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Abstract

In this paper we study the parabolic Anderson equation ∂u(x, t)/∂t = κ∆u(x, t) +
ξ(x, t)u(x, t), x ∈ Zd, t ≥ 0, where the u-field and the ξ-field are R-valued, κ ∈ [0,∞) is the
diffusion constant, and ∆ is the discrete Laplacian. The ξ-field plays the role of a dynamic
random environment that drives the equation. The initial condition u(x, 0) = u0(x),
x ∈ Zd, is taken to be non-negative and bounded. The solution of the parabolic Anderson
equation describes the evolution of a field of particles performing independent simple
random walks with binary branching: particles jump at rate 2dκ, split into two at rate
ξ ∨ 0, and die at rate (−ξ) ∨ 0. Our goal is to prove a number of basic properties of the
solution u under assumptions on ξ that are as weak as possible. These properties will
serve as a jump board for later refinements.

Throughout the paper we assume that ξ is stationary and ergodic under translations in
space and time, is not constant and satisfies E(|ξ(0, 0)|) <∞, where E denotes expectation
w.r.t. ξ. Under a mild assumption on the tails of the distribution of ξ, we show that the
solution to the parabolic Anderson equation exists and is unique for all κ ∈ [0,∞). Our
main object of interest is the quenched Lyapunov exponent λ0(κ) = limt→∞

1
t log u(0, t).

It was shown in Gärtner, den Hollander and Maillard [7] that this exponent exists and is
constant ξ-a.s., satisfies λ0(0) = E(ξ(0, 0)) and λ0(κ) > E(ξ(0, 0)) for κ ∈ (0,∞), and is
such that κ 7→ λ0(κ) is globally Lipschitz on (0,∞) outside any neighborhood of 0 where
it is finite. Under certain weak space-time mixing assumptions on ξ, we show the following
properties: (1) λ0(κ) does not depend on the initial condition u0; (2) λ0(κ) <∞ for all κ ∈
[0,∞); (3) κ 7→ λ0(κ) is continuous on [0,∞) but not Lipschitz at 0. We further conjecture:
(4) limκ→∞[λp(κ) − λ0(κ)] = 0 for all p ∈ N, where λp(κ) = limt→∞

1
pt logE([u(0, t)]p)

is the p-th annealed Lyapunov exponent. (In [7] properties (1), (2) and (4) were not
addressed, while property (3) was shown under much more restrictive assumptions on ξ.)
Finally, we prove that our weak space-time mixing conditions on ξ are satisfied for several
classes of interacting particle systems.
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1 Introduction and main results

Section 1.1 defines the parabolic Anderson model and provides motivation, Section 1.2 de-
scribes our main targets and their relation to the literature, Section 1.3 contains our main
results, while Section 1.4 discusses these results and state a conjecture.

1.1 The parabolic Anderson model (PAM)

The parabolic Anderson model is the partial differential equation

∂

∂t
u(x, t) = κ∆u(x, t) + ξ(x, t)u(x, t), x ∈ Zd, t ≥ 0. (1.1)

Here, the u-field is R-valued, κ ∈ [0,∞) is the diffusion constant, ∆ is the discrete Laplacian
acting on u as

∆u(x, t) =
∑
y∈Zd
‖y−x‖=1

[u(y, t)− u(x, t)] (1.2)

(‖ · ‖ is the l1-norm), while

ξ = (ξt)t≥0 with ξt = {ξ(x, t) : x ∈ Zd} (1.3)

is an R-valued random field playing the role a of dynamic random environment that drives
the equation. As initial condition for (1.1) we take

I u(x, 0) = u0(x), x ∈ Zd, with u0 non-negative and bounded. (1.4)

One interpretation of (1.1) and (1.4) comes from population dynamics. Consider the special
case where ξ(x, t) = γξ̄(x, t)− δ with δ, γ ∈ (0,∞) and ξ̄ an N0-valued random field. Consider
a system of two types of particles, A (catalyst) and B (reactant), subject to:

– A-particles evolve autonomously according to a prescribed dynamics with ξ̄(x, t) denot-
ing the number of A-particles at site x at time t;

– B-particles perform independent simple random walks at rate 2dκ and split into two at
a rate that is equal to γ times the number of A-particles present at the same location
at the same time;

– B-particles die at rate δ;

– the average number of B-particles at site x at time 0 is u0(x).
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Then
u(x, t) = the average number of B-particles at site x at time t

conditioned on the evolution of the A-particles.
(1.5)

The ξ-field is defined on a probability space (Ω,F ,P). Throughout the paper we assume
that

I ξ is stationary and ergodic under translations in space and time.

I ξ is not constant and E(|ξ(0, 0)|) <∞.
(1.6)

Without loss of generality we may assume that E(ξ(0, 0)) = 0.

1.2 Main targets and related literature

The goal of the present paper is to prove a number of basic properties about the Cauchy
problem in (1.1) with initial condition (1.4). In this section we describe these properties
informally. Precise results will be stated in Section 1.3.

• Existence and uniqueness of the solution. For static ξ, i.e.,

ξ = {ξ(x) : x ∈ Zd}, (1.7)

existence and uniqueness of the solution to (1.1) with initial condition (1.4) were addressed
by Gärtner and Molchanov [8]. Namely, for arbitrary q : Zd → R and u0 : Zd → [0,∞), they
considered the deterministic equation{

∂
∂tu(x, t) = κ∆u(x, t) + q(x)u(x, t),

u(x, 0) = u0(x),
x ∈ Zd, t ≥ 0, (1.8)

with u0 non-negative, and showed that there exists a non-negative solution if and only if the
Feynman-Kac formula

v(x, t) = Ex

(
exp

{∫ t

0
q(Xκ(s)) ds

}
u0(Xκ(t))

)
(1.9)

is finite for all x and t. Here, Xκ = (Xκ(t))t≥0 is the continuous-time simple random walk
jumping at rate 2dκ (i.e., the Markov process with generator κ∆) starting in x under the
law Px. Moreover, they showed that v in (1.9) is the minimal non-negative solution to (1.8).
This result was later extended to dynamic ξ by Carmona and Molchanov [2], who proved the
following.

Proposition 1.1. (Carmona and Molchanov [2]) Suppose that q : Zd × [0,∞) → R is such
that q(x, ·) is locally integrable for every x. Then, for every non-negative initial condition u0,
the deterministic equation{

∂
∂tu(x, t) = κ∆u(x, t) + q(x, t)u(x, t),

u(x, 0) = u0(x),
x ∈ Zd, t ≥ 0, (1.10)

has a non-negative solution if and only if the Feynman-Kac formula

v(x, t) = Ex

(
exp

{∫ t

0
q(Xκ(s), t− s) ds

}
u0(Xκ(t))

)
(1.11)

is finite for all x and t. Moreover, v in (1.11) is the minimal non-negative solution to (1.10).
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To complement Proposition 1.1, we need to find a condition on ξ that leads to uniqueness
of (1.11). This will be the first of our targets. To answer the question of uniqueness for static
ξ, Gärtner and Molchanov [8] introduced the following notion.

Definition 1.2. A field q = {q(x) : x ∈ Zd} is said to be percolating from below if for every
α ∈ R the level set {x ∈ Zd : q(x) ≤ α} contains an infinite connected component. Otherwise
q is said to be non-percolating from below.

It was shown in [8] that if q is non-percolating from below, then (1.8) has at most one non-
negative solution. We will show that a similar condition suffices for dynamic ξ, namely, (1.10)
has a most one non-negative solution when there is a T > 0 such that

qT = {qT (x) : x ∈ Zd} with qT (x) = sup
0≤t≤T

q(x, t) (1.12)

is non-percolating from below (Theorem 1.11 below), and that this solution is given by the
Feynman-Kac formula (Theorem 1.12 below). The (surprisingly weak) condition in (1.12) is
fulfilled for most choices of ξ.

• Quenched Lyapunov exponent and initial condition. The quenched Lyapunov expo-
nent associated with (1.1) with initial condition u0 is defined as

λu00 (κ) = lim
t→∞

1

t
log u(0, t). (1.13)

Gärtner, den Hollander and Maillard [7] showed that if u0 has finite support, then the limit
exists ξ-a.s. and in L1(P), is ξ-a.s. constant, and does not depend on u0. A natural question
is whether the same is true for u0 bounded with infinite support. This question was already
addressed by Drewitz, Gärtner, Ramirez and Sun [5]. Define

λ
u0
0 (κ) = lim

t→∞

1

t
logE0

(
exp

{∫ t

0
ξ(Xκ(s), s) ds

}
u0(Xκ(t))

)
. (1.14)

Proposition 1.3. (Drewitz, Gärtner, Ramirez and Sun [5])

(I) If ξ satisfies the first line of (1.6) and is bounded, then λ
1l
0(κ) exists ξ-a.s. and in L1(P),

and is ξ-a.s. constant.
(II) If, in addition, ξ is reversible in time or symmetric in space, then, for all u0 subject to

(1.4), λ
u0
0 (κ) exists ξ-a.s. and in L1(P), and coincides with λ

1l
0(κ).

The time-reversal that distinguishes λ1l
0(κ) from λ

1l
0(κ) is non-trivial. Under appropriate space-

time mixing conditions on ξ, we show how Proposition 1.3 can be used to settle the existence
of λu00 (κ) with the same limit for all u0 subject to (1.4) (Theorem 1.14 below).

• Finiteness of the quenched Lyapunov exponent. Trivially, λu00 (κ) ≥ E(ξ(0, 0)) for all
κ, while if ξ is bounded from above, then also λu00 (κ) <∞ for all κ. For unbounded ξ the same
is expected to be true under a mild assumption on the positive tail of ξ. However, settling this
issue seems far from easy. The only two choices of ξ for which finiteness has been established
in the literature are an i.i.d. field of Brownian motions (Carmona and Molchanov [2]) and
a Poisson random field of independent simple random walks (Kesten and Sidoravicius [10]).
We will show that finiteness holds under an appropriate mixing condition on ξ (Theorem 1.13
below).
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• Dependence on κ. In Gärtner, den Hollander and Maillard [7] it was shown that λδ00 (0) =
E(ξ(0, 0)), λδ00 (κ) > E(ξ(0, 0)) for κ ∈ (0,∞), and κ 7→ λδ00 (κ) is globally Lipschitz outside
any neighborhood of zero where it is finite. Under certain strong “noisiness” assumptions
on ξ, it was further shown that continuity extends to zero while the Lipschitz property does
not. It remained unclear, however, which characteristics of ξ are really necessary for the
latter two properties to hold. We will show that if ξ is a Markov process, then in essence
a weak condition on its Dirichlet form is enough to ensure continuity (Theorem 1.15 and
Corollary 1.19 below), whereas the non Lipschitz property holds under a weak assumption on
the fluctuations of ξ (Theorem 1.16). Finally, by the ergodicity of ξ in space, it is natural to
expect (see Conjecture 1.20 below) that limκ→∞[λδ0p (κ)− λδ00 (κ)] = 0 for all p ∈ N, where

λδ0p (κ) = lim
t→∞

1

pt
logE([u(0, t)]p) (1.15)

is the p-th annealed Lyapunov exponent (provided this exists). It was proved for three spe-
cial choices of ξ : (1) independent simple random walks; (2) the symmetric exclusion pro-
cess; (3) the symmetric voter model, (for references, see [7]), that, when d is large enough,
limκ→∞ λ

δ0
p (κ) = E(ξ(0, 0)), p ∈ N0. It is known from Carmona and Molchanov [2] that

limκ→∞ λ
δ0
p (κ) = 1

2 6= E(ξ(0, 0)) for all p ∈ N when ξ is an i.i.d. field of Brownian motions.

1.3 Main results

This section contains five definitions of space-time mixing assumptions on ξ, six theorems
subject to these assumptions, as well as examples of ξ for which these assumptions are satisfied.
The material is organized as Sections 1.3.1–1.3.4. The first theorem refers to the deterministic
PAM, the other four theorems to the random PAM. Recall that the initial condition u0 is
assumed to be non-negative and bounded. Further recall that ξ satisfies (1.6).

1.3.1 Definitions: Space-time blocks, Gärtner-mixing, Gärtner-regularity and
Gärtner-volatility

• Good and bad space-time blocks. For A ≥ 1, R ∈ N, x ∈ Zd and k, b, c ∈ N0, define
the space-time blocks

B̃A
R(x, k; b, c) =

 d∏
j=1

[
(x(j)− 1− b)AR, (x(j) + 1 + b)AR

)
∩ Zd

× [(k − c)AR, (k + 1)AR),

(1.16)
abbreviate BA

R(x, k) = B̃A
R(x, k; 0, 0), and define the space-blocks

QAR(x) = x+ [0, AR)d ∩ Zd. (1.17)

It is convenient to extend the ξ-process to negative times, to obtain a two-sided process
ξ = (ξt)t∈R. Abbreviate M = ess sup [ξ(0, 0)].

Definition 1.4. For A ≥ 1, R ∈ N, x ∈ Zd, k ∈ N, C ∈ [0,M ] and b, c ∈ N0, the block
BA
R(x, k) is called (C, b, c)-good when∑

z∈QAR(y)

ξ(z, s) ≤ CARd ∀ y ∈ Zd, s ≥ 0: QAR(y)× {s} ⊆ B̃A
R(x, k; b, c). (1.18)

Otherwise it is called (C, b, c)-bad.
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Figure 1: The box represents BAR(x, k). The line is a possible realization of QAR(x).
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(a2 − c− 1)AR+1

6

?

(a1 − 2b− 2)AR+1

Figure 2: The dashed blocks are R-blocks, i.e., BAR(x, k) (inner) and B̃AR(x, k; b, c) (outer) for some
choice of A, x, k, b, c. The solid blocks are (R+ 1)-blocks.
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• Gärtner-mixing. For A ≥ 1, R ∈ N, x ∈ Zd, k ∈ N, C ∈ [0,M ] and b, c ∈ N0, let

AA,CR (x, k; b, c)

=
{
BA
R+1(x, k) is (C, b, c)-good, but contains an R-block that is (C, b, c)-bad

}
=

⋃
(xi,ki)∈Zd×N,

BAR(xi,ki)⊆BAR+1(x,k)

({
BA
R(xi, ki) is (C, b, c)-bad

}
∩
{
BA
R+1(x, k) is (C, b, c)-good

})
.

(1.19)
In terms of these events we define the following space-time mixing conditions (see Fig. 2). For
D ⊂ Zd × R, let σ(D) be the σ-field generated by {ξ(x, t) : (x, t) ∈ D}.

Definition 1.5. [Gärtner-mixing]
For a1, a2 ∈ N, denote by ∆n(a1, a2) the set of Zd × N-valued sequences {(xi, ki)}ni=0 that
are increasing with respect to the lexicographic ordering of Zd × N and are such that for all
0 ≤ i < j ≤ n

xj ≡ xi mod a1 and kj ≡ ki mod a2. (1.20)

(a) ξ is called (A,C, b, c)-type-I Gärtner-mixing when there are a1, a2 ∈ N such that there is
an R0 ∈ N such that, for all R ∈ N with R ≥ R0 and all n ∈ N,

sup
(xi,ki)ni=0∈∆n(a1,a2)

P
( n⋂
i=0

AA,CR (xi, ki; b, c)

)
≤ K

(
A(1+2d)

)−R(1+d)n

, (1.21)

where K > 0 is a constant independent of R and n.
(b) ξ is called (A,C, b, c)-type-II Gärtner-mixing when for each family of events

ARi ∈ σ(BA
R+1(xi, ki)), (xi, ki)

n
i=0 ∈ ∆n(a1, a2), (1.22)

that are invariant under space-time shifts and satisfy

lim
R→∞

P(ARi ) = 0, (1.23)

there are a1, a2 ∈ N such that for each δ > 0 there is an R0 ∈ N such that, for all n ∈ N,

P
( n⋂
i=0

{
BA
R+1(xi, ki) is (C, b, c)-good,ARi

})
≤ Kδn R ≥ R0, R ∈ N. (1.24)

Here K > 0 is a constant independent of R, n and δ.
(c) ξ is called type-I, respectively type-II, Gärtner-mixing, if there are A ≥ 1, C ∈ [0,M ],
R ∈ N, b, c ∈ N such that ξ is (A,C, b, c)-type-I, respectively, (A,C, b, c)-type-II, Gärtner-
mixing.

Definition 1.6. [Gärtner-hyper-mixing]
(a) ξ is called Gärtner-positive-hyper-mixing when

(a1) E
[
eq sups∈[0,1] ξ(0,s)

]
<∞ for all q ≥ 0.

(a2) There are b, c ∈ N and a constant C such that for each A0 > 1 one can find A ≥ A0 such
that ξ is (A,C, b, c)-type-I Gärtner-mixing.
(a3) There are R0, C0 ≥ 1 such that

P

 sup
s∈[0,1]

1

|BR|
∑
y∈BR

ξ(y, s) ≥ C

 ≤ |BR|−α ∀R ≥ R0, C ≥ C0, (1.25)
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for some α > (1 + 2d)(2 + d)/d, where

BR =
(

[−R,R]d ∩ Zd
)
. (1.26)

(b) ξ is called Gärtner-negative-hyper-mixing, if −ξ is Gärtner-positive-hyper-mixing.

Remark 1.7. If ξ is bounded from above, then ξ is Gärtner-positive-hyper-mixing. For those
examples where ξ(x, t) represents “the number of particles at site x at time t”, we may view
Gärtner-mixing as a consequence of the fact that there are not enough particles in the blocks
B̃A
R(xi, ki; b, c) that manage to travel to the blocks B̃A

R(xj , kj ; b, c). Indeed, if there is a bad
block on scale R that is contained in a good block on scale R+ 1, then in some neighborhood
of this bad block the particle density cannot be too large. This also explains why we must
work with the extended blocks B̃A

R(x, k; b, c) instead of with the original blocks BA
R(x, k; 0, 0).

Indeed, the surroundings of a bad block on scale R can be bad when it is located near the
boundary of a good block on scale R+ 1 (see Fig. 2).

• Gärtner-regularity and Gärtner-volatility. We say that Φ: [0, t]→ Zd is a path when

‖Φ(s)− Φ(s−)‖ ≤ 1 ∀ s ∈ [0, t]. (1.27)

We write Φ ∈ Br(0) (the ball in Rd of radius r centered at 0) when ‖Φ(s)‖ ≤ r for all s ∈ [0, t]
and N(Φ, t) ≤M , if Φ has at most M jumps up to time t.

Definition 1.8. [Gärtner-regularity]
ξ is called Gärtner-regular when
(a) ξ is Gärtner-negative-hyper-mixing and Gärtner-positive-hyper-mixing.
(b) There are t0 > 0 and n0 ∈ N such that for every δ1 > 0 there is a δ2 = δ2(δ1) > 0 such
that

P

 n∑
j=1

∫ jt

(j−1)t+1
ξ
(
Φ((j − 1)t+ 1), s

)
ds ≥ δ1nt

 ≤ e−δ2nt
∀ t ≥ t0, n ≥ n0, Φ ∈ Btn(0).

(1.28)

Definition 1.9. [Gärtner-volatility]
ξ is called Gärtner-volatile when
(a) ξ is Gärtner-negative-hyper-mixing.
(b)

lim
t→∞

1

log t
E
(∣∣∣ ∫ t

0
[ξ(0, s)− ξ(e, s)] ds

∣∣∣) =∞ for some e ∈ Zd with ‖e‖ = 1, (1.29)

Remark 1.10. Corollary 1.19 below will show that condition (b) in Definition 1.8 is satisfied
as soon as the Dirichlet form of ξ is non-degenerate, i.e., has a unique zero (see Section 7).

1.3.2 Theorems: Uniqueness, existence, finiteness and initial condition

Recall the definition of qT (see (1.12)).
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Theorem 1.11. [Uniqueness] Consider a deterministic q : Zd × [0,∞)→ R such that:
(1) There is a T > 0 such that qT is non-percolating from below.
(2) qT (x) <∞ for all T > 0 and x ∈ Zd.
Then the Cauchy problem{

∂
∂tu(x, t) = κ∆u(x, t) + q(x, t)u(x, t),

u(x, 0) = u0(x),
x ∈ Zd, t ≥ 0, (1.30)

has at most one non-negative solution.

Theorem 1.12. [Existence] Suppose that:
(1) s 7→ ξ(x, s) is locally integrable for every x, ξ-a.s.
(2) E(eqξ(0,0)) <∞ for all q ≥ 0.
Then the function defined by the Feynman-Kac formula

u(x, t) = Ex

(
exp

{∫ t

0
ξ(Xκ(s), t− s) ds

}
u0(Xκ(t))

)
(1.31)

solves (1.1) with initial condition u0.

From now on we assume that ξ satisfies the conditions of Theorems 1.11–1.12.

Theorem 1.13. [Finiteness] If ξ is Gärtner-positive-hyper-mixing, then λδ00 (κ) <∞.

From now on we also assume that ξ satisfies the conditions of Theorem 1.13. The following
result extends Gärtner, den Hollander and Maillard [7], Theorem 1.1, in which it was shown
that for the initial condition u0 = δ0 the quenched Lyapunov exponent exists and is constant
ξ-a.s.

Theorem 1.14. [Initial Condition] If ξ is reversible in time or symmetric in space, type-II
Gärtner-mixing and Gärtner-negative-hyper-mixing, then λu00 (κ) = limt→∞

1
t log u(0, t) exists

ξ-a.s. and in L1(P), is constant ξ-a.s., and is independent of u0.

1.3.3 Theorems: Dependence on κ

Theorem 1.15. [Continuity at κ = 0] If ξ is Gärtner-regular, then κ 7→ λδ00 (κ) is continuous
at zero.

Theorem 1.16. [Not Lipschitz at κ = 0] If ξ is Gärtner-volatile, then κ 7→ λδ00 (κ) is not
Lipschitz continuous in zero.

Remark 1.17. Theorem 1.16 was already shown in [7], under the additional assumption that
ξ is bounded from below.

1.3.4 Examples

We state two corollaries in which we give examples of classes of ξ for which the conditions in
Theorems 1.13–1.15 are satisfied.
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Corollary 1.18. [Examples for Theorems 1.13–1.14]
(1) Let X = (Xt)t≥0 be a stationary and ergodic R-valued Markov process. Let (X·(x))x∈Zd be
independent copies of X. Define ξ by ξ(x, t) = Xt(x). If

E
[
eq sups∈[0,1]Xs

]
<∞ ∀ q ≥ 0, (1.32)

then ξ fulfills the conditions of Theorem 1.13. If, moreover, the left-hand side of (1.32) is
finite for all q ≤ 0, then ξ satisfies the conditions of Theorem 1.14.
(2) Let ξ be the zero-range process with rate function g : N0 → (0,∞), g(k) = kβ, β ∈ (0, 1],
and transition probabilities given by a simple random walk on Zd. If ξ starts from the product
measure πρ, ρ ∈ (0,∞), with marginals

πρ
{
η ∈ NZd

0 : η(x) = k
}

=

{
γ ρk

g(1)×···×g(k) , if k > 0

γ, if k = 0,
(1.33)

where γ ∈ (0,∞) is a normalization constant, then ξ satisfies the conditions of Theorems 1.13–
1.14.

Corollary 1.19. [Examples for Theorem 1.15] (1) If ξ is a bounded interacting particle
system in the so-called M < ε regime (see Liggett [12]), then the conditions of Theorem 1.15
are satisfied.
(2) If ξ is the exclusion process with an irreducible, symmetric and transient random walk
transition kernel, then the conditions of Theorem 1.15 are satisfied.
(3) If ξ is the dynamics defined by

ξ(x, t) =
∑
y∈Zd

Ny∑
j=1

δY yj (t)(x), (1.34)

where {Y y
j : y ∈ Zd, 1 ≤ j ≤ Ny} is a collection of independent continuous-time simple random

walks jumping at rate one, and (Ny)y∈Zd is a Poisson random field with intensity ν for some
ν ∈ (0,∞). If d ≥ 3, then the conditions of Theorem 1.15 are satisfied.

Corollaries 1.18–1.19 list only a few examples that match the conditions. It is a separate
problem to verify these conditions for as broad a class of interacting particle systems as
possible.

1.4 Discussion and a conjecture

The proofs of Theorems 1.11–1.16 and Corollaries 1.18–1.19 are given in Sections 2–7. The
content of Theorems 1.11–1.16 is summarized in Fig. 3.

The importance of λu00 (κ) within the population dynamics interpretation of the parabolic
Anderson model, as explained in Section 1.1, is the following. For t > 0, randomly draw an
B-particle from the population of B-particles at the origin. Let Lt be the random time this
B-particle and its ancestors have spent on top of A-particles. By appealing to the ergodic
theorem, it may be shown that limt→∞ Lt/t = λu00 (κ) a.s. Thus, λu00 (κ) is the fraction of time
the best B-particles spend on top of A-particles, where best means that they come from the
fastest growing family (“survival of the fittest”). Fig. 3 shows that for all κ ∈ (0,∞) clumping
occurs: the limiting fraction is strictly larger than the density of A-particles. In the limit as
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0
q κ

λu00 (κ)

0
q κ

λu00 (κ)

Figure 3: Qualitative picture of κ 7→ λu0
0 (κ) in the weakly, respectively, strongly catalytic regime.

κ ↓ 0 the clumping vanishes because the motion of the A-particles is ergodic in time. The
clumping is hard to suppress for κ ↓ 0: even a tiny bit of mobility allows the best B-particles
and their ancestors to successfully “hunt down” the A-particles.

In the limit as κ → ∞ we expect the quenched Lyapunov exponent to merge with the
annealed Lyapunov exponents defined in (1.15).

Conjecture 1.20. limκ→∞[λu0p (κ)− λu00 (κ)] = 0 for all p ∈ N.

The reason is that for large κ the B-particles can easily find the largest clumps of A-particles
and spend most of their time there, so that it does not matter much whether the largest
clumps are close to the origin or not.

It remains to identify the scaling behaviour of λu00 (κ) for κ ↓ 0 and κ→∞. Under strong
noisiness conditions on ξ, it was shown in Gärtner, den Hollander and Maillard [7] that λu0(κ)
tends to zero like 1/ log(1/κ) (in a rough sense), while it tends to E(ξ(0, 0)) as κ → ∞. For
the annealed Lyapunov exponents λu0p (κ), p ∈ N, there is no singular behavior as κ ↓ 0, in
particular, they are Lipschitz continuous at κ = 0 with λu0p (0) > E(ξ(0, 0)). For three specific
choices of ξ it was shown that λu0p (κ) with u0 ≡ 1 decays like 1/κ as κ → ∞ (see [7] and
references therein). A distinction is needed between the strongly catalytic regime for which
λu0p (κ) = ∞ for all κ ∈ [0,∞), and the weakly catalytic regime for which λu0p (κ) < ∞ for all
κ ∈ [0,∞). (These regimes were introduced by Gärtner and den Hollander [6] for independent
simple random walks.) We expect Conjecture 1.20 to be valid in both regimes.

2 Existence and uniqueness of the solution

In this section we prove Theorem 1.11 (uniqueness; Section 2.1) and Theorem 1.12 (existence;
Section 2.2).

2.1 Uniqueness

The proof of Theorem 1.11 is based on the following lemma.

Lemma 2.1. Let qi : Zd × [0,∞)→ R, i ∈ {1, 2}, satisfy conditions (1)–(2) in Theorem 1.11
and be such that, for a given initial condition u0, the two corresponding Cauchy problems{

∂
∂tui(x, t) = κ∆ui(x, t) + qi(x, t)ui(x, t),

ui(x, 0) = u0(x),
x ∈ Zd, t ≥ 0, i ∈ {1, 2}, (2.1)
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have a solution. If there exists a T > 0 such that q1(x, t) ≥ q2(x, t) for all x ∈ Zd and
t ∈ [0, T ], then u1(x, t) ≥ u2(x, t) for all x ∈ Zd and t ∈ [0, T ], where u1 and u2 are any two
solutions of (2.1).

We first prove Theorem 1.11 subject to Lemma 2.1.

Proof. Note from Definition 1.2 that whenever qT is non-percolating from below for T = T0

for some T0 > 0, then the same is true for all T ≥ T0. Fix T ≥ T0, and let u be a non-negative
solution of (1.30) with zero initial condition, i.e., u0(x) = 0 for all x ∈ Zd. It is sufficient to
prove that u(x, t) = 0 for all x ∈ Zd and t ∈ [0, T ].

Let v be the solution of the Cauchy problem{
∂
∂tv(x, t) = κ∆v(x, t) + qT (x)v(x, t),

v(x, 0) = v0(x) = 0,
x ∈ Zd, t ∈ [0, T ], (2.2)

which exists because the corresponding Feynman-Kac representation is zero by Gärtner and
Molchanov [8], Lemma 2.2. By Lemma 2.1 it follows that 0 ≤ u ≤ v on Zd × [0, T ]. Using
that qT is non-percolating from below, we may apply [8], Lemma 2.3, to conclude that (2.2)
has at most one solution. Hence u = v = 0 on Zd × [0, T ], which gives the claim.

We next prove Lemma 2.1.

Proof. Fix N ∈ N. Let Q̄N = [−N,N ]d ∩ Zd, QN = (−N,N)d ∩ Zd, and ∂QN = Q̄N\QN . If
u1 and u2 are solutions of (2.1) on Zd × [0,∞), then they are also solutions on Q̄N × [0, T ].
More precisely, for i ∈ {1, 2}, ui is a solution of the Cauchy problem

∂
∂tv(x, t) = κ∆v(x, t) + qi(x, t)v(x, t), (x, t) ∈ QN × [0, T ],
v(x, 0) = u0(x), x ∈ Q̄N ,
v(x, t) = ui(x, t), (x, t) ∈ ∂QN × [0, T ].

(2.3)

Recall that q1 ≥ q2 on Zd × [0, T ]. Choose cTN such that

cTN > max
x∈Q̄N , t∈[0,T ]

q1(x, t) ≥ max
x∈Q̄N , t∈[0,T ]

q2(x, t), (2.4)

and abbreviate {
v(x, t) = e−c

T
N t
[
u1(x, t)− u2(x, t)

]
, (x, t) ∈ Q̄N × [0, T ],

Q̄i = qi − cTN , i ∈ {1, 2}. (2.5)

Then, by (2.3), v satisfies
∂
∂tv(x, t) = κ∆v(x, t)

+e−c
T
N t Q̄1(x, t)u1(x, t)− e−cTN t Q̄2(x, t)u2(x, t), (x, t) ∈ QN × [0, T ],

v(x, 0) = 0, x ∈ Q̄N ,
v(x, t) = e−c

T
N t
[
u1(x, t)− u2(x, t)

]
, (x, t) ∈ ∂QN × [0, T ].

(2.6)
Now, suppose that there exists a (x∗, t∗) ∈ QN × [0, T ] such that

v(x∗, t∗) = min
x∈QN , t∈[0,T ]

v(x, t) < 0. (2.7)
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Then
∂

∂t
v(x∗, t∗) ≤ 0 (2.8)

and
∆v(x∗, t∗) =

∑
y∈Zd

‖y−x∗‖=1

[
v(y, t∗)− v(x∗, t∗)

]
≥ 0. (2.9)

Moreover, by (2.4–2.5) and (2.7),

e−c
T
N t∗ Q̄1(x∗, t∗)u1(x∗, t∗)− e−c

T
N t∗ Q̄2(x∗, t∗)u2(x∗, t∗)

=
[
q1(x∗, t∗)− cTN

]
v(x∗, t∗) + [q1(x∗, t∗)− q2(x∗, t∗)] e

−cTN t∗ u2(x∗, t∗) > 0.
(2.10)

But (2.8–2.10) contradict the first line of (2.6) at (x, t) = (x∗, t∗). Hence (2.7) fails, and so it
follows from (2.5) that u1(x, t) ≥ u2(x, t) for all x ∈ QN and t ∈ [0, T ]. Since N can be chosen
arbitrarily, the claim follows.

2.2 Existence

In the sequel we use the abbreviations

Iκ(a, b, c) =
∫ b
a ξ(X

κ(s), c− s)ds, 0 ≤ a ≤ b ≤ c, (2.11)

Iκ(a, b, c) =
∫ b
a ξ(X

κ(s), c+ s)ds, 0 ≤ a ≤ b ≤ c. (2.12)

Proof. To prove Theorem 1.12, by Proposition 1.1 it is enough to show that

Ex

(
eI

κ(0,t,t)u0(Xκ(t))
)
<∞ ∀x ∈ Zd, t ≥ 0. (2.13)

Since u0 is assumed to be non-negative and bounded (recall (1.4)), without loss of generality we
may take u0 ≡ 1. We give the proof for x = 0, the extension to x ∈ Zd being straightforward.
Fix q ∈ Q ∩ [0,∞). Using Jensen’s inequality and the stationarity of ξ, we have (recall (1.6))

E
(
E0

(
eI

κ(0,q,q)
))

= E0

(
E
(
eI

κ(0,q,q)
))

≤ E0

(
E
(

1

q

∫ q

0
exp

{
qξ(Xκ(s), q − s)

}
ds

))
= E0

(
1

q

∫ q

0
E
(

exp
{
qξ(0, 0)

})
ds

)
= E

(
eqξ(0,0)

)
<∞,

(2.14)

where the finiteness follows by condition (2). Hence, for every q ∈ Q ∩ [0,∞) there exists a
set Aq with P(Aq) = 1 such that

E0

(
eI

κ(0,q,q)
)
<∞ ∀ ξ ∈ Aq. (2.15)

To extend (2.15) to t ∈ [0,∞), note that, by the Markov property of Xκ applied at time q− t,
q > t, we have

E0

(
eI

κ(0,q,q)
)
≥ E0

(
eI

κ(0,q,q)1l
{
Xκ(r) = 0 ∀ r ∈ [0, q − t]

})
= e

∫ q−t
0 ξ(0,q−s) dsP0

(
Xκ(r) = 0 ∀ r ∈ [0, q − t]

)
E0

(
eI

κ(0,t,t)
)
.

(2.16)

Because s 7→ ξ(0, s) is locally integrable ξ-a.s. by condition (1), we have
∫ q−t

0 ξ(0, q − s) ds >
−∞ ξ-a.s. The claim now follows from (2.15–2.16) by picking q ∈ Q∩ [0,∞) and t ∈ [0,∞).
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3 Finiteness of the quenched Lyapunov exponent

In this section we prove Theorem 1.13. In Section 3.1 we sketch the strategy of the proof. In
Sections 3.2–3.6 the details are worked out.

3.1 Strategy of the proof

The proof uses ideas from Kesten and Sidoravicius [10]. Fix C, b, c according to our assump-
tions on ξ. For j ∈ N and t > 0, define the set of random walk paths

Π(j, t) =

{
Φ: [0, t]→ Zd : Φ makes j jumps, Φ([0, t]) ⊆ [−C1t log t, C1t log t]d ∩ Zd

}
, (3.1)

where C1 will be determined later on. Abbreviate [C1]t = [−C1t log t, C1t log t]d ∩ Zd. For
A ≥ 1, R ∈ N and Φ ∈ Π(j, t), define

ΨA
R(Φ) = number of good (R+ 1)-blocks crossed by Φ containing a bad R-block,(3.2)

ΨA,j
R = sup

Φ∈Π(j,t)
ΨA
R(Φ), (3.3)

ΞAR(Φ) = number of bad R-blocks crossed by Φ, (3.4)

ΞA,jR = sup
Φ∈Π(j,t)

ΞAR(Φ). (3.5)

The proof comes in 5 steps, organized as Sections 3.2–3.6: (1) the Feynman-Kac formula may
be restricted to paths contained in [C1]t; (2) there are no bad R-blocks for sufficiently large
R; (3) the Feynman-Kac formula can be estimated in terms of bad R-blocks; (4) bounds can
be derived on the number of bad R-blocks; (5) completion of the proof.

3.2 Step 1: Restriction to [C1]t

Lemma 3.1. Fix C1 > 0. Suppose that E
(
eq sups∈[0,1] ξ(0,s)

)
<∞ for all q > 0. Then:

(a) ξ-a.s.

lim sup
t→∞

[
1

log t
sup {ξ(x, s) : x ∈ [C1]t, 0 ≤ s ≤ t}

]
≤ 1. (3.6)

(b) ξ-a.s. there exists a t0 ≥ 0 such that, for all t ≥ t0 and x /∈ [C1]t,

sup
s∈[0,t]

ξ(x, s) ≤ log ‖x‖. (3.7)

Proof. (a) For any θ > 0 and t ≥ 1, we may estimate

P

(
∃x ∈ [C1]t : sup

s∈[0,t]
ξ(x, s) ≥ log t

)

≤
∑

x∈[C1]t

btc∑
k=0

P

(
sup

s∈[k,k+1]
ξ(x, s) ≥ log t

)

≤ (2C1t log t+ 1)d(btc+ 1) exp{−θ log t}E

(
exp

{
θ sup
s∈[0,1]

ξ(0, s)

})
.

(3.8)

14



Choosing θ > 2(d + 1) + 1, we get that the right-hand side is summable over t ∈ N. Hence,
by the Borel-Cantelli Lemma, we get the claim.

(b) The proof is similar and is omitted.

The main result of this section reads:

Lemma 3.2. There exists a C0 > 0 such that ξ-a.s. there exists a t0 > 0 such that

E0

(
eI

κ(0,t,t)1l{Xκ([0, t]) 6⊆ [C1]t}
)
≤ et ∀ t ≥ t0, C1 ≥ C0. (3.9)

Proof. See Kesten and Sidoravicius [10], Eq. (2.38). We only sketch the main idea. Take a
realization Φ: [0, t] → Zd of a random walk path that leaves the box [C1]t. Then ‖Φ‖ =
max{‖x‖ : x ∈ Φ([0, t])} > C1t log t. By Lemma 3.1,

sup
s∈[0,t]

sup
‖x‖≤‖Φ‖

ξ(x, s) ≤ log ‖Φ‖, (3.10)

and so we can estimate

E0

(
eI

κ(0,t,t)1l{Xκ([0, t]) 6⊆ [C1]t}
)

≤ E0

(
exp

{
t sup
s∈[0,t]

log ‖Xκ(s)‖

}
1l{Xκ([0, t]) 6⊆ [C1]t}

)
.

(3.11)

The rest of the proof consists of balancing the exponential growth of the term with the
supremum against the superexponential decay of P0(Xκ([0, t]) 6⊆ [C1]t). See [10] for details.

3.3 Step 2: No bad R-blocks for large R

Lemma 3.3. Fix C0 > 0 according to Lemma 3.2, and suppose that ξ satisfies condition (a3)
in the Gärtner-positive-hyper-mixing definition. Then for every C1 ≥ C0 and ε > 0 there
exists an A = A(ε) > 2 such that

P
(

ΞA,jR > 0 for some R ≥ ε log t and some j ∈ N0

)
(3.12)

is summable over t ∈ N. (It suffices to choose A = be1/a(1+2d)εc for some a > 1.)

Proof. Fix C1 ≥ C0, A > 2 and assume that ΞA,jR > 0 for some j ∈ N0. Then there is a bad
R-block BA

R(x, k) that intersects [C1]t × [0, t]. Hence there is a pair (y, s) ∈ Zd × [0,∞) such
that QAR(y)× {s} ⊆ B̃A

R(x, k; b, c) and∑
z∈QAR(y)

ξ(z, s) > CARd. (3.13)
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In particular, x and s satisfy dist(y, [C1]t) ≤ (b+ 2)AR and s ∈ [0, t+AR]. Hence, for ε > 0,

P
(

ΞA,jR > 0 for some R ≥ ε log t, j ∈ N0

)
≤

∑
R≥ε log t

P

( ∑
z∈QAR(y)

ξ(z, s) > CARd for some (y, s) :

dist(y, [C1]t) ≤ (b+ 2)AR, s ∈ [0, t+AR]

)

≤
∑

R≥ε log t

∑
y: dist(y,[C1]t)≤(b+2)AR

bt+ARc∑
k=0

P
(
∃s ∈ [k, k + 1):

∑
z∈QAR(y)

ξ(z, s) > CARd
)
.

(3.14)

By assumption (1.25), we may bound the two inner sums by

(2C1t log t+ 1 + (b+ 2)AR)d × (bt+ARc+ 1)× (2AR + 1)−dα
def
= G(R, t). (3.15)

Recall the definition of α (see below 1.25)), to see that one can choose A as described in the
formulation of Lemma 3.3 to get that ∑

R≥ε log t

G(R, t) (3.16)

is summable over t ∈ N.

3.4 Step 3: Estimate of the Feynman-Kac formula in terms of bad blocks

Lemma 3.4. Fix ε > 0 and A > 2. For all C1 ≥ C0 (where C0 is determined by Lemma 3.2),

E0

(
eI

κ(0,t,t)1l{Xκ([0, t]) ⊆ [C1]t}
)

≤
∑
j∈N0

(2dtκ)j

j!
exp

{
t(CAd − 2dκ) +

∞∑
R=1

CA(R+1)dARΞA,jR

}
.

(3.17)

Proof. See [10], Lemma 9. We sketch the proof. Note that

E0

(
eI

κ(0,t,t)1l{Xκ([0, t]) ⊆ [C1]t}
)

=
∑
j∈N0

e−2dtκ (2dtκ)j

j!

×
∑

x1,x2,...,xj∈Zd

1

(2d)j
E0

(
exp

{
j∑
i=1

∫ Si

Si−1

ξ(xi−1, t− u) du+

∫ t

Sj

ξ(xj , t− u) du

})
,

(3.18)
where j is the number of jumps, 0 = x0, x1, . . . , xj , xi ∈ [C1]t, i ∈ {0, 1, · · · , j}, are the nearest-
neighbor sites visited, and 0 = S0 < S1 < · · · < Sj < t are the jump times. To analyze (3.18),
fix A > 2, R ∈ N as well as 0 = s0 < s1 < · · · < sj and a path Φ with these jump times, and
define

ΛR(Φ) =

j⋃
i=1

{
u ∈ [si−1, si) : CARd < ξ(xi−1, t− u) ≤ CA(R+1)d

}
⋃{

u ∈ [sj , t) : CARd < ξ(xj , t− u) ≤ CA(R+1)d
}
.

(3.19)
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The contribution of Φ to the exponential in (3.18) may be bounded from above by

tCAd +
∞∑
R=1

CA(R+1)d|ΛR(Φ)|, (3.20)

where the first term comes from the space-time points (xi−1, t−u) with ξ(xi−1, t−u) ≤ CAd.
If CARd < ξ(xi−1, t− u) ≤ CA(R+1)d, then (xi−1, t− u) belongs to a bad R-block. There are
at most ΞA,jR such blocks, and any path spends at most a time AR in each R-block. Hence

|ΛR(Φ)| ≤ ARΞA,jR . (3.21)

The claim now follows from (3.18), (3.20–3.21) and the fact that there are at most (2d)j

nearest-neighbor paths (0 = x0, x1, x2, . . . , xj) that are contained in [C1]t.

3.5 Step 4: Bound on the number of bad blocks

The goal of this section is to provide a bound on the number of bad blocks on all scales
simultaneously (Lemma 3.5 below). In Section 3.6 we will combine Lemmas 3.2 and 3.4–3.22
to prove Theorem 1.13.

Lemma 3.5. Fix ε > 0, pick A according to Lemma 3.3 and assume that ΞA,jR = 0 for all
R ≥ dε log te. Then, for some C2 > 0,

P
(

ΨA,j
R ≥ (t+ j)(A(1+2d))−R for some R ∈ N and some j ∈ N0

)
, (3.22)

P
(

ΞA,jR ≥ C2(t+ j)(A(1+2d))−R for some R ∈ N and some j ∈ N0

)
, (3.23)

are summable on t ∈ N.

The proof of Lemma 3.5 is based on Lemmas 3.6–3.7 below. The first estimates for fixed R
the probability that there is a large number of good (R+ 1)-blocks containing a bad R-block,
the second gives a recursion bound on the number of bad blocks in terms of ΨA,j

R .

Lemma 3.6. Suppose that ξ satisfies condition (a2) in Definition 1.6. Then, for R large
enough, j ∈ N0 and A chosen according to Lemma 3.3, for some constant C3 > 0

P
(

ΨA,j
R ≥ (t+ j)(A(1+2d))−R

)
≤ exp

{
−C3(t+ j)(A(1+2d))−R

}
. (3.24)

Lemma 3.7. Fix ε > 0, and pick A according to Lemma 3.3. Assume that ΞA,jR = 0 for all
R ≥ dε log te. Then, with N = dε log te,

ΞA,jR ≤ 2dA(1+d)
N−R−1∑
i=0

2idAi(1+d)ΨA,j
R+i. (3.25)

The proofs of Lemmas 3.6, 3.7 and 3.5 are given in Sections 3.5.1, 3.5.2 and 3.5.3, respectively.
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3.5.1 Proof of Lemma 3.6

Proof. Throughout the proof, x, x′ ∈ Zd and k, k′ ∈ N. The idea of the proof is to divide
space-time blocks into equivalence classes, such that in each equivalence class blocks are far
enough away from each other so that they can be treated as being independent (see Fig. 2).
The proof comes in four steps.

1. Fix A > 2 according to Lemma 3.3, fix R ∈ N and take a1, a2, b, c ∈ N0 according to
condition (a2) in Definition 1.6. We say that (x, k) and (x′, k′) are equivalent if and only if

x ≡ x′ mod a1 and k ≡ k′ mod a2. (3.26)

This equivalence relation divides Zd × N into ad1a2 equivalence classes. We write
∑

(x∗,k∗) to
denote the sum over all equivalence classes. Furthermore, we define

χA(x, k) =1l
{
BA
R+1(x, k) is good, but contains a bad R-block

}
. (3.27)

We tacitly assume that all blocks under consideration intersect [C1]t × [0, t]. Then

P
(

ΨA,j
R ≥ (t+ j)(A(1+2d))−R

)
≤
∑

(x∗,k∗)

P
(
∃ a path with j jumps that intersects at least

(t+ j)(A(1+2d))−R/ad1a2 blocks BA
R+1(x, k) with χA(x, k) = 1, (x, k) ≡ (x∗, k∗)

)
.

(3.28)

2. Define ρ
1/(1+d)
R = (A(1+2d))−R and abbreviate

An1 =
{
∃ a path with j jumps that intersects n blocks BA

R+1(x, k)

with χA(x, k) = 1, (x, k) ≡ (x∗, k∗)
}
.

(3.29)

Then we may rewrite the right-hand side of (3.28) as

∑
(x∗,k∗)

L∑
n=

(t+j)ρ
1/(1+d)
R

ad1a2

P(An1 ),
(3.30)

where L is the number of (R+1)-blocks that can be crossed by a path with j jumps contained
in [C1]t × [0, t]. To estimate the probability in (3.30), note that we can write An1 as

An1 =
⋃

(x
a1
m ,k

a2
m )

An,(x
a1
m ,k

a2
m )

1 , (3.31)

where the union is taken over all possible choices of (R+1)-blocks such that exactly n of them
are good, contain a bad R-block, and can be reached by a path with j jumps. Hence, (3.30)
becomes ∑

(x∗,k∗)

L∑
n=

(t+j)ρ
1/(1+d)
R

ad1a2

∑
(x
a1
m ,k

a2
m )

P
(
An,(x

a1
m ,k

a2
m )

1

)
.

(3.32)
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By condition (a2) in Definition 1.6, the probability in (3.32) may be bounded from above by
K(A(1+2d))−R(1+d)n. Note that there are at most

(
L
n

)
elements in the union (3.31). Thus, the

two inner sums in (3.32) are bounded from above by

(1− ρR)−LKP

(
TL ≥

(t+ j)ρ
1/(1+d)
R

ad1a2

)
, (3.33)

where TL = BIN(L, ρR).

3. To estimate the binomial random variable, we first bound L. As in [10], take ν =

dρ−1/(1+d)
R e and define space-time blocks

B̃A
R(x, k) =

 d∏
j=1

[ν(x(j)− 1)AR, ν(x(j) + 1)AR) ∩ Zd
× [νkAR, ν(k + 1)AR). (3.34)

By the same reasoning as in [10], we see that at most

µ(j)
def
= 3d

(
t+ j

νAR+1
+ 2

)
(3.35)

blocks B̃A
R+1(x, k) can be crossed by a path Φ with j jumps. Hence L ≤ ν(1+d)µ(j), and thus

the probability in (3.33) is at most

P

(
T ≥

(t+ j)ρ
1/(1+d)
R

ad1a2

)
, (3.36)

where T = BIN(ν(1+d)µ(j), ρR). According to Bernstein’s inequality (compare with [10],
Lemma 11), there is a constant C ′ such that, for all λ ≥ 2E(T ),

P(T ≥ λ) ≤ exp{−C ′λ}. (3.37)

We may assume that ρ
−1/(1+d)
R ∈ N, so that

E(T ) = ν(1+d)µ(j)ρR = 3d
(
t+ j

AR+1
ρ

1/(1+d)
R + 2

)
, (3.38)

and hence, by Lemma 3.3 and the fact that R ≤ ε log t,

(t+ j)ρ
1/(1+d)
R

ad1a2
≥ 2E(T ). (3.39)

Since a1, a2 are independent of R, we may estimate, again using Bernstein’s inequality,

P

(
T ≥

(t+ j)ρ
1/(1+d)
R

ad1a2

)
≤ exp

{
−C ′(t+ j)ρ

1/(1+d)
R

}
= exp

{
−C ′(t+ j)(A(1+2d))−R

}
.

(3.40)

It rests to show that the first term in (3.33) does not contribute. Note that 1/(1 − ρR) =
1 + ρR/(1− ρR), so that

log

(
1

1− ρR

)
≤ ρR

1− ρR
. (3.41)
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Thus, if we assume ρ
−1/(1+d)
r ∈ N,

L log

(
1

1− ρR

)
≤ µ(j)

1− ρR
. (3.42)

Inserting (3.42) into the first term of (3.33) and comparing it with the right hand side of
(3.40), we see that the asymptotic of (3.33) is determined by the probability term.

4. Finally, we estimate (3.32). For that we insert (3.40) into (3.32), which yields

P
(

ΨA,j
R ≥ (t+ j)(A(1+2d))−R

)
≤ Kad1a2 exp

{
−C ′(t+ j)(A(1+2d))−R

}
.

(3.43)

This finishes the proof.

3.5.2 Proof of Lemma 3.7

Proof. We first show that

ΞA,jR ≤ 2dA(1+d)ΞA,jR+1 + 2dA(1+d)ΨA,j
R . (3.44)

In order to see why (3.44) is true, take a bad R-block BA
R(x, k) that is crossed by a path with

j jumps. Then there are two possibilities. Either BA
R(x, k) is contained in a bad (R+1)-block,

or all (R + 1)-blocks that contain BA
R(x, k) are good. Since an (R + 1)-block contains A(1+d)

R-blocks, and there are at most 2d (R + 1)-blocks, which may contain a given R-block, the
first term in the above sum bounds the number of bad R-blocks contained in a bad (R + 1)-
block. In contrast, the second term bounds the number of bad R-blocks contained in a good
(R+ 1)-block. Hence we obtain (3.44).

We can now prove the claim. Apply (3.44) iteratively to the terms in the sum, i.e., replace
ΞA,jR+i by

2dA(1+d)ΞA,jR+i+1 + 2dA(1+d)ΨA,j
R+i. (3.45)

This yields

ΞA,jR ≤ 2dA(1+d)
N−R−1∑
i=0

2idAi(1+d)ΨA,j
R+i, (3.46)

from which the claim follows.

3.5.3 Proof of Lemma 3.5

Proof. Fix ε > 0 and 0 < R ≤ ε log t. Then, by Lemma 3.6,

P
(

ΨA,j
R ≥ (t+ j)(A(1+2d))−R for some j ∈ N0

)
≤
∑
j∈N0

P
(

ΨA,j
R ≥ (t+ j)(A(1+2d))−R

)
≤
∑
j∈N0

exp
{
−tC3(t+ j)(A(1+2d))−R

}
≤ exp

{
−C3t(A

(1+2d))−ε log t
} ∑
j∈N0

exp
{
−C3j(A

(1+2d))−ε log t
}
.

(3.47)
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Recall Lemma 3.3, which implies that δ
def
= log(A)ε(1 + 2d) < 1. Consequently, the right-hand

side of (3.47) is at most

exp
{
−C3t

(1−δ)
} 1

1− exp {−C3t−δ}

≤ 1

C3
exp

{
−C3t

(1−δ)
}
tδ exp

{
C3t
−δ
}
.

(3.48)

It therefore follows that

P
(

ΨA,j
R ≥ (t+ j)(A(1+2d))−R for some j ∈ N0, R ∈ N

)
≤ 1

C3
tδ ε log t exp

{
−C3t

(1−δ) + C3t
−δ
}
,

(3.49)

which is summable over t ∈ N. In order to prove the second statement, suppose that none of
the events in (3.22) occurs. With Lemma 3.7 we may estimate

ΞA,jR ≤ 2dA(1+d)
N−R−1∑
i=0

2idAi(1+d)ΨA,j
R+i

≤ 2dA(1+d)
N−R−1∑
i=0

(t+ j)2idAi(1+d)(A(1+2d))−i−R

≤ 2dA(1+d)(t+ j)A−R(1+2d)
∑
i∈N0

2idA−id

def
= (t+ j)A−R(1+2d)C2,

(3.50)

where we use that A > 2 (see Lemma 3.3).

3.6 Step 5: Proof of Theorem 1.13

Fix ε > 0 and A such that Lemma 3.5 applies. It follows from Lemma 3.3 that

P
(

ΞA,jR > 0 for some R ≥ ε log t, j ∈ N0

)
(3.51)

is summable over t ∈ N. Hence, by the Borel-Cantelli Lemma, there is an t0 ∈ N such that
none of the events in the above probability occurs for integer t ≥ t0. Thus, by Lemma 3.4,
for all integer t ≥ t0 we have, with N = bε log tc,

E0

(
eI

κ(0,t,t)1l
{
Xκ([0, t]) ⊆ [C1]t

})
≤
∑
j∈N0

(2dtκ)j

j!
exp

{
t(CAd − 2dκ) +

N∑
R=1

CA(R+1)dARΞA,jR

}
.

(3.52)

Using the bound of Lemma 3.5, we have

N∑
R=1

CA(R+1)dARΞA,jR ≤
N∑
R=1

C(t+ j)A(R+1)dARA−R(1+2d)C2

≤ (t+ j)AdC ′
∑
R∈N

A−Rd ≤ C4(t+ j).

(3.53)
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We can therefore estimate the last line of (3.52) by

∑
j∈N0

(2dtκ)j

j!
exp

{
t(CAd − 2dκ) + C4(t+ j)

}
= exp

{
t(CAd2 − 2dκ+ C4 + 2dκeC4)

}
.

(3.54)

From (3.54) and Lemma 3.2, we obtain

lim sup
t→∞
t∈N

1

t
logE0

(
eI

κ(0,t,t)
)
<∞. (3.55)

To extend this to sequences along R instead of N, note that

u(0, t) ≤ u(0, n+ 1) e−
∫ n+1
t ξ(0,s) dse2dκ(n+1−t), t ∈ [n, n+ 1]. (3.56)

Since ξ is ergodic in time, we have

lim
t→∞

1

t

∫ dte
t

ξ(0, s) ds = 0. (3.57)

Theorem 1.13 follows from (3.56–3.57).

4 Initial condition

In this section we prove Theorem 1.14. Section 4.1 contains some preparations. Section 4.2
states three lemmas (Lemmas 4.5–4.7 below) that are needed for the proof of Theorem 1.14,
which is given in Section 4.3. Section 4.4 provides the proof of these three lemmas.

4.1 Preparations

In this section we first state and prove a lemma (Lemma 4.1 below) that will be needed for
the proof of Theorem 1.14. After that we introduce some further notation (Definitions 4.2–4.4
below).

Fix R0 ∈ N and take A,C according to our assumption (type-II Gärtner-mixing). Set
N = CAR0d and abbreviate ξN = (ξ ∧ N) ∨ (−N). Let uN be the solution of (1.1) with ξ
replaced by ξN . Abbreviate (recall (2.11–2.12))

IκN (a, b, c) =
∫ b
a ξN (Xκ(s), c− s) ds, 0 ≤ a ≤ b ≤ c, (4.1)

IκN (a, b, c) =
∫ b
a ξN (Xκ(s), c+ s) ds, 0 ≤ a ≤ b ≤ c. (4.2)

Lemma 4.1. If, for all N of the form N = CAR0d and for all ε > 0 and some sequence
(tr)r∈N of the form tr = rL with L > 0,

P
(
E0

(
eI

κ
N (0,tr,0)

)
> e(λ

1l
0(κ)+ε)tr

)
(4.3)

is summable on r, then Theorem 1.14 holds.
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Proof. Fix ε > 0. Note that uN (0, t) has the same distribution as E0(eI
κ
N (0,t,0)), so that we

can replace the latter by uN (0, t) in (4.3) without violating the summability condition. Thus,
by the Borel-Cantelli Lemma, we have

lim sup
r→∞

1

tr
logE0

(
eI

κ
N (0,tr,tr)

)
≤ λ1l

0(κ) + ε ξ-a.s. (4.4)

The extension to sequences along R may be done as in the proof of Theorem 1.13 (recall
(3.56)). Standard arguments yield

lim sup
t→∞

1

t
log uN (0, t) ≤ λ1l

0(κ) ξ-a.s. (4.5)

To extend this to the solution of (1.1) with initial condition u0 ≡ 1, we estimate∫ t

0
ξ(Xκ(s), t− s)ds

≤
∫ t

0
ξ(Xκ(s), t− s)1l{ξ(Xκ(s), t− s) ≥ N} ds+

∫ t

0
ξN (Xκ(s), t− s) ds.

(4.6)

Note that, by (3.53) and the arguments given in Lemma 3.4, we have, for t ∈ N sufficiently
large,

sup
Φ∈Π(j,t)

∫ t

0
ξ(Φ(s), t− s)1l{ξ(Φ(s), t− s) ≥ N} ds ≤ (t+ j)AdC ′

∞∑
R=R0

A−Rd. (4.7)

Next, choose M > 1 such that

lim sup
t→∞

1

t
logE0

(
eI

κ(0,t,t)1l{N(Xκ, t) > Mt}
)
< λ

1l
0(κ). (4.8)

Then, by (4.6–4.7), for t ∈ N sufficiently large,

E0

(
eI

κ(0,t,t)1l{N(Xκ, t) ≤Mt}
)

≤ exp

(M + 1)tAdC ′
∞∑

R=R0

A−Rd

E0

(
eI

κ
N (0,t,t)1l{N(Xκ, t) ≤Mt}

)
.

(4.9)

We infer from (4.5) and (4.8–4.9) that

lim sup
t→∞
t∈N

1

t
u(0, t) ≤ (M + 1)AdC ′

∞∑
R=R0

A−Rd + λ
1l
0(κ). (4.10)

Taking the limit R0 →∞, R0 ∈ N, we obtain

lim sup
t→∞
t∈N

1

t
log u(0, t) ≤ λ1l

0(κ). (4.11)

The extension to sequences along R may again be done as in the proof of Theorem 1.13 (recall

(3.56)). Furthermore, Proposition 1.3 gives λδ00 (κ) = λ
δ0
0 (κ) = λ

1l
0(κ), so that

lim sup
t→∞

1

t
log u(0, t) ≤ λδ00 (κ). (4.12)
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By monotonicity, the reverse inequality holds with the limsup replaced by the liminf. It follows
that λ1l

0(κ) exists and equals λδ00 (κ). A further monotonicity argument shows that the same
is true for λu00 (κ) for any initial condition u0 subject to (1.4).

In view of Lemma 4.1, our target is to prove (4.3). We fix M subject to (4.8), N of the
form N = CAR0d, ε > 0 small, and write t as t = rAR, r,R ∈ N, A > 2. Note that the choice
of M implies that it is enough to concentrate on path with at most Mt jumps.

We proceed by introducing space-time blocks and dividing them into good blocks and bad
blocks, respectively, into N -sufficient blocks and N -insufficient blocks (compare with (1.18
and Fig. 2).

Definition 4.2. For x ∈ Zd, k ∈ N and b, c ∈ N0, define (see Fig. 4)

B̂A
R(x, k; b, c)

=

 d∏
j=1

[(x(j)− 1− b)4MAR, (x(j) + 1 + b)4MAR) ∩ Zd
× [(k − c)AR, (k + 1)AR)

(4.13)
and abbreviate B̂A

R(x, k) = B̂A
R(x, k; 0, 0).

For S ⊂ Zd, let ∂S denote the inner boundary of S. For S × S′ ⊂ Zd × R, let Π1(S × S′)
denote the projection of S × S′ onto the first d coordinates (the spatial coordinates).

Definition 4.3. The subpedestal of BA
R(x, k) is defined as

B̂A,sub
R (x, k) =

{
y ∈ Π1(B̂A

R(x, k)) :

|y(j)− z(j)| ≥ 2MAR, j ∈ {1, 2, . . . , d} ∀ z ∈ ∂Π1(B̂A
R(x, k))

}
× {kAR}.

(4.14)

Definition 4.4. A block B̂A
R(x, k) is called N -sufficient when, for every y ∈ Π1(B̂A,sub

R (x, k))
(see Fig. 4),

Ey

(
eI

κ
N (0,AR,kAR)1l

{
N(Xκ, AR) ≤MAR

})
≤ e(λ

1l
0(κ)+ε)AR . (4.15)

Otherwise B̂A
R(x, k) is called N -insufficient. A subpedestal is called N -sufficient/N -insufficient

when its corresponding block is N -sufficient/N -insufficient.

The notion of good/bad is similar as in Definition 1.4 with the only difference that BA
R(x, k)

is replaced by B̂A
R(x, k) and BA

R(x, k; b, c) by B̂A
R(x, k; b, c). Similarly as in (3.5), define Ξ̂A,jR

to be the maximal number of bad R-blocks a path with j jumps can cross.

4.2 Three lemmas

For the proof of Theorem 1.14 we need Lemmas 4.5–4.7 below. The first says that each block
is N -sufficient with a large probability (and is comparable with [4], Lemma 4.3), the second
controls the number of bad blocks (and is comparable with Lemma 3.5), the third estimates
the number of N -insufficient blocks that are good and are visited by a typical random walk
path (see [4], Lemma 4.4 and [10], Lemma 11).
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time

space

BA
R(x, k)

kAR (k + 1)AR

(x(j)− 1)4MAR

(x(j) + 1)4MAR

Figure 4: The thick line is the subpedestal.

Lemma 4.5. Fix A ∈ N. For every δ̃ > 0 there is an R0 = R0(A, δ̃) ∈ N such that

P(B̂A
R(x, k) is N -sufficient ) ≥ 1− δ̃ ∀ R ≥ R0, x ∈ Zd, k ∈ N. (4.16)

Lemma 4.6. For every A0 > 2 there is an A ∈ N with A ≥ A0 such that, for some C > 0
independent of A,

P
(

Ξ̂A,jR ≥ C(t+ j)(A(1+2d))−R for some j ∈ N0 and R ∈ N
)

(4.17)

is summable on t ∈ N.

Lemma 4.7. Let C(Mt, ηt/AR) be the event that there is a path Φ with Φ(0) = 0 and
N(Φ, t) ≤Mt that up to time t crosses more than ηt/AR N -insufficient subpedestals of a good
R-block. Then, under the Gärtner-mixing type-II condition, for every η > 0 there is an A
(which can be chosen as in Lemma 4.6) and R0 ∈ N such that, for some c1 > 0,

P
(
C(Mt, ηt/AR)

)
≤ e−c1ηt/AR , ∀R ≥ R0. (4.18)

4.3 Proof of Theorem 1.14

Proof. The proof comes in three steps. Fix 0 < η < ε, and choose A,R ≥ R0 according to
Lemmas 4.5–4.7.

1. Consider all random walk path that start in zero, make 0 ≤ j ≤ Mt jumps, and attain
values {x1, x2, . . . , xt/N0−1} at times kAR, k ∈ {1, 2, . . . , t/AR − 1}. By the Markov property,

E0

eIκN (0,t,0)

t/AR−1∏
k=1

1l{Xκ(kAR) = xk}

 ≤ t/AR−1∏
k=0

Exk

(
eI

κ
N (0,AR,kAR)

)
, (4.19)

where x0 = 0. Let I and S be the sets of indices k such that (xk, kA
R) is in an N -insufficient,

respectively, N -sufficient subpedestal. Then the right-hand side of (4.19) can be rewritten as∏
k∈I

Exk

(
eI

κ
N (0,AR,kAR)

)∏
k∈S

Exk

(
eI

κ
N (0,AR,kAR)

)
. (4.20)
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Because of Lemmas 4.6 and 4.7, there is a measurable set, independent of j and of ξ-probability
at least 1− e−c1ηt/AR , such that

|I| ≤ ηt/AR + C(t+ j)(A(1+2d))−R. (4.21)

Since ξN ≤ N , on a set of that probability the first term in (4.20) can be estimated from
above by eNηt exp{NC(t+ j)/A2Rd}.

2. Pick a realization of ξ which satisfies (4.21). To bound the second term in (4.20), we split
this term up as ∏

k∈S

[
Exk

(
eI

κ
N (0,AR,kAR)1l

{
N(Xκ, AR) ≤MAR

})
+ Exk

(
eI

κ
N (0,AR,kAR)1l

{
N(Xκ, AR) > MAR

})]
,

(4.22)

which can be written as∑
J⊂S

[∏
k∈J

Exk

(
eI

κ
N (0,AR,kAR)1l

{
N(Xκ, AR) ≤MAR

})
×
∏
k/∈J

Exk

(
eI

κ
N (0,AR,kAR)1l

{
N(Xκ, AR) > MAR

})]
.

(4.23)

Take c� 1. Then, for M large enough, Pxk
(
N(X,AR) > MAR

)
≤ e−cAR . Hence the second

term in (4.23) can be bounded from above by eA
R(−c+N)(t/AR−|J |). Recall the definition of a

N -sufficient block, to bound the sum in (4.23) by

et(−c+N)
(

1 + eA
R(λ

1l
0(κ)+ε+c−N)

)t/AR
. (4.24)

Summing over all possible values (x1, x2, . . . , xt/AR−1) compatible with a path Φ such that
Φ(0) = 0 and N(Φ, t) = j, and fixing η ≤ ε, we obtain

E0

(
eI

κ
N (0,t,0)1l{N(Xκ, t) = j}

)
=

∑
x1,x2,...,xt/AR−1

E0

eIκN (0,t,0)

t/AR−1∏
k=1

1l
{
Xκ(kAR) = xk

}
× pAR(0, x1)× · · · × pAR(xt/AR−2, xt/AR−1)

≤ exp

{
jNC

A2Rd

}
exp

{
t

(
Nη +

NC

A2Rd
− c+N

)}(
1 + eA

R(λ
1l
0(κ)+ε+c−N)

)t/AR
def
= exp

{
jNC

A2Rd

}
CN1 (t, AR, ε),

(4.25)

where (ps(x, y))s≥0,x,y∈Zd denote the transition probabilities of a continuous-time simple ran-
dom walk jumping at rate κ.
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3. We proceed by summing over the number of jumps, to obtain

E0

(
eI

κ
N (0,t,0)1l{N(Xκ, t) ≤Mt}

)
≤

Mt∑
j=0

e−2dκt (2dκt)
j

j!
exp

{
jNC

A2Rd

}
CN1 (t, AR, ε)

≤ e−2dκt exp
{

2dκteNC/A
2Rd
}
CN1 (t, AR, ε)

def
= CN2 (t, AR, ε).

(4.26)

Thus, we have shown that there is an A > 2 such that for each R ≥ R0

P
[
E0

(
eI

κ
N (0,rAR,0)1l

{
N(Xκ, rAR) ≤MrAR

})
> CN2 (rAR, AR, ε)

]
≤ e−rηc1 , (4.27)

which is summable on r ∈ N. By the boundedness of ξN , the same is true without the indicator
in the expectation (after a possible enlargement of CN2 by ε). Further note that

1

rAR
logCN2 (rAR, AR, ε)

= −2dκ+ 2dκeNC/A
2Rd

+Nη +
NC

A2Rd
+ λ

1l
0(κ) + ε+

1

AR
log
(
e−A

R(λ
1l
0(κ)+ε+c−N) + 1

)
,

(4.28)

so that CN2 (rAR, AR, ε) is indeed of the form λ
1l
0(κ) + ε. Thus, we have proved Lemma 4.1

and hence Theorem 1.14.

4.4 Proof of Lemmas 4.5–4.7

4.4.1 Proof of Lemma 4.5

Proof. The proof comes in three steps and uses ideas from Cranston, Mountford and Shiga [4],
Lemma 4.3, and Drewitz, Gärtner, Ramirez and Sun [5], Lemma 4.3.

1. Suppose that we already showed that, ξ-a.s. and independently of the realization of ξ, for
all ε > 0 there is an η′ > 0 such that, for all 0 < η < η′,

lim sup
R→∞

sup
x,y∈[−2MAR,2MAR]d∩Zd

‖x−y‖≤ηAR

1

AR

∣∣∣ logEx

(
eI

κ
N (0,AR,0)1l

{
N(Xκ, AR) ≤MAR

})

− logEy

(
eI

κ
N (0,AR,0)1l

{
N(Xκ, AR) ≤MAR

}) ∣∣∣ ≤ ε.
(4.29)

We show how (4.29) can be used to obtain the claim.

2. By Proposition 1.3 for fixed δ̃ > 0 there is an R0 = R0(A, δ̃) ∈ N such that, for all R ≥ R0,

P

(
E0

(
eI

κ
(0,AR,0)1l

{
N(Xκ, AR) ≤MAR

})
≤ e(λ

1l
0(κ)+ε)AR

)
≥ 1− δ̃. (4.30)

To extend this to IN , note that for each t ∈ N∫ t

0
ξN (Xκ(s), s) ds ≤

∫ t

0
ξ(Xκ(s), s) ds+

∫ t

0
−ξ(Xκ(s), s)1l{ξ(Xκ(s), s) < −N} ds. (4.31)
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Thus, given a realization of Xκ with no more than Mt jumps, by the fact that ξ is Gärtner-
negative-hyper-mixing, (3.53) and the arguments given in the proof of Lemma 3.4, the second
term in the right-hand side is at most

(M + 1)tAdC ′
∞∑

R=R0

A−Rd. (4.32)

Hence (4.30) remains true when we replace I by IN . According to (4.29), this estimate also
holds when we replace 0 by any x with ‖x‖ ≤ ηAR for η small enough, independently of the
realization of ξ. Consequently, for any δ̃ > 0 there is an R0 ∈ N such that

P

(
sup

x : ‖x‖≤ηAR
Ex

(
eI

κ
N (0,AR,0)1l

{
N(Xκ, AR) ≤MAR

})
≤ e(λ

1l
0(κ)+ε)AR

)
≥ 1− δ̃ R ≥ R0.

(4.33)

Next, note that [−2MAR, 2MAR]d can be divided into K boxes, with K ∼ 4dMd/ηd, of the
form xi(A

R) + BηAR , where the xi(A
R)’s are separated by ηAR. By the stationarity of ξ in

space, we have

P
(
E0

(
eI

κ
N (0,AR,0)1l

{
N(Xκ, AR) ≤MAR

})
≤ e(λ

1l
0(κ)+ε)AR

)
= P

(
Exi(AR)

(
eI

κ
N (0,AR,0)1l

{
N(Xκ, AR) ≤MAR

})
≤ e(λ

1l
0(κ)+ε)AR

)
.

(4.34)

Thus, for the same choice of R0 as in (4.33),

P

 sup
y : y∈xi(AR)+B

ηAR

Ey

(
eI

κ
N (0,AR,0)1l

{
N(Xκ, AR) ≤MAR

})
≤ e(λ

1l
0(κ)+ε)AR


≥ 1− δ̃ R ≥ R0.

(4.35)

Since K is independent of R0, we may conclude that

P
(
BA
R(0, 0) is N -sufficient

)
≥ 1− δ̃. (4.36)

By the stationarity of ξ in space and time, the same statement holds for any block BA
R(x, k),

which proves the claim. It therefore remains to prove (4.29).

3. Since for M large the event
{
N(Xκ, AR) > MAR

}
does not contribute on an exponential

scale, in order to prove (4.29) it suffices to show that

lim sup
R→∞

sup
x,y∈[−2MAR,2MAR]d∩Zd

‖x−y‖≤ηAR

1

AR

∣∣∣∣∣ log
Ex

(
eI

κ
N (0,AR,0)

)
Ey

(
eI

κ
N (0,AR,0)

)∣∣∣∣∣ ≤ ε. (4.37)

To that end, we show that we can restrict ourself to contributions coming from random walk
paths that stay within a certain distance of [−2M, 2M ]d ∩ Zd. More precisely, ξ-a.s. there is
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a box BL = [−L,L]d ∩ Zd, independent of 0 < η < 1 and containing [−2M, 2M ]d ∩ Zd, such
that

sup
x∈[−2MAR,2MAR]d∩Zd

∑
w∈Zd

w/∈ARBL

[
Ex

(
eI

κ
N (0,ηAR,0)δw(Xκ(ηAR))

)
Ew

(
eI

κ
N (0,(1−η)AR,ηAR)

)]

≤ eAR sup
x∈[−2MAR,2MAR]d∩Zd

Px
(
Xκ(ηAR) /∈ ARBL

)
= eA

R
P0

(
Xκ(ηAR) /∈ ARBL−2M

)
≤ eAR exp

{
−AR(L− 2M)

(
log

(
L− 2M

κd

)
− 1

)}
,

(4.38)
where the last inequality follows from Gärtner and Molchanov [8], Lemma 4.3. Consequently,
we may concentrate in (4.37) on the contribution coming from paths that stay inside ARBL ∩
Zd. Next, note that, ξ-a.s. and uniformly in x, y ∈ [−2MAR, 2MAR]d ∩ Zd,∑

w∈ARBL Ex

(
eI

κ
N (0,AR,0)δw(Xκ(ηAR))

)
∑

w∈ARBL Ey

(
eI

κ
N (0,AR,0)δw(Xκ(ηAR))

)
≤ sup

w∈ARBL

Ex

(
eI

κ
N (0,ηAR,0)δw(Xκ(ηAR))

)
Ey

(
eI

κ
N (0,ηAR,0)δw(Xκ(ηAR))

)
≤ e2NηAR sup

w∈ARBL

P0

(
Xκ(ηAR) = w − x

)
P0 (Xκ(ηAR) = w − y)

, 0 < η < 1.

(4.39)

To obtain (4.29), it remains to estimate the probabilities in the last line. This can be done by
applying bounds on probabilities for simple random walks (see [5], Lemma 4.3 for details).

4.4.2 Proof of Lemma 4.6

The only difference with the situation in the proof of Lemma 3.5 is that we replaced the
R-blocks BA

R(x, k) by the R-blocks B̂A
R(x, k). However, this does not affect the proof. Thus,

the proof of Lemma 3.5 yields the claim.

4.4.3 Proof of Lemma 4.7

Proof. The proof comes in two steps and is essentially a copy of the proof of Lemma 3.6.
Throughout the proof, x, x′ ∈ Zd and k, k′ ∈ N.

1. Pick a1, a2 ∈ N according to our main assumption. We say that (x, k) and (x′, k′) are
equivalent if and only if

x ≡ x′ mod a1 and k ≡ k′ mod a2. (4.40)

This equivalence relation divides Zd × N into ad1a2 equivalence classes. We write
∑

(x∗,k∗) to
denote the sum over all equivalence classes. Furthermore, we define

χ̂A(x, k) =1l
{
B̂A
R(x, k) is good, but has an N -insufficient subpedestal

}
. (4.41)
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Henceforth we assume that all blocks under consideration intersect [−Mt,Mt] × [0, t]. Then
we have

P(C(Mt, ηt/AR))

≤
∑

(x∗,k∗)

P
(
∃ a path with no more than Mt jumps that intersects at least

ηt/ARad1a2 blocks B̂A
R(x, k) with χ̂A(x, k) = 1, (x, k) ≡ (x∗, k∗)

)
.

(4.42)

We introduce the following abbreviation

Ân1 =
{
∃ a path with no more than Mt jumps that intersects n blocks B̂A

R(x, k)

with χ̂A(x, k) = 1, (x, k) ≡ (x∗, k∗)
}
.

(4.43)

Consequently, we may rewrite the right-hand side of (4.42) as

∑
(x∗,k∗)

L∑
n= ηt

ARad1a2

P(Ân1 ), (4.44)

where L is the number of R-blocks that can be crossed by a path with no more than Mt
jumps.

2. To estimate the probability in (4.44), note that we can write Ân1 as

Ân1 =
⋃

(x
a1
m ,k

a2
m )

Ân,(x
a1
m ,k

a2
m )

1 , (4.45)

where the union is taken over all possible choices of good R-blocks B̂A
R(xa1m , k

a2
m ) whose sub-

pedestal is N -insufficient, can be reached by a path with at most Mt jumps and such that all
points belonging to the sequence (xa1m , k

a2
m ) are equivalent. Hence, (4.44) becomes

∑
(x∗,k∗)

L∑
n= ηt

ARad1a2

∑
(x
a1
m ,k

a2
m )

P
(
Ân,(x

a1
m ,k

a2
m )

1

)
. (4.46)

By our assumption, there is R0 ∈ N such that the probability in (4.46) may be bounded from
above by Kδn for all R ≥ R0. Note that there are at most

(
L
n

)
elements in the union (4.45),

and so the two inner sums in (4.46) are bounded from above by

(1− δ)−LKP
(
TL ≥

ηt

ARad1a2

)
, (4.47)

where TL = BIN(L, δ). As in Lemma 3.6, the probability in (4.47) is bounded from above by

P
(
T ≥ ηt

ARad1a2

)
, (4.48)

where T = BIN(ν(1+d)µ(j), δ), with ν = dδ−1/(1+d)e and µ(j) = 3d t+j
νAR

+ 3d2. The same
arguments as in Lemma 3.6 yield that this binomially distributed random variable may be
bounded from above by

exp
{
−C ′ηt/ARad1a2

}
(4.49)
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for some C ′ > 0. Similarly as in Lemma 3.6, if δ−1/1+d ∈ N, the first term in (4.47) may be
bounded from above by

3d(M + 1)tδ1/1+d

(1− δ)AR
+

3d2

1− δ
. (4.50)

Since δ tends to zero, if R tends to infinity, for t large enough the first term in (4.47) does
not contribute. Finally, to estimate (4.46), insert (4.49) into (4.46), to obtain

P
(
C(Mt, ηt/AR)

)
≤ Kad1a2Mt exp

{
−C ′ηt/AR

}
, (4.51)

which yields the claim.

5 Continuity at κ = 0

The proof of Theorem 1.15 is given in Section 5.3. It is based on Lemmas 5.1–5.3 below,
which are stated in Section 5.1 and are proved in Section 5.2.

5.1 Three lemmas

Fix b ∈ (0, 1), and define the set of paths

Aκnt =

{
Φ: [0, nt]→ Zd : N(Φ, nt) ≤ 1

log(1/κ)b
nt,

∀ 1 ≤ j ≤ n ∃xj ∈ Zd : ‖xj‖ ≤
1

log(1/κ)b
nt, Φ(s) = xj ∀ s ∈ [(j − 1)t+ 1, jt)

}
,

(5.1)
i.e., paths of length nt that do not jump in time intervals of length t− 1 and whose number
of jumps is bounded by 1

log(1/κ)b
nt. Note that κ 7→ Aκnt is non-decreasing.

Lemma 5.1. Suppose that ξ satisfies condition (b) in Definition 1.8. Then, ξ-a.s., for any
sequence of positive numbers (am)m∈N tending to zero there exists a strictly positive and non-
increasing sequence (κm)m∈N such that, for all m ∈ N and 0 < κ ≤ κm, there exists a
tm = tm(κm) such that, for all t ∈ Q ∩ [tm,∞), there exists an nm = nm(κm, t) such that

sup
Φ∈Aκnt

n∑
j=1

∫ jt

(j−1)t+1
ξ(Φ(j − 1)t+ 1), s) ds ≤ amnt ∀n ≥ nm. (5.2)

We say that two paths Φ1 and Φ2 on [0, nt] are equivalent, written Φ1 ∼ Φ2, if and only if

Φ1|[(j−1)t+1,jt) = Φ2|[(j−1)t+1,jt) ∀ 1 ≤ j ≤ n. (5.3)

This defines an equivalence relation ∼, and we denote by Aκ,∼nt the set of corresponding
equivalent classes. The following lemma provides an estimation of the cardinality of Aκ,∼nt .

Lemma 5.2. |Aκ,∼nt | ≤ (nt/ log(1/κ)b)2n(2d)nt/ log(1/κ)b + 1.
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Lemma 5.3. Suppose that ξ is Gärtner-positive-hyper-mixing. Then there are A,C > 0 such
that ξ-a.s. for t ∈ Q large enough and any choice of disjoint subintervals I1, I2, · · · , Ik, k ∈ N,
of [0, t] such that |Ii| = |Il|, i, l ∈ {1, 2, · · · , k}, and each R0 ∈ N and each path Φ ∈ Bt(0)

k∑
i=1

∫
Ii
ξ(Φ(s), s) ds ≤ k|I1|CAR0d + (t+N(Φ, t))C ′Ad

∞∑
R=R0

A−Rd, (5.4)

for some constant C ′ > 0.

5.2 Proof of Lemmas 5.1–5.3

5.2.1 Proof of Lemma 5.2

Proof. Fix an integer k ≤ nt. We start by estimating the number of possible arrangements of
the jumps in paths with k jumps. Since we do not distinguish between two paths that coincide
on the intervals [(j − 1)t+ 1, jt), 1 ≤ j ≤ n, only the last jumps before the times (j − 1)t+ 1,
1 ≤ j ≤ n, need to be considered.

First, the number of arrangements with jumps in 0 ≤ l ≤ k different intervals is
(
n
l

)
. Since

the number of different intervals cannot exceed n, the number of different arrangements is
bounded from above by

∑n
l=1

(
n
l

)
≤ 2n. Next, there are (2d)k different points in Zd that can

be visited by a path with k jumps. Therefore

|Aκ,∼nt | ≤
nt/ log(1/κ)b∑

k=1

2n(2d)k + 1 ≤ (nt/ log(1/κ)b)2n(2d)nt/ log(1/κ)b + 1, (5.5)

which proves the claim.

5.2.2 Proof of Lemma 5.1

Proof. Choose κ1 such that
log(2d)

log(1/κ1)b
< δ2(a1), (5.6)

and t1 = t1(κ1) such that

t1

(
−δ2 +

log(2d)

log(1/κ1)b

)
< − log 2. (5.7)

Then, by condition (b) in Definition 1.8 and Lemma 5.2, for all t ≥ t0 ∨ t1 we have

P

 sup
Φ∈Aκ1nt

n∑
j=1

∫ jt

(j−1)t+1
ξ(Φ((j − 1)t+ 1), s) ds ≥ a1nt


≤

∑
Φ∈Aκ1,∼nt

P

 n∑
j=1

∫ jt

(j−1)t+1
ξ(Φ((j − 1)t+ 1), s) ds ≥ a1nt


≤
[
(nt/ log(1/κ)b)2n(2d)nt/ log(1/κ)b + 1

]
e−δ2nt,

(5.8)
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which is summable on n. Hence, by the Borel-Cantelli lemma, there exists a set Bκ1,t with
P(Bκ1,t) = 1 for which there exists an n0 = n0(ξ, κ1, t) such that

sup
Φ∈Aκ1nt

n∑
j=1

∫ jt

(j−1)t+1
ξ(Φ((j − 1)t+ 1), s) ds ≤ a1nt ∀n ≥ n0. (5.9)

Since κ 7→ Aκnt is non-decreasing, (5.9) is true for all 0 < κ ≤ κ1. Define

B1 =
⋂

t≥t1,t∈Q
Bκ1,t, (5.10)

for which still P(B1) = 1. Similarly, we can construct sets Bm, m ∈ N \ {1}, with P(Bm) = 1
such that on Bm there exist κm and tm = tm(κm) such that for all 0 < κ ≤ κm and t ≥ tm
with t ∈ Q there exists an n0 = n0(ξ, κm, t) such that

sup
Φ∈Aκnt

n∑
j=1

∫ jt

(j−1)t+1
ξ(Φ((j − 1)t+ 1), s) ds ≤ amnt ∀n ≥ n0. (5.11)

Hence B = ∩m∈NBm is the desired set. Note that we can control the value of tm by choosing
κm small enough. Indeed, with the right choice of κm, it follows that tm−1(κm−1) = tm(κm)
for all m ∈ N.

5.2.3 Proof of Lemma 5.3

Proof. FixA,C as in Section 3, R0 ∈ N, a path Φ ∈ Bt(0) and disjoint subintervals I1, I2, · · · , Ik,
k ∈ N, of [0, t] with equal length. Note that

k∑
j=1

∫
Ij
ξ(Φ(s), s) ds ≤

k∑
j=1

∫
Ij
ξ(Φ(s), s)1l{ξ(Φ(s), s) ≤ CAR0d} ds

+

∫ t

0
ξ(Φ(s), s)1l{ξ(Φ(s), s) > CAR0d} ds.

(5.12)

By (3.53) and Lemma 3.4, for t ∈ Q sufficiently large, the second term on the right hand side
in (5.12) may be bounded from above by

(t+N(Φ, t))C ′Ad
∞∑

R=R0

A−Rd. (5.13)

Inserting (5.13) into (5.12) yields the claim.

5.3 Proof of Theorem 1.15

In this section we prove Theorem 1.15 with the help of Lemmas 5.1–5.3. The proof comes in
three steps, organized as Sections 5.3.1–5.3.3.
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5.3.1 Estimation of the Feynman-Kac representation on AκnT

Consider the case u0(x) = δ0(x), x ∈ Zd. Recall (1.13) and (1.31), and estimate

λδ00 (κ) ≤ lim
n→∞

1

nT
logE0

(
eIκ(0,nT,0)

)
<∞, T > 0, (5.14)

where we reverse time, use that Xκ is a reversible dynamics, and remove the constraint
Xκ(nT ) = 0. Recalling (5.1) and (5.3), we have

E0

(
eIκ(0,nT,0)1lAκnT

)
=

∑
Φ∈Aκ,∼nT

E0

(
eIκ(0,nT,0)1lAκnT 1l{

X|[0,nT ]∼Φ
})

=
∑

Φ∈Aκ,∼nT

E0

exp


n∑
j=1

Iκ((j − 1)T + 1, jT, 0)


× exp


n−1∑
j=0

Iκ(jT, jT + 1, 0)

 1lAκnT 1l{
X|[0,nT ]∼Φ

} .

(5.15)

By the Hölder inequality with p, q > 1 and 1/p+ 1/q = 1, we have

E0

(
eIκ(0,nT,0)1l{AκnT }

)
≤

∑
Φ∈Aκ,∼nT

E0

exp

p
n∑
j=1

Iκ((j − 1)T + 1, jT, 0) ds

 1lAκnT 1l{
X|[0,nT ]∼Φ

}1/p

× E0

exp

q
n−1∑
j=0

Iκ(jT, jT + 1, 0)

 1lAκnT

1/q

.

(5.16)

Next, fix (am)m∈N, (κm)m∈N, tm as in Lemma 5.1, choose T > 0 such that

tm ≤ T = T (κm) = Kblog(1/κm)c, m� 1, (5.17)

where K is a constant to be chosen later. For all 0 < κ ≤ κm and n ≥ nm(κm, T (κ)), by
Lemma 5.1 we have

∑
Φ∈Aκ,∼nT

E0

exp

p
n∑
j=1

Iκ((j − 1)T + 1, jT, 0)

 1lAκnT 1l{
X|[0,nT ]∼Φ

}1/p

≤
∑

Φ∈Aκ,∼nT

eamnTP0

(
AκnT , X|[0,nT ] ∼ Φ

)1/p ≤ eamnT |Aκ,∼nT |,
(5.18)

while by Lemma 5.3 we have

E0

exp

q
n−1∑
j=0

Iκ(jT, jT + 1, 0)

 1lAκnT

1/q

≤ exp

nCAR0d + nT

(
1 +

1

log(1/κ)b

)
C ′Ad

∞∑
R=R0

A−Rd

 .

(5.19)
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From Lemma 5.2 we know that 1
nT log |Aκ,∼nT | tends to zero if we let first n → ∞ and then

κ ↓ 0. Therefore, combining (5.16–5.19) and using that limκ↓0 T = limκ↓0 T (κ) = 0, we get

lim sup
κ↓0

lim sup
n→∞

1

nT
logE0

(
eIκ(0,nT,0)1lAκnT

)
≤ max

am, C ′Ad
∞∑

R=R0

A−Rd

 . (5.20)

5.3.2 Estimation of the Feynman-Kac representation on [AκnT ]c

The proof comes in three steps.

1. We start by estimating the corresponding Feynman-Kac term on [AκnT ]c. Split

[AκnT ]c = Bκ
nT ∪ CκnT (5.21)

with

Bκ
nT =

{
N(Xκ, nT ) >

1

log(1/κ)b
nT

}
(5.22)

and

CκnT =
{
∃ 1 ≤ j ≤ n : for all x ∈ Zd with ‖x‖ ≤ 1

log(1/κ)b
nT

there exists a sj ∈ [(j − 1)T + 1, jT ) such that Xκ(sj) 6= x
}
.

(5.23)

Then
P0

(
Bκ
nT

)
≤ exp

{[
− Jκ(1/ log(1/κ)b) + on(1)

]
nT
}
, (5.24)

where
Jκ(x) = x log(x/2dκ)− x+ 2dκ (5.25)

is the large deviation rate function of the rate-2dκ Poisson process. Thus, by the Hölder
inequality with p, q > 1 and 1/p+ 1/q = 1, we have

E0

(
eIκ(0,nT,0)1lBκnT

)
≤ E0

(
exp

{
pIκ(0, nT, 0)

})1/p
exp

{
1/q
[
− Jκ(1/ log(1/κ)b) + on(1)

]
nT
}
.

(5.26)

Recalling Theorem 1.13 and using that limκ↓0 Jκ(1/ log(1/κ)b) =∞, we get

lim
κ↓0

lim
n→∞

1

nT
logE0

(
eIκ(0,nT,0)1lBκnT

)
= −∞. (5.27)

2. Note that
CκnT ⊆ Bκ

nT ∪Dκ
nT with Dκ

nT =
(
CκnT ∩ [Bκ

nT ]c
)
. (5.28)

Since we have just proved that the Feynman-Kac representation on Bκ
nT is not contributing,

we only have to look at the contribution coming from Dκ
nT , namely,

E0

(
eIκ(0,nT,0)1lDκnT

)
. (5.29)
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On the event Dκ
nT , the random walk Xκ stays inside the box of radius nT/ log(1/κ)b, and

jumps during the time intervals [(j−1)T +1, jT ), 1 ≤ j ≤ n, defined in (5.23). By the Hölder
inequality with p, q > 1 and 1/p+ 1/q = 1, we have

E0

(
eIκ(0,nT,0)1lDκnT

)
≤ I × II, (5.30)

where

I =

E0

exp

p
n∑
j=1

Iκ((j − 1)T + 1, jT, 0)

 1lDκnT

1/p

,

II =

E0

exp

q
n−1∑
j=0

Iκ(jT, jT + 1, 0)

 1lDκnT

1/q

.

(5.31)

Define
J =

{
1 ≤ j ≤ n : N(Xκ, [(j − 1)T + 1, jT )) ≥ 1

}
, (5.32)

where N(Xκ, I) is the number of jumps of the random walk Xκ during the time interval I.
Using that Xκ is not jumping in the time intervals [(j − 1)T + 1, jT )), j ∈ Jc, we may write

n∑
j=1

Iκ((j − 1)T + 1, jT, 0)

=
∑
j∈J
Iκ((j − 1)T + 1, jT, 0) +

∑
j∈Jc

∫ jT

(j−1)T+1
ξ(Xκ((j − 1)T + 1), s) ds.

(5.33)

3. To estimate the second term in the right-hand side of (5.33), pick any ΦXκ ∈ AκnT such
that ΦXκ

= Xκ on ∪j∈Jc [(j − 1)T + 1, jT ) and apply Lemma 5.1, to get∑
j∈Jc

∫ jT

(j−1)T+1
ξ(Xκ((j − 1)T + 1), s) ds

≤ amnT −
∑
j∈J

∫ jT

(j−1)T+1
ξ(ΦXκ

(s), s) ds ξ-a.s.

(5.34)

Note that ξ is Gärtner-negative-hyper-mixing, so that by Lemma 5.3 we may estimate the
second term on the right hand side of (5.34) by

|J |(T − 1)CAR0d + nT

(
1 +

1

log(1/κ)b

)
C ′Ad

∞∑
R=R0

A−Rd. (5.35)

To estimate the first term in the right-hand side of (5.33), apply Lemma 5.3, to get

n∑
k=1

E0

exp

p∑
j∈J
Iκ((j − 1)T + 1, jT, 0)

 1lDκnT 1l{|J |=k}

 epk(T−1)CAR0d


≤ exp

pnT
(

1 +
1

log(1/κ)b

)
C ′Ad

∞∑
R=R0

A−Rd


×

n∑
k=1

exp
{

2pk(T − 1)CAR0d
}
P0 (Dκ

nT , |J | = k) .

(5.36)
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The distribution of |J | is BIN(n, 1 − e−2dκ(T−1)). Hence the sum on the right hand side of
(5.36) is bounded from above by

n∑
k=1

(
n

k

)(
1− e−2dκ(T−1)

)k
e−2dκ(T−1)(n−k)e2pk(T−1)CAR0d

≤
(

(1− e−2dκ(T−1))e2p(T−1)CAR0d
+ e−2dκ(T−1)

)n
.

(5.37)

Combining (5.34–(5.37)), we arrive at

I ≤eamnT exp

2nT

(
1 +

1

log(1/κ)b

)
C ′Ad

∑
R=R0

A−Rd


×
(

(1− e−2dκ(T−1))e2p(T−1)CAR0d
+ e−2dκ(T−1)

)n/p
.

(5.38)

On the other hand, by Lemma 5.3, we have

II ≤ enCAR0d
exp

nT
(

1 +
1

log(1/κ)b

)
C ′Ad

∑
R=R0

A−Rd

 . (5.39)

Therefore, combining (5.38–5.39), we finally obtain

E0

(
eI

κ
(0,nT,0)1lDκnT

)
≤ eamnT enCAR0d

exp

3nT

(
1 +

1

log(1/κ)b

)
C ′Ad

∑
R=R0

A−Rd


×
(

(1− e−2dκ(T−1))e2p(T−1)CAR0d
+ e−2dκ(T−1)

)n/p
.

(5.40)

5.3.3 Final estimation

By (5.40), we have

1

nT
logE0

(
eI

κ
(0,nT,0)1lDκnT

)
≤ am +

2dκ(T − 1)

pT
e2p(T−1)CAR0d

+
CAR0d

T
+ 3

(
1 +

1

log(1/κ)b

)
C ′Ad

∑
R=R0

A−Rd.

(5.41)
Abbreviate M2 = 2pCAR0d and recall (5.17). Then the right-hand side of (5.41) is asymptot-
ically equivalent to

am +
2dκ

p
(1/κ)M2K + 3

(
1 +

1

log(1/κ)b

)
C ′Ad

∑
R=R0

A−Rd, κ ↓ 0. (5.42)

Choosing K ≤ 1/2M2, K ∈ Q, and recalling (5.20) we finally arrive at

λδ00 (κ) ≤ am +
2d
√
κ

p
+ 3

(
1 +

1

log(1/κ)b

)
C ′Ad

∑
R=R0

A−Rd, (5.43)

which tends to zero as κ ↓ 0, R0 →∞ and m→∞.
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6 No Lipschitz continuity at κ = 0

In this section we prove Theorem 1.16. The proof is very close to that of Gärtner, den
Hollander and Maillard [7], Theorem 1.2(iii), where it is assumed that ξ is bounded from
below. For completeness we will repeat the main steps in that proof.

Proof. Fix C1 > 0, write (see 3.1),

λδ00 (κ) = lim
n→∞

1

nT + 1
logE0

(
eI

κ
(0,nT+1,0)δ0(Xκ(nT + 1))1l

{
Xκ([0, nT + 1]) ⊆ [C1]nT+1

})
(6.1)

and abbreviate

Iξj (x) =

∫ jT

(j−1)T+1
ξ(x, s) ds, Zξj = argmax

x∈{0,e}
Iξj (x), 1 ≤ j ≤ n. (6.2)

Consider the event

Aξ =

 n⋂
j=1

{Xκ(t) = Zξj ∀ t ∈ [(j − 1)T + 1, jT )}

 ∩ {Xκ(nT + 1) = 0} . (6.3)

We have

E0

(
exp

{
Iκ(0, nT + 1, 0)

}
δ0(Xκ(nT + 1))

)
≥ E0

exp


n+1∑
j=1

Iκ((j − 1)T, (j − 1)T + 1, 0) +
n∑
j=1

Iκ((j − 1)T + 1, jT, 0)

 1lAξ

 .

(6.4)
Using the reverse Hölder inequality with q < 0 < p < 1 and 1/q + 1/p = 1, we have

E0

exp


n+1∑
j=1

Iκ((j − 1)T, (j − 1)T + 1, 0) +
n∑
j=1

Iκ((j − 1)T + 1, jT, 0)

 1lAξ


≥

E0

exp

q
n+1∑
j=1

Iκ((j − 1)T, (j − 1)T + 1, 0)

 1l
{
Xκ([0, nT + 1]) ⊆ [C1]nT+1

}1/q

×

E0

exp

p
n∑
j=1

Iκ((j − 1)T + 1, jT, 0)

 1lAξ1l
{
Xκ([0, nT + 1]) ⊆ [C1]nT+1

}1/p

.

(6.5)
To estimate the first term on the right hand side of (6.5), fix R0 ∈ N and choose A,C > 0
such that all results of Section 3 are satisfied for qξ. Moreover, note that by a refinement of
the arguments given in the proof of Lemma 3.4 and (3.53), one has ξ-a.s. for nT + 1 ∈ N
sufficiently large

n+1∑
j=1

∫ (j−1)T+1

(j−1)T
qξ(Xκ(s), s)1l

{
qξ(Xκ(s), s) > −qCAR0d

}
ds

≤ −nT + 1 +N(Xκ, nT + 1)

T
qC ′Ad

∞∑
R=R0

A−Rd.

(6.6)
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Consequently,

E0

exp

q
n+1∑
j=1

Iκ((j − 1)T, (j − 1)T + 1, 0)

 1l
{
Xκ([0, nT + 1]) ⊆ [C1]nT+1

}
≤ e−q(n+1)CAR0d

E0

exp

−nT + 1 +N(Xκ, nT + 1)

T
qC ′Ad

∞∑
R=R0

A−Rd


 ,

(6.7)

which equals

e−q(n+1)CAR0d
exp

−nT + 1

T
qC ′Ad

∞∑
R=R0

A−Rd


× exp

{
2dκ(nT + 1)

(
e
− q
T
C′Ad

∑∞
R=R0

A−Rd − 1
)}

.

(6.8)

As in the proof of [7], Theorem 1.2(iii), we haveE0

exp

p
n∑
j=1

Iκ((j − 1)T + 1, jT, 0)

 1lAξ

1/p

≥
[
exp

{
[1 + on(1)]npE

(
max{Iξ1(0), Iξ1(e)}

)}
[pκ1(e)]n+1 e−2dκn(T−1)

]1/p
.

(6.9)

Combining (6.4–6.9), we arrive at

1

nT + 1
logE0

(
eI

κ
(0,nT+1,0) δ0(Xκ(nT + 1))

)
≥ − 1

(nT + 1)
CAR0d(n+ 1)− 1

T
C ′Ad

∞∑
R=R0

A−Rd +
2dκ

q

(
e
− q
T
C′Ad

∑∞
R=R0

A−Rd − 1
)

+
1

p(nT + 1)

[
[1 + on(1)] pnE

(
max

{
Iξ1(0), Iξ1(e)

})]
− 2dκn(T − 1)

p(nT + 1)

+
n+ 1

p(nT + 1)
log pκ1(e).

(6.10)
Using that pκ1(e) = κ[1 + oκ(1)] as κ ↓ 0 and letting n→∞, we get that

λδ00 (κ) ≥ − 1

(nT + 1)
CAR0d(n+ 1)− 1

T
C ′Ad

∞∑
R=R0

A−Rd +
2dκ

q

(
e
− q
T
C′Ad

∑∞
R=R0

A−Rd − 1
)

− 2dκ(T − 1)

pT
+

1

T
[1 + oκ(1)]

(
1
2 E(T − 1)− 1

p
log(1/κ)

)
.

(6.11)
At this point we can copy the rest of the proof of [7], Theorem 1.2(iii), with a few minor
adaptations of constants.

7 Examples

In Section 7.1 we prove Corollary 1.18, in Section 7.2 we prove Corollary 1.19.
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7.1 Proof of Corollary 1.18

In Section 7.1.1 we settle Part (1), in Section 7.1.2 we settle Part (2).

7.1.1 Proof of Corollary 1.18 (1)

1.1 The first condition in Definition 1.6 is satisfied by our assumption on ξ.

1.2 We show that ξ is type-I Gärtner-mixing. Fix A > 1, pick b = c = 0 and a1 = a2 = 2 (see
(3.26)), and define

BA,sub
R (x, k) =

(
d∏
j=1

[(x(j)− 1)AR, (x(j) + 1)AR) ∩ Zd
)
× {kAR}. (7.1)

We start by estimating the probability of the event

B(x, k)
def
=
{
BA
R+1(x, k) is good, but contains a bad R-block

}
. (7.2)

Note that each R+1-block contains at most 2dA(1+d) R-blocks. For each such R-block BA
R(y, l)

there are no more than ARd blocks

QAR(z1) =
d∏
j=1

[(z1(j), z1(j) +AR) (7.3)

contained in it. For any such block we may estimate, for C1 > 0,

P

(
∃s ∈ [lAR, (l + 1)AR) :

∑
z2∈QAR(z1)

ξ(z2, s) > C1A
Rd

)

≤
bARc∑
k=0

P

( ∑
z2∈QAR(z1)

sup
s∈[k,k+1)

Xs(z2) > C1A
Rd

)

≤ (AR + 1) exp
{
−C1A

Rd
}
E

(
exp

{
sup
s∈[0,1)

Xs(0)

})ARd
,

(7.4)

where we use the time stationarity in the first inequality, and the time stationarity and the
space independence in the second inequality. Thus, for C1 sufficiently large, there is a C ′1 > 0
such that

P
(
B(x, k)

)
≤ e−C′1ARd . (7.5)

Moreover, for space-time blocks that are disjoint in space, the corresponding events in (7.2) are
independent. Hence we may assume that BA

R+1(x1, k1), . . . , BA
R+1(xn, kn) are equal in space

but disjoint in time. Since

P

(
n⋂
i=1

B(xi, ki)

)
= P

(
B(xn, kn)

∣∣∣ n−1⋂
i=1

B(xi, ki)

)
P

(
n−1⋂
i=1

B(xi, ki)

)
, (7.6)

40



it is enough to show that there is a constant K < ∞, independent of R, such that the
conditional probability in (7.6) may be estimated from above by KP(B(xn, kn)). To do this,
we apply the Markov property to obtain

P

(
B(xn, kn)

∣∣∣ n−1⋂
i=1

B(xi, ki)

)
≤ P

(
B(xn, kn)

∣∣∣ n−1⋂
i=1

B(xi, ki), B
A,sub
R+1 (xn, kn) is good

)

= P

(
B(xn, kn)

∣∣∣ BA,sub
R+1 (xn, kn) is good

)
.

(7.7)

Thus, the left-hand side of (7.7) is at most

P(B(xn, kn))

P(BA,sub
R+1 (xn, kn) is good)

. (7.8)

Since limR→∞ P(BA,sub
R+1 (xn, kn) is good) = 1, we obtain that ξ is type-I Gärtner-mixing.

1.3 Condition (a3) in Definition 1.6 follows from the calculations in (7.4).

2. The same strategy as above works to show that ξ is type-II Gärtner-mixing. If X has
exponential moments of all negative orders, then the same calculations as in the first part
show that ξ is Gärtner-negative-hyper-mixing. All requirements of Theorems 1.13–1.14 are
thus met.

7.1.2 Proof of Corollary 1.18(2)

Let ξ be the zero-range process as described in Corollary 1.18(2). We will use that each
particle, independently of all the other particles, carries an exponential clock of parameter
one. If there are k particles at a site x and one of these clocks rings, then the corresponding
particle jumps to y with probability g(k)

2dk and it stays at y with probability 1− g(k)
k .

1.1 By Andjel [1], Theorem 1.9, the product measures in (1.33) are extremal for ξ. Thus,

E
[
eqξ(0,0)

]
<∞ for all q ≥ 0. Consequently, to show that E

[
eq sups∈[0,1] ξ(0,s)

]
<∞, it suffices

to prove that there is a constant K > 0 such that, for all k ∈ N sufficiently large,

P

(
sup
s∈[0,1]

ξ(0, s) ≥ k

)
≤ KP

(
ξ(0, 1) ≥ e−1

2
k

)
. (7.9)

Write NR( e
−1

2 k, τ) for the event that there are at least e−1

2 k exponential clocks of particles
located at zero that do not ring in the time interval [τ, τ + 1). Then we may estimate

P

(
ξ(0, 1) ≥ e−1

2
k
∣∣∣ ∃ τ ∈ [0, 1] : ξ(0, τ) ≥ k

)

≥ P

(
NR

(
e−1

2
k, τ

) ∣∣∣ ∃ τ ∈ [0, 1] : ξ(0, τ) ≥ k

)
.

(7.10)

Since the probability that a clock does not ring within a time interval of length one is equal
to e−1, and all clocks are independent, we may estimate the right-hand side of (7.10) from
below by

P
(
T ≥ e−1

2
k
)
, T = BIN(k, e−1). (7.11)
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Finally, note that the probability in (7.11) is bounded away from zero. Thus, inserting (7.10)
and (7.11) into (7.9), we get the claim.

1.2. We show that ξ is type-I Gärtner-mixing. We use ideas from [10]. Fix A > 3, choose
b = 3, c = 1, a1 = 13, a2 = 2 (see (3.26), and introduce additional space-time blocks

B̃A,+
R (x, k) =

(
d∏
j=1

[(x(j)− 2)AR, (x(j) + 2)AR) ∩ Zd
)
× [kAR −AR−1, (k + 1)AR)

B̃A,sub
R (x, k) =

(
d∏
j=1

[(x(j)− 4)AR, (x(j) + 4)AR) ∩ Zd
)
× {(k − 1)AR}.

(7.12)

Given S ⊆ Zd and S′ ⊆ N0, write ∂S to denote the inner boundary of S and Π1(S × S′) to
denote the projection onto the spacial coordinates. Furthermore, ej , j ∈ {1, 2, · · · , d} denotes
the j-th unit vector (and we agree that 0

0 = 0).

We call a space-time block BA
R(x, k) contaminated if there is a particle at some space-time

point (y, s) ∈ B̃A,+
R (x, k) that has been outside Π1(

∏d
j=1[(x(j) − 4)AR, (x(j) + 4)AR)) at a

time s′ such that (k − 1)AR ≤ s′ < s. The reason for introducing this notion is that events
depending on non-contaminated blocks that are equal in time but disjoint in space are all
independent.

Contaminated blocks. For L > 0, define

χ(x, k) = 1l
{
BA
R+1(x, k) is good, but contaminated and intersects [−L,L]d+1

}
(7.13)

and fix (x∗, k∗) ∈ Zd × N.

Claim 7.1. There is a C ′ > 0 independent of L such that (χ(x, k))(x,k)≡(x∗,k∗) is stochasti-
cally dominated by independent Bernoulli random variables (Z(x, k))(x,k)=(x∗,k∗) with success

probability e−C
′AR+1

.

Proof. We use a discretization scheme. More precisely, we construct a discrete-time version of
the zero-range process where particles are allowed to jump at times k/n, k ∈ N0 only. Here,
n is an integer that will later tend to infinity, and we will denote by ξn(x, s) the number of
particles at site x at time s. To construct this process, we take a family Xn(x, s, q1, q2) of
independent random variables with index set Zd× 1

nN0×N0×N0 whose distribution is defined
via

P
(
Xn(·, ·, ·, q2) = 0

)
= 1− g(q2)

nq2
,

P
(
Xn(·, ·, ·, q2) = ±ej

)
=

g(q2)

2dnq2
, j ∈ {1, 2, . . . , d}.

(7.14)

With this family in hand, we proceed as follows. At time zero start with an initial configuration
that comes from the invariant measure πρ. Attach to each particle σ a uniform-[0, 1] random
variable U(σ). Take all these random variables independent of each other and ofXn(x, s, q1, q2)
for all choices of (x, s, q1, q2) ∈ Zd× 1

nN0×N0×N0. For each site x, order all particles present
at x at time zero so that their uniform random variables are increasing. To the q1-th variable
attach Xn(x, 0, q1, ξ

n(x, 0)), i.e., the position of the q1-th particle in this ordering at time 1
n

is x+Xn(x, 0, q1, ξ
n(x, 0)). In this way we obtain the configuration of the system at time 1

n .
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To construct the process 1
n time units further, repeat the first step, but let the particles jump

according to Xn(·, 1
n , ·, ξ

n(·, 1
n)). Thus, our construction is such that each particle chooses

at each step uniformly at random, but dependent on the number of particles at the same
location, a new jump distribution. In what follows we will use the phrase “at level n” to
emphasize that we refer to the discrete-time version of the process. For instance, we say that
BR(x, k) is good at level n if∑

z∈QAR(y)

ξn(z, s) ≤ CARd ∀ y ∈ Zd, s ≥ 0 s.t. QR(y)× {s} ⊆ B̃A
R(x, k). (7.15)

Next, we introduce

χn(x, k)

= 1l
{
BA
R+1(x, k) is good, but is contaminated at level n and intersects [−L,L]d+1

}
.

(7.16)

It is not hard to show that the joint distribution of χn converges weakly to the joint distribution
of χ (use that only finitely many particles can enter a fixed region in space-time, so that the
above family of random variables may be approximated by a function depending on finitely
many particles only). Thus, to estimate the joint distribution of χ, it is enough to analyze
the joint distribution of χn, as long as the estimates are uniform in n. In what follows,
s, s′, s′′ ∈ 1

nN0.

Let BA
R+1(x, k) be a good block that is contaminated at level n. Then there is a particle

at a site y ∈ ∂Π1(B̃A
R+1(x, k)) at a time s ∈ [(k − 1)AR+1, (k + 1)AR+1) (see below 4.13))

that is at a site y′ ∈ ∂Π1(B̃A,+
R+1(x, k)) at a time s′ ∈ [(k − 1)AR+1, (k + 1)AR+1), s < s′.

Furthermore, for all s′′ such that s < s′′ < s′, the particle is inside Π1(B̃A
R+1(x, k)). This

implies, when Xn(y, s, q1, ξ
n(y, s)) denotes the random variable attached to σ at time s, that

Xn(y, s, q1, ξ
n(y, s)) 6= 0. Pick any such particle. Since this particle travels over a distance

larger than 2AR+1, there is at least one coordinate direction along which it makes at least
2AR+1 steps. We call this direction ej(σ), and say that each step in this direction is a success.
Note the uniform estimate

P
(
σ has a success at time s′′

)
≤ 1

2dn
s′′ ∈ [(k − 1)AR+1, (k + 1)AR+1). (7.17)

Thus, if σ contaminates BA
R+1(x, k) at level n, then from time s′ up to time (k + 1)AR+1

it has at least 2AR+1 successes in Π1(B̃A
R+1(x, k)). We write S(y, s, q1, q2) for the event just

described, provided the particle was attached to Xn(y, s, q1, q2) when it entered B̃A
R+1(x, k).

Since BA
R+1(x, k) is good, at each space-time point (y′′, s′′) ∈ B̃A

R+1(x, k) there are at most

CA(R+1)d particles that can contaminate BA
R+1(x, k). We therefore obtain{

BA
R+1(x, k) is good, but contaminated at level n

}
⊆

⋃
y∈∂Π1(B̃AR+1(x,k))

s∈[(k−1)AR+1,(k+1)AR+1), s∈ 1
n
N0

q1≤CA(R+1)d

q2≤CA(R+1)d

{
Xn(y, s, q1, q2) 6= 0, S(y, s, q1, q2)

}

def
= Cn(x, k).

(7.18)
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Next, note that the event Cn(x, k) depends on the Xn(y, s, q1, q2) with (y, s) ∈ B̃A
R+1(x, k)

only. Hence, for x ∈ Zd, k ∈ N0, the family (Cn(x, k))(x,k)≡(x∗,k∗) consists of independent
events. We estimate P(Cn(x, k)). By (7.17), the probability inside the union may be bounded
from above by

1

n
P
(
T ≥ 2AR+1

)
, (7.19)

where T = BIN(2AR+1n, 1
2dn). Note that the event in (7.19) is a large deviation event, so

that Bernstein’s inequality guarantees the existence of a constant C ′ > 0 such that (7.19) is
at most

1

n
exp

{
−C ′AR+1

}
. (7.20)

Recall the definition of Cn(x, k) to see that, for a possibly different constant C ′′ > 0,

P(Cn(x, k)) ≤ exp
{
−C ′′AR+1

}
. (7.21)

Hence there is a family of independent Bernoulli random variables (Zn(x, k))(x,k)≡(x∗,k∗) that

stochastically dominates (χn(x, k))(x,k)≡(x∗,k∗) and has success probability e−C
′′AR+1

. Thus, if
f is a positive and bounded function that is increasing in all of its arguments, then

E
(
f(χn(x1, k1), . . . , χn(xn, kn)

)
≤ E

(
f(Zn(x1, k1), . . . , Zn(xn, kn)

)
. (7.22)

As the right-hand side does not depend on n, we obtain, by letting n→∞,

E
(
f(χ(x1, k1), . . . , χ(xn, kn)

)
≤ E

(
f(Z(x1, k1), . . . , Z(xn, kn)

)
, (7.23)

which proves Claim 7.1. In particular, since all estimates are independent of L, we may even
set L = ∞, to get that the whole field of good but contaminated (R + 1)-blocks may be
dominated by an independent family of Bernoulli random variables with the same success
probability as above. This field will be denoted by Z(x, k) as well.

Non-contaminated blocks. We begin by estimating the probability of the event{
BA
R+1(x, k) is good, but contains a bad R-block

}
. (7.24)

Let BA
R(y, l) be an R-block that is contained in BA

R+1(x, k). We bound the probability that

this block is bad. For that we take z1 ∈ Zd such that

QAR(z1) =
d∏
j=1

[z1(j), z1(j) +AR) ⊆ B̃A
R(y, l). (7.25)

Use the time stationarity of ξ and the fact that [(l− 1)AR, (l+ 1)AR) may be divided into at
most 2AR + 1 time intervals of length one, to obtain

P

(
∃s ∈ [(l − 1)AR, (l + 1)AR) :

∑
z2∈QAR(z1)

ξ(z2, s) > CARd

)

≤ (2AR + 1)P

(
sup
s∈[0,1]

∑
z2∈QAR(z1)

ξ(z2, s) > CARd

)
.

(7.26)
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In the same way as in Step 1.1, we may now show that for some constant K > 0,

P

(
sup
s∈[0,1]

∑
z2∈QAR(z1)

ξ(z2, s) > CARd

)
≤ KP

( ∑
z2∈QAR(z2)

ξ(z2, 1) ≥ e−1

2
CARd

)
. (7.27)

Next, note that under the invariant measure πρ the sum in the right-hand side of (7.27) is a
sum of i.i.d. random variables with finite exponential moments. Hence (7.27) is bounded from
above by

K exp
{
− e−1

2
CARd

}
E
[
eξ(0,0)

]ARd
. (7.28)

Now choose C large enough so that (7.26) decays superexponentially fast in R.

In order to estimate the joint distribution of non-contaminated blocks, we let BA1
R+1(x1, k1),

. . . , BA1
R+1(xn, kn) be space-time blocks whose indices increase in the lexicographic order of

Zd × N and belong to the same equivalence class. We abbreviate

N sub(xi, ki) =
{
B̃A,sub
R+1 (xi, ki) is good, BA

R+1(xi, ki) contains a bad R-block,

but is not contaminated
}
.

(7.29)

Note that N sub(xi, ki) and N sub(xj , kj), i 6= j, are independent when they depend on blocks
that coincide in time but are disjoint in space. This observation, together with the Markov
property applied, leads to

P

(
N sub(xn, kn)

∣∣∣ n−1⋂
i=1

N sub(xi, ki)

)

≤ P

(
N sub(xn, kn)

∣∣∣ n−1⋂
i=1

N sub(xi, ki), B̃
A,sub
R+1 (xn, kn) is good

)
= P

(
N sub(xn, kn)

∣∣∣ B̃A,sub
R+1 (xn, kn) is good

)
.

(7.30)

Thus, the left-hand side of (7.30) is at most

P(BA
R+1(x, k) is good, but contains a bad R-block)

P(B̃A1,sub
R+1 (xn, kn) is good)

. (7.31)

Note that the denominator tends to one as R → ∞. This comes from the fact that, for all
t ≥ 0, (ξ(x, t))x∈Zd is an i.i.d. field of random variables distributed according to πρ. Thus,
from (7.26) and the lines below, we infer that (7.31) decays superexponentially fast in R.

Finally, write{
BA
R+1(xi, ki) is good, but contains a bad R-block

}
⊆ C(xi, ki) ∪N sub(xi, ki), (7.32)

where we denote by C(xi, ki) the event that BA
R+1(xi, ki) is good, contains a bad R-block, and

is contaminated. Then

P

(
n⋂
i=1

{
BA1
R+1(xi, ki) is good, but contains a bad R-block

})

≤ P

(
n⋂
i=1

(
C(xi, ki) ∪N sub(xi, ki)

))
.

(7.33)
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If we denote by C the subset of all i ∈ {1, 2, . . . , n} for which C(xi, ki) occurs, then (7.33)
may be rewritten as ∑

C⊆{1,2,...,n}

P

( ⋂
i∈C

C(xi, ki) ∩
⋂
i/∈C

N sub(xi, ki)

)
. (7.34)

Note that either |C| ≥ n/2 or |{1, 2, . . . , n} \C| ≥ n/2, so that by Claim 7.1 and (7.28) there
is a C ′′ > 0 such that the expression in (7.34) is at most 2n exp{−C ′′AR+1n/2}. A comparison
with the right-hand side of (1.21) shows that ξ is type-I Gärtner-mixing.

1.3 From the previous calculations we infer that ξ satisfies condition (a3) of Definition 1.6.

2. Since ξ is bounded from below it is Gärtner-negative-hyper-mixing. Hence it remains to
show that ξ is type-II Gärtner-mixing. To that end, fix the same constants as in the proof of
the first part of the corollary. Furthermore, fix δ > 0 and let BA

R+1(x1, k1), . . . , BA
R+1(xn, kn)

be space-time blocks whose indices increase in the lexicographic order of Zd × N, and belong
to the same equivalence class. Take events ARi ∈ σ(BA

R+1(xn, kn)), i ∈ {1, 2, . . . , n}, that are
invariant under shifts in space and time, and satisfy

lim
R→∞

P(ARi ) = 0. (7.35)

As in part 1, we divide space-time blocks into contaminated and non-contaminated blocks.
With the help of Claim 7.1, we may control contaminated blocks. To treat non-contaminated
blocks, we introduce

N sub(xi, ki,ARi ) =
{
B̃A,sub
R+1 (xi, ki) is good, but contaminated, ARi occurs

}
(7.36)

and proceed as in the lines following (7.29), to finish the proof.

7.2 Proof of Corollary 1.19

In this section we prove Corollary 1.19. Suppose that

I ξ is Markov with initial distribution ν and
generator L defined on a domain D(L) ⊂ L2(dν).

(7.37)

Denote by
ε̄(f, g) = 1

2

[
〈−Lf, g〉+ 〈−Lg, f〉

]
, f, g ∈ D(L), (7.38)

its symmetrized Dirichlet form, assume that (ε̄, D(L)) is closable, and denote its closure by
(ε̄, D(ε̄)). Furthermore, for V : Ω→ R, define

JV (r) = inf

{
ε̄(f, f) : f ∈ D(ε̄) ∩ L2(|V |dν),

∫
f2 dν = 1,

∫
V f2 dν = r

}
, r ∈ R,

(7.39)
note that r 7→ JV (r) is convex, and let IV be its lower semi-continuous regularization. For
W : Ω× [0,∞)→ R, define

ΓLt = sup
f∈D(L)∩L2(|W (·,t)|dν)

‖f‖2=1

{
〈Lf, f〉+ 〈W (·, t), f2〉

}
, t ≥ 0. (7.40)

In the particular case of a static W0 : Ω → R, we denote the corresponding variational ex-
pression by ΓL0 .
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Lemma 7.2. Suppose that W is bounded from below, piecewise continuous in the time-coordi-
nate, and ν-integrable in the space-coordinate. Suppose further that:
(i) ΓLt <∞ for all t > 0.
(ii) ξ is reversible in time and càdlàg.
Then

Eν

(
exp

{∫ t

0
W (ξ(s), s) ds

})
≤ exp

{∫ t

0
ΓLs ds

}
∀ t ≥ 0. (7.41)

Proof. The proof is based on ideas in Kipnis and Landim [9], Appendix 1.7, and comes in
three steps.

1. Suppose that W is piecewise continuous, not necessarily bounded from above, and define
Wn = W ∧ n. Then, by an argument similar to that in [9], Appendix 1, Lemma 7.2, we have

Eν
(

exp

{∫ t

0
Wn(ξ(s), s) ds

})
≤ exp

{∫ t

0
ΓL,ns ds

}
, (7.42)

where ΓL,n is defined as in (7.40) but with W replaced by Wn. It is here that we use that
ξ is reversible and càdlàg, since under this condition we have a Feynman-Kac representation
for the parabolic Anderson equation with potential Wn and with ∆ replaced by L. Because
Wn is bounded, we have that L2(|Wn(·, t)|dν) = L2(dν). Hence

ΓL,ns = sup
f∈D(L)
‖f‖2=1

{
〈Lf, f〉+ 〈Wn(·, s), f2〉

}
. (7.43)

Since, by monotone convergence,

lim
n→∞

Eν
(

exp

{∫ t

0
Wn(ξ(s), s) ds

})
= Eν

(
exp

{∫ t

0
W (ξ(s), s) ds

})
, (7.44)

it suffices to show that
lim
n→∞

ΓL,ns = ΓLs , s ≥ 0. (7.45)

2. To show that the left-hand side in (7.45) is an upper bound, fix ε > 0 and pick f ∈
D(L) ∩ L2(|W (·, t)|dν) such that

〈Lf, f〉+ 〈W (·, t), f2〉+ ε ≥ ΓLs . (7.46)

Then, by monotone convergence,

lim
n→∞

{
〈Lf, f〉+ 〈Wn(·, t), f2〉

}
= 〈Lf, f〉+ 〈W (·, t), f2〉. (7.47)

3. To prove that the left-hand side in (7.45) is also a lower bound, we need to assume that L
is self-adjoint. Then, by Wu [14], Remark on p. 209, we have

lim
t→∞

1

t
logEν

(
exp

{∫ t

0
Wn(ξ(s), 0) ds

})
= ΓL,n0 , (7.48)

and the same is true when Wn is replaced by W . But, obviously,

lim
t→∞

1

t
logEν

(
exp

{∫ t

0
Wn(ξ(s), 0) ds

})
≤ lim

t→∞

1

t
logEν

(
exp

{∫ t

0
W (ξ(s), 0) ds

})
,

(7.49)
which shows that ΓL,n0 ≤ ΓL0 . Note that the time point 0 does not play any special role. Hence
we obtain (7.45).
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Proposition 7.3. Suppose that ξ satisfies (7.37) and condition (ii) in Lemma 7.2. Then, for
all paths Φ (recall (1.27)),

Pν

 1

n(T − 1)

n∑
j=1

∫ jT

(j−1)T+1

[
ξ(Φ(s), s) ds− ρ

]
> δ

 ≤ exp
{
− n(T − 1)IV0(ρ+ δ)

}
, (7.50)

where V0(η) = η(0) and ρ = E(ξ(0, 0)).

Proof. First note that by Lemma 7.2,

Eν

exp


n∑
j=1

∫ jT

(j−1)T+1
ξ(Φ(s), s) ds


 ≤ exp

{
n(T − 1)ΓL0

}
, (7.51)

where ΓL0 is defined with W (·, 0) = V0. To see that, take a path Φ which starts in zero and

define W : RZd × [0,∞)→ R by

W (η, t) =

{
η(Φ(t)), if t ∈ [(j − 1)T + 1, jT ) for some 1 ≤ j ≤ n,
0, otherwise.

(7.52)

Let x ∈ Zd be such that Φ(t) = x, and denote by τx the space-shift over x. Then, using the
fact that ν is shift-ergodic, we get

〈W (·, t), f2〉 =

∫
RZd

η(x)f2(η) dν(η)

=

∫
RZd

τxη(0)f2(η) dν(η)

=

∫
RZd

η(0)(τ−xf)2(η) dν(η) = 〈W (·, 0), (τ−xf)2〉,

(7.53)

which yields ΓLt = ΓL0 . Since the space point 0 does not play any special role, Lemma 7.2
leads to (7.51) for any path Φ. Next apply the Chebyshev inequality to the left-hand side of
(7.50). After that it remains to solve an optimization problem. See Wu [15] for details.

Note that, for a reversible dynamics, IV0 is the large deviation rate function for the occupation
time

Tt =

∫ t

0
ξ(0, s) ds, t ≥ 0. (7.54)

We are now ready to give the proof of Corollary 1.19.

Proof. All three dynamics in (1)–(3) satisfy condition (a) in Definition 1.8. The proof of (b)
below consists of an application of Proposition 7.3, combined with a suitable analysis of IV0 .

(1) Redig and Völlering [13], Theorem 4.1, shows that for all δ1 > 0 there is a δ2 = δ2(δ1)
such that

Pν
(∫ nt

0
ξ(0, s) ds ≥ δ1nt

)
≤ e−δ2nt. (7.55)

A straightforward extension of this result implies that condition (b) in Definition 1.8 is satis-
fied. All requirements in Theorem 1.15 are thus met.
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(2) By Landim [11], Theorem 4.2, the rate function of the simple exclusion process is non-
degenerate (i.e., it has a unique zero at ρ). Hence condition (b) in Definition 1.8 is satisfied.
Thus, all requirements of Theorem 1.15 are met.

(3) By Cox and Griffeath [3], Theorem 1, the rate function for independent simple random
walks is non-degenerate. Hence condition (b) in Definition 1.8 is satisfied. All requirements
in Theorem 1.15 are thus met.
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W. König, M.-K. van Renesse, M. Scheutzow, U. Schmock), Springer Proceedings in
Mathematics 11, Springer, 2012, Berlin, pp. 119–158.
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