ ẼN to an element of ẼN. The empirical process of N -tuples of words is defined
as

RXN =
1

N

N−1∑
i=0

δ
θ̃i(Y (1),...,Y (N))per ∈ P inv(ẼN), (2.4)

where the supercript X indicates that the words Y (1), . . . , Y (N) are cut from the latter sequence
X. For Q ∈ P inv(ẼN), let H(Q | q⊗Nρ,ν ) be the specific relative entropy of Q w.r.t. q⊗Nρ,ν defined by

H(Q | q⊗Nρ,ν ) = lim
N→∞

1

N
h(πNQ | qNρ,ν), (2.5)

where πNQ ∈ P(ẼN ) denotes the projection of Q onto the first N words, h( · | · ) denotes relative
entropy, and the limit is non-decreasing.

For the applications below we will need the following tilted version of ρ:

ρg(n) =
e−gn ρ(n)

N (g)
with N (g) =

∑
n∈N

e−gn ρ(n), g ≥ 0. (2.6)

Note that, for g > 0, ρg has a tail that is exponentially bounded. The following result relates the
relative entropies with q⊗Nρg ,ν and q⊗Nρ,ν as reference measures.

Lemma 2.1 [3] For Q ∈ P inv(ẼN) and g ≥ 0,

H(Q | q⊗Nρg ,ν) = H(Q | q⊗Nρ,ν ) + logN (g) + g EQ(τ1). (2.7)

This result shows that, for g ≥ 0, mQ = EQ(τ1) < ∞ whenever H(Q | q⊗Nρg ,ν) < ∞, which is a
special case of [1], Lemma 7.

The following annealed LDP is standard (see e.g. Dembo and Zeitouni [6], Section 6.5).

Theorem 2.2 For every g ≥ 0, the family (P ⊗ P ∗g )(R·N ∈ · ), N ∈ N, satisfies the LDP on

P inv(ẼN) with rate N and with rate function Iann
g given by

Iann
g (Q) = H

(
Q | q⊗Nρg ,ν

)
, Q ∈ P inv(ẼN). (2.8)

This rate function is lower semi-continuous, has compact level sets, has a unique zero at q⊗Nρg ,ν , and
is affine.

It follows from Lemma 2.1 that

Iann
g (Q) = Iann(Q) + logN (g) + gmQ, (2.9)

where Iann(Q) = H(Q | q⊗Nρ,ν ), the annealed rate function for g = 0.
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2.2 Quenched LDP

To formulate the quenched analogue of Theorem 2.2, we need some more notation. Let P inv(EN)
be the set of probability measures on EN that are invariant under the left-shift θ acting on EN.
For Q ∈ P inv(ẼN) such that mQ <∞, define

ΨQ =
1

mQ
EQ

(
τ1−1∑
k=0

δθkκ(Y )

)
∈ P inv(EN). (2.10)

Think of ΨQ as the shift-invariant version of Q ◦ κ−1 obtained after randomizing the location of
the origin. This randomization is necessary because a shift-invariant Q in general does not give
rise to a shift-invariant Q ◦ κ−1.

For tr ∈ N, let [·]tr : Ẽ → [Ẽ]tr = ∪tr
n=1E

n denote the truncation map on words defined by

y = (x1, . . . , xn) 7→ [y]tr = (x1, . . . , xn∧tr), n ∈ N, x1, . . . , xn ∈ E, (2.11)

i.e., [y]tr is the word of length ≤ tr obtained from the word y by dropping all the letters with
label > tr. This map induces in a natural way a map from ẼN to [Ẽ]Ntr, and from P inv(ẼN) to
P inv([Ẽ]Ntr). Note that if Q ∈ P inv(ẼN), then [Q]tr is an element of the set

P inv,fin(ẼN) = {Q ∈ P inv(ẼN) : mQ <∞}. (2.12)

Define (w-lim means weak limit)

R =

{
Q ∈ P inv(ẼN) : w − lim

N→∞

1

N

N−1∑
k=0

δθkκ(Y ) = ν⊗N Q− a.s.

}
, (2.13)

i.e., the set of probability measures in P inv(ẼN) under which the concatenation of words almost
surely has the same asymptotic statistics as a typical realization of X.

Theorem 2.3 (Birkner [1]; Birkner, Greven and den Hollander [2]) Assume (1.2–1.3). Then,
for ν⊗N–a.s. all X and all g ∈ [0,∞), the family of (regular) conditional probability distributions
P ∗g (RXN ∈ · | X), N ∈ N, satisfies the LDP on P inv(ẼN) with rate N and with deterministic rate
function Ique

g given by

Ique
g (Q) =

{
Iann
g (Q), if Q ∈ R,
∞, otherwise,

when g > 0, (2.14)

and

Ique(Q) =

{
Ifin(Q), if Q ∈ P inv,fin(ẼN),
limtr→∞ I

fin
(
[Q]tr

)
, otherwise,

when g = 0, (2.15)

where
Ifin(Q) = H(Q | q⊗Nρ,ν ) + (α− 1)mQH

(
ΨQ | ν⊗N

)
. (2.16)

This rate function is lower semi-continuous, has compact level sets, has a unique zero at q⊗Nρg ,ν , and
is affine.

12



It was shown in [1], Lemma 2, that

ΨQ = ν⊗N ⇐⇒ Q ∈ R on P inv,fin(ẼN), (2.17)

which explains why the restriction Q ∈ R appears in (2.14). For more background, see [2].

Note that Ique(Q) requires a truncation approximation when mQ =∞, for which case there is
no closed form expression like in (2.16). As we will see later on, the cases mQ <∞ and mQ =∞
need to be separated. For later reference we remark that, for all Q ∈ P inv(ẼN),

Iann(Q) = lim
tr→∞

Iann([Q]tr) = sup
tr∈N

Iann([Q]tr),

Ique(Q) = lim
tr→∞

Ique([Q]tr) = sup
tr∈N

Ique([Q]tr),
(2.18)

as shown in [2], Lemma A.1.

3 Variational formulas for excess free energies

This section uses the LDP of Section 2 to derive variational formulas for the excess free energy of
the quenched and the annealed version of the combined model. The quenched version is treated
in Section 3.1, the annealed version in Section 3.2. The results in Sections 3.1–3.2 are used in
Section 3.3 to prove Theorem 1.1.

In the combined model words are made up of letters from the alphabet E = Ê×Ē, where Ê and
Ē are subsets of R, and are cut from the letter sequence ω = ((ω̂i, ω̄i))i∈N, where ω̂ = (ω̂i)i∈N and
ω̄ = (ω̄i)i∈N are i.i.d. sequences of Ê-valued and Ē-valued random variables with joint common
law ν = µ̂ ⊗ µ̄. Let π̂ and π̄ be the projection maps from E onto Ê and Ē, respectively, i.e
π̂((ω̂1, ω̄1)) = ω̂1 and π̄((ω̂1, ω̄1)) = ω̄1 for (ω̂1, ω̄1) ∈ E. These maps extend naturally to EN, Ẽ,
ẼN, P

(
Ẽ
)

and P
(
ẼN). For instance, if ξ ∈ EN, i.e., ξ = ((ω̂i, ω̄i))i∈N, then π̂ξ = ω̂ = (ω̂i)i∈N and

π̄ξ = ω̄ = (ω̄i)i∈N.

As before, we will write k, k̂ and k̄ for a quantity k associated with the copolymer with pinning
model, the copolymer model, respectively, the pinning model. For instance, if Q ∈ P inv

(
ẼN),

Q̂ ∈ P inv
( ˜̂
E

N)
and Q̄ ∈ P inv

( ˜̄EN)
, then the rate functions Iann(Q) = H(Q|q⊗Nρ,µ̂⊗µ̄), Îann(Q̂) =

H(Q̂|q⊗Nρ,µ̂ ), Īann(Q̄) = H(Q̄|q⊗Nρ,µ̄ ) and the sets R, R̂, R̄ are defined as in (2.13).

The LDPs of the laws of the empirical processes Rω̂N = π̂RωN and Rω̄N = π̄RωN can be derived
from those of RωN via the contraction principle (see e.g. Dembo and Zeutouni [6], Theorem 4.2.1),

because the projection maps π̂ and π̄ are continuous. In particular, for any Q̂ ∈ P inv
( ˜̂
E

N)
and

Q̄ ∈ P inv
( ˜̄EN)

Îque(Q̂) = inf
Q∈Pinv

(
ẼN
)

:

π̂Q=Q̂

Ique(Q), Īque(Q̄) = inf
Q∈Pinv

(
ẼN
)

:

π̄Q=Q̄

Ique(Q), (3.1)

where π̂Q = Q ◦ (π̂)−1 and π̄Q = Q ◦ (π̄)−1. Similarly, we may express Îann and Īann in terms of
Iann.
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3.1 Quenched excess free energy

Abbreviate
Cfin =

{
Q ∈ P inv(ẼN) : Iann(Q) <∞, mQ <∞

}
. (3.2)

Theorem 3.1 Assume (1.2) and (1.3). Fix β̂, ĥ > 0, β̄ ≥ 0 and h̄ ∈ R.
(i) The quenched excess free energy is given by

gque(β̂, ĥ, β̄, h̄) = inf
{
g ∈ R : Sque(β̂, ĥ, β̄; g)− h̄ < 0

}
, (3.3)

where
Sque(β̂, ĥ, β̄; g) = sup

Q∈Cfin∩R

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− gmQ − Iann(Q)

]
(3.4)

with

Φ(Q) =

∫
Ē
ω̄1 (π̄1,1Q)(dω̄1) (3.5)

Φβ̂,ĥ(Q) =

∫
˜̂
E

(π̂1Q)(dω̂) log φβ̂,ĥ(ω̂), (3.6)

φβ̂,ĥ(ω̂) = 1
2

(
1 + exp

[
−2β̂ĥ τ1 − 2β̂

τ1∑
k=1

ω̂k

])
. (3.7)

Here, the map π̄1,1 : ẼN → Ē is the projection onto the first letter of the first word in the sentence

consisting of words cut out from ω̄, i.e., π̄1,1Q = Q ◦ (π̄1,1)−1, while the map π̂1 : ẼN → ˜̂
E

is the projection onto the first word in the sentence consisting of words cut out from ω̂, i.e.,
π̂1Q = Q ◦ (π̂1)−1, and τ1 is the length of the first word.
(ii) An alternative variational formula at g = 0 is Sque(β̂, ĥ, β̄; 0) = Sque

∗ (β̂, ĥ, β̄) with

Sque
∗ (β̂, ĥ, β̄) = sup

Q∈Cfin

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− Ique(Q)

]
. (3.8)

(iii) The map g 7→ Sque(β̂, ĥ, β̄; g) is lower semi-continuous, convex and non-increasing on R, is
infinite on (−∞, 0), and is finite, continuous and strictly decreasing on (0,∞).

Proof. The proof is an adaptation of the proof of Theorem 3.1 in [3] and comes in 3 steps.

1. Suppose that π ∈ Πn has tn = tn(π) excursions away from the interface. If ki denote the times
at which π visits the interface, then the Hamiltonian reads

H β̂,ĥ,β̄,h̄,ω
n (π) = β̂

n∑
k=1

(ω̂k + ĥ) [sign(πk−1, πk)− 1] +

n∑
k=1

(β̄ω̄k − h̄)1{πk=0}

=

tn∑
i=1

β̄ω̄ki − h̄− 2 β̂ 1A−i

∑
k∈Ii

(ω̂k + ĥ)

 , (3.9)

where A−i is the event that the i-th excursion is below the interface and Ii = (ki−1, ki] ∩ N.
Since each excursion has equal probability to lie below or above the interface, the i-th excursion
contributes

φβ̂,ĥ(ω̂Ii) e
β̄ω̄ki−h̄ = 1

2

1 + exp

−2 β̂
∑
k∈Ii

(ω̂k + ĥ)

 eβ̄ω̄ki−h̄ (3.10)
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to the partition sum Z β̂,ĥ,β̄,h̄,ωn , where ω̂Ii is the word in
˜̂
E cut out from ω̂ by the i-th excursion

interval Ii. Consequently, we have

Z β̂,ĥ,β̄,h̄,ωn =
∑
N∈N

∑
0=k0<k1<···<kN=n

N∏
i=1

ρ(ki − ki−1) e(β̄ω̄ki−h̄)elog φβ̂,ĥ(ω̂Ii ). (3.11)

Therefore, summing over n, we get∑
n∈N

Z β̂,ĥ,β̄,h̄,ωn e−gn =
∑
N∈N

F β̂,ĥ,β̄,h̄,ωN (g), g ≥ 0, (3.12)

with

F β̂,ĥ,β̄,h̄,ωN (g) =
(
N (g) e−h̄

)N ∑
0=k0<k1<···<kN<∞

(
N∏
i=1

ρg(ki − ki−1)

)

× exp

[
N∑
i=1

(
log φβ̂,ĥ(ω̂Ii) + β̄ ω̄ki

)]

=
(
N (g) e−h̄

)N
E∗g

(
exp

[
N
(

Φβ̂,ĥ(RωN ) + β̄ Φ(RωN )
)])

,

(3.13)

where

RωN
(
(ki)

N
i=0

)
=

1

N

N∑
i=1

δ
θ̃i(ωI1 ,...,ωIN )per (3.14)

denotes the empirical process of N -tuples of words cut out from ω by the N successive excursions,
and Φβ̂,ĥ,Φ are defined in (3.5–3.7).

2. The left-hand side of (3.12) is a power series with radius of convergence gque(β̂, ĥ, β̄, h̄) (recall
(1.7)). Define

sque(β̂, ĥ, β̄; g) = logN (g) + lim sup
N→∞

1

N
logE∗g

(
exp

[
N
(

Φβ̂,ĥ(RωN ) + β̄ Φ(RωN )
)])

(3.15)

and note that the limsup exists and is constant (possibly infinity) ω-a.s. because it is measurable
w.r.t. the tail sigma-algebra of ω (which is trivial). Note from (3.13) and (3.15) that

sque(β̂, ĥ, β̄; g)− h̄ = lim sup
N→∞

1

N
logF β̂,ĥ,β̄,h̄,ωN (g). (3.16)

By (1.7), the left-hand side of (3.12) is a power series that converges for g > gque(β̂, ĥ, β̄, h̄) and
diverges for g < gque(β̂, ĥ, β̄, h̄). Hence we have

gque(β̂, ĥ, β̄, h̄) = inf
{
g ∈ R : sque(β̂, ĥ, β̄; g)− h̄ < 0

}
. (3.17)

3. We claim that, for any β̂, ĥ > 0 and β̄ ≥ 0, the map g 7→ S̄que(β̂, ĥ, β̄; g) is finite on (0,∞) and
infinite on (−∞, 0) (see Fig. 6), and

sque(β̂, ĥ, β̄; g) = Sque(β̂, ĥ, β̄; g) ∀ g ∈ R. (3.18)

Note from the contraction principle in (3.1) that Îann(π̂Q) and Īann(π̄Q) are finite whenever
Iann(Q) < ∞. Therefore, for any β̂ > 0, β̄ ≥ 0 and ĥ > 0, it follows from Lemmas A.1 and
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A.3 in Appendix A that β̄Φ(Q) + Φβ̂,ĥ(Q) < ∞ whenever Iann(Q) < ∞. This implies that the

map g 7→ Sque(β̂, ĥ, β̄; g) is convex and lower-semicontinuous, since, by (3.4), Sque(β̂, ĥ, β̄; g) is the
supremum of a family of functions that are finite and linear (and hence continuous) in g. This and
the above claim prove part (iii) of the theorem (since convexity and finiteness imply continuity).
The rest of the proof follows from the claim in (3.18), whose proof we defer to Appendix B.

g

Sque(β̂, ĥ, β̄; g)

∞

s
c

h̄

(1) ĥann
c ( β̂α) < ĥ < hque

c (β̂, β̄, h̄)

g

Sque(β̂, ĥ, β̄; g)

∞

s

c

h̄

(2) ĥ = hque
c (β̂, β̄, h̄)

g

Sque(β̂, ĥ, β̄; g)

∞

s

c

h̄

(3) ĥ > hque
c (β̂, β̄, h̄)

Figure 6: Qualitative picture of the map g 7→ Sque(β̂, ĥ, β̄; g) for β̂, ĥ > 0 and β̄ ≥ 0.

Analogues of Theorem 3.1 also hold for the copolymer model and the pinning model. The
copolymer analogue is obtained by putting β̄ = h̄ = 0, which leads to analogous variational
formulas for Ŝque(β̂, ĥ; g) and ĝque(β̂, ĥ). In the variational formula for Ŝque(β̂, ĥ; g) we replace
Cfin ∩ R by Ĉfin ∩ R̂ in (3.4). This replacement is a consequence of the contraction principle in
(3.1). Although the contraction principle holds on P inv(ẼN), it turns out that the Q /∈ Cfin∩R play
no role in (3.4). Similarly, Theorem 3.1 reduces to the pinning model upon putting β̂ = ĥ = 0. The
variational formula for S̄que(β̄; g) is the same as that in (3.4), with Cfin ∩R replaced by C̄fin ∩ R̄.

3.2 Annealed excess free energy

We next present the variational formula for the annealed excess free energy. This will serve as an
object of comparison in our study of the quenched model. Define

N (β̂, ĥ, β̄; g) = 1
2e
M̄(−β̄)

(∑
n∈N

ρ(n) e−ng +
∑
n∈N

ρ(n) e−n(g−[M̂(2 β̂)−2 β̂ĥ])

)
(3.19)

(recall (1.3)).

Theorem 3.2 Assume (1.2) and (1.3). Fix β̂, ĥ, β̄ ≥ 0 and h̄ ∈ R.
(i) The annealed excess free energy is given by

gann(β̂, ĥ, β̄, h̄) = inf
{
g ∈ R : Sann(β̂, ĥ, β̄; g)− h̄ < 0

}
, (3.20)

where
Sann(β̂, ĥ, β̄; g) = sup

Q∈Cfin

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− gmQ − Iann(Q)

]
. (3.21)
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(ii) The map g 7→ Sann(β̂, ĥ, β̄; g) is lower semi-continuous, convex and non-increasing on R.
Furthermore, it is infinite on (−∞, ĝann(β̂, ĥ)), and finite, continuous and strictly decreasing on
[ĝann(β̂, ĥ),∞) (recall (1.15)).

Proof. The proof comes in 3 steps.

Replacing Z β̂,ĥ,β̄,h̄,ωn by Z β̂,ĥ,β̄,h̄n = E(Z β̂,ĥ,β̄,h̄,ωn ) in (3.12), we obtain from (3.13) that

F β̂,ĥ,β̄,h̄N (g) = E
(
F β̂,ĥ,β̄,h̄,ωN (g)

)
= N (β̂, ĥ, β̄; g)Ne−h̄N . (3.22)

It therefore follows from (3.16) and (3.22) that

sann(β̂, ĥ, β̄; g)− h̄ = lim sup
N→∞

1

N
logF β̂,ĥ,β̄,h̄N (g) = logN (β̂, ĥ, β̄; g)− h̄, (3.23)

where

sann(β̂, ĥ, β̄; g) = lim sup
N→∞

1

N
log
(
eNh̄F β̂,ĥ,β̄,h̄N (g)

)
= logN (β̂, ĥ, β̄; g). (3.24)

Note from (3.19) and (3.24) that the map g 7→ sann(β̂, ĥ, β̄; g) is non-increasing. Moreover, for any

β̂, ĥ, β̄ ≥ 0 and h̄ ∈ R, we see from (3.12) after replacing Z β̂,ĥ,β̄,h̄,ωn by Z β̂,ĥ,β̄,h̄n that gann(β̂, ĥ, β̄, h̄)
is the smallest g-value at which sann(β̂, ĥ, β̄; g)− h̄ changes sign, i.e.,

gann(β̂, ĥ, β̄, h̄) = inf
{
g ∈ R : sann(β̂, ĥ, β̄; g)− h̄ < 0

}
. (3.25)

The proof of (i) and (ii) will follow once we show that

Sann(β̂, ĥ, β̄; g) = sann(β̂, ĥ, β̄; g) ∀ g ∈ R, (3.26)

since (3.19), (3.24) and (3.26) show that the map g 7→ Sann(β̂, ĥ, β̄; g) is infinite whenever g <
ĝ ann(β̂, ĥ) = 0 ∨ [M(2β̂) − 2β̂ĥ], and is finite otherwise. Lower semi-continuity and convexity of
this map follow from (3.21), because the function under the supremum is linear and finite in g,
while convexity and finiteness imply continuity. The proof of (3.26) follows from the arguments
in [3], Theorem 3.2, as we show in steps 2–3.

2. For the case g < ĝann(β̂, ĥ), note from (3.19) that N (β̂, ĥ, β̄; g) = ∞ for all β̂, ĥ, β̄ ≥ 0 and
h̄ ∈ R. To show that Sann(β̂, ĥ, β̄; g) = ∞ for this case, we proceed as in steps (II) and (III)
of the proof of [3], Theorem 3.2, by evaluating the functional under the supremum in (3.21) at
QL
β̂

= (qL
β̂

)⊗N with

qL
β̂

(d(ω̂1, ω̄1), . . . , d(ω̂n, ω̄n)) = δLn

[
µ̂β̂(dω̂1)× · · · × µ̂β̂(dω̂n)

]
× [µ̄(dω̄1)× · · · × µ̄(dω̄n)] , (3.27)

where L, n ∈ N, ω̂1, . . . , ω̂n ∈ Ê, ω̄1, . . . , ω̄n ∈ Ē, and (recall (1.3))

µ̂β̂(dω̂1) = e−2β̂ω̂1−M̂(2β̂)µ̂(dω̂1). (3.28)

Note from (3.5) that Φ(QL
β̂

) = 0 because µ̄ has zero mean. This leads to a lower bound on

Sann(β̂, ĥ, β̄; g) that tends to infinity as L → ∞. To get the desired lower bound, we have to
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distinguish between the cases ĝann(β̂, ĥ) = 0 and ĝann(β̂, ĥ) > 0. For ĝann(β̂, ĥ) = 0 use QL0 , for
ĝann(β̂, ĥ) > 0 with β̂ > 0 use QL

β̂
.

3. For the case g ≥ ĝann(β̂, ĥ), we proceed as in step 1 and 2 of the proof of Theorem 3.2 of
[3]. Note that Φβ̂,ĥ(Q) and Φ(Q) defined in (3.5–3.7) are functionals of π1Q, where π1Q is the

first-word marginal of Q. Moreover, by (2.5),

inf
Q∈Pinv(ẼN)

π1Q=q

H(Q | q⊗Nρ,µ̂⊗µ̄) = h(q | qρ,µ̂⊗µ̄) ∀ q ∈ P(Ẽ) (3.29)

with the infimum uniquely attained at Q = q⊗N, where the right-hand side denotes the relative
entropy of q w.r.t. qρ,µ̂⊗µ̄. (The uniqueness of the minimum is easily deduced from the strict
convexity of relative entropy on finite cylinders.) Consequently, the variational formula in (3.21)
becomes

Sann(β̂, ĥ, β̄; g) = sup
q∈P(Ẽ)

mq<∞, h(q|qρ,µ̂⊗µ̄)<∞

{∫
Ẽ
q(dω) [β̄ω̄1 + log φβ̂,ĥ(ω̂)]− gmQ − h(q | qρ,µ̂⊗µ̄)

}

= sup
q∈P(Ẽ)

mq<∞, h(q|qρ,µ̂⊗µ̄)<∞

{∫
Ẽ
q(dω) [β̄ω̄1 + log φβ̂,ĥ(ω̂)− gτ(ω)]

−
∫
Ẽ
q(dω) log

(
q(dω)

qρ,µ̂⊗µ̄(dω)

)}
= M̄(−β̄) + log N̂ (β̂, ĥ; g)− inf

q∈P(Ẽ)
mq<∞, h(q|qρ,µ̂⊗µ̄)<∞

h(q | qβ̂,ĥ,β̄;g),

(3.30)

where (by an abuse of notation) ω = ((ω̂i, ω̄i))
τ(ω)
i=1 is the disorder in the first word, φβ̂,ĥ(ω̂) is

defined in (3.7), mq =
∫
Ẽ
q(dω)τ(ω), τ(ω) is the length of the word ω, and

qβ̂,ĥ,β̄;g(d(ω̂1, ω̄1), · · · , d(ω̂n, ω̄n)) =
ρ(n)φβ̂,ĥ(ω̂)eβ̄ω̄1−ng

N̂ (β̂, ĥ; g)eM̄(−β̄)
(µ̂⊗ µ̄)n(d(ω̂1, ω̄1), · · · , d(ω̂n, ω̄n)),

N̂ (β̂, ĥ; g) = 1
2

[∑
n∈N

ρ(n)e−ng +
∑
n∈N

ρ(n)e−n(g−[M(2β̂)−2β̂ĥ])

]
.

(3.31)

Note from (3.19) that N (β̂, ĥ, β̄; g) = N̂ (β̂, ĥ; g)eM̄(−β̄). The infimum in the last equality of (3.30)
is uniquely attained at q = qβ̂,ĥ,β̄;g. Therefore the variational problem in (3.21) for g ≥ ĝann(β̂, ĥ)
takes the form

Sann(β̂, ĥ, β̄; g) = log

(
1
2

(∑
n∈N

ρ(n)e−gn +
∑
n∈N

ρ(n)e−n(g−[M̂(2 β̂)−2 β̂ĥ])

)
eM̄(−β̄)

)
= logN (β̂, ĥ, β̄; g) = sann(β̂, ĥ, β̄; g).

(3.32)

The last formula proves (1.14).

As in the quenched model, there are analogous versions of Theorem 3.2 for the annealed
copolymer model and the annealed pinning model. These are obtained by putting either β̄ = h̄ = 0
or β̂ = ĥ = 0, replacing Cfin by Ĉfin and C̄fin, respectively. The copolymer version of Theorem 3.2
was derived in [3], Theorem 3.2, and the pinning version (for g = 0 only) in [5], Theorem 1.3.
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Putting β̄ = h̄ = 0, we get the copolymer analogue of (3.32):

Ŝann(β̂, ĥ; g) = log

(
1
2

[∑
n∈N

ρ(n) e−ng +
∑
n∈N

ρ(n) e−n(g−[M̂(2 β̂)−2 β̂ ĥ])

])
. (3.33)

This expression, which was obtained in [3], is plotted in Fig. 7. Putting β̂ = ĥ = 0, we get the
pinning analogue:

S̄ann(β̄; g) = M̄(−β̄) + log

(∑
n∈N

ρ(n) e−ng

)
. (3.34)

g

Ŝann(β̂, ĥ; g)
∞

s0

c

(1) ĥ < ĥann
c (β̂)

g

Ŝann(β̂, ĥ; g)
∞

s0

c

(2) ĥ = ĥann
c (β̂)

g

Ŝann(β̂, ĥ; g)
∞

s0

c

(3) ĥ > ĥann
c (β̂)

Figure 7: Qualitative picture of the map g 7→ Ŝann(β̂, ĥ; g) for β̂, ĥ ≥ 0. Compare with Fig. 6.

The map g 7→ Sann(β̂, ĥ, β̄; g) has the same qualitative picture as in Fig. 7, with the following
changes: the horizontal axis is located at h̄ instead of zero, and ĥann

c (β̂) is replaced by hann
c (β̂, β̄, h̄).

Subtracting h̄ from (3.33) and (3.34), we get from (3.20) that the excess free energies ĝann(β̂, ĥ)
and ḡann(β̄, h̄) take the form given in (1.15) and (1.16), respectively. The following lemma sum-
marizes their relationship.

Lemma 3.3 For every β̄, ĥ, β̂ ≥ 0 and h̄ ∈ R (recall (1.20))

gann(β̂, ĥ, β̄, h̄)



= ĝann(β̂, ĥ), if h̄ ≥ h̄∗(β̂, ĥ, β̄),

> ĝann(β̂, ĥ), if h̄ < h̄∗(β̂, ĥ, β̄),

≤ ḡann(β̄, h̄), if ĥ > ĥann
c (β̂),

= ḡann(β̄, h̄), if ĥ = ĥann
c (β̂),

≥ ḡann(β̄, h̄), if ĥ < ĥann
c (β̂).

(3.35)

Proof. Note from (3.21) and (3.32–3.33) that Sann(β̂, ĥ, β̄; g)−h̄ is Ŝann(β̂, ĥ; g) shifted by M̄(−β̄)−
h̄. We see from Fig. 7 that if h̄ ≥ h̄∗(β̂, ĥ, β̄), then the map g 7→ Sann(β̂, ĥ, β̄; g)− h̄ changes sign
at the same value of g as the map g 7→ Ŝann(β̂, ĥ; g) does. Hence gann(β̂, ĥ, β̄, h̄) = ĝann(β̂, ĥ)
whenever h̄ ≥ h̄∗(β̂, ĥ, β̄). On the other hand, if h̄ < h̄∗(β̂, ĥ, β̄), then the map g 7→ Ŝann(β̂, ĥ; g)
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changes sign before the map g 7→ Sann(β̂, ĥ, β̄; g) − h̄ does, i.e., Sann(β̂, ĥ, β̄; ĝann(β̂, ĥ)) − h̄ > 0,
and hence gann(β̂, ĥ, β̄, h̄) > ĝann(β̂, ĥ).

The rest of the proof follows from a comparison of (3.32) and (3.34). Note that, for ĥ > ĥann
c (β̂),

we have Sann(β̂, ĥ, β̄; g)− h̄ < S̄ann(β̄; g)− h̄, which implies that gann(β̂, ĥ, β̄, h̄) ≤ ḡann(β̄, h̄). For
ĥ = ĥann

c (β̂), we have Sann(β̂, ĥ, β̄; g) − h̄ = S̄ann(β̄; g) − h̄, which implies that gann(β̂, ĥ, β̄, h̄) =
ḡann(β̄, h̄). Finally, for ĥ < ĥann

c (β̂) we have Sann(β̂, ĥ, β̄; g) − h̄ > S̄ann(β̄; g) − h̄, which implies
that gann(β̂, ĥ, β̄, h̄) ≥ ḡann(β̄, h̄).

3.3 Proof of Theorem 1.1

Proof. Throughout the proof β̂ > 0, β̄ ≥ 0 and h̄ ∈ R are fixed.
(i) Use Theorems 3.1(i,iii).
(ii) Recall from (1.10) and (3.3) that

hque
c (β̂, β̄, h̄) = inf

{
ĥ > 0: gque(β̂, ĥ, β̄, h̄) = 0

}
= inf

{
ĥ > 0: Sque(β̂, ĥ, β̄; 0)− h̄ ≤ 0

}
.

(3.36)

Indeed, it follows from (3.3) that gque(β̂, ĥ, β̄, h̄) = 0 is equivalent to saying that the map g 7→
Sque(β̂, ĥ, β̄; g)− h̄ changes sign at zero. This sign change can happen while Sque(β̂, ĥ, β̄; g)− h̄ is
either zero or negative (see Fig. 6(2–3)). The corresponding expression for hann

c (β̂, β̄, h̄) is obtained
in a similar way.

4 Key lemma and proof of Corollary 1.2

The following lemma will be used in the proof of Corollary 1.2.

Lemma 4.1 Fix α ≥ 1, β̂, ĥ > 0 and β̄ ≥ 0. Then, for g > 0,

Sque(β̂, ĥ, β̄; g) < Sann(β̂, ĥ, β̄; g)


if (β̂, ĥ) ∈ D̂ann,

if (β̂, ĥ) ∈ L̂ann and mρ <∞,
if g 6= ĝann(β̂, ĥ), (β̂, ĥ) ∈ L̂ann and mρ =∞.

(4.1)

Lemma 4.1 is proved in Section 4.2. In Section 4.1 we use Lemma 4.1 to prove Corollary 1.2.

4.1 Proof of Corollary 1.2

Proof. (ii) Throughout the proof, α ≥ 1, β̂, ĥ > 0 and β̄ ≥ 0. Note that, for (β̂, ĥ) ∈ L̂ann,
the map g 7→ Sann(β̂, ĥ, β̄; g) − h̄ changes sign at some g ≥ ĝann(β̂, ĥ) > 0, i.e., gann(β̂, ĥ, β̄, h̄) ≥
ĝann(β̂, ĥ) > 0 for all β̄ ≥ 0 and h̄ ∈ R. Hence Lann

1 ⊂ Lann.

Note from (3.32) and (3.33) that

Sann(β̂, ĥ, β̄; g)− h̄ = Ŝann(β̂, ĥ; g) + M̄(−β̄)− h̄. (4.2)

Furthermore, note from Fig. 7(2–3) that, for (β̂, ĥ) ∈ D̂ann, the map g 7→ Ŝann(β̂, ĥ; g) changes
sign at g = 0 while Ŝann(β̂, ĥ; 0) is either negative or zero. In either case, we need

h̄ < M̄(−β̄) + log

(
1
2

[
1 +

∑
n∈N

ρ(n)en[M̂(2β̂)−2β̂ĥ]

])
= h̄∗(β̂, ĥ, β̄) (4.3)
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to ensure that the map g 7→ Sann(β̂, ĥ, β̄; g)− h̄ changes sign at a positive g-value. This concludes
the proof that Lann = Lann

1 ∪ Lann
2 .

(i) As we saw in the proof of (ii), for the map g 7→ Sann(β̂, ĥ, β̄; g)− h̄ to reach zero we need that
h̄ ≤ h̄∗(β̂, ĥ, β̄). Thus, for this range of h̄-values, we know that the map g 7→ Sann(β̂, ĥ, β̄; g)− h̄
changes sign when it is zero. The proof for gque(β̂, ĥ, β̄, h̄) follows from Fig. 6.

(iii) We first consider the cases: (a) (β̂, ĥ, β̄, h̄) ∈ Lann
2 ; (b) (β̂, ĥ, β̄, h̄) ∈ Lann

1 and mρ < ∞. In

these cases we have that ĥ < hann
c (β̂, β̄, h̄) by (ii). It follows from (3.32–3.33) and Fig. 7 that

the map g 7→ Sann(β̂, ĥ, β̄; g) − h̄ changes sign at some g > 0 while it is either zero or negative.
In either case the finiteness of the map g 7→ Sque(β̂, ĥ, β̄; g) − h̄ on (0,∞) and (4.1) imply that
g 7→ Sque(β̂, ĥ, β̄; g) − h̄ changes sign at a smaller value of g than g 7→ Sann(β̂, ĥ, β̄; g) − h̄ does.
This concludes the proof for cases (a–b).

We next consider the case: (c) (β̂, ĥ, β̄, h̄) ∈ Lann with (β̂, ĥ) ∈ L̂ann, h̄ 6= h̄∗(β̂, ĥ, β̄) and
mρ =∞. We know from (4.1) that Sque(β̂, ĥ, β̄; g) < Sann(β̂, ĥ, β̄; g) for g > 0 and g 6= ĝann(β̂, ĥ).

If h̄ > h̄∗(β̂, ĥ, β̄), then the map g 7→ Sann(β̂, ĥ, β̄; g)− h̄ changes sign at ĝann(β̂, ĥ) while jumping
from < 0 to ∞. By the continuity of the map g 7→ Sque(β̂, ĥ, β̄; g) on (0,∞), this implies that
the map g 7→ Sque(β̂, ĥ, β̄; g) − h̄ changes sign at a g-value smaller than ĝann(β̂, ĥ). Furthermore,
if h̄ < h̄∗(β̂, ĥ, β̄), then the map g 7→ Sann(β̂, ĥ, β̄; g) − h̄ changes sign at a g-value larger than
ĝann(β̂, ĥ), while it is zero. Since Sque(β̂, ĥ, β̄; g) < Sann(β̂, ĥ, β̄; g) for g > ĝann(β̂, ĥ), we have that
gque(β̂, ĥ, β̄, h̄) < gann(β̂, ĥ, β̄, h̄).

(iv) The proof follows from Lemma 3.3.

4.2 Proof of Lemma 4.1

Proof. The proof comes in five steps. Step 1 proves the strict inequality in (4.1), using a claim
about the finiteness of Iann at some specific Q in combination with arguments from Birker [1].
Steps 2-5 are used to prove the claim about the finiteness of Iann. Note that for 0 < g < ĝann(β̂, ĥ)
the claim trivially follows from Theorems 3.1(iii) and 3.2(ii), since Sque(β̂, ĥ, β̄; g) < ∞ and
Sann(β̂, ĥ, β̄; g) = ∞ for this range of g-values. Thus, what remains to be considered is the case
g ≥ ĝann(β̂, ĥ).

1. For g ≥ ĝann(β̂, ĥ), note from (3.31) and the remark below it that there is a unique maximizer
Qβ̂,ĥ,β̄;g = (qβ̂,ĥ,β̄;g)

⊗N for the variational formula for Sann(β̂, ĥ, β̄; g) in (3.21), where

qβ̂,ĥ,β̄;g(d(ω̂1, ω̄1), . . . , d(ω̂n, ω̄n))

=
1
2 ρ(n)e−gn(1 + e−2β̂

[
nĥ+

∑n
i=1 ω̂i

]
)eβ̄ω̄1

N (β̂, ĥ, β̄; g)
(µ̂⊗ µ̄)⊗n(d(ω̂1, ω̄1), . . . , d(ω̂n, ω̄n)),

(4.4)

where

N (β̂, ĥ, β̄; g) = 1
2e
M̄(−β̄)

[∑
n∈N

ρ(n)e−gn +
∑
n∈N

ρ(n)e−n(g−[M̂(2β̂)−2β̂ĥ])

]
= eM̄(−β̄)N̂ (β̂, ĥ; g). (4.5)

Note further that Qβ̂,ĥ,β̄;g /∈ R. We claim that, for g ≥ ĝann(β̂, ĥ) and under the conditions in

(4.1),
H(Qβ̂,ĥ,β̄;g | q

⊗N
ρ,µ̂⊗µ̄) = h(qβ̂,ĥ,β̄;g | qρ,µ̂⊗µ̄) <∞. (4.6)
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This will be proved in Step 2. Let M <∞ be such that h(qβ̂,ĥ,β̄;g | qρ,µ̂⊗µ̄) < M . Then the set

AM =
{
Q ∈ P inv(ẼN) : H(Q | q⊗Nρ,µ̂⊗µ̄) ≤M

}
(4.7)

is compact in the weak topology, and contains Qβ̂,ĥ,β̄;g in its interior. It follows from Birkner [1],

Remark 8, that AM ∩ R is a closed subset of P inv(ẼN). This in turn implies that there exists a
δ > 0 such that Bδ(Qβ̂,ĥ,β̄;g) (the δ-ball around Qβ̂,ĥ,β̄;g) satisfies Bδ(Qβ̂,ĥ,β̄;g) ∩ AM ⊂ R

c. Let

δ̄ = sup
{

0 ≤ δ′ ≤ δ : Bδ′(Qβ̂,ĥ,β̄;g) ∩ AM = Bδ′(Qβ̂,ĥ,β̄;g)
}
. (4.8)

Then R ⊂ Bδ̄(Qβ̂,ĥ,β̄;g)
c. Therefore, for g ≥ ĝann(β̂, ĥ) and under the conditions in (4.1), we get

that

Sque(β̂, ĥ, β̄; g) = sup
Q∈Cfin∩R

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− gmQ − Iann(Q)

]
≤ sup

Q∈Cfin∩Bδ̄(Qβ̂,ĥ,β̄;g)c

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− gmQ − Iann(Q)

]
< sup

Q∈Cfin

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− gmQ − Iann(Q)

]
= Sann(β̂, ĥ, β̄; g) = logN (β̂, ĥ, β̄; g).

(4.9)

The strict inequality follows because no maximizing sequence in Cfin ∩ Bδ̄(Qβ̂,ĥ,β̄;g)
c can have

Qβ̂,ĥ,β̄;g as its limit (Qβ̂,ĥ,β̄;g being the unique maximizer of the variational problem in the second

inequality).

2. Let us now turn to the proof of the claim in (4.6). For g ≥ ĝann(β̂, ĥ), it follows from (4.4) and
(4.5) that

h(qβ̂,ĥβ̄;g | qρ,µ̂⊗µ̄) ≤ I + II, (4.10)

where

I = β̄

∫
Ē
ω̄1e

β̄ω̄1−M̄(−β̄)µ̄(dω̄1)− logN (β̂, ĥ, β̄; g),

II =
1

N̂ (β̂, ĥ; g)

∑
n∈N

ρ(n)e−ngA(n),

A(n) = 1
2

∫
Ên

[
1 + e−2β̂

∑n
i=1(ω̂i+ĥ)

]
log
(

1
2

[
1 + e−2β̂

∑n
i=1(ω̂i+ĥ)

])
µ̂⊗n(dω̂).

(4.11)

The inequality in (4.10) follows from (4.4) after replacing e−gn by 1. It is easy to see that I <∞,
because for g ≥ ĝann(β̂, ĥ) we have that N (β̂, ĥ, β̄; g) < ∞. Furthermore, since µ̄ has a finite
moment generating function, it follows from the Hölder inequality that

∫
R ω̄1e

β̄ω̄1−M̄(−β̄)µ̄(dω̄1) <
∞. We proceed to show that II <∞.

3. We first estimate A(n). Note that

A(n) = 1
2

∫
Ên

[
1 + e−2β̂

∑n
i=1(ω̂i+ĥ)

]
log
(

1
2

[
1 + e−2β̂

∑n
i=1(ω̂i+ĥ)

])
µ̂⊗n(dω̂)

= 1
2

∫
Ên

[
1 + e−2β̂

∑n
i=1(ω̂i+ĥ)

]
log

(
e−2β̂

∑n
i=1(ω̂i+ĥ)

2

[
1 + e2β̂

∑n
i=1(ω̂i+ĥ)

])
µ̂⊗n(dω̂)

= A1(n) +A2(n),

(4.12)
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where

A1(n) = −β̂
n∑
k=1

∫
Ên

(ω̂k + ĥ)
[
1 + e−2β̂

∑n
i=1(ω̂i+ĥ)

]
µ̂⊗n(dω̂),

A2(n) = 1
2

∫
Ên

[
1 + e−2β̂

∑n
i=1(ω̂i+ĥ)

]
log
(

1
2

[
1 + e2β̂

∑n
i=1(ω̂i+ĥ)

])
µ̂⊗n(dω̂).

(4.13)

The finiteness of II will follow once we show that∑
n∈N

ρ(n)e−gn[A1(n) +A2(n)] <∞. (4.14)

4. We start with the estimation of A2(n). Put un(ω̂) = −2β̂
∑n

i=1(ω̂i + h) and, for n ∈ N and
m ∈ N0, define

Bm,n =
{
ω̂ ∈ Ên : − (m+ 1) < un(ω̂) ≤ −m

}
, mn = mn(β̂, ĥ) = d4β̂ĥne. (4.15)

Then note that

A2(n) = 1
2

∫
Ên

[
1 + eun(ω̂)

]
log
(

1
2

[
1 + e−un(ω̂)

])
µ̂⊗n(dω̂)

≤
∫
Ên

[
1 ∨ eun(ω̂)

]
log
(

1 ∨ e−un(ω̂)
)
µ̂⊗n(dω̂)

= −
∫
un≤0

un(ω̂)µ̂⊗n(dω̂)

= −
∑
m∈N0

∫
Bm,n

un(ω̂)µ̂⊗n(dω̂)

≤
mn∑
m=0

(m+ 1) +
∑
m>mn

(m+ 1)Pω̂(Bm,n)

≤ 4m2
n +

∑
v∈N

(mn + v + 1)Pω̂(Bmn+v,n).

(4.16)

The second inequality uses that −(m+ 1) < un ≤ −m on Bm,n and Pω̂(Bmn+v,n) ≤ 1. Estimate

Pω̂(Bmn+v,n) = Pω̂

(
mn + v

2β̂
≤

n∑
k=1

(ω̂k + ĥ) <
mn + v + 1

2β̂

)

≤ Pω̂

(
n∑
k=1

ω̂k ≥
mn + v

2β̂
− nĥ

)

≤ Pω̂

(
n∑
k=1

ω̂k ≥
4β̂nĥ+ v

2β̂
− nĥ

)

= Pω̂

(
n∑
k=1

ω̂k ≥
v

2β̂
+ nĥ

)

≤ e−C
(
v

2β̂
+n
)
.

(4.17)
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The last inequality uses [3], Lemma D.1, where C is a positive constant depending on ĥ only.
Inserting (4.17) into (4.16), we get

A2(n) ≤ 4m2
n + (mn + 1)e−Cn

e−1/2β̂

1− e−1/2β̂
+ e−Cn

∑
v∈N

v e−v/2β̂. (4.18)

Furthermore, using that g > 0, we get

∑
n∈N

ρ(n)e−ngA2(n) ≤ 4
∑
n∈N

ρ(n)e−ngm2
n +

e−1/2β̂

1− e−1/2β̂

∑
n∈N

ρ(n)(mn + 1)e−n[g+C]

+
∑
n∈N

ρ(n)e−n[g+C]
∑
v∈N

v e−v/2β̂ <∞.
(4.19)

5. We proceed with the estimation of A1(n):

A1(n) = −β̂
n∑
k=1

∫
Ên

(ω̂k + ĥ)
[
1 + e−2β̂

∑n
i=1(ω̂i+ĥ)

]
µ̂⊗n(dω̂)

≤ −β̂
n∑
k=1

∫
Ên
ω̂k

[
1 + e−2β̂

∑n
i=1(ω̂i+ĥ)

]
µ̂⊗n(dω̂)

= −nβ̂ en[M̂(2β̂)−2β̂ĥ] Eµ̂β̂ (ω̂1),

(4.20)

where µ̂β̂(dω̂1) = e−2β̂ω̂1−M(2β̂)µ̂(dω̂1). The right-hand side is non-negative because Eµ̂β̂ (ω̂1) ≤ 0,
and so ∑

n∈N
ρ(n)e−ngA1(n) ≤ −β̂Eµ̂β̂ (ω̂1)

∑
n∈N

nρ(n) e−n(g−[M(2β̂)−2β̂ĥ]). (4.21)

This bound is finite if

1. g > ĝann(β̂, ĥ) = M̂(2β̂)− 2β̂ĥ;

2. g = ĝann(β̂, ĥ) and mρ <∞.

This concludes the proof since, if (β̂, ĥ) ∈ D̂ann, then ĝann(β̂, ĥ) = 0 and we only want the finiteness
for g > 0.

For the pinning model, the associated unique maximizer Q̄β̄;g for the variational formula for

S̄ann(β̄; g) satisfies H(Q̄β̄;g|q
⊗N
ρ,µ̄ ) <∞ for g ≥ 0. However, this does not imply separation between

S̄que(β̄; 0) and S̄ann(β̄; 0), since we may have Q̄β̄;0 ∈ R̄ for mρ = ∞. The separation occurs at
g = 0 as soon as mρ <∞, since this will imply that Q̄β̄;0 /∈ R̄.

5 Proof of Corollary 1.3

To prove Corollary 1.3 we need some further preparation, formulated as Lemmas 5.1–5.3 below.
These lemmas, together with the proof of Corollary 1.3, are given in Section 5.1. Section 5.2
contains the proof of the first two lemmas, and Appendix C the proof of the third lemma.
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5.1 Key lemmas and proof of Corollary 1.3

Lemma 5.1 For β̂, β̄ ≥ 0,

Sann(β̂, ĥ, β̄; 0) =


M̄(−β̄), if ĥ = ĥann

c (β̂),

∞, if ĥ < ĥann
c (β̂),

M̄(−β̄)− log 2, if ĥ =∞.
(5.1)

Furthermore, the map ĥ 7→ Sann(β̂, ĥ, β̄; 0) is strictly convex and strictly decreasing on [ĥann
c (β̂),∞).

ĥ
ĥann
c (β̂)

Sann(β̂, ĥ, β̄; 0)

h̄ann
c (β̄)

hann
c (β̂, β̄, h̄)

h̄

∞ c
s

h̄ann
c (β̄)− log 2

Figure 8: Qualitative picture of ĥ 7→ Sann(β̂, ĥ, β̄; 0) for β̂ > 0 and β̄ ≥ 0.

Lemma 5.2 For every β̂ > 0 and β̄ ≥ 0 (see Fig. 8),

Sque(β̂, ĥ, β̄; 0) = Sque
∗ (β̂, ĥ, β̄)


=∞, for ĥ < ĥann

c (β̂/α)

> 0, for ĥ = ĥann
c (β̂/α)

<∞, for ĥ > ĥann
c (β̂/α).

(5.2)

Lemma 5.3 For every β̂ > 0 and β̄ ≥ 0 (see Fig. 9),

Sque(β̂,∞−, β̄; 0) = lim
ĥ→∞

Sque(β̂, ĥ, β̄; 0) = Sque(β̂,∞, β̄; 0) = h̄que
c (β̄)− log 2. (5.3)

We now give the proof of Corollary 1.3.

Proof. Throughout the proof β̂ > 0, β̄ ≥ 0 and h̄ ∈ R are fixed. Note from (3.7) that the map

ĥ 7→ log φβ̂,ĥ(ω̂) is strictly decreasing and convex for all ω̂ ∈ ˜̂E. It therefore follows from (3.4) and

(3.21) that the maps ĥ 7→ Sque(β̂, ĥ, β̄; 0) and ĥ 7→ Sann(β̂, ĥ, β̄; 0) are strictly decreasing when
finite (because τ(ω) ≥ 1) and convex (because sums and suprema of convex functions are convex).

Recall from (1.13) and (3.3) that

hann
c (β̂, β̄, h̄) = inf

{
ĥ ≥ 0: gann(β̂, ĥ, β̄, h̄) = 0

}
= inf

{
ĥ ≥ 0: Sann(β̂, ĥ, β̄; 0)− h̄ ≤ 0

}
.

(5.4)
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ĥ

Sque(β̂, ĥ, β̄; 0)

s∗(β̂, β̄, α)

hque
c (β̂, β̄, h̄)

ĥann
c ( β̂α)

h̄

∞ td

h̄que
c (β̄)− log 2

(a)

ĥ

Sque(β̂, ĥ, β̄; 0)

s∗(β̂, β̄, α)

hque
c (β̂, β̄, h̄)

ĥann
c ( β̂α)

h̄

∞

h̄que
c (β̄)− log 2

(b)

Figure 9: Qualitative picture of ĥ 7→ Sque(β̂, β̄, ĥ; 0) for β̂ > 0 and β̄ ≥ 0: (a) s∗(β̂, β̄, α) < ∞; (b)

s∗(β̂, β̄, α) =∞.

Indeed, it follows from (3.3) that gann(β̂, ĥ, β̄, h̄) = 0 is equivalent to saying that the map g 7→
Sann(β̂, ĥ, β̄; g)− h̄ changes sign at zero. This change of sign can happen while Sann(β̂, ĥ, β̄; g)− h̄
is either zero or negative (see e.g. Fig. 6(2–3)).

For h̄ ≥ h̄ann
c (β̄), it follows from Lemma 5.1 and Fig. 8 that ĥ = ĥann

c (β̂) is the smallest value
of ĥ at which Sann(β̂, ĥ, β̄; 0) − h̄ ≤ 0 and hence hann

c (β̂, β̄, h̄) = ĥann
c (β̂). Furthermore, note from

Fig. 8 that the map ĥ 7→ Sann(β̂, ĥ, β̄; 0) is strictly decreasing and convex on [ĥann
c (β̂),∞) and has

the interval
(
h̄ann
c (β̄)− log 2, h̄ann

c (β̄)
]

as its range. In particular, Sann(β̂, ĥann
c (β̂), β̄; 0) = h̄ann

c (β̄)

and Sann(β̂,∞, β̄; 0) = h̄ann
c (β̄) − log 2. Therefore, for h̄ ∈

(
h̄ann
c (β̄)− log 2, h̄ann

c (β̄)
]
, the map

ĥ 7→ Sann(β̂, ĥ, β̄; 0)− h̄ changes sign at the unique value of ĥ at which Sann(β̂, ĥ, β̄; 0) = h̄.

For h̄ ≤ h̄ann
c (β̄) − log 2, it follows from Fig. 8 that Sann(β̂, ĥ, β̄; 0) − h̄ > 0 for all ĥ ∈ [0,∞).

It therefore follows from (5.4) that

hann
c (β̂, β̄, h̄) = inf

{
ĥ ≥ 0: Sann(β̂, ĥ, β̄; 0)− h̄ ≤ 0

}
=∞. (5.5)

The proof for hque
c (β̂, β̄, h̄) follows from that of hann

c (β̂, β̄, h̄) after replacing Sann(β̂, ĥ, β̄; 0),
h̄ann
c (β̄)− log 2 and h̄ann

c (β̄) by Sque(β̂, ĥ, β̄; 0), h̄que
c (β̄)− log 2 and s∗(β̂, β̄, α), respectively.

5.2 Proof of Lemmas 5.1–5.2

Proof of Lemma 5.1:
Proof. Note from (3.32) that

Sann(β̂, ĥ, β̄; 0) = M̄(−β̄) + log

(
1
2

[
1 +

∑
n∈N

ρ(n)en[M̂(2β̂)−2β̂ĥ]

])
, (5.6)

which implies the claim.

Proof of Lemma 5.2:
Proof. Throughout the proof β̂, ĥ > 0 and β̄ ≥ 0 are fixed. The proof uses arguments from [3],
Theorem 3.3 and Section 6. Note from (3.16), (3.18) and Lemma B.1 that

Sque(β̂, ĥ, β̄; g) = h̄+ lim sup
N→∞

1

N
logF β̂,ĥ,β̄,h̄,ωN (g) = logN (g) + lim sup

N→∞

1

N
logSωN (g), (5.7)
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where
SωN (g) = E∗g

(
exp

[
N
(

Φβ̂,ĥ(RωN ) + β̄ Φ(RωN )
)])

. (5.8)

It follows from the fractional-moment argument in [3], Eq. (6.4), that

E([SωN (g)]t) ≤

(
21−t

∑
n∈N

ρg(n)teM̄(−β̄t)

)N
<∞, g ≥ 0, (5.9)

where t ∈ [0, 1] is chosen such that M̂(2β̂t) − 2β̂ĥt ≤ 0. Abbreviate the term inside the brackets
of (5.9) by Kt and note that

P
(
t

N
logSωN (g) ≥ logKt + ε

)
= P

(
[SωN (g)]t ≥ KN

t e
Nε
)

≤ E([SωN (g)]t)K−Nt e−Nε

≤ e−Nε, ε > 0.

(5.10)

Therefore, for g > 0, this estimate together with the Borel-Cantelli lemma shows that ω-a.s. (recall
(2.6))

Sque(β̂, ĥ, β̄; g) = logN (g) + lim sup
N→∞

1

N
logSωN (g) ≤ 1

t
logKt + logN (g)

=
1− t
t

log 2 +
1

t
log

(∑
n∈N

ρg(n)t

)
+

1

t
M̄(−β̄t) + logN (g) <∞.

(5.11)

This estimate also holds for g = 0 when
∑

n∈N ρ(n)t <∞. This is the case for any pair t ∈ (1/α, 1]

and ĥ > ĥann
c (β̂/α) satisfying M̂(2β̂t) − 2β̂ĥt ≤ 0 (recall (1.2)). Therefore we conclude that

Sque(β̂, ĥ, β̄; 0) <∞ whenever ĥ > ĥann
c (β̂/α).

To prove that Sque(β̂, ĥ, β̄; 0) =∞ for ĥ < ĥann
c (β̂/α), we replace qL

β̄
in [3], Eq. (6.8), by

qL
β̂

(d(ω̂1, ω̄1), . . . , d(ω̂n, ω̄n)) = δn,L

[
µ̂β̂/α(ω̂1)× · · · × µ̂β̂/α(dω̂n)

]
× [µ̄(dω̄1)× · · · × µ̄(dω̄n)] ,

(5.12)
where

µ̂β̂/α(dω̂1) = e−(2β̂/α)ω̂1−M̂(2β̂/α)µ̂(dω̂1). (5.13)

With this choice the rest of the argument in [3], Section 6.2, goes through easily.

Finally, to prove that Sque(β̂, ĥ, β̄; 0) > 0 at ĥ = ĥann
c (β̂/α) we proceed as follows. Adding, re-

spectively, β̄Φ(Q) and β̄
∑

n∈N
∫
Ēn ω̄1q(d(ω̂1, ω̄1), . . . , d(ω̂n, ω̄n)) to the functionals being optimized

in [3], Eqs. (6.19–6.20), we get the following analogue of [3], Eq. (6.21),

qβ̂,ĥ,β̄(d(ω̂1, ω̄1), . . . , d(ω̂n, ω̄n))

=
1

N̂ (β̂, ĥ) eM̄(−β̄/α)

[
φβ̂,ĥ((ω̂1, . . . ω̂n)) eβ̄ω̄1

]1/α
qρ,µ̂⊗µ̄(d(ω̂1, ω̄1), . . . , d(ω̂n, ω̄n)),

(5.14)

where

N̂ (β̂, ĥ) =
∑
n∈N

ρ(n)

∫
Ên
µ̂(dω̂1)× · · · × µ̂(ω̂n)

{
1
2

(
1 + e−2β̂

∑n
k=1(ω̂k+ĥ)

)}1/α
. (5.15)
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Note from [3], Eqs. (6.23–6.29), that 1 < N̂ (β̂, ĥann
c (β̂/α)) ≤ 21−(1/α). Therefore it follows from

[3], Steps 1 and 2 in Section 6.3, that

Sque(β̂, ĥann
c (β̂/α), β̄; 0) = Sque

∗ (β̂, ĥann
c (β̂/α), β̄) ≥ α log N̂ (β̂, ĥann

c (β̂/α)) + αM̄(−β̄/α) > 0.
(5.16)

6 Proofs of Corollaries 1.4–1.8

6.1 Proof of Corollary 1.4

Proof. Throughout the proof, α > 1, β̂ > 0, β̄ ≥ 0 and h̄ ∈ R are fixed. The proof for h̄que
c (β̄)−

log 2 < h̄ ≤ h̄ann
c (β̄)−log 2 is trivial, since hann

c (β̂, β̄, h̄) =∞ and hque
c (β̂, β̄, h̄) <∞. The rest of the

proof will follow once we show that hque
c (β̂, β̄, h̄) < hann

c (β̂, β̄, h̄) for h̄ann
c (β̄)− log 2 < h̄ ≤ h̄ann

c (β̄).
This is because, for h̄ ≥ h̄ann

c (β̄), hann
c (β̂, β̄, h̄) = ĥann

c (β̂) and h̄ 7→ hque(β̂, β̄, h̄) is non-increasing.
Furthermore, the map h̄ 7→ hann(β̂, β̄, h̄) is also non-increasing, and so hann

c (β̂, β̄, h̄) ≥ ĥann
c (β̂).

For h̄ann
c (β̄)− log 2 < h̄ ≤ h̄ann

c (β̄), it follows from Corollary 1.3 that hann
c (β̂, β̄, h̄) is the unique

ĥ-value that solves the equation Sann(β̂, ĥ, β̄; 0) = h̄. Note that for ĥ ≥ ĥann
c (β̂) = M̂(2β̂)/2β̂,

which is the range of ĥ-values attainable by hann
c (β̂, β̄, h̄), the measure qβ̂,ĥ,β̄;0 (recall (3.31)) is

well-defined and is the unique minimizer of the last variational formula in (3.30), for g = 0. Hence,
for h̄ann

c (β̄)− log 2 < h̄ ≤ h̄ann
c (β̄), hann

c (β̂, β̄, h̄) is the unique ĥ-value that solves the equation

Sann(β̂, ĥ, β̄; 0)− h̄ = M̄(−β̄) + log N̂ (β̂, ĥ; 0)− h̄ = 0. (6.1)

Again, it follows from (2.18) that, for any Q ∈ P inv(ẼN),

Ique(Q) = sup
tr∈N

Ique([Q]tr) = sup
tr∈N

[
H
(

[Q]tr|q⊗Nρ,µ̂⊗µ̄
)

+ (α− 1)m[Q]trH
(

Ψ[Q]tr |(µ̂⊗ µ̄)⊗N
)]

≥ H
(
Q | q⊗Nρ,µ̂⊗µ̄

)
+ (α− 1)m[Q]trH

(
Ψ[Q]tr |(µ̂⊗ µ̄)⊗N

)
, tr ∈ N.

(6.2)

Furthermore, it follows from (2.5) and the remark below it that

H(Q | q⊗Nρ,µ̂⊗µ̄) ≥ h(π1Q | qρ,µ̂⊗µ̄), H(Ψ[Q]tr | (µ̂⊗ µ̄)⊗N) ≥ h(π̃1Ψ[Q]tr | µ̂⊗ µ̄), (6.3)

where π̃1 is the projection onto the first letter and tr ∈ N. Moreover, it follows from (2.10) that

π̃1ΨQ = π̃1Ψ(π1Q)⊗N . (6.4)

Since mQ = m(π1Q)⊗N = mπ1Q, (6.3–6.4) combine with (3.8) to give

Sque
∗ (β̂, ĥ, β̄)

≤ sup
q∈P(Ẽ)

h(q|qρ,µ̂⊗µ̄)<∞;mq<∞

[∫
Ẽ
q(dω)[β̄ω̄1 + log φβ̂,ĥ(ω̂)]− h(q | qρ,µ̂⊗µ̄)

−(α− 1)m[q]trh(π̃1Ψ[q]tr | µ̂⊗ µ̄)
]
,

(6.5)

where
φβ̂,ĥ(ω̂) = 1

2

(
1 + e−2β̂ĥm−2β̂[ω̂1+···+ω̂m]

)
(6.6)
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and

(π̃1Ψ[q]tr)(d(ω̂1, ω̄1)) =
1

m[q]tr

∑
m∈N

[r]tr(m)

m∑
k=1

qm(Ek−1, d(ω̂1, ω̄1), Em−k) (6.7)

with the notation

q(dω) = r(m)qm(d(ω̂1, ω̄1), . . . , d(ω̂m, ω̄m)), ω = ((ω̂1, ω̄1), . . . , (ω̂m, ω̄m)), (6.8)

and

[r]tr(m) =


r(m) if 1 ≤ m < tr∑∞

n=tr r(n) if m = tr
0 otherwise.

(6.9)

Therefore, for ĥ ≥ ĥann
c (β̂), after combining the first two terms in the supremum in (6.5), as in

(3.30), we obtain

Sque
∗ (β̂, ĥ, β̄) ≤ M̄(−β̄) + log N̂ (β̂, ĥ; 0)

− inf
q∈P(Ẽ)

h(q|qρ,µ̂⊗µ̄)<∞;mq<∞

[
h(q | qβ̂,ĥ,β̄) + (α− 1)m[q]trh(π̃1Ψ[q]tr | µ̂⊗ µ̄)

]
. (6.10)

Hence, for ĥ ≥ ĥann
c (β̂), it follows from (3.30) that

Sque
∗ (β̂, ĥ, β̄) ≤ Sann(β̂, ĥ, β̄; 0)

− inf
q∈P(Ẽ)

h(q|qρ,µ̂⊗µ̄)<∞; mq<∞

[
h(q | qβ̂,ĥ,β̄) + (α− 1)m[q]trh(π̃1Ψ[q]tr | µ̂⊗ µ̄)

]
. (6.11)

The first term in the variational formula achieves its minimal value zero at q = qβ̂,ĥ,β̄ (or along a

minimizing sequence converging to qβ̂,ĥ,β̄). However, via some simple computations we obtain

π̃1Ψ[qβ̂,ĥ,β̄ ]tr(dω̂1, dω̄1) =
Ctr(ω̂1, β̂, ĥ)

Atr(β̂, ĥ)
µ̂(dω̂1)µ̄β̄(dω̄1) +

Btr(ω̂1, β̂, ĥ)

Atr(β̂, ĥ)
µ̂(dω̂1)µ̄(dω̄1), (6.12)

where

Atr(β̂, ĥ) = 1
2

(
tr−1∑
n=1

n[1 + en[M̂(2β̂)−2β̂ĥ]]ρ(n) + tr
∞∑
n=tr

[1 + en[M̂(2β̂)−2β̂ĥ]]ρ(n)

)
,

Btr(ω̂1, β̂, ĥ) =
tr−1∑
m=1

(m− 1)ρ(m)
[
1 + e(m−1)[M̂(2β̂)−2β̂ĥ]−2β̂(ω̂1+ĥ)

]
+ (tr− 1)

1 + e(tr−1)[M̂(2β̂)−2β̂ĥ]−2β̂(ω̂1+ĥ)

1 + etr[M̂(2β̂)−2β̂ĥ]

∞∑
m=tr

ρ(m)
[
1 + em[M̂(2β̂)−2β̂ĥ]

]
,

Ctr(ω̂1, β̂, ĥ) =

tr−1∑
m=1

ρ(m)
[
1 + e(m−1)[M̂(2β̂)−2β̂ĥ]−2β̂(ω̂1+ĥ)

]
+

1 + e(tr−1)[M̂(2β̂)−2β̂ĥ]−2β̂(ω̂1+ĥ)

1 + etr[M̂(2β̂)−2β̂ĥ]

∞∑
m=tr

ρ(m)
[
1 + em[M̂(2β̂)−2β̂ĥ]

]
,

(6.13)

and µ̄β̄(dω̄1) = eβ̄ω̄1−M̄(−β̄)µ̄(dω̄1). Here we use that

qβ̂,ĥ,β̄(d(ω̂1, ω̄1), . . . , d(ω̂m, ω̄m)) = r(m)qm(d(ω̂1, ω̄1), . . . , d(ω̂m, ω̄m)) (6.14)
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with

r(m) =
1 + em[M̂(2β̂)−2β̂ĥ]

2N̂ (β̂, ĥ; 0)
ρ(m),

qm(d(ω̂1, ω̄1), . . . , d(ω̂m, ω̄m)) =

(
1 + e−2β̂

∑m
i=1(ω̂i+ĥ)

)
eβ̄ω̄1

eM̄(−β̄)
(

1 + em[M̂(2β̂)−2β̂ĥ]
) m∏
i=1

µ̂(dω̂i)µ̄(dω̄i).

(6.15)

Note that π̃1Ψ[qβ̂,ĥann
c (β̂),0]tr = (1

2 [µ̂ + µ̂β̂]) ⊗ µ̄, where µ̂β̂(dω̂1) = e−2β̂ω̂1−M̂(2β̂)µ̂(dω̂1). Thus

π̃1Ψ[qβ̂,ĥ,β̄ ]tr 6= µ̂⊗ µ̄ for ĥ ≥ ĥann
c (β̂), and so we have

Sque
∗ (β̂, hann

c (β̂, β̄, h̄), β̄)− h̄ ≤ Sann(β̂, hann
c (β̂, β̄, h̄), β̄; 0)− h̄

− inf
q∈P(Ẽ)

h(q|qρ,µ̂⊗µ̄)<∞;mq<∞

[
h(q | qβ̂,hann

c (β̂,β̄,h̄),β̄) + (α− 1)m[q]trh(π̃1Ψ[q]tr | µ̂⊗ µ̄)
]

= − inf
q∈P(Ẽ)

h(q|qρ,µ̂⊗µ̄)<∞;mq<∞

[
h(q | qβ̂,hann

c (β̂,β̄,h̄),β̄) + (α− 1)m[q]trh(π̃1Ψ[q]tr | µ̂⊗ µ̄)
]
< 0.

(6.16)

Since Sque
∗ (β̂, hque

c (β̂, β̄, h̄), β̄) − h̄ = 0 and since ĥ 7→ Sque
∗ (β̂, ĥ, β̄) is strictly decreasing on

(ĥann
c (β̂/α),∞), it follows that hque

c (β̂, β̄, h̄) < hann
c (β̂, β̄, h̄) for h̄ann

c (β̄) − log 2 < h̄ ≤ h̄ann
c (β̄).

6.2 Proof of Corollary 1.5

Proof. The map ĥ 7→ Sque(β̂, ĥ, β̄; 0) is strictly decreasing and convex on (ĥann
c (β̂/α),∞) (recall

Fig. 9). Therefore, for h̄ < s∗(β̂, β̄, α), the ĥ-value that solves the equation Sque(β̂, ĥ, β̄; 0) = h̄
is strictly greater than ĥann

c (β̂/α), which proves that hque
c (β̂, β̄, h̄) > ĥann

c (β̂/α). The proof for
h̄ ≥ s∗(β̂, β̄, α) follows from Corollary 1.3 and (1.25).

6.3 Proof of Corollary 1.6

Proof. (i) Note from (3.32) that

Sann(β̂, ĥ, β̄; 0)− h̄ = M̄(−β̂)− h̄+ log

(
1
2

[
1 +

∑
n∈N

ρ(n)en[M̂(2β̂)−2β̂ĥ]

])
. (6.17)

Note from (6.17) and (3.33–3.34) that Sann(β̂, ĥann
c (β̂), β̄; 0)−h̄ = S̄ann(β̄; 0)−h̄ and Sann(β̂, ĥ, β̄; 0)

−h̄ann
c (β̄) = Ŝann(β̂, ĥ; 0). These observations, together with the remark below Theorem 3.2,

conclude the proof for (i).
(ii) Recall from (3.8) that

Sque
∗ (β̂, ĥ, 0) = sup

Q∈Cfin

[
Φβ̂,ĥ(Q)− Ique(Q)

]
= sup

Q̂∈Ĉfin

[
Φβ̂,ĥ(Q̂)− Îque(Q̂)

]
= Ŝque(β̂, ĥ; 0).

(6.18)

The second equality uses the remark below Theorem 3.1. Hence h̃que
c (β̂, 0) = Sque

∗ (β̂, ĥque
c (β̂), 0) =

Ŝque(β̂, ĥque
c (β̂); 0) = 0 by [3], Theorem 1.1(ii).
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6.4 Proofs of Corollaries 1.7 and 1.8

Proof. The proofs are similar to those of Corollaries 1.6–1.7 in [3], Section 8. For the former, all
that is needed is Sque(β̂, ĥ, β̄; 0)− h̄ < 0, which holds for (β̂, ĥ, β̄, h̄) ∈ int(Dque

1 )∪ (Dque \ Dque
1 ).

A Finiteness of Φ

Lemma A.1 Fix δ > 0 and µ̄ ∈ P(Ē) satisfying (1.3). Then, for all Q̄ ∈ P inv( ˜̄EN
) with h(π1,1Q̄ |

µ̄) <∞, there are constants γ ∈ (δ−1,∞) and K(δ, γ, µ̄) ∈ (0,∞) such that

|Φ(Q̄)| < γ h(π1,1Q̄ | µ̄) +K(δ, γ, µ̄). (A.1)

Proof. The proof comes in 3 steps.

1. Abbreviate

f(ω̄1) =
d(π1,1Q̄)

dµ̄
(ω̄1), ω̄1 ∈ Ē. (A.2)

Fix γ ∈ (δ−1,∞). For m ∈ N and l ∈ Z, define

Am = {ω̄1 ∈ Ē : m− 1 ≤ γ log f(ω̄1) < m},
A0 = {ω̄1 ∈ Ē : 0 ≤ f(ω̄1) < 1},
Bl = {ω̄1 ∈ Ē : l − 1 ≤ ω̄1 < l}.

(A.3)

Note that the Am’s and the Bl’s are pairwise disjoint, and that

Ē = A0 ∪ [∪m∈NAm] , Ē+ ∪ {0} = ∪l∈NBl, Ē− = ∪l∈−N0Bl, (A.4)

where Ē+ and Ē− denote the set of positive and negative real numbers in Ē. Also note that

Φ(Q̄) =

∫
Ē
ω̄1 (π1,1Q̄)(dω̄1) ≤

∫
Ē

(0 ∨ ω̄1) f(ω̄1) µ̄(dω̄1)

=
∑
m∈N0

∫
Am

(0 ∨ ω̄1) f(ω̄1) µ̄(dω̄1) = I + II + III,
(A.5)

where

I =

∫
A0∩[∪l∈NBl]

ω̄1 f(ω̄1) µ̄(dω̄1) ≤
∑
l∈N

l Pω̄(Bl),

II =
∑
m∈N

∫
Am∩[∪m−1

l=1 Bl]
ω̄1 f(ω̄1) µ̄(dω̄1),

III =
∑
m∈N

∫
Am∩[∪l∈N0

Bm+l]
ω̄1 f(ω̄1) µ̄(dω̄1) ≤

∑
m∈N

em/γ
∑
l∈N0

(m+ l)Pω̄(Bm+l).

(A.6)

The term I follows from the restriction of the µ̄-integral to the set A0 ∩ Ē+. The terms II and
III follow from the restrictions to the sets ∪m∈N[Am ∩∪m−1

l=1 Bl] and ∪m∈N[Am ∩∪l∈N0Bm+l]. The
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bound on I uses that f < 1 on A0 and ω̄1 < l on Bl. The bound on III follows from the fact that
f < em/γ on Am and ω̄1 < m+ l on Bm+l. It follows from (A.6) that

I + III ≤ 2
∑
m∈N

em/γ
∑
l∈N0

(m+ l)Pω̄(Bm+l)

≤ 2
∑
m∈N

em/γ
∑
l∈N0

(m+ l)Pω̄(ω̄1 ≥ m+ l − 1)

≤ 2C(δ)
∑
m∈N

em/γ
∑
l∈N0

(m+ l)e−δ(m+l−1)

≤ 2C(δ) eδ
∑
m∈N

e−m(δ−1/γ)
∑
l∈N0

(m+ l)e−δl = k+(δ, γ, µ̄) <∞,

(A.7)

where the third inequality uses (1.3). Moreover, use that ω̄1 < m− 1 ≤ γ log f on Am ∩ ∪m−1
l=1 Bl,

to estimate

II ≤ γ
∑
m∈N

∫
ω̄1∈Am∩[∪m−1

l=1 Bl]
f(ω̄1) log f(ω̄1) µ̄(dω̄1)

≤ γ
∑
m∈N

∫
ω̄1∈Am

f(ω̄1) log f(ω̄1) µ̄(dω̄1)

= γ

∫
Ē\A0

f(ω̄1) log f(ω̄1) µ̄(dω̄1)

= γh(π1,1Q̄ | µ̄)− γ
∫
A0

f(ω̄1) log f(ω̄1) µ̄(dω̄1)

≤ γh(π1,1Q̄ | µ̄) + γ e−1 <∞,

(A.8)

where the third inequality uses that f log f ≥ −e−1 on A0, and the second equality that

h(π1,1Q̄|µ̄) =

∫
Ē\A0

f(ω̄1) log f(ω̄1) µ̄(dω̄1) +

∫
A0

f(ω̄1) log f(ω̄1) µ̄(dω̄1) <∞. (A.9)

Put

K+(δ, γ, µ̄) = k+(δ, γ, µ̄) + γ e−1. (A.10)

2. Similarly, we have

Φ(Q̄) =

∫
Ē
ω̄1 (π1,1Q̄)(dω̄1) ≥

∫
Ē

(0 ∧ ω̄1) f(ω̄1) µ̄(dω̄1)

=
∑
m∈N0

∫
Am

(0 ∧ ω̄1) f(ω̄1) µ̄(dω̄1) = I ′ + II ′ + III ′,
(A.11)

where

I ′ =

∫
A0∩[∪l∈−N0

Bl]
ω̄1 f(ω̄1) µ̄(dω̄1) ≥

∑
l∈−N0

(l − 1)Pω̄(Bl),

II ′ =
∑
m∈N

∫
Am∩[∪0

l=−m+1Bl]
ω̄1 f(ω̄1) µ̄(dω̄1),

III ′ =
∑
m∈N

∫
Am∩[∪l∈−N0

Bl−m]
ω̄1 f(ω̄1) µ̄(dω̄1) ≥

∑
m∈N

em/γ
∑
l∈−N0

(l −m− 1)Pω̄(Bl−m).

(A.12)
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The bounds on I ′ and III ′ use that ω̄1 ≥ l − 1 on Bl and f < em/γ on Am. Note that

I ′ + III ′ ≥ 2
∑
m∈N0

em/γ
∑
l∈−N0

(l −m− 1)Pω̄(Bl−m)

≥ 2
∑
m∈N0

em/γ
∑
l∈−N0

(l −m− 1)Pω̄(ω̄1 ≤ l −m)

≥ 2C(δ)
∑
m∈N0

em/γ
∑
l∈−N0

(l −m− 1)eδ(l−m) = k−(δ, γ, µ̄) > −∞.

(A.13)

Also use that ω̄1 ≥ −m ≥ −[γ log f + 1] on Am ∩ ∪0
l=−m+1Bl, to estimate

II ′ ≥ −
∑
m∈N

∫
ω̄1∈Am∩[∪0

l=−m+1Bl]
f(ω̄1)[γ log f(ω̄1) + 1] µ̄(dω̄1)

≥ −γ
∑
m∈N

∫
Am

f(ω̄1) log f(ω̄1) µ̄(dω̄1)− 1

= −γ
∫
Ē\A0

f(ω̄1) log f(ω̄1) µ̄(dω̄1)− 1

= −γh(π1,1Q̄ | µ̄) + γ

∫
A0

f(ω̄1) log f(ω̄1) µ̄(dω̄1)− 1

≥ −[γh(π1,1Q̄ | µ̄) + γe−1 + 1] > −∞.

(A.14)

3. Put K−(δ, γ, µ̄) = 1+γe−1−k−(δ, γ, µ̄). Then the claim follows with K(δ, γ, µ̄) = K+(δ, γ, µ̄)∨
K−(δ, γ, µ̄).

For the sake of completeness we state the follow finiteness results for Φβ̂,ĥ that were proved in

[3], Appendix A.

Lemma A.2 Fix β̂, ĥ, g > 0. Then ω̂-a.s. there exists a K(ω̂, β̂, ĥ, g) < ∞ such that, for all
N ∈ N and for all sequences 0 = k0 < k1 < · · · < kN <∞,

−gkN +

N∑
i=1

log φβ̂,ĥ
(
ω̂(ki−1,ki]

)
≤ K(ω̂, β̂, ĥ, g)N, (A.15)

where ω̂(ki−1,ki] is the word cut out from ω̂ by the ith excursion interval (ki−1, ki].

Lemma A.3 Fix β̂, ĥ > 0, ρ ∈ P(N) and µ̂ ∈ P(R) satisfying (1.2) and (1.3). Then, for

all Q̂ ∈ P inv(
˜̂
E

N
) with h(π1Q̂ | qρ,µ̂) < ∞, there are finite constants C > 0, γ > 2β̂/C and

K = K(β̂, ĥ, ρ, µ̂, γ) such that

Φβ̂,ĥ(Q̂) ≤ γ h(π1Q̂|qρ,µ̂) +K. (A.16)

B Application of Varadhan’s lemma

In this appendix we prove (3.18) and the claim above it. This was used in Section 3 to complete
the proof of Theorem 3.1.
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Lemma B.1 For every β̂, ĥ > 0 and β̄ ≥ 0,

sque(β̂, ĥ, β̄; g) = Sque(β̂, ĥ, β̄; g) ∀ g ∈ R, (B.1)

with the possible exception of g = 0, ĥ = ĥann
c (β̂/α) and sque(β̂, ĥ, β̄; 0) =∞, where sque(β̂, ĥ, β̄; g)

is the ω-a.s. constant limit defined in (3.16), and Sque(β̂, ĥ, β̄; g) is as in (3.4). In particular, the
map g 7→ Sque(β̂, ĥ, β̄; g) is finite on (0,∞) and infinite on (−∞, 0).

Proof. Throughout the proof β̂, ĥ > 0, β̄ ≥ 0 and h̄ ∈ R are fixed. The proof comes in 3 steps,
where we establish the equality in (B.1) for the cases g < 0, g = 0 and g > 0 separately.

Step 1. For g < 0 the proof of (B.1) is given in two steps.

1a. In this step we show that Sque(β̂, ĥ, β̄; g) =∞ when g < 0. Fix L ∈ N and let QL = (qLµ̂⊗µ̄)⊗N,
with

qLµ̂⊗µ̄(dω1, . . . , dωn) = δLn(µ̂⊗ µ̄)⊗n(dω1, . . . , dωn) (B.2)

and (ω1, . . . , ωn) = ((ω̂1, ω̄1), . . . , (ω̂n, ω̄n)) ∈ En. It follows from (3.4) that

Sque(β̂, ĥ, β̄; g) ≥ β̄Φ(QL) + Φβ̂,ĥ(QL)− Iann(QL)− gL ≥ − log 2− gL+ log ρ(L). (B.3)

The second inequality uses that Φ(QL) = 0, Iann(QL) = − log ρ(L) and Φβ̂,ĥ(QL) ≥ − log 2.

Letting L→∞ and using that ρ has a polynomial tail by (1.2), we get the claim.

1b. In this step we show that sque(β̂, ĥ, β̄; g) =∞ when g < 0. The proof follows from a moment
estimate. We start by showing that, for each β̄ ∈ R,

lim sup
N→∞

1

N
logE∗0

(
eNβ̄Φ(Rω̄N )

)
≤ M̄(−β̄) (B.4)

(recall (1.3)). Indeed, for any β̄ ∈ R, by the Markov inequality,

Pω̄
(

1

N
logE∗0

(
eNβ̄Φ(Rω̄N )

)
≥ M̄(−β̄) + ε

)
= Pω̄

(
E∗0

(
eNβ̄Φ(Rω̄N )

)
≥ eN(M̄(−β̄)+ε)

)
≤ e−NM̄(−β̄)e−εNEω̄

(
E∗0

(
eNβ̄Φ(Rω̄N )

))
= e−NM̄(−β̄)e−εNE∗0

[
Eω̄
(
eβ̄
∑N
i=1 ω̄ki−1

)]
= e−εN .

(B.5)

The claim therefore follows from the Borel-Cantelli lemma.

Let τi be the length of the i-th word, let L ∈ N, and put

kN =
N∑
i=1

τi and kN (L) =
N∑
i=1

[
τi 1{τi<L} + L 1{τi≥L}

]
. (B.6)

For any −∞ < q < 0 < p < 1 with p−1 + q−1 = 1 and g < 0, it follows from (3.13) that

eh̄NF β̂,ĥ,β̄,h̄,ωN (g) = E∗0

(
exp

[
−gkN +N

(
Φβ̂,ĥ(RωN ) + β̄ Φ(RωN )

)])
,

≥
(

1
2

)N
E∗0
(
exp

[
−gkN (L) +Nβ̄ Φ(RωN )

])
≥
(

1
2

)N
E∗0

(
e−gpkN (L)

)1/p
E∗0

(
eNqβ̄Φ(RωN )

)1/q

=
(

1
2

)N NL(pg)N/pE∗0

(
eNqβ̄Φ(RωN )

)1/q
,

(B.7)
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where

NL(g) =

L−1∑
n=1

ρ(n)e−ng + e−Lg
∑
n≥L

ρ(n). (B.8)

The first inequality in (B.7) uses that Φβ̂,ĥ(Q) ≥ − log 2, kN ≥ kN (L) and g < 0. The second
inequality follows from the reverse Hölder inequality with the above choice of p and q. Note that
NL(g) is finite for g ∈ R and limL→∞NL(g) = N (g). It therefore follows from (3.16), (B.4) and
(B.7) that

sque(β̂, ĥ, β̄; g) = lim sup
N→∞

1

N
log
(
eNh̄F β̂,ĥ,β̄,h̄,ωN (g)

)
≥ − log 2 +

1

p
logNL(pg) +

1

q
M̄(−β̄q).

(B.9)

Letting L→∞, we get from (2.6) that sque(β̂, ĥ, β̄; g) =∞, since N (pg) =∞ for g ∈ (−∞, 0).

Step 2. In this step, which is divided into 2 substeps, we consider the case g > 0.

2a. Lower bound: For M > 0, define

Φ−M (Q) =

∫
Ē

(π̄1,1Q)(dω̄1)[ω̄1 ∨ (−M)]. (B.10)

Note that Φ−M is lower semi-continuous and that

β̄Φ−M (Q) + Φβ̂,ĥ(Q) ≤ β̄Φ(Q) + Φβ̂,ĥ(Q)− β̄
∫
ω̄1<−M

ω̄1 (π̄1,1Q)(dω̄1). (B.11)

Therefore, for any p, q > 1 with 1/p+ 1/q = 1, it follows from the Hölder inequality that

1

N
logE∗g

(
e
N
(

Φβ̂,ĥ(RωN )+β̄Φ−M (RωN )
))

≤ 1

pN
logE∗g

(
e
pN
[
Φβ̂,ĥ(RωN )+β̄Φ(RωN )

])
+

1

qN
logE∗g

(
e
−q β̄

∑N
i=1 ω̄ki1{ω̄ki<−M}

)
.

(B.12)

The rest of the proof consists of taking the appropriate limits and showing that the left-hand side
of (B.12) is bounded from below by Sque(β̂, ĥ, β̄; g), while the second term in the right-hand side
tends to zero and the first term tends to sque(β̂, ĥ, β̄; g).

Let us start with the second term in the right-hand side of (B.12). Note from (2.6) that

lim sup
N→∞

1

qN
logE∗g

(
e
−q β̄

∑N
i=1 ω̄ki1{ω̄ki<−M}

)
= −1

q
logN (g) + lim sup

N→∞

1

qN
logE∗0

(
e
−gkN−q β̄

∑N
i=1 ω̄ki1{ω̄ki<−M}

)
≤ −1

q
logN (g) +

1

2q
logN (2g) + lim sup

N→∞

1

2qN
logE∗0

(
e
−2q β̄

∑N
i=1 ω̄ki1{ω̄ki<−M}

)
≤ −1

q
logN (g) +

1

2q
logN (2g) +

1

2q
log

∫
Ē
e−2qβ̄ω̄11{ω̄1<−M} µ̄(dω̄1).

(B.13)

The first inequality uses the Cauchy-Schwarz inequality, the second inequality uses (B.4). Note
from (1.3) that the above bound tends to zero upon when M →∞ followed by q →∞.
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For the first term in the right-hand side of (B.12) we proceed as follows. Note from Lemma A.2
that ω̂-a.s.

−gkN + pNΦβ̂,ĥ(RxN ) ≤ NK(ω̂, p, β̂, ĥ, g), (B.14)

where we use that

−gkN + pNΦβ̂,ĥ(RωN ) = p

(
−g
p
kN +NΦβ̂,ĥ(RωN )

)
. (B.15)

Therefore, for any 1 < p <∞, it follows from (B.4) and (B.14) that ω̂-a.s.

lim sup
N→∞

1

pN
logE∗g

(
e
Np
[
Φβ̂,ĥ(RωN )+β̄Φ(RωN )

])
= −1

p
logN (g) + lim sup

N→∞

1

pN
logE∗0

(
e
−gkN+Np

[
Φβ̂,ĥ(RωN )+β̄Φ(RωN )

])
≤ 1

p

(
K(p, β̂, ĥ, g) + M̄(−pβ̄)− logN (g)

)
<∞.

(B.16)

Next, for −∞ < r < 0 < s < 1 with r−1 + s−1 = 1, it follows from the argument leading to
(B.9) that

lim sup
N→∞

1

pN
logE∗g

(
e
Np
[
Φβ̂,ĥ(RωN )+β̄Φ(RωN )

])
≥ log

1

2
+

1

p
N (g) +

1

sp
N (sg) +

1

pr
M̄(−prβ̄) > −∞,

(B.17)

since g ∈ (0,∞). Define

S(p) = lim sup
N→∞

1

N
logE∗g

(
e
Np
[
Φβ̂,ĥ(RωN )+β̄Φ(RωN )

])
. (B.18)

By (B.16–B.17), the map p 7→ S(p) is convex and finite on (0,∞), and hence continuous on (0,∞).
It therefore follows from (3.15) that the left-hand side of (B.16) converges to sque(β̂, ĥ, β̄; g) −
logN (g) as p ↓ 1. It follows from (B.16–B.17) that this limit is finite, which proves the finiteness
of the map g 7→ sque(β̂, ĥ, β̄; g) on (0,∞).

Finally, we turn to the left-hand side of the inequality in (B.12). For any ε > 0 and Q ∈ Cfin∩R,
note from the lower semi-continuity of the map Q 7→ β̄Φ−M (Q) + Φβ̂,ĥ(Q) that the set

Aε(Q) =
{
Q′ ∈ P inv(ẼN) : β̄Φ−M (Q′) + Φβ̂,ĥ(Q′) ≥ β̄Φ−M (Q) + Φβ̂,ĥ(Q)− ε

}
(B.19)

is open. This implies that

lim sup
N→∞

1

N
logE∗g

(
e
N
[
Φβ̂,ĥ(RωN )+β̄Φ−M (RωN )

])
≥ lim inf

N→∞

1

N
logE∗g

(
e
N
[
Φβ̂,ĥ(RωN )+β̄Φ−M (RωN )

]
1Aε(Q)(R

ω
N )

)
≥ β̄Φ−M (Q) + Φβ̂,ĥ(Q)− ε− inf

Q′∈Aε(Q)
Ique
g (Q′)

≥ β̄Φ−M (Q) + Φβ̂,ĥ(Q)− Ique
g (Q)− ε

≥ β̄Φ(Q) + Φβ̂,ĥ(Q)− Ique
g (Q)− ε

= β̄Φ(Q) + Φβ̂,ĥ(Q)− gmQ − Iann(Q)− logN (g)− ε.

(B.20)
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The second inequality uses Theorem 2.3, the third inequality uses that Q ∈ Aε(Q), the fourth
inequality follows from the fact that Φ ≤ Φ−M , while the equality follows from Lemma 2.9. It
therefore follows from (B.12–B.13), (B.20) and the comment below (B.18) that, after taking the
supremum over Cfin ∩R followed by M →∞, ε→ 0 and p ↓ 1,

sque(β̂, ĥ, β̄; g) ≥ sup
Q∈Cfin∩R

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− gmQ − Iann(Q)

]
= Sque(β̂, ĥ, β̄; g). (B.21)

2b. Upper bound: Let χ(ω̂Ii) = log φβ̂,ĥ(ω̂Ii). For M > 0, define

ΦM (Q) =

∫
Ē

(π̄1,1Q)(dω̄1)(ω̄1 ∧M),

ΦM
β̂,ĥ

(Q) =

∫
˜̂
E

(π̂1Q)(dω̂I1)(χ(ω̂I1) ∧M).

(B.22)

Note that ΦM and ΦM
β̂,ĥ

are upper semi-continuous and

β̄Φ(Q) + Φβ̂,ĥ(Q)−
∫
ω̂1≥M

ω̄1 (π̄1,1Q)(dω̄1)−
∫
χ≥M

(π̂1Q)(dω̂I1)χ(ω̂I1) ≤ β̄ΦM (Q) + ΦM
β̂,ĥ

(Q).

(B.23)

Therefore, for any −∞ < q < 0 < p < 1 with q−1 + p−1 = 1, the reverse Hölder inequality gives

1

N
logE∗g

(
e
N
[
β̄ΦM (RωN )+ΦM

β̂,ĥ
(RωN )

])
≥ 1

qN
logE∗g

(
e
−q
[
β̄
∑N
i=1 ω̄ki1{ω̄ki≥M}

+
∑N
i=1 χ(ω̂Ii )1{χ(ω̂Ii

)≥M}

])
+

1

pN
logE∗g

(
e
pN
[
β̄Φ(RωN )+Φβ̂,ĥ(RωN )

])
.

(B.24)

The rest of the proof for the upper bound follows after showing that the left-hand side of (B.24)
gives rise to the desired upper bound, while the right-hand side gives rise to sque(β̂, ĥ, β̄; g) after
taking appropriate limits.

It follows from [3], Step 2 in the proof of Lemma B.1, that

g

q
kN +

N∑
i=1

χ(ω̂Ii)1{χ(ω̂Ii )≥M}
≤ 0 (B.25)

for M large enough. Hence, for M large enough, it follows from (B.4), (B.25) and q < 0 that

lim sup
N→∞

1

qN
logE∗g

(
e
−q
[
β̄
∑N
i=1 ω̄ki1{ω̄ki≥M}

+
∑N
i=1 χ(ω̂Ii )1{χ(ω̂Ii

)≥M}

])
= −1

q
logN (g) + lim sup

N→∞

1

qN
logE∗0

(
e
−q
[
g
q
kN+

∑N
i=1 χ(ω̂Ii )1{χ(ω̂Ii

)≥M}+β̄
∑N
i=1 ω̄ki1{ω̄ki≥M}

])
≥ 1

q

(
log

∫
R
e−qβ̄ω̄11{ω̄1≥M} µ̄(dω̄1)− logN (g)

)
,

(B.26)

which tends to zero as M → ∞ followed by q → −∞. Furthermore, it follows from (B.16–B.18)
and the remark below (B.18) that

sque(β̂, ĥ, β̄; g)− logN (g) = lim
p↑1

lim sup
N→∞

1

pN
logE∗g

(
e
pN
[
β̄Φ(RωN )+Φβ̂,ĥ(RωN )

])
. (B.27)
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Since β̄ΦM + ΦM
β̂,ĥ

is upper semi-continuous, it follows from Dembo and Zeitouni [6], Lemma 4.3.6,

and Theorem 2.3 that

lim sup
N→∞

logE∗g

(
e
N
[
β̄ΦM (RωN )+ΦM

β̂,ĥ
(RωN )

])
≤ sup

Q∈P inv(Ẽ⊗N)

[
β̄ΦM (Q) + ΦM

β̂,ĥ
(Q)− Ique

g (Q)
]

= sup
Q∈R

[
β̄ΦM (Q) + ΦM

β̂,ĥ
(Q)− Ique

g (Q)
]

= sup
Q∈Cfin∩R

[
β̄ΦM (Q) + ΦM

β̂,ĥ
(Q)− gmQ − Iann(Q)

]
− logN (g)

≤ sup
Q∈Cfin∩R

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− gmQ − Iann(Q)

]
− logN (g).

(B.28)

The first equality uses that Ique
g (Q) =∞ for Q /∈ R (recall (2.14)) and the fact that β̂ΦM +ΦM

β̂,ĥ
≤

M(1 + β̄), the second equality uses (2.9) and the fact that Ique
g = Iann

g on R. (The removal of

Q’s with mQ = Iann(Q) = ∞ again follows from β̂ΦM + ΦM
β̂,ĥ
≤ M(1 + β̄)), the last inequality

uses that ΦM (Q) ≤ Φ(Q) and ΦM
β̂,ĥ

(Q) ≤ Φβ̂,ĥ(Q). Therefore, combining (B.24–B.28) and letting

M →∞ and p ↑ 1 in the appropriate order, we conclude the proof of the upper bound.

Step 3. For g = 0 we show that

sque(β̂, ĥ, β̄; 0) = Sque(β̂, ĥ, β̄; 0) = Sque
∗ (β̂, ĥ, β̄) (B.29)

(recall (3.8)). The proof comes in steps 3a and 3b below, which show that

lim
g↓0

Sque(β̂, ĥ, β̄; g) = Sque(β̂, ĥ, β̄; 0) = Sque
∗ (β̂, ĥ, β̄),

lim
g↓0

sque(β̂, ĥ, β̄; g) = sque(β̂, ĥ, β̄; 0) = Sque
∗ (β̂, ĥ, β̄).

(B.30)

We need the following lemma, whose proof is deferred to Section B.1.

Lemma B.2 Fix β̂, ĥ > 0 and β̄ ≥ 0. Then

lim
g↓0

sque(β̂, ĥ, β̄; g) ≥ Sque
∗ (β̂, ĥ, β̄). (B.31)

3a. Since the map g 7→ Sque(β̂, ĥ, β̄; g) is non-increasing on [0,∞), we have

Sque(β̂, ĥ, β̄; 0+) = lim
g↓0

Sque(β̂, ĥ, β̄; g) ≤ Sque(β̂, ĥ, β̄; 0). (B.32)

However, it follows from (3.4) that, for any Q′ ∈ Cfin ∩R,

Sque(β̂, ĥ, β̄; g) = sup
Q∈Cfin∩R

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− gmQ − Iann(Q)

]
≥ β̄Φ(Q′) + Φβ̂,ĥ(Q′)− gmQ′ − Iann(Q′).

(B.33)

Therefore, taking the limit g ↓ 0 and taking the supremum over Q′ ∈ Cfin ∩R, we get

Sque(β̂, ĥ, β̄; 0+) ≥ sup
Q∈Cfin∩R

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− Iann(Q)

]
= Sque(β̂, ĥ, β̄; 0). (B.34)
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Thus, we have
Sque(β̂, ĥ, β̄; 0+) = Sque(β̂, ĥ, β̄; 0). (B.35)

Next, note from (3.4) and (3.8) that

Sque
∗ (β̂, ĥ, β̄) = sup

Q∈Cfin

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− Ique(Q)

]
≥ sup

Q∈Cfin∩R

[
β̄Φ(Q) + Φβ̂,ĥ(Q)− Ique(Q)

]
= Sque(β̂, ĥ, β̄; 0),

(B.36)

where we use that Ique = Iann on R. It follows from Steps 1 and 2 that Sque(β̂, ĥ, β̄; g) =
sque(β̂, ĥ, β̄; g) for g > 0. It therefore follows from Lemma B.2 that

lim
g↓0

sque(β̂, ĥ, β̄; g) = lim
g↓0

Sque(β̂, ĥ, β̄; g) = Sque(β̂, ĥ, β̄; 0) ≥ Sque
∗ (β̂, ĥ, β̄). (B.37)

3b. Recall from (3.15) that

sque(β̂, ĥ, β̄; g) = lim sup
N→∞

1

N
logE∗0

(
exp

[
N
(
−gmRωN

+ Φβ̂,ĥ(RωN ) + β̄ Φ(RωN )
)])

. (B.38)

Hence the map g 7→ sque(β̂, ĥ, β̄; g) is convex and non-increasing. Therefore, when sque(β̂, ĥ, β̄; 0) <
∞, it follows from convexity and finiteness (implying continuity) of the map g 7→ sque(β̂, ĥ, β̄; g)
on [0,∞) that

sque(β̂, ĥ, β̄; 0) = lim
g↓0

sque(β̂, ĥ, β̄; g) = Sque(β̂, ĥ, β̄; 0+) = Sque
∗ (β̂, ĥ, β̄). (B.39)

It follows from Lemma B.2 that

sque(β̂, ĥ, β̄; 0) ≥ lim
g↓0

sque(β̂, ĥ, β̄; g) ≥ Sque
∗ (β̂, ĥ, β̄). (B.40)

Therefore
sque(β̂, ĥ, β̄; 0) = Sque

∗ (β̂, ĥ, β̄) whenever Sque
∗ (β̂, ĥ, β̄) =∞. (B.41)

Now, for β̂ > 0 and β̄ ≥ 0, it follows from the proof of Lemma 5.2 that Sque
∗ (β̂, ĥ, β̄) = ∞ when

ĥ < ĥann
c (β̂/α) and sque(β̂, ĥ, β̄; 0) < ∞ when ĥ > ĥann

c (β̂/α). Thus, from (B.39) and the remark
above it and (B.41), we get for ĥ 6= ĥann

c (β̂/α) that

sque(β̂, ĥ, β̄; 0) = sque(β̂, ĥ, β̄; 0+) = Sque
∗ (β̂, ĥ, β̄). (B.42)

This equality holds at ĥ = ĥann
c (β̂/α) when sque(β̂, ĥann

c (β̂/α), β̄; 0) <∞.

B.1 Proof of Lemma B.2

Proof. For L > 0, M ∈ N, ε > 0 and Q′ ∈ P inv(ẼN) with Ique(Q′) <∞ and mQ′ <∞, let

ΦM,−L(Q) =

∫
Ē

(π̄1,1Q)(dω̄1)[ω̄1 ∧M ∨ (−L)],

Φ̄−L(Q) =

∫
Ē

(π̄1,1Q)(dω̄1)ω̄11{ω̄1<−L},

Cfin
∗ =

{
Q ∈ P inv(ẼN) : Ique(Q) <∞, mQ <∞

}
,

AQ′ =
{
Q ∈ P inv(ẼN) : β̄ΦM,−L(Q) + ΦM

β̂,ĥ
(Q) > β̄ΦM,−L(Q′) + ΦM

β̂,ĥ
(Q′)− ε

}
.

(B.43)
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The map Q 7→ β̄ΦM,−L(Q) + ΦM
β̂,ĥ

(Q) is lower semi-continuous, and so the set AQ′ is open. More-

over, ΦM ≥ ΦM,−L + Φ̄−L, ΦM ≤ ΦM,−L, Φβ̂,ĥ ≥ ΦM
β̂,ĥ

and Φ ≥ ΦM (recall (B.10) and (B.22)).

Define

sque
M (β̂, ĥ, β̄; g) = lim sup

N→∞

1

N
logE∗0

(
exp

[
N
(
−gmRωN

+ ΦM
β̂,ĥ

(RωN ) + β̄ ΦM (RωN )
)])

. (B.44)

Note that sque
M (β̂, ĥ, β̄; g) < ∞ for g ≥ 0. It therefore follows from the convexity of the map

g 7→ sque
M (β̂, ĥ, β̄; g) that

lim
g↓0

sque
M (β̂, ĥ, β̄; g) = sque

M (β̂, ĥ, β̄; 0), (B.45)

and from (B.38) that

lim
g↓0

sque(β̂, ĥ, β̄; g) ≥ lim
g↓0

sque
M (β̂, ĥ, β̄; g) = sque

M (β̂, ĥ, β̄; 0). (B.46)

Now, for −∞ < q < 0 < p < 1 with p−1 + q−1 = 1, note from (B.44) that

sque
M (β̂, ĥ, β̄; 0) = lim sup

N→∞

1

N
logE∗0

(
e
N
(

ΦM
β̂,ĥ

(RωN )+β̄ΦM (RωN )
))

≥ lim sup
N→∞

1

N
logE∗0

(
e
N
(

ΦM
β̂,ĥ

(RωN )+β̄ΦM,−L(RωN )+β̄ Φ̄−L(RωN )
))

≥ 1

p
lim sup
N→∞

1

N
logE∗0

(
e
pN
(

ΦM
β̂,ĥ

(RωN )+β̄ΦM,−L(RωN )
))

+
1

q
lim sup
N→∞

1

N
logE∗0

(
eqNβ̄Φ̄−L(RωN )

)
≥ 1

p
lim inf
N→∞

1

N
logE∗0

(
e
pN
(

ΦM
β̂,ĥ

(RωN )+β̄ΦM,−L(RωN )
)
1AQ′ (R

ω
N )

)
+

1

q
log

∫
Ē
eqβ̄ω̄11{ω̄1<−L} µ̄(dω̄1)

≥ β̄ΦM,−L(Q′) + ΦM
β̂,ĥ

(Q′)− 1

p
Ique(Q′) +

1

q
log

∫
Ē
eqβ̄ω̄11{ω̄1<−L} µ̄(dω̄1)− ε

≥ β̄ΦM (Q′) + ΦM
β̂,ĥ

(Q′)− 1

p
Ique(Q′) +

1

q
log

∫
Ē
eqβ̄ω̄11{ω̄1<−L} µ̄(dω̄1)− ε.

(B.47)

The second inequality uses the reverse Hölder inequality, the third inequality uses (B.4) and
q < 0, the fourth inequality uses the definition of AQ′ , Theorem 2.3, (2.15) and the fact that
Ique(Q′) ≥ infQ∈AQ′ I

que(Q), the last inequality uses that ΦM,−L ≥ ΦM .

Letting M → ∞ and applying Fatou’s lemma to β̄ΦM (Q′) + ΦM
β̂,ĥ

(Q′), followed by L → ∞,

p ↑ 1 and ε ↓ 0, we get

lim inf
M→∞

sque
M (β̂, ĥ, β̄; 0) ≥ β̄Φ(Q′) + Φβ̂,ĥ(Q′)− Ique(Q′). (B.48)

Consequently, taking the supremum over Q′ ∈ Cfin
∗ , we get

lim inf
M→∞

sque
M (β̂, ĥ, β̄; 0) ≥ sup

Q∈Cfin
∗

[
β̄Φ(Q′) + Φβ̂,ĥ(Q′)− Ique(Q′)

]
= sup

Q∈Cfin

[
β̄Φ(Q′) + Φβ̂,ĥ(Q′)− Ique(Q′)

]
= Sque

∗ (β̂, ĥ, β̄).
(B.49)
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The first equality uses that those Q ∈ Cfin for which Ique(Q) = ∞ do not contribute to the
supremum over Cfin, because Φ <∞ and Φβ̂,ĥ <∞ on Cfin. It therefore follows from (B.45–B.46)

and (B.49) that
lim
g↓0

sque(β̂, ĥ, β̄; g) ≥ Sque
∗ (β̂, ĥ, β̄). (B.50)

C Proof of Lemma 5.3

In this Appendix we prove Lemma 5.3. To do so we need another lemma, which we state and
prove in Section C.1. In Section C.2 we use this lemma to prove Lemma 5.3.

C.1 A preparatory lemma

Lemma C.1 For every β̂ > 0, β̄ ≥ 0 and ĥ ≥ ĥann
c (β̂),

Sque(β̂, ĥ, β̄; 0) ≤ sup
Q̄∈C̄fin

[
β̄Φ(Q̄) + Ξβ̂,ĥ(rQ̄)− Īque(Q̄)

]
, (C.1)

where
Ξβ̂,ĥ(rQ̄) =

∑
n∈N

rQ̄(n) log
(

1
2

[
1 + en[M̂(2β̂)−2β̂ĥ]

])
(C.2)

and rQ̄ is the word length distribution under Q̄.

Proof. Throughout the proof, β̂ > 0, β̄ ≥ 0 and ĥ ≥ ĥann
c (β̂) are fixed. Put

SωN = E∗0

(
e
N
[
β̄Φ(RωN )+Φβ̂,ĥ(RωN )

])
= E∗0

(
e
N
[
β̄Φ(Rω̄N )+Φβ̂,ĥ(Rω̂N )

])
. (C.3)

Note from (B.5) and the Borel-Cantelli lemma that, for every ε > 0 and ω̄-a.s., there exists an
N0 = N0(ω̄, ε) <∞ such that

E∗0

(
eNβ̄Φ(RωN )

)
= E∗0

(
eNβ̄Φ(Rω̄N )

)
≤ eN [M̄(−β̄)+ε] ∀N ≥ N0. (C.4)

Therefore, ω̄-a.s. and for all N ≥ N0,

Eω̂ (SωN ) =
∑

0=k0<k1<...<kN<∞

N∏
i=1

ρ(ki − ki−1) eβ̄ω̄ki 1
2

[
1 + Eω̂

(
e
−2β̂

∑ki
k=ki−1+1(ω̂k+ĥ)

)]

=
∑

0=k0<k1<...<kN<∞

N∏
i=1

ρ(ki − ki−1) eβ̄ω̄ki 1
2

(
1 + e(ki−ki−1)[M̂(2β̂)−2β̂ĥ]

)

=
∑

0=k0<k1<...<kN<∞

(
N∏
i=1

ρ(ki − ki−1)

) (
e
N [β̄Φ(RωN )+Ξβ̂,ĥ(rRω

N
)]
)

= E∗0

(
e
N [β̄Φ(RωN )+Ξβ̂,ĥ(rRω

N
)]
)
<∞.

(C.5)
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Finiteness follows from (C.4) and the fact that Ξβ̂,ĥ ≤ 0 if ĥ ≥ ĥann
c (β̂). Therefore, for every δ > 0,

ω̄-a.s. and N ≥ N0, we have

Pω̂
(

1

N
logSωN ≥

1

N
logEω̂(SωN ) + δ

)
= Pω̂

(
SωN ≥ Eω̂(SωN ) eNδ

)
≤ e−Nδ. (C.6)

From the Borel-Cantelli lemma we therefore obtain that ω-a.s.

sque(β̂, ĥ, β̄; 0) = lim sup
N→∞

1

N
logSωN ≤ lim sup

N→∞

1

N
logEω̂(SωN ) + δ

= sup
Q̄∈C̄fin

[
β̄Φ(Q̄) + Ξβ̂,ĥ(rQ̄)− Īque(Q̄)

]
+ δ.

(C.7)

The equality uses Steps 1 and 2 in the proof of Lemma B.1 and the observation that Ξβ̂,ĥ is

independent of ω (i.e., only pinning disorder is present), and − log 2 ≤ Ξβ̂,ĥ ≤ 0 for ĥ ≥ ĥann
c (β̂),

where we use (2.15) instead of (2.14). Finally, let δ ↓ 0.

C.2 Proof of Lemma 5.3

Proof. Throughout the proof, β̄ ≥ 0 and β̂ > 0 are fixed and ĥ ≥ ĥann
c (β̂). Note from (3.6) and

(3.7) that Φβ̂,∞ ≡ − log 2. Therefore, replacing β̄Φ̄ + Φβ̂,ĥ by β̄Φ̄− log 2 in (3.8), we get

Sque(β̂,∞, β̄; 0) = Sque
∗ (β̂,∞, β̄) = sque(β̂,∞, β̄; 0)

= lim sup
N→∞

1

N
logE∗0

(
eN [log 1

2
+β̄Φ(Rω̄N )]

)
= − log 2 + sup

Q̄∈C̄fin

[
β̄Φ(Q̄)− Īque(Q̄)

]
= − log 2 + h̄que

c (β̄).

(C.8)

The fourth equality follows from the proof of Lemma B.1, while the last equality uses [5], Theorem
1.3. Next, note that

Sque(β̂,∞−, β̄; 0) = lim
ĥ↑∞

Sque(β̂, ĥ, β̄; 0) ≥ Sque(β̂,∞, β̄; 0), (C.9)

since the map ĥ 7→ Sque(β̂, ĥ, β̄; 0) is non-increasing. For ĥ ≥ ĥann
c (β̂) it follows from (C.1) that

Sque(β̂, ĥ, β̄; 0) ≤ sup
Q̄∈C̄fin

[
β̄Φ(Q̄) + Ξβ̂,ĥ(rQ̄)− Īque(Q̄)

]
= sup

r∈P(N);
mr<∞

sup
Q̄∈C̄fin;
rQ̄=r

[
β̄Φ(Q̄) + Ξβ̂,ĥ(r)− Īque(Q̄)

]

≤ sup
r∈P(N);
mr<∞

(
Ξβ̂,ĥ(r) + sup

Q̄∈C̄fin

[
β̄Φ(Q̄)− Īque(Q̄)

])

≤ log
[

1
2

(
1 + e[M̂(2β̂)−2β̂ĥ]

)]
+ sup
Q̄∈C̄fin

[
β̄Φ(Q̄)− Īque(Q̄)

]
= log

[
1
2

(
1 + e[M̂(2β̂)−2β̂ĥ]

)]
+ h̄que

c (β̄).

(C.10)
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The third inequality uses that, for ĥ ≥ ĥann
c (β̂), Ξβ̂,ĥ(r) ≤ log

[
1
2

(
1 + e[M̂(2β̂)−2β̂ĥ]

)]
for all r ∈

P(N). Therefore

lim
ĥ↑∞

Sque(β̂, ĥ, β̄; 0) ≤ − log 2 + h̄que
c (β̄) = Sque(β̂,∞, β̄; 0). (C.11)
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