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Abstract

Numerical evaluation of ruin probabilities in heavy-tailed risk models is an important and challenging
problem. In this paper, we construct very accurate approximations of the ruin probability that capture
the tail behavior of the exact ruin probability and provide a small relative error. Motivated by statistical
analysis, we assume that the claim sizes are a mixture of a phase-type and a heavy-tailed distribution,
and with the aid of perturbation analysis we derive a series expansion for the ruin probability. Our
proposed approximations consist of the first two terms of this series expansion, where the first term
is a phase-type approximation of the ruin probability. We refer to our approximations collectively as
corrected phase-type approzimations. For a model for which the exact ruin probability can be calculated,

we check the accuracy of the corrected phase-type approximations.

1. Introduction

The evaluation of ruin probabilities is an important problem that has been widely studied in the literature.
An explicit formula for the evaluation of the ruin probability is available when claims arrive according to
a Poisson process [4], but it is practical only for special cases of claim size distributions. When the ruin
probability cannot be computed exactly, it needs to be approximated. In this paper, we develop a new
method to construct reliable approximations for the ruin probability under heavy-tailed claims. We show
that our approximations have a provably small absolute error, independent of the initial capital, and a small
relative error.

There are three main directions for approximating ruin probabilities: phase-type approximations, asymp-
totic approximations and error bounds. When the claim sizes follow some light-tailed distribution, a natural
approach to provide approximations for the ruin probability with high accuracy is by approximating the
claim size distribution with a phase-type one [13, 26, 29]. We refer to these methods as phase-type approz-
imations, because the approximate ruin probability has a phase-type representation [3, 23]. However, in

many financial applications, an appropriate way to model claim sizes is by using heavy-tailed distributions
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[5, 11, 25]. In these cases, the exponential decay of phase-type approximations gives a big relative error at
the tail and the evaluation of the ruin probability becomes more complicated.

When the claim size distribution belongs to the class of subexponential distributions [30], which is a
special case of heavy-tailed distributions, asymptotic approximations are available [7, 9, 12, 21]. The main
disadvantage of such approximations is that they provide a good fit only at the tail of the ruin probability,
especially for small safety loading. Another stream of research focuses on corrected diffusion approximations
for the ruin probability [8, 28]. A disadvantage of such asymptotic techniques is the requirement of finite
higher moments for the claim size distribution.

Finally, results on error bounds [17, 31] indicate that such bounds are rather pessimistic, especially in
terms of relative errors, and in case of small safety loading. There exist also bounds with the correct tail
behavior under subexponential claims [18, 19], but these bounds are only accurate at the tail. A conclusion
that can be safely drawn from all the above is that, although the literature is abundant with approximations
for the ruin probability in the case of light-tailed claim sizes, accurate approximations for the ruin probability
in the case of heavy-tailed claim sizes are still an open topic.

In this paper, we develop approximations of the ruin probability under heavy-tailed claims that combine
desirable characteristics of all three main approximation directions. First, our approximations maintain
the computational tractability of phase-type approximations. Additionally, they capture the correct tail
behavior, which so far could only be captured by asymptotic approximations, and they have the advantage
that finite higher-order moments are not required for the claim sizes. Last, they provide a provably small
absolute error, independent of the initial capital, and a small relative error.

The idea of our approach stems from fitting procedures of the claim size distribution to data. Heavy-
tailed statistical analysis suggests that for a sample with size n only a small fraction (k,/n — 0) of the
upper-order statistics is relevant for estimating tail probabilities [10, 15, 24]. More information about the
optimal choice of the k,,’th upper order statistic can be found in [14]. The remaining data set may be used to
fit the bulk of the distribution. Since the class of phase-type distributions is dense in the class of all positive
definite probability distributions [5], a natural choice is to fit a phase-type distribution to the remaining data
set [6]. As a result, a mixture model for the claim size distribution is a natural assumption. Thus, our key
idea is to use a mixture model for the claim size distribution in order to construct approximations of the
ruin probability that combine the best elements of phase-type and asymptotic approximations.

We now sketch how to derive our approximations when the claim size distribution is a mixture of a phase-
type distribution and a heavy-tailed one. Interpreting the heavy-tailed term of the claim size distribution in
the mixture model as perturbation of the phase-type one and using perturbation theory, we can find the ruin
probability as a complete series expansion. The first term of the expansion is the phase-type approximation
of the ruin probability that occurs when we “remove” the heavy-tailed claim sizes from the system, either
by discarding them or by replacing them with phase-type ones. We consider the model that appears when
all heavy-tailed claims are removed as the “base” model. Due to the two different approaches of removing
the heavy-tailed claim sizes, the ruin probability connects to two different base models and consequently to
two different series expansions.

We show that adding the second term of the respective series expansions is sufficient to construct improved
approximations, compared to their phase-type counterparts, the discard and the replace approximations, re-
spectively. Since the second term of each series expansion works as a correction to its respective phase-type
approximation, motivated by the terminology corrected heavy traffic approzimations (see [5]), we refer to our

approximations as corrected phase-type approzimations. Therefore, in this paper, we propose the corrected



discard approximation and the corrected replace approrimation. Both approximations have appealing prop-
erties: the corrected replace approximation tends to give better numerical estimates, while the corrected
discard approximation is simpler and yields a guaranteed bound.

Within risk theory, some attention has been given to perturbed risk models; see [27] for a review and
the recent paper of Huzak et al [16]. However, the term “perturbation” in this area is used to denote the
superposition of two risk processes. Contrary to other asymptotic techniques that use perturbation analysis
to approximate the ruin probability [8, 28], our approach is different; we apply perturbation to the claim
sizes rather than the arrival rate.

The connection between ruin probabilities and the stationary waiting probability P(W, > u) of a G/G/1
queue, where service times in the queueing model correspond to the random claim sizes, is actually well
known [4, 5]. Thus, the corrected approximations can also be used to estimate the waiting time distribution
of the above mentioned queue. Finally, we expect that our technique is widely applicable to more general
risk processes.

The rest of the paper is organized as follows. In Section 2, we introduce the model and we derive two
series expansions for the ruin probability. From these series expansions we deduce approximations for the
ruin probability, in Section 3, and we study their basic properties. In Section 4, we find the exact formula
of the ruin probability for a specific mixture model and we study the extent of the achieved improvement
when we compare our approximations with phase-type approximations of their related base model. Finally,

in the Appendix, we derive the series expansions for the ruin probability and we give additional proofs.

2. Series expansions of the ruin probability

As proof of concept, we apply our technique to the classical Cramér-Lundberg risk model [4, 22]. In this
model, we assume that premiums flow in at a rate 1 per unit time and claims arrive according to a Poisson
process {N¢(t)}i>0 with rate A. The claim sizes U, ; 4 U, are ii.d. with common distribution G, and
independent of {N,(t)}. Motivated by statistical analysis, which proposes that only a small fraction of the
upper-order statistics is relevant for estimating tail probabilities, we consider that an arbitrary claim size
U, is phase-type [20] with probability 1 — e and heavy-tailed [25] with probability €, where ¢ — 0. In the
forthcoming analysis, we use as general rule that all parameters depending on € bear a subscript with the
same letter. We assume that the phase-type claim sizes B; 2 B and the heavy-tailed claim sizes C; 0
have both finite means, EB and EC, respectively. If u is the initial capital, our risk reserve process has the

form
Ne(t

)
R(t)=u+t— Y Uep
k=1

For mathematical purposes, it is more convenient to work with the claim surplus process S, (t) = u— R(t).
The probability . (u) of ultimate ruin is the probability that the reserve ever drops below zero, or equivalently

the probability that the maximum M. = supg<; ., Se(t) ever exceeds u; i.e.
Ye(u) = P(M, > u).

For a distribution F we use the notation F*" for its nth convolution and F for its complementary
cumulative distribution 1 — F. Moreover, if F' has a finite mean up, then we define its stationary excess

distribution as



In addition, the r.v. with distribution F'¢ bears also a superscript with the letter “¢”.
When the average amount of claim per unit time p. = AEU, is strictly smaller than 1, the well-known

Pollaczek-Khinchine formula [4] can be used for the evaluation of the ruin probability:

L= te(u) = (L= pe) Y p2(GE)™ (), (1)
n=0

where G¢ is the distribution of the stationary excess claim sizes US. The infinite sum of convolutions at the
right-hand side of (1) makes the evaluation of ¢, (u) difficult or even impossible for our mixture model. For
this reason, we resort to Laplace transforms. We use the notation v¢(s), 5°(s) and v¢(s) for the Laplace
transforms of the stationary excess claim sizes UZ, 4 Ue, B 2 B¢ and Ct 4 C*°, respectively. Moreover,
we set § = AEB and 6§ = AEC, which means that the phase-type claims are responsible for average claim
(1 — €)d per unit time and the heavy-tailed claims are responsible for average claim € per unit time. Using
the latter notation, we obtain p. = (1 — €)d + €. In terms of Laplace transforms, the Pollaczek-Khinchine

formula can be written now as:

me(s) = Be™Me = (1 - p) 3 (i ()" = Lo = L= @)
n=0

T 1—pi(s) 1= (1—€)8pe(s) — ehre(s)’

Applying Laplace inversion to (2) to find () is difficult [1] or even impossible, because the heavy-
tailed component v¢(s) oftentimes does not have an analytic closed form. To overcome this difficulty, a
phase-type approximation would suggest to “remove” the heavy-tailed claim sizes and find an explicit phase-
type representation for the ruin probability of the simpler model that occurs, which we use as base model
for our analysis. In broad terms, we view the heavy-tailed claim sizes as perturbation of the phase-type
claim sizes and we interpret € as the perturbation parameter. With the aid of perturbation analysis, we
find the ruin probability of our mixture model as a complete series expansion with first term the phase-type
approximation that results from its base model.

As mentioned in the introduction, we remove the heavy-tailed claims either by discarding them or by
replacing them with phase-type ones. Therefore, the ruin probability .(u) connects to two different base
models, and consequently, it has two different series expansions, the discard and the replace expansions. We
first find the discard series expansion. From a mathematical point of view, when we discard the heavy-tailed
claim sizes, we simply consider that G¢(x) = (1 — €)P (B < z) + ¢, x > 0. This base model, for which the
claim size distribution has an atom at zero, is equivalent to the compound Poisson risk model in which
claims arrive with rate (1 — €)A and follow the distribution of B. We denote by M? the supremum of its
corresponding claim surplus process. Thus, the Pollaczek-Khinchine formula for this base model takes the

form

oiy o mo—sme _ L1—(1—¢€)d
me(s) := Re M =TS 0= 0050) (3)

We denote by ¢ (u) the discard phase-type approximation of ¢(u) that appears when we apply Laplace
inversion to the above formula. For this base model, the series expansion of 1.(u) can be found in the

following theorem.

Theorem 1. Discard expansion. If ¥?(u) is the phase-type approzimation of the exact ruin probability
Ye(u) that occurs when we discard the heavy-tailed claim sizes and M, 4 M?, a series expansion of the

exact ruin probability is given by

vl =020+ 3 (=g (Eenlt) = Lenma(w),



where Le(u) = P(M2g + M2y + -+ M2, +C{ + -+ Cf, > u) and Leo(u) = P(M2y > u) = 92 (u). A

€

necessary and sufficient condition for the convergence of the discard series expansion for all values of u is
lef] < |1 — 8 + €d|.

Proof. See Appendix A. O

To find the replace series expansion, observe that the action of replacing the heavy-tailed claim sizes with
phase-type ones translates into € = 0. For this base model, the Pollaczeck-Khinchine formula takes the form
1-9
1= 08(s)"

where My = M,—o. Laplace inversion of mq(s) gives the phase-type approximation to(u) of the ruin

mo(s) := Re Mo =

(4)

probability 1 (u). The series expansion of ¥.(u) in this case is given below.

Theorem 2. Replace expansion. If i(u) is the phase-type approzimation of the exact ruin probability
Ye(u) that occurs when we replace the heavy-tailed claim sizes with phase type ones and My ; 4 My, then a

series expansion of the exact ruin probability is

belw) = bolu) + eg (+5) 5 ("3 ) s os) — Lt 1)

k=0

- 62:1 (1 i §>n§ (n ; 1) 0F (=) "M (Ly ki (u) — Ly—1 gon—1-1(u)),

where Lg mr(u) = P(Moo + Mo1 + -+ Mys +C{+---+C5 + B + -+ B > u) and Logo(u) =
Yo(u). A sufficient condition for the convergence of the replace series expansion for all values of u is
€ < |1 — 4|/ max{0,6}.

Proof. See Appendix A. O

Note that Theorem 2 gives only a sufficient condition for the convergence of the replace series expansion.
If all parameters involved are explicitly known, one can find a necessary condition in the way indicated in
the proof of Theorem 2. In the next section, we propose two explicit approximations for the ruin probability

based on these series expansions.

3. Corrected phase-type approximations of the ruin probability

The goal of this section is to provide approximations that maintain the numerical tractability but improve
the accuracy of the phase-type approximations, and are able to capture the tail behavior of the exact ruin
probability. Large deviations theory suggests that a single catastrophic event, i.e. a heavy-tailed stationary
claim size C°, is sufficient to cause ruin [11]. Observe that the second term of the discard and replace series
expansions contains a single appearance of C¢. For this reason, the proposed approximations for the ruin
probability are constructed by the first two terms of their respective series expansions for the ruin probability

(see Theorems 1 and 2). We have the following definitions for the proposed approximations.

Definition 1. The corrected discard approximation of exact ruin probability ¥ (u) is defined as

13

Ga,e(u) =92 (u) + 1T 61

(P(M;O+M;1+Cle >u)—IP’(M;0>u)), (5)

where 12 (u) is the discard phase-type approzimation of pe(u).



In a similar manner, we define the approximation that connects to the replace expansion.

Definition 2. The corrected replace approximation of the exact ruin probability 1. (u) is given by the formula

€l
1-6
€d

— 75 (B(Moo + Moy + Bf > u) = P(Mog > u)), (6)

’(;776(11) = ’(/)0(U) + (P(MQO + M071 + Clp > u) — ]P)(MO,O > u))

where 1o (u) is the replace phase-type approzimation of ¥(u).

In the following sections, we study characteristics of the corrected discard and the corrected replace

approximations.

3.1 Approximation errors

Due to the construction of the two corrected phase-type approximations, the discard and the replace, their
difference from the exact ruin probability is the sum of the remaining terms, namely the terms for n > 2.

For the error of the corrected discard approximation, we have the following theorem.

Theorem 3. The error of the corrected discard approximation is bounded from above and below as follows

(1“59”> (Lealtd = Lealw) - v —ucw) = ( 1_59+5)

Proof. An interesting observation is that we can interpret the terms L. ,,(u) — Le ,—1 (%) in Theorem 1 as a
renewal process { Np .(u),u > 0} with a delayed first renewal M?,. Consequently, P(Np .(u) = 0) = L o(u)
and P(Np ((u) =n) = Lep(u) — Le n—1(u), for n > 1. As a result,

o) = dac) =3 (1=525) P¥lw) =)

n=2

el 2 b Np,e(u)=2
_ B >
<1—5+65> . (1—5+65) L(Np,o(u) 2 2)

€d 2
< -
“\1—-6+e€/ "’

where the latter inequality holds because #165 < 1. Thus, an upper bound for the approximation error

2
is (#ies) . Due to the renewal argument, all terms in the discard series expansion are positive. Conse-
quently, the corrected discard approximation always underestimates the exact ruin probability and the term

2
(ﬁ%) (Le2(u) — Lei () is a lower bound for the achieved error. O

Remark 1. Theorem 3 shows that the corrected discard approximation always underestimates the exact
ruin probability, and its error is O(e?). Thus, the corrected discard approximation is a lower bound for the

exact ruin probability.

As done in the proof of Theorem 3, similar probabilistic interpretations can also be given to the terms of
the replace series expansion. However, due to the sign changes in the formula of the replace expansion (see
Theorem 2), it is not immediate whether the corrected replace approximation underestimates or overestimates
the exact ruin probability. This depends on the characteristics of the distributions involved. As we see in

Section 4, both overestimation and underestimation are possible. However, studying the areas of over- or



underestimation of the ruin probability is beyond the scope of this paper. In the sequel, we provide only
absolute error bounds for the corrected replace approximation.

There are many possible ways to bound the error of the corrected replace approximation. For example,
one could ignore all negative terms for n > 2 in the replace expansion and bound all positive terms. Of
course, different techniques give different bounds. Among the different bounds we found, we present in

Theorem 4 the one that is valid for the biggest range of the perturbation parameter e.

Theorem 4. When ¢ < |1 —4|/(d + 0), an upper bound for the error that we achieve with the corrected

replace approrimation is

1-6

- € 2
[Ye(u) = tre(u)| < (1_5> (0 + 9)2m~

Proof. Using the triangular inequality and the fact that the distance between two distributions is smaller

than or equal to 1, we obtain

00 = D) < G+ ) S (15)2 (" Yoot

n=2

= (6+0) (Q)Qiz j5(5+9)>”2

- (+5) oy

where the result holds only for €(6 +6)/|1 — d| < 1. O

Remark 2. Theorem 4 shows that the absolute error of the replace approximation is O(e?). Note that the

expression

2 1
(1€5> Z9k(—5)1_k [0(Lak+1,1-k(w) = L1 g1—(u)) — 0(Lok2—k(u) — L1 k1—k(w))]
k=0

which corresponds to the term of the replace expansion (see Theorem 2) for n = 2, is O(e?) and it could be

used alternatively as an approximation of the real error.

An advantage of the corrected discard approximation over the corrected replace is the following. The
fact that the corrected discard approximation underestimates the exact ruin probability gives a positive sign
for its error, namely its difference from the exact ruin probability, which according to Theorem 3 is bounded
from above and below. This information with respect to the nature of its error makes the corrected discard
approximation much more controllable than the corrected replace approximation. In the next section, we

study the tail behavior of both corrected phase-type approximations.

3.2 Tail behavior

To study the tail behavior of the two approximations, we assume that the distribution of C'® belongs to the

class of subexponential distributions S. Following [30], we give the following definition of S.

Definition 3. A distribution F concentrated on [0, 00) belongs to the class of subexponential distributions S
if and only if
. 1—=F*"(u)
lim

—_ = =1,2,...
u—ro0 1—F(u) ™ K »



We use the notation f(u) ~ g(u) to describe the relation lim, o f(u)/g(u) = 1. When a distribution F
belongs to S, it is known that F decays slower than any exponential [4]. Two very useful known properties

of subexponentiality are the following, which are given without proof (see [4]).

Property 1. The class S is closed under tail-equivalence. That is, if A(u) ~ aF(u) for some F € S and
some constant a > 0, then A € S.

Property 2. Let F' € S and let A be any distribution with a lighter tail, i.e. A(u) = o0 (F(u)). Then for

the convolution A * F of A and F we have Ax F € S and (A * F)(u) ~ F(u).

Before studying the tail behavior of the approximations, we first give the tail behavior of the exact ruin

probability in the next theorem. We use the convention A € S if the distribution of the r.v. A belongs to S.

Theorem 5. When C¢ € S, the exact ruin probability ¢¥(u) has the following tail behavior

€l

Ye(u) ~ —1_5_’_65_69]}”(0 > u).

Proof. When B has a phase-type distribution, then B¢ has also a phase-type distribution [4], and conse-
quently it has an exponential decay rate. Thus, by the definition of the stationary excess claim sizes U¢ and

Property 2, we have

(1—¢)o €f €6
PUE =———P(B° —P(C* ~—P(C* 7
(U > ) (1—€)d+eb ( >u)+(1—e)5+69 (CF> ) (I—€)d+e€b (C°> ), @
which implies by Property 1 that U¢ € S. When Uf € S, it is known [4] that
Pe e
we(u) ~ 1 P(Ue > U), (8)
— pe
where p. = (1 — €)d + €0 < 1. Combining (7) and (8), yields the result. O

For the tail behavior of the corrected discard approximation, the following result holds.

Theorem 6. When C°¢ € S, we have for the corrected discard approximation the following tail behavior

€l

Vil ~ 150G

P(C® > u). (9)

Proof. The discard approximation ¢ (u) has a phase-type representation, therefore it is of o (P(C® > u)).
The same holds for the tail of the distribution of M2, + M?,. Moreover, since C¢ € S, from Property 2
we obtain P(M?2, + M2, + Cf > u) ~ P(C® > u), which leads to the result by inserting these asymptotic

estimates into (5). O

Theorem 6 shows that the corrected discard approximation captures the heavy-tailed behavior of the
exact ruin probability, but is off by a small term €f in the denominator. In fact, for all values of parameters,
the tail of the discard approximation is always below the tail of the exact ruin probability, which is expected
since the discard approximation gives an underestimation of the exact ruin probability.

On the other hand, for the tail behavior of the corrected replace approximation, the following result
holds.

Theorem 7. When C¢ € S, we have for the corrected replace approximation the following tail behavior

€l
1-46

Pye(u) ~ P(C® > u). (10)



Proof. The class of phase-type distributions is closed under convolutions [4], which means that both My o +
My,1 and My + Mo,1 + Bf follow some phase-type distribution. Therefore, due to their exponential decay
rate, Yo (u), P(Mo,o+ Mo,1 > u) and P(My o+ Mo + B > u) are all of the order o (P(C® > w)). In addition,
since C¢ € S, we obtain from Property 2 that P(Moo + Mo1 + C§ > u) ~ P(C® > u). Inserting these

asymptotic estimates into (6) leads to the result. O

Comparing the coefficients of P(C® > u) in Theorems 6 and 7, we observe that the tail of the corrected
replace approximation is always above the tail of the corrected discard approximation. To compare the
tail behavior of the corrected replace approximation to that of the exact ruin probability, we only need to
compare the coefficients of P(C¢ > u), and more precisely their denominators, as the expression with the
largest denominator converges to zero faster. Therefore, the tails have the same behavior when EB = EC,
while the tail of the corrected replace approximation is above the tail of the exact ruin probability when
EB > EC, and below when EB < EC.

3.3 Relative error

Following the results of Section 3.2, we show that the relative error at the tail for both approximations is
O(e).
Lemma 1. The relative error at the tail of the corrected discard approximation is

Ve (u) et
e (u) T 1 0+t

Recall that for the corrected replace approximation, different values of parameters lead to both over-

as U — Q.

Rie(u)=1-

and underestimation of the exact ruin probability. Thus, for this approximation it is more appropriate to

evaluate the absolute relative error at its tail.

Lemma 2. The absolute relative error at the tail of the corrected replace approximation is

 Grelw)
Ye(u)

and it goes asymptotically to zero when EB = EC.

€0 —9)

1
1-6

|Ry(u)| = , as U — 0o, (11)

Remark 3. To make the corrected discard and the corrected replace approximations more accurate at the
tail, one can simply change the denominators of the involved fractions to 1 — § + €0 — € (see Definitions 1
and 2), so that the tail behavior of the approximations matches the correct tail behavior (see Theorem 5).
Although such adjustments improve the tail behavior of the approximations, by making the relative error

asymptotically equal to zero, they may give worse results for small values of u.

The fact that the discard approximation always underestimates the ruin probability raises the question
if it is possible to develop a result for its relative error for arbitrary values of w. The next theorem, which

can be seen as the main technical contribution of the paper, shows that this is indeed possible.

Theorem 8. There exists an n > 0, such that for all € < 1, the relative error Rq.(u) of the discard

approximation at the point u can be bounded by

137

< —— H. ’K
S e LU QRS

Rd,e (u)

P(M2o+M2 +M? ,+C5+C5 >u)
P(M?,+M?,+Cf>u)

with He(u) = ( - 1) and K a finite constant.



Proof. See Appendix B. O

The bound is sharp in the sense that H.(u) — 1 as u — oo, which recovers the relative error at the tail,

up to a term O(e?). Moreover, H (u) is uniformly bounded in u and e.

4. Numerical examples

In Section 2, we pointed out that the first terms of the discard and the replace expansions are phase-type
approximations of ¥.(u). The goal of this section is to show numerically that adding the second term of
these expansions leads to improved approximations (corrected discard and corrected replace approximations
respectively) that are significantly more accurate than their phase-type counterparts. Moreover, the addi-
tional term has a great impact on the accuracy of the improved approximations even for small values of the
perturbation parameter.

Therefore, in this section we check the accuracy of the corrected discard (see Definition 1) and the
corrected replace approximations (see Definition 2), by comparing them with the exact ruin probability and
their corresponding phase-type approximations. Since it is more powerful to compare approximations with
exact results than with simulation outcomes, we choose the general claim size distributions G such that
there exists an exact formula for the ruin probability ¢, (u).

In Section 4.1, we derive the exact formula for the ruin probability ¢.(u) for a specific choice of the
claim size distribution. Using the latter claim size distribution, in Section 4.2 we perform our numerical

experiments and we draw our conclusions.

4.1 Test distribution

As claim size distribution we use a mixture of an exponential distribution with rate v, and a heavy-tailed
one that belongs to a class of long-tailed distributions introduced in [2]. The Laplace transform of the latter

distribution is y(s) =1 where EC' = p~! and all higher moments are infinite. Furthermore,

S
IRERVOICERVOK
the Laplace transform of the stationary heavy-tailed claim size distribution is

7(s) = a ,
(1 +/s)(1+/s)

which for u # 1 can take the form

7= <1ﬁu> (u+1\/§ - 1+1\/§> '

For this combination of claim size distributions, the ruin probability can be found explicitly:

Theorem 9. Assume that claims arrive according to a Poisson process with rate A, the premium rate is 1

and the Laplace transform of the claim size distribution is

)= 1=+ (1 s (12)

with p. = ﬁ(u +e(v — u)) < 1. For this mizture model, the ruin probability is

4
belu) = = (= At elv = 1)) 3 e ), (13)

1%

10



where

2 & 2
C(u) := e“—/ e " dx, (14)
NZ N
and —v;(e), i =1,...,4, are the roots of the polynomial

d@) =2 + (u+ D)o + (p+v = e+ (u+ D)(r = A+ Az + (u(v = A) + Ae(p — v)).
Finally, the coefficients a; satisfy a; = limg,_,_,, (¢ % (x + yi(e))’ i=1,...,4, where
n(x) = (1— ) (u+2)(1+2) +€(a? + ).

Proof. The Laplace transform of the ruin probability £{(u)} satisfies the equation

cipdwy =2 (1- G0 (15)
where p, = ﬁ(u + (v — p)), and
e(s) — — OEBB(s) 4 ¢ pv ol I p
££(9) = g (1= BB () + B0y (0) = s (-0 s e )

w9t VR VE Fels )
prew—p) eI

If we set w(s) = (1 — pe)ve(s)/ (1 — pve(s)), then with simple calculations we find that

= A(p+ev—p) (L= e)(u+Vs)(1+5) +e(s +v)
fe+e(v —p) (s+v)(p+Vs) 1+ vs) = A1 —e)(p+v/5)(1+/5) = Ae(s +v)

The denominator of w(s),

w(s) =

d(Vs) = 8"+ (p+ Vsv/s + (n+v = Ns+ (p+ 1) = A+ A)Vs + (p(v — ) + Ae(p —v)),

is a fourth degree polynomial with respect to v/s. Let its roots be given by —v;(€), i =1,...,4, and let n(s)

denote the numerator of w(s). Then,

(16)

(s) a;
15 " 2 T

Finally, the coefficients a; are determined by the following equations

;= im (8) v 1=
“ f—1> vi(e) d(s) (Vs +1i(9). bt

For s = 0, from (16) we get
Lo oa
0=n(0 E i _M+6V—M)—<MV—)\(M+€V— )E (le

i=1 Vl(e i=1 Vi
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Substituting everything in (15), we find

£()} =5 (1+ el = 1) (1 - _:ﬁ(te_y 1 Z vEr ))

A ey NS a
_w/< s (M )\(M+ ( M)));s(\f+u,())>
A <u+6(v—u) Z

v s

N———

- (W — M +e(v—p))

A o 1
+ = v (uy—/\(ﬂ+€(y_ )Z 1/1(6) (\/>+l/1( ))f

i=1

A ! @ 1
:ﬁ(NV—)\(ﬂ"‘E(V_N))) Z l/i(E) (\/§+Vi(6))\/§’

i=1

Laplace inversion to L{t¢(u)} gives,

we(u)=%(uv—k(u+6(v—u)))z YR ().

4.2 Numerical results

In this section, we fix values for the parameters of the mixture model described in the previous section and
we perform our numerical experiments. Although we do not have any restrictions for the parameters of the
involved claim size distributions, from a modeling point of view, it is counterintuitive to fit a heavy-tailed
claim size distribution with a mean smaller than the mean of the phase-type claim size distribution. For this
reason, we select y =2 and v = 3.

For the perturbation parameter €, the only restrictions arise from the conditions for the convergence of
the discard and the replace series expansions (see Appendix A), and the stability condition. A closer look at
the formulas reveals that, in the case of unequal means, for every value of € there exists a value for the arrival
rate A such that all conditions are satisfied. However, a logical constraint for the perturbation parameter is
€ < 0.1. The reason for this constraint is that in the case of phase-type approximations it is not natural to
remove more than 10% of the data.

To start our experiments, we first choose the “worst case scenario” for the perturbation parameter,
which is € = 0.1. It seems that this “worst case scenario” for the perturbation parameter is the “best
case scenario” for the improvement we can achieve with the corrected phase-type approximations. When
the perturbation parameter is big enough, a lot of information with respect to the tail behavior of the
ruin probability is missing from its phase-type approximations. So, it is quite natural to expect a great
improvement when we add the second term of the respective series expansion, which contains a big part of
this missing information. In this scenario, we compare the corrected phase-type approximations with their
respective phase-type approximations when pg; takes the values 0.5, 0.7 and 0.9.

From Figures 1-3, we conclude that the corrected discard and the corrected replace approximations man-
age to reduce the “gap” between their respective phase-type approximations and the exact ruin probability.
Although the scale of the graphs is different, it is evident that the gap closes more efficiently for small values
of p., a conclusion that can be also supported theoretically by Section 3.2. Furthermore, the corrected
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Figure 1: Exact ruin probability with phase-type and corrected phase-type approximations for perturbation

parameter 0.1 and average claim rate 0.5.

replace approximation overestimates the ruin probability for small values of u and, as expected, it is better
at the tail than the corrected discard approximation.

For small values of p. and small values of €, one could argue that the gap between the exact ruin probability
and its phase-type approximations is so small that the corrected phase-type approximations do not improve
on the accuracy of their phase-type counterparts. For this reason, we choose ¢ = 0.001 and pg.g91 = 0.5, and
we compare all approximations with the exact ruin probability. We show that the improvement we achieve

with the corrected phase-type approximations is still significant, even for this seemingly “bad scenario”.

u | exact ruin probability discard replace corrected discard corrected replace
0 0.50000000 0.49925037  0.49975012 0.50000000 0.50000000
1 0.11211000 0.11114757  0.11142576 0.11210955 0.11211017
2 0.02557910 0.02474466  0.02484381 0.02557847 0.02557930
3 0.00621454 0.00550887  0.00553925 0.00621386 0.00621466
4 0.00184042 0.00122643  0.00123504 0.00183975 0.00184047
5 0.00082276 0.00027304  0.00027536 0.00082212 0.00082275
6 0.00056334 0.00006078  0.00006139 0.00056273 0.00056329
7 0.00047969 0.00001353  0.00001368 0.00047910 0.00047962
8 0.00043993 3.0l x 1076  3.05 x 1076 0.00043937 0.00043985
9 0.00041336 6.70 x 10°7  6.80 x 1077 0.00041284 0.00041329
10 0.00039235 1.49 x 1077 1.51 x 1077 0.00039183 0.00039225

Table 1: Exact ruin probability with phase-type and corrected phase-type approximations for perturbation

parameter 0.001 and average claim rate 0.5.

From Table 1, we observe that even for this small value of € the corrected discard and the corrected

replace approximations yield significant improvements for their respective phase-type approximations. The
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Figure 2: Exact ruin probability with phase-type and corrected phase-type approximations for perturbation
parameter 0.1 and average claim rate 0.7.

0.8 : exact
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Figure 3: Exact ruin probability with phase-type and corrected phase-type approximations for perturbation
parameter 0.1 and average claim rate 0.9.
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difference between the exact ruin probability and the corrected phase-type approximations is O(10~9), while
for the phase-type approximations it is O(10~2). In order to understand the magnitude of the improvement
we achieve with the corrected phase-type approximations we need to look also at the relative errors of all
the approximations involved. It is evident that the relative error of the phase-type approximations easily
reaches values close to 1 (approximately after value 5 of the initial capital in this example), while the corrected
phase-type approximations give a relative error O(e).

An interesting observation is that the corrected replace approximation gives better numerical estimations
than the corrected discard approximation, both in absolute and relative errors. However, due to the sign
changes in the formula of the replace expansion (see Theorem 2) it is difficult to find tight bounds for this

approximation.
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Series expansions

Proof of Theorem 1. From Eq. (2) and (3) we find

1—(1—¢€)d—¢b (=1 —¢€)d)—et 1- 1,(5975)5
L= (1=e)oB(s) = efr°(s) 0o —efye(s) ooy — iz (9)

me (s)

w2 (1= =5 ) =

me(s) =

o] Lo n
() (1 . 1_59+5> > (1_;’”) (e ()7 (5))"
-t () (e =3 (25)" mor aor

=i+ Y (i) [omt e ) — )" (e

Using Laplace inversion we obtain

o0 60 n
e(u) =2 (u) + ——— | (Len(u) = Len-1(u)),
w0 =vte)+ 3 (=) ¢

where Len(u) =P(M2y+ M2 + -+ M?, +Cf +---+ C5, > u). Note that this power series expansion is
valid if and only if

We

€l

know that |m?(s)y¢(s)| < 1, so a necessary and sufficient condition for the convergence of the power

series for all values of s is |ef] < |1 — § + €d]. If we assume that 6 > §, then an immediate consequence

of the stability condition p. < 1 is that (1 — €)d < 1. Therefore the convergence condition simplifies to
<(1-=16)/(6—-09). 0
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Proof of Theorem 2. We set D(s) = 6~v°(s) — 65°(s). By using (2) and (4) we find

me(s) = 1—(1—¢€)d—eb _ (1—-10)—¢€(0—29) (1 =0)—€(0—0)
T 11— ape(s) —efye(s)  1—08(s) —e(0r°(s) —0B%(s)) =ty —eD(s)
1— 822

1-9 mo(s) (1 i 5) !
= = —€
e — D) 1—-6) 1— t=mo(s)D(s)

= mo(s) (1-4=2) 3 (155) omotsypie)”

n=0
_ mo(S)ni—O% (1 6 5>n (mo(s)D(s))" — (6 — ﬁi <1 - 5>n+1 (mo(s)™ " (D(s))"

—noe) 3 () @r o os e = -9 Y (") 0o
k=0 k=0
n—1 n—1 n—1 e . B . . . .
el L_l ("3 1)+ (i20)) @renscasr =+ @ + o) ]
1
~(0-9) (67°(5)) (=68 ()"
k—0< k ) )
n—1 n 1 e e k e n—1l—*k
=0 ( 3 ) (mo(s)y°(s) — 1) (07°(s))" (—68°(s))
k=0
n—1 n 1 e e k e n—1—*k
—0) < 3 ) (mo(s)B°(s) — 1) (07v°(s))*(—5B°(s)) .
k=0

Therefore,

me(s) =mo(s)

Applying Laplace inversion we find

) = o +03 (75 S () ki a4~ L 2o

k=0
o] nn—1
53 (75 ) () L s) — I (u)
1-5 k n,k,n—k n—1,kn—1—k )
n=1 k=0

where Lg p r(u) =P(Moo+Mo1+---+Mos+C5+---+C + BS+- - -+ BE > w). Similarly to the discard

expansion, the replace series converges for a given value of s if and only if

mo(s) (67°(s) — 65(s))

<1

€
1-6
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If o = max;|mo(s) (07°(s) — 68°(s))|, then a necessary and sufficient condition for the convergence of the
replace series for all values of s is € < |1 — d|/0. However, we do not have exact formulas for the Laplace
transforms mq(s), v¢(s) and 5°(s), and thus we can only find a sufficient condition for the convergence of
the series. It can easily be shown that max,>o|07¢(s) — 05°(s)| < max{d,8}. Since |mo(s)| < 1, a sufficient
condition for the convergence of the replace series is € < |1 — |/ max{d,0}. When 6 > §, the condition
simplifies to € < (1 —0)/6. O

B. Proof of Theorem 8

Let X, ; be an i.i.d. sequence such that X ; 4 M?y+ M?,; + Cf, and similarly let Y, ; be an i.i.d. sequence
such that Y¢ ; ch M?, + Cf. Since Cf is subexponential, and M¢ is light-tailed, according to Property 2,
Xe,i,Yc; are subexponential as well. In order to prove Theorem 8, we first need the following lemma.
Lemma 3. There exists a constant Ky independent of €, such that

IP>()(6,1 + R Xe,n > u)
]P)(Xe’l > ’LL)

< Kg,

for all w and for all n.

Proof. We follow a similar idea as the proof of Lemma 1.3.5 in [11], which is not directly applicable, as X ;
depends on €. Let F' be the distribution function of X, ;. We set a,, = sup,, F**(u)/F(u). Observe that

Fr(nt) (y) v EF(u — 1) 2 = v (y —z) F(u — ) .
) +f P @ v Fu—2) Fa) 0

<1+ % (W(u) —F(u)) <14 ap(ag —1).

Recursively, we find that

n—2

Qpt1 < Z(Oég — l)k + OéQ(OZQ — 1)11—1.
k=0
From Definition 3, we know that as — 1 > 1. So,

n—2 n

k n k n+1

Qpy1 < E 042+042§E s <oy,
k=0 k=0

therefore it suffices to show that «s is bounded in € > 0.

To this end, observe that M2, is stochastically decreasing in € as it is the supremum of a compound
Poisson process with arrival rate A(1 — €). Therefore, the supremum that corresponds to the compound
Poisson process with arrival rate A (e = 0) is stochastically larger than all other suprema with € > 0 and we
denote it by My;. Letting S = Zle Moy ;, we see that

Fu) — PXei>uw) P(Ct > u)

F2(u)  P(Xer+Xep>u) _ B(S+Cf+C5 > u)

P(S > u) YPCE+CE >u—x)P(CE > u—x)
T PO > u) dP(S <
P(CS > u) /0 P(C§ > u —x) P(CS > u) (S <z
P(S > u) P(C¢ + CS > u) 1 /u .
P(CC >u) o P — 2)dP(S <
SPCisw SR TR sy B s w ), D> uma)dB(S s )
>1




Both suprema are finite since Cf is subexponential and S has a lighter tail than C7. This completes the

proof of the lemma. O

Proof of Theorem 8. Set p. = %. Let n be such that p, Ko = 1/2 and suppose € < 1. Let N be a

random variable such that P(N = n) = (1 — p.)p?. Observe that M, <M Sot ZZ 1 Ye ;. For notational

convenience, we assume that this equality holds almost surely through this proof. This enables us to write

Ye(u) — Pae(u) = P(M. > u; N > 2) — p?P(M2y + Yeq > u),

so that
R (u) = P(Me > w; N > 2) — p?P(M2y + Ye1 > u)
d,E u) = ]P)(Mg > u)
~ P(Me > wu; N >2) = p?P(Mo + Yeu > u) P(M, > u; N > 1) (17)
N P(M.>wu; N > 1) P(M. > u)
Note that ZMe>uN=l) o 1, where this ratio actually converges to 1 as u — co. To analyze the other fraction

P(Mc>u)
of (17), the memoryless property of N yields P(M, > u; N > k) = p*P(M, + Y1 + -+ + Yo > u) so
P(Me>u; N >2) P(Mc+ Y1 +Yeo > u) < P(M.+ Y1+ Yeot > u)
POM, >uN>1) 1 P(M.+Y.,>u) 1 IP’(X€1>u)
P(X51+Y;Z>U X51+"'+Xe.n+2>u)
PV = : '
P(X..>u F Z P(X.: > u)

< pP(N =0)

<. ]P)(XEJ + }/6,2 > u)
I[D(Xs,l > U)

S pe]P)(Xe,l + Ye,2 > ’LL)
P(Xe,l > ’LL)

+p2(1 - p)K§ Z (peKo)"
n=1

+ p22K3.

Finally, note that

PPB(Mey+ Yoy > ) B(M2y+ Yoy > )

P(M, > wN>1) P P(M,+Yq >u)

P(M+Ye 1>u)

As before, we can show there exists a constant K7 such that B(T® 4 1Y, 1 Su)

<1+ p.K;. Putting everything

together, we conclude that

P(Xc1+ Yo >u) % 13 1
Rae(u) < pe ’ : 2OKE — pe——r
R S L G A e e
P(Xc1+ Yo >u)
< Pe ’ ’ -1 K,
<p ( P(X.. > u) +?
for some constant K, completing the proof. O
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