
EURANDOM PREPRINT SERIES
2012-021

November, 2012

ExponentialUniform Identities Related to Records

Alexander Gnedin, Alexander Marynych
ISSN 1389-2355

1



Exponential–Uniform Identities Related to Records

Alexander Gnedin∗ and Alexander Marynych†

Abstract

We consider a rectangular grid induced by the south-west records from the planar Poisson point
process in R2

+. A random symmetry property of the matrix whose entries are the areas of tiles of the
grid implies cute multivariate distributional identities for certain rational functions of independent
exponential and uniform random variables.
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1. Introduction Let E1, E2, . . . and U1, U2, . . . be two independent sequences of independent rate-one
exponential and [0, 1]-uniform random variables, respectively. A prototype of the distributional identities
appearing in this note is the identity(

E1

U1
+

E2

U1U2
+ . . .+

En

U1 · · ·Un

)
(1− U1 · · ·Un+1)

d
=

(
E1 +

E2

U1
+ . . .+

En+1

U1 · · ·Un

)
(1− U1 · · ·Un) , (1)

which was used in [4] to explain coincidence of the values in two quite different problems of optimal
stopping. Some probabilities related to the simplest instance of (1),

E1

U1
(1− U1U2)

d
=

(
E1 +

E2

U1

)
(1− U1), (2)

had been evaluated in [7].
We will show that (1) along with more general identities for matrix functions in the exponential and

uniform variables follow from symmetry properties of the set of records (also known as Pareto-extremal
points [2]) from the planar Poisson process in the positive quadrant. This continues the line of [5], where
it was argued that the planar Poisson process is a natural framework for two gems of combinatorial
probability: Ignatov’s theorem [6] and the Arratia-Barbour-Tavaré lemma on the scale-invariant Poisson
processes on R+ [1].

We shall evaluate the areas of tiles for a rectangular grid induced by the set of records. The identities
obtained in this way are genuinely multivariate, albeit they stem from the arrays with identical marginal
distributions. In particular, (2) appears by a row summation in (1− U1)E1 (1− U1)

E2

U1

U1(1− U2)E1 (1− U2)E2

 d
=

 (1− U2)E2 (1− U1)
E2

U1

U1(1− U2)E1 (1− U1)E1

 . (3)

2. A random tiling induced by records We use the self-explaining notations ↗, ↘, ↙, ↖ for four
coordinate-wise partial orders on the positive quadrant. For instance, relations a ↗ b and b ↙ a for
a, b ∈ R2

+ both mean that b is located strictly north-east of a.
Let P be the planar Poisson point process with unit intensity in R2

+. It will be convenient to un-
derstand P as a random set, rather than counting measure. The event (t, x) ∈ P is interpreted as the
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Figure 1: The rectangular tiling and areas with the same distribution.

value x observed at time t. Note that with probability one no two atoms of P lie on the same vertical
or horizontal line. An atom r ∈ P is said to be a (lower) record if there is no earlier observation with a
smaller value, that is a ↗ r for no a ∈ P. The set of records, denoted henceforth R, is a point process
with the intensity function e−tx. The collection of records ordered by increase of the time component is
a two-sided infinite ↘-chain

. . . ↘ r−2 ↘ r−1 ↘ r0 ↘ r1 ↘ r2 ↘ . . . ,

which we label by nonzero integers in such a way that the records r0 and r1 are separated by the bisectrix
t = x.

Drawing vertical lines at t-locations of records (record times), and drawing horizontal lines at their
x-locations (record values) divides the positive quadrant into rectangular tiles. Let Cij be the area of the
tile whose north-west corner is the intersection point of the horizontal line through ri and the vertical
line through rj (see Figure 1). In particular, Cii for i ∈ Z is the area of a tile spanned on records ri, ri+1.

Given a record at location (t, x), the next record is just the next point of P south-west of (t, x), hence
distributed like (t+E/x, xU), as is easily seen from the independence and homogeneity properties of P.
The sequence r1, r2, . . . is Markovian with just described transitions, whence

(Cij ; i, j = 1, 2, . . .)
d
=

(
U1 · · ·Ui−1(1− Ui)

Ej

U1 · · ·Uj−1
; i, j = 1, 2, . . .

)
. (4)

Note that the left-hand side of (4) is independent of r1. Since the law of R is not changed by reflection
about the bisectrix, we also have

(Ci,j ; i, j = 1, 2, . . .)
d
= (C−j−1,−i−1 ; i, j = 1, 2, . . .). (5)
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As an illustration, the areas of two rectangles (Figure 1) spanned on r1, r4 and r−3, r0, respectively, have
the same distributions.

For n ∈ N and k ∈ Z/{0} let Mk,n = (Ck+i−1,k+j−1, i, j = 1, . . . , n) be the n× n matrix associated

with records rk, rk+1, . . . , rk+n. Obviously from the above, Mk,n is independent of rk and satisfies Mk,n
d
=

M1,n for k = 1, 2, . . . . For k < 0, Mk,n is not independent of rk, since the transition probability from
rk = (t, x) to rk+1 accounts for the condition that −k records must lie south-east of (t, x) above the

bisectrix. Also, Mk,n
d
= M1,n fails for −n < k ≤ 0: for instance, C0,0 and C1,1 have different distributions.

Nevertheless, we will show that Mk,n
d
= M1,n holds for k ≤ −n, which by virtue of (5) is equivalent to

the following random symmetry property of M1,n.
Let M⋆

1,n be the matrix obtained by reflecting M1,n about the antidiagonal, that is by exchanging
each entry (i, j) with entry (n− j + 1, n− i+ 1).

Proposition 1 For n = 1, 2, . . .

M⋆
1,n

d
= M1,n. (6)

Identity (3) is the n = 2 instance of (6). Identity (1) appears by calculating the sum of all entries of
M1,n+1 except the entries in the (n+ 1)st row. Further identities can be derived by applying functions,
e.g., taking the product of matrix elements in the first row of M1,n:

E1 · · ·En(1− U1)
n

Un−1
1 Un−2

2 · · ·Un−1

d
=

En
n(1− U1) · · · (1− Un)

U1U2
2 · · ·Un−1

n−1

.

3. Records in a finite box To prove (6) we consider records in finite rectangles. Let A ⊂ R2
+ be a

finite open rectangle with sides parallel to the coordinate axes. Atom a ∈ P ∩ A will be called A-record
if no other atom b ∈ P ∩A lies south-west of a. The set of A-records induces a random partition of A in
rectangular tiles. Denote by N = (Ni,j) the random matrix of areas of the tiles. The number of rows (or
columns) of N is a random variable that is one plus the number of A-records. Let N⋆ = (N∗

i,j) be the
array obtained by reflecting N about the antidiagonal, which is defined conditionally on the number of
A-records.

Lemma 2 For every rectangle A we have

(i) N
d
= N⋆,

(ii) also N
d
= N⋆ conditionally given the number of A-records is n, for each n ≥ 0,

(iii) the distribution of N depends on A only through the area of A.

Proof. Applying a hyperbolic shift (t, x) 7→ (λt, x/λ) with some λ > 0, rectangle A can be mapped onto a
square. The mapping preserves the area and the coordinate-wise orders, hence preserves the distribution
of N . For A a square (i) and (ii) follow by symmetry of A about the north-east diagonal (see Figure 2).

Lemma 3 For n ≥ 1 the following conditional distributions coincide:

(a) the distribution of Mk,n given the area v of the rectangle spanned on records rk and rn+k, where
k ≥ 1 or k ≤ −n− 1,

(b) the distribution of N for a rectangle A of area v, given that the number of A-records is n− 1.

Proof. For any fixed rectangle A, the set of A-records is independent of the Poisson point process outside
A. On the other hand, given that the north-west and the south-east corners of A are records, P has no
atoms south-east of these corners, hence the set of A-records coincides with R∩A. That is to say, given
that two records are located at the corners of A, the records inside A are distributed like A-records. In
the same way, taking, for instance, k = 1, we have: given that r1 and rn+1 are at the corners of rectangle
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Figure 2: Records in a square

A (below the line x = t), the set {r2, . . . , rn} has the same distribution as the set of A-atoms, conditioned
on the event that the number of A-records is n− 1. Now the assertion follows from Lemma 2 (iii).

Proving Proposition 1 is now easy. Combining Lemma 3 with Lemma 2 (ii) we see that the distri-
butional identity (6) holds conditionally on the area of the rectangle spanned on r1 and rn+1, hence (6)
also holds unconditionally. Note that the area is equal to the sum of all entries of the n× n matrix, that
is distributed like

(1− U1 · · ·Un)

(
E1 +

E2

U1
+

E3

U1U2
+ · · ·+ En

U1 · · ·Un−1

)
.

We could not find a proof of (1) by computing densities or transforms, or by connecting to other
known identities like ‘beta-gamma algebra’ [3]. Spanning a grid on the point process of k-corners [5] we
were able to show that similar identities hold with uniform distribution replaced by beta(1, θ).
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