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Abstract

In this paper we study a two-queue polling model with zero switch-over times and k-limited
service (serve at most ki customers during one visit period to queue i , i = 1, 2) in each queue. The
arrival processes at the two queues are Poisson, and the service times are exponentially distributed.
By increasing the arrival intensities until one of the queues becomes critically loaded, we derive
exact heavy-traffic limits for the joint queue-length distribution using a singular-perturbation tech-
nique. It turns out that the number of customers in the stable queue has the same distribution as the
number of customers in a vacation system with Erlang-k2 distributed vacations. The queue-length
distribution of the critically loaded queue, after applying an appropriate scaling, is exponentially
distributed. Finally, we show that the two queue-length processes are independent in heavy traffic.
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1 Introduction

This paper considers a two-queue k-limited polling model with exponentially distributed service times
and zero switch-over times. Under the k-limited strategy the server continues working until either a
predefined number of ki customers is served at queue i or until the queue becomes empty, whichever
occurs first. The interest for this model is fueled by a number of applications in the fields of communi-
cation and logistics (see, e.g., [4, 7, 24]). In the present paper, we consider the heavy-traffic scenario,
in which one of the queues becomes critically loaded with the other queue remaining stable.

Although the number of papers on polling systems is impressive, hardly any exact results for polling
systems with the k-limited service policy have been obtained. This can be explained by the fact that
the k-limited strategy does not satisfy a well-known branching property for polling systems, indepen-
dently discovered by Fuhrmann [12] and Resing [23]. Groenendijk [13] and Ibe [14] give an explicit
Laplace-Stieltjes Transform for the waiting-time distribution in a two-queue 1-limited/exhaustive sys-
tem. For two-queue systems where both queues are served according to the 1-limited discipline, the
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problem of finding the queue length distribution can be shown to translate into a boundary value prob-
lem [5, 6, 8, 10]. For general k, an exact evaluation for the queue-length distribution is known in
two-queue exhaustive/k-limited systems (see [18, 21, 22, 24]). The paper of Lee [18] for the two-
queue exhaustive/k-limited system without setup times is also the only paper analysing the heavy-
traffic behaviour for the k-limited discipline. More specifically, he studies the limiting regime where
the exhaustive queue remains stable, while the k-limited queue becomes critically loaded in the limit.

The main contribution of the present paper is that we derive heavy-traffic asymptotics for k-limited
polling models. That is, by increasing the arrival intensities until one of the queues becomes critically
loaded, we derive exact heavy-traffic limits for the joint queue-length distribution in a two-queue k-
limited polling model using a singular-perturbation technique. In this way, we derive the lowest-order
asymptotic to the joint queue-length distribution in terms of a small positive parameter measuring the
closeness of the system to instability. See Knessl and Tier [16] for an excellent survey of applications
of the perturbation technique to queueing models. It is noteworthy that our paper is inspired by the
manner in which Morrison and Borst [20] apply this technique to a model with interacting queues.

Furthermore, the results obtained in the present paper provide new insights into the heavy-traffic be-
haviour of k-limited polling systems. It is shown that the number of customers in the stable queue
has the same distribution as the number of customers in a vacation system with Erlang-k2 distributed
vacations, while the scaled queue-length distribution of the critically loaded queue is exponentially
distributed. Finally, we prove that the two queue-length processes are independent in heavy traffic.
These results do not only generalise those derived in [18] for the special case of exhaustive/k-limited
service, but are also obtained via a fundamentally different singular-perturbation approach. Finally,
the singular-perturbation technique can also be extended to an N -queue system (N ≥ 2) with one
queue becoming critically loaded. In this limiting regime the stable queues have the same joint distri-
bution of a k-limited polling model with N − 1 queues and an extended switch-over time.

The paper is structured as follows. In the next section we introduce the model and notation. In
Section 3 we apply a perturbation technique to study the system under heavy-traffic conditions and
derive the limiting scaled joint queue-length distribution. In Section 4 we interpret the results and give
some suggestions on further research. The appendices contain some lengthy derivations required for
the analysis in Section 3.

2 Model description and notation

We consider a polling model consisting of two queues, Q1 and Q2, that are alternately visited by a
single server. Throughout this paper, the subscript i will always be used to refer to one of the queues,
meaning that it always takes on the values 1 or 2. When a server arrives at Qi , it serves at most ki

customers. When ki customers have been served or Qi becomes empty, whichever occurs first, the
server switches to the other queue. We assume that switching from one queue to the other requires
no time. If the other queue turns out to be empty, the server switches back and serves, again, at
most ki customers. If both queues are empty, the server waits until the first arrival and switches to
the corresponding queue (say, Q j ) to start another visit period of at most k j customers, j = 1, 2.
Customers arrive at Qi according to a Poisson process with intensity λi . We assume that the service
times of customers in Qi are independent and exponentially distributed with parameter µi . We denote
the load of the system by ρ = ρ1 + ρ2, where ρi = λi/µi . For a polling model without switch-over
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times, the stability condition is ρ < 1 [9, 11]. Furthermore, we assume that

λ1

k1
<
λ2

k2
. (2.1)

This assumption is discussed in more detail in the next section.

The number of customers in Qi at time t , t ≥ 0, is denoted by Ni (t). In order to describe the queue
length process as a Markov process, we use the approach of Blanc [3], introducing a supplementary
variable H(t) which takes on values 1, 2, . . . , k1 + k2. The variable H(t) is used to determine the
server position (Q1 or Q2) at time t and the number of customers that can be served before the server
has to switch to the next queue. When 1 ≤ H(t) ≤ k1, this means that the server is serving Q1 at
time t , and that the customer in service is the H(t)-th customer being served during the present visit
period. If k1 + 1 ≤ H(t) ≤ k1 + k2, the server is serving the (H(t) − k1)-th customer in Q2. Now,
(N1(t), N2(t), H(t)) is a Markov process. Assuming that ρ < 1, define the stationary probabilities
p(n1, n2, h) := limt→∞ P

(
N1(t) = n1, N2(t) = n2, H(t) = h

)
, and define the steady-state queue

lengths Ni .

3 Analysis

We study the heavy-traffic limit of the joint queue-length process (N1, N2) by increasing the arrival
rate λ2, while keeping λ1 fixed. When ρ tends to 1, Assumption (2.1) implies that Q2 will become
critically loaded, whereas Q1 remains stable due to the fact that at most k2 customers are served
during each visit period at Q2. In case λ1/k1 = λ2/k2 in the limit, both queues would become
critically loaded simultaneously and the system behaviour is different from the limiting behaviour
found in the present paper. In fact, the limiting queue-length behaviour for that specific case remains
an open problem. We discuss this topic briefly in Section 4.

We use a single-perturbation method to find the queue-length distributions in heavy-traffic (ρ ↑ 1).
First, we write down the balance equations of our model and apply a perturbation to the arrival rate of
Q2 to these equations, in the case that this queue is close to becoming critically loaded. By solving
the system of balance equations for the lowest order terms, we find the queue length distribution of the
stable queue, Q1. By solving for the first-order and second-order terms, we also obtain a differential
equation for the scaled number of customers in Q2, which we can solve to show that this number
converges to an exponential distribution.

3.1 Balance equations

The balance equations for a polling model with exponentially distributed service times and k-limited
service at each of the queues are given by Blanc [3]. For completeness, we present these equations
for our two-queue model below.
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(λ1 + λ2 + µ2)p(0, n2, k1 + 1) = λ2 p(0, n2 − 1, k1 + 1)+ µ2 p(0, n2 + 1, k1 + k2)

+

k1∑
h=1

µ1 p(1, n2, h), (3.1a)

(λ1 + λ2 + µ2)p(0, n2, h2) = λ2 p(0, n2 − 1, h2)+ µ2 p(0, n2 + 1, h2 − 1), (3.1b)

(λ1 + λ2 + µ1)p(1, n2, 1) = λ2 p(1, n2 − 1, 1)+ µ2 p(1, n2 + 1, k1 + k2), (3.1c)

(λ1 + λ2 + µ1)p(1, n2, h1) = λ2 p(1, n2 − 1, h1)+ µ1 p(2, n2, h1 − 1), (3.1d)

(λ1 + λ2 + µ1)p(n1 + 1, n2, 1) = λ1 p(n1, n2, 1)+ λ2 p(n1 + 1, n2 − 1, 1)

+ µ2 p(n1 + 1, n2 + 1, k1 + k2), (3.1e)

(λ1 + λ2 + µ1)p(n1 + 1, n2, h1) = λ1 p(n1, n2, h1)+ λ2 p(n1 + 1, n2 − 1, h1)

+ µ1 p(n1 + 2, n2, h1 − 1), (3.1f)

(λ1 + λ2 + µ2)p(n1, n2, k1 + 1) = λ1 p(n1 − 1, n2, k1 + 1)+ λ2 p(n1, n2 − 1, k1 + 1)

+ µ1 p(n1 + 1, n2, k1), (3.1g)

(λ1 + λ2 + µ2)p(n1, n2, h2) = λ1 p(n1 − 1, n2, h2)+ λ2 p(n1, n2 − 1, h2)

+ µ2 p(n1, n2 + 1, h2 − 1), (3.1h)

for n1 = 1, 2, . . . ; n2 = 2, 3, . . . ; h1 = 2, 3, . . . , k1, and h2 = k1 + 2, . . . , k1 + k2. Note that (3.1a)-
(3.1h) are not all balance equations. We have omitted all equations for n2 = 0 and n2 = 1, since
it will turn out that these do not play a role after the perturbation. The intuitive explanation is that
N2(t) will tend to infinity as Q2 becomes critically loaded and the probabilities p(n1, n2, h) become
negligible for low values of n2.

3.2 Perturbation

From the stability condition we have that the system becomes unstable as λ2/µ2 ↑ 1− λ1/µ1, which
means that the arrival rate λ2 approaches µ2(1− λ1/µ1). Therefore we will assume that

λ2 = µ2

(
1−

λ1

µ1

)
− δω, ω > 0, 0 < δ � 1. (3.2)

At the end of this section we will take an appropriate choice for the constant ω, which will influence
the limit of the scaled queue length in Q2.

Let ξ = δn2, and

p(n1, ξ/δ, h) = δφn1,h(ξ, δ), 0 < ξ = O(1), h = 1, 2, . . . , k1 + k2. (3.3)

The next step is to substitute (3.2) and (3.3) in the balance equations (3.1a)-(3.1h), and take the Taylor
series expansion with respect to δ. For reasons of compactness, we only show the intermediate results
for Equation (3.1h) as an illustration:

(λ1 + µ2)φn1,h2(ξ, δ)− λ1φn1−1,h2(ξ, δ)− µ2φn1,h2−1(ξ + δ, δ) =(
µ2
(
1−

λ1

µ1

)
− δω

)(
φn1,h2(ξ − δ, δ)− φn1,h2(ξ, δ)

)
.

4



Taking the Taylor series yields:

(λ1 + µ2)φn1,h2(ξ, δ)− λ1φn1−1,h2(ξ, δ)

− µ2

(
φn1,h2−1(ξ, δ)+ δ

∂φn1,h2−1(ξ, δ)

∂ξ
+
δ2

2
∂2φn1,h2−1(ξ, δ)

∂ξ 2

)
=

−

(
µ2
(
1−

λ1

µ1

)
− δω

)(
δ
∂φn1,h2(ξ, δ)

∂ξ
−
δ2

2
∂2φn1,h2(ξ, δ)

∂ξ 2

)
+O(δ3). (3.4)

Note that λ2 (or µ2
(
1 − λ1

µ1

)
− δω after the substitution) only plays a role in this equation for O(δ)

terms and higher. It is readily verified that this is the case for all balance equations. We now expand
in powers of δ, and let

φn1,h(ξ, δ) = φ
(0)
n1,h(ξ)+ δφ

(1)
n1,h(ξ)+O(δ2). (3.5)

We also define the corresponding generating functions

Q̃h(z, ξ, δ) :=
∞∑

n1=0

φn1,h(ξ, δ)z
n1, Q̃( j)

h (z, ξ) :=
∞∑

n1=0

φ
( j)
n1,h(ξ)z

n1, j = 0, 1, 2, . . . .

In the next subsections we first equate the lowest order terms of the resulting equations to find an
expression for (the generating function of) φ(0)n,h(ξ), and subsequently we equate the first-order and
second-order terms to find the scaled queue-length distribution of Q2.

3.3 Equating the lowest-order terms

Equating the lowest-order terms of the balance equations, after substituting (3.2), (3.3), and (3.5),
results in the following equations.

(λ1 + µ2)φ
(0)
0,k1+1(ξ) = µ2φ

(0)
0,k1+k2

(ξ)+

k1∑
h=1

µ1φ
(0)
1,h(ξ), (3.6a)

(λ1 + µ2)φ
(0)
0,h2
(ξ) = µ2φ

(0)
0,h2−1(ξ), (3.6b)

(λ1 + µ1)φ
(0)
1,1(ξ) = µ2φ

(0)
1,k1+k2

(ξ), (3.6c)

(λ1 + µ1)φ
(0)
1,h1
(ξ) = µ1φ

(0)
2,h1−1(ξ), (3.6d)

(λ1 + µ1)φ
(0)
n1+1,1(ξ) = λ1φ

(0)
n1,1(ξ)+ µ2φ

(0)
n1+1,k1+k2

(ξ), (3.6e)

(λ1 + µ1)φ
(0)
n1+1,h1

(ξ) = λ1φ
(0)
n1,h1

(ξ)+ µ1φ
(0)
n1+2,h1−1(ξ), (3.6f)

(λ1 + µ2)φ
(0)
n1,k1+1(ξ) = λ1φ

(0)
n1−1,k1+1(ξ)+ µ1φ

(0)
n1+1,k1

(ξ), (3.6g)

(λ1 + µ2)φ
(0)
n1,h2

(ξ) = λ1φ
(0)
n1−1,h2

(ξ)+ µ2φ
(0)
n1,h2−1(ξ), (3.6h)

for n1 = 1, 2, . . . ; h1 = 2, 3, . . . , k1, and h2 = k1 + 2, . . . , k1 + k2.

Note that
∑
∞

n1=0
∑k1+k2

h=1 φ
(0)
n1,h(ξ) 6= 1. For this reason we introduce P0(ξ) and π (0)n1,h , with

φ
(0)
n1,h(ξ) = π

(0)
n1,h P0(ξ), and

∞∑
n1=0

k1+k2∑
h=1

π
(0)
n1,h = 1, (3.7)
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for n1 = 0, 1, 2, . . . and h = 1, 2, . . . , k1 + k2. Careful inspection of these balance equations re-
veals that equations (3.6a)-(3.6h) describe the behaviour of a single-server vacation queue with the
following properties:

P1. the arrival process is Poisson with intensity λ1,
P2. the service times are exponentially distributed with mean 1/µ1,
P3. the service discipline is k-limited service with service limit k1,
P4. the vacations are Erlang-k2 distributed with parameter µ2,
P5. whenever the server finds the system empty upon return from a vacation, it immediately starts

another vacation.

This system has been studied in the literature (cf. [19]) and, in general, no closed-form expressions
for the steady-state queue-length probabilities can be obtained. However, it is possible to find the
probability generating function (PGF) of the queue-length distribution. Define

L̃ (0)(z) :=
k1+k2∑
h=1

L̃ (0)h (z), where L̃ (0)h (z) :=
∞∑

n=0

π
(0)
n,hzn, h = 1, . . . , k1 + k2,

and
G̃(z) :=

µ1

λ1(1− z)+ µ1
, H̃(z) :=

µ2

λ1(1− z)+ µ2
. (3.8)

It is easily seen that G̃(z) and H̃(z) are the PGFs of the number of arrivals during respectively one
service, and during one stage of the vacation (which consists of k2 exponential stages). It follows from
(3.6a)-(3.6h) that

L̃ (0)k1+k2
(z) =

H̃(z)k2

[
π
(0)
0,k1+k2

(
1−

(
G̃(z)/z

)k1
)
+
µ1

µ2

k1−1∑
h=1

π
(0)
1,h

(
1−

(
G̃(z)/z

)k1−h
)]

1−
(
G̃(z)/z

)k1 H̃(z)k2
, (3.9)

L̃ (0)h1
(z) =

zµ2

µ1

(
G̃(z)/z

)h1
[

L̃ (0)k1+k2
(z)− π (0)0,k1+k2

]
−

h1−1∑
h=1

π
(0)
1,hz

(
G̃(z)/z

)h1−h
, (3.10)

L̃ (0)h2
(z) = H̃(z)h2−k1

[
µ1

µ2

k1−1∑
h=1

π
(0)
1,h + π

(0)
0,k1+k2

+
µ1

zµ2
L̃ (0)k1

(z)

]
, (3.11)

for h1 = 1, . . . , k1 and h2 = k1 + 1, . . . , k1 + k2 − 1. A derivation of (3.9)-(3.11) can be found in
Appendix A. These equations still contain k1 unknowns: π (0)1,1, π

(0)
1,2, . . . , π

(0)
1,k1−1, and π (0)0,k1+k2

. See
Appendix A for more details on how to eliminate them using Rouché’s Theorem. Foregoing the
derivation of the limiting behaviour of Q2 we already would like to mention that these unknowns do
not play a role therein.

We conclude from equating the lowest-order terms of the balance equations (3.1a)-(3.1h), after sub-
stituting (3.2), (3.3), and (3.5), that

∞∑
n1=0

k1+k2∑
h=1

φ
(0)
n1,h(ξ)z

n1 = L̃ (0)(z)P0(ξ), (3.12)

where P0(ξ) still has to be determined. Consequently, in heavy traffic, the queue length of the sta-
ble queue (Q1) has the same distribution as the queue length in a vacation system with Erlang(k2)
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distributed vacations with parameter µ2, exponential service times with parameter µ1, and k1-limited
service. The assumption that we have Poisson arrivals and first-come-first-served service implies that
we can use the distributional form of Little’s law to obtain (the Laplace-Stieltjes transform of) the
waiting-time distribution of customers in Q1 (see, for example, Keilson and Servi [15]).

Remark 3.1 In this paper we assume that λ1/k1 < λ2/k2, causing Q2 to become critically loaded
when λ2 is being increased. We have implicitly used this assumption when solving the balance equa-
tions (3.1a)-(3.1h). It is well-known that the vacation system described by these equations is stable if
and only if

λ1E[C] < k1, (3.13)

where E[C] is the mean cycle time, i.e., the mean length of one visit period plus one vacation. De-
noting the length of a vacation by S, we have E[C] = E[S]/(1 − ρ1) = k2/(µ2(1 − λ1/µ1)). When
substituting this in (3.13), we indeed obtain exactly the same inequality as (2.1) after substituting (3.2)
and letting δ ↓ 0.

Remark 3.2 Another interesting observation is that one could consider more general ways of varying
the arrival rates in order to let Q2 become critically loaded. To this end, we introduce λ∗1 and λ∗2 such
that λ∗1/µ1 + λ

∗

2/µ2 = 1. Additionally, we assume that

λ∗1

k1
<

1
k1
µ1
+

k2
µ2

, or equivalently:
λ∗2

k2
>

1
k1
µ1
+

k2
µ2

. (3.14)

We now let λ1 → λ∗1 and λ2 → λ∗2 for δ ↓ 0, with

λ1

µ1
+
λ2

µ2
= 1− δω∗, ω∗ > 0, 0 < δ � 1. (3.15)

Any arbitrary way in which we let λ1 and λ2 approach respectively λ∗1 and λ∗2, for δ ↓ 0, will cause
Q2 to become critically loaded (because of assumption (3.14)). All results obtained in this paper will
still be valid, by choosing ω∗ = ω/µ2.

3.4 Equating the first-order terms

In this section we study, and solve, the system of equations that results from equating the first-order
terms of the perturbed balance equations. For notational reasons, we define

ψ
(1)
n1,h(ξ) := φ

(1)
n1,h(ξ)+ φ

′ (0)
n1,h(ξ), where φ

′ (0)
n1,h(ξ) :=

dφ(0)n1,h(ξ)

dξ
,

for n1 = 0, 1, . . . and h = 1, 2, . . . , k1 + k2. The resulting set of equations for the probabilities
φ
(1)
n1,h(ξ) is given below.
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(λ1 + µ2)φ
(1)
0,k1+1(ξ) = µ2ψ

(1)
0,k1+k2

(ξ)+

k1∑
h=1

µ1φ
(1)
1,h(ξ)− µ2

(
1−

λ1

µ1

)
φ
′ (0)
0,k1+1(ξ), (3.16a)

(λ1 + µ2)φ
(1)
0,h2
(ξ) = µ2ψ

(1)
0,h2−1(ξ)− µ2

(
1−

λ1

µ1

)
φ
′ (0)
0,h2
(ξ), (3.16b)

(λ1 + µ1)φ
(1)
1,1(ξ) = µ2ψ

(1)
1,k1+k2

(ξ)− µ2

(
1−

λ1

µ1

)
φ
′ (0)
1,1 (ξ), (3.16c)

(λ1 + µ1)φ
(1)
1,h1
(ξ) = µ1φ

(1)
2,h1−1(ξ)− µ2

(
1−

λ1

µ1

)
φ
′ (0)
1,h1
(ξ), (3.16d)

(λ1 + µ1)φ
(1)
n1+1,1(ξ) = λ1φ

(1)
n1,1(ξ)+ µ2ψ

(1)
n1+1,k1+k2

(ξ)− µ2

(
1−

λ1

µ1

)
φ
′ (0)
n1+1,1(ξ), (3.16e)

(λ1 + µ1)φ
(1)
n1+1,h1

(ξ) = λ1φ
(1)
n1,h1

(ξ)+ µ1φ
(1)
n1+2,h1−1(ξ)− µ2

(
1−

λ1

µ1

)
φ
′ (0)
n1+1,h1

(ξ), (3.16f)

(λ1 + µ2)φ
(1)
n1,k1+1(ξ) = λ1φ

(1)
n1−1,k1+1(ξ)+ µ1φ

(1)
n1+1,k1

(ξ)− µ2

(
1−

λ1

µ1

)
φ
′ (0)
n1,k1+1(ξ), (3.16g)

(λ1 + µ2)φ
(1)
n1,h2

(ξ) = λ1φ
(1)
n1−1,h2

(ξ)+ µ2ψ
(1)
n1,h2−1(ξ)− µ2

(
1−

λ1

µ1

)
φ
′ (0)
n1,h2

(ξ), (3.16h)

for n1 = 1, 2, . . . ; h1 = 2, 3, . . . , k1, and h2 = k1 + 2, . . . , k1 + k2. The solution to this system of
equations, in terms of generating functions, can be found in Appendix B. This solution is used to
derive the following relation

λ1

µ1

∞∑
n=0

k1+k2∑
h=1

φ
(1)
n,h(ξ)−

∞∑
n=0

k1∑
h1=1

φ
(1)
n,h1
(ξ) =

λ1µ2

µ2
1

P ′0(ξ), (3.17)

which turns out to play a key role in determining the HT limit of the joint queue-length distribution
(see the next section).

3.5 Equating the second-order terms

In order to find an expression for P0(ξ) and, consequently, solve (3.12), we consider the Taylor
series of all perturbed balance equations. In this section we show that, fortunately, we only need
to consider the sum of all these equations (such as Equation (3.4)) over all n1 = 0, 1, 2, . . . and
h = 1, 2, . . . , k1 + k2, and we consecutively consider the O(1), O(δ), and O(δ2) terms. Using the
results we have obtained so far, we prove that:

1. all O(1) terms cancel immediately,

2. the O(δ) terms cancel after expanding φn1,h(ξ, δ) in powers of δ (i.e., substituting (3.5)),

3. the equation that results from equating the O(δ2) terms, can be solved to find P0(ξ).

The above three results are proven in Propositions 3.3, 3.4, and 3.5.

8



Proposition 3.3 After taking the summation over all n1 = 0, 1, 2, . . . and h = 1, 2, . . . , k1 + k2 of
the Taylor series of all perturbed balance equations, the O(1) terms cancel.

Proof:
We can follow the generating function approach, used in Section 3.3, but replace the probabili-
ties π (0)n1,h , by φn1,h(ξ, δ). This results in the same set of equations as (3.9)-(3.11), but with terms
Q̃h(z, ξ, δ) and φn1,h(ξ, δ) instead of L̃ (0)h (z) and π (0)n1,h . Substituting z = 1 yields:

µ2 Q̃h2(1, ξ, δ) = µ2 Q̃h2−1(1, ξ, δ), (3.18)

µ2 Q̃k1+1(1, ξ, δ) = µ1 Q̃k1(1, ξ, δ)+ µ1

k1−1∑
h=1

φ1,h(ξ, δ)+ µ2φ0,k1+k2(ξ, δ), (3.19)

µ1 Q̃h1(1, ξ, δ) = µ1 Q̃h1−1(1, ξ, δ)− µ1φ1,h1−1(ξ, δ), (3.20)

µ1 Q̃1(1, ξ, δ) = µ2 Q̃k1+k2(1, ξ, δ)− µ2φ0,k1+k2(ξ, δ), (3.21)

for h1 = 2, . . . , k1 and h2 = k1 + 2, . . . , k1 + k2. The summation of (3.18)-(3.21) over all h =
1, 2, . . . , k1 + k2 cancels all terms. �

Proposition 3.4 After taking the summation over all n1 = 0, 1, 2, . . . and h = 1, 2, . . . , k1 + k2

of the Taylor series of all perturbed balance equations, substituting (3.5) and using the results from
Appendix A, the O(δ) terms cancel.

Proof:
Define

φ′n1,h(ξ, δ) :=
∂φn1,h(ξ, δ)

∂ξ
,

for n1 = 0, 1, . . . and h = 1, 2, . . . , k1 + k2. Given the fact that the O(1) terms cancel, taking the
O(δ) terms leads to the following equations:

0 = µ2φ
′

0,k1+k2
(ξ, δ)− µ2

(
1−

λ1

µ1

)
φ′0,k1+1(ξ, δ),

0 = µ2φ
′

0,h2−1(ξ, δ)− µ2

(
1−

λ1

µ1

)
φ′0,h2

(ξ, δ),

0 = µ2φ
′

1,k1+k2
(ξ, δ)− µ2

(
1−

λ1

µ1

)
φ′1,1(ξ, δ),

0 = −µ2

(
1−

λ1

µ1

)
φ′1,h1

(ξ, δ),

0 = µ2φ
′

n1+1,k1+k2
(ξ, δ)− µ2

(
1−

λ1

µ1

)
φ′n1+1,1(ξ, δ),

0 = −µ2

(
1−

λ1

µ1

)
φ′n1+1,h1

(ξ, δ),

0 = −µ2

(
1−

λ1

µ1

)
φ′n1,k1+1(ξ, δ),

0 = µ2φ
′

n1,h2−1(ξ, δ)− µ2

(
1−

λ1

µ1

)
φ′n1,h2

(ξ, δ),
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for h1 = 2, . . . , k1 and h2 = k1 + 2, . . . , k1 + k2. Taking the generating functions of these equations
and substituting z = 1 results in the following set of equations:

0 = µ2φ
′

0,k1+k2
(ξ, δ)− µ2

(
1−

λ1

µ1

)
Q̃′k1+1(1, ξ, δ), (3.22)

0 = µ2 Q̃′h2−1(1, ξ, δ)− µ2

(
1−

λ1

µ1

)
Q̃′h2

(1, ξ, δ), (3.23)

0 = µ2
(
Q̃′k1+k2

(1, ξ, δ)− φ′0,k1+k2
(ξ, δ)

)
− µ2

(
1−

λ1

µ1

)
Q̃′1(1, ξ, δ), (3.24)

0 = −µ2

(
1−

λ1

µ1

)
Q̃′h1

(1, ξ, δ), (3.25)

for h1 = 2, . . . , k1 and h2 = k1+ 2, . . . , k1+ k2. The PGF Q̃′h(z, ξ, δ) is the derivative of Q̃h(z, ξ, δ)
with respect to ξ .

The summation of (3.22)-(3.25) over all h = 1, 2, . . . , k1 + k2 yields:

µ2

k1∑
h1=1

Q̃′h1
(1, ξ, δ) = µ2

λ1

µ1

k1+k2∑
h=1

Q̃′h(1, ξ, δ). (3.26)

Apparently, the O(δ) terms do not cancel (yet). However, after substituting (3.5), taking the O(δ)
terms, and using (3.7), we obtain:

µ2

k1∑
h1=1

L̃ (0)
h1
(1)P ′0(ξ) = µ2

λ1

µ1

k1+k2∑
h=1

L̃ (0)
h (1)P ′0(ξ). (3.27)

Since the (at this moment still unknown) terms P ′0(ξ) cancel out, and since
∑k1+k2

h=1 L̃ (0)
h (1) = 1,

Equation (3.27) reduces to
k1∑

h1=1

L̃ (0)
h1
(1) = ρ1,

which is indeed true (see (A.5)). �

Proposition 3.5 Taking the summation over all n1 = 0, 1, 2, . . . and h = 1, 2, . . . , k1 + k2 of the
Taylor series of all perturbed balance equations and equating the O(δ2) terms, yields the following
differential equation for P0(ξ):

ωP ′0(ξ) = −
(
µ2 +

λ1µ2(µ2 − µ1)

µ2
1

)
P ′′0 (ξ). (3.28)

Proof:
Define

φ′′n1,h(ξ, δ) :=
∂2φ

(0)
n1,h(ξ, δ)

∂ξ 2
,

for n1 = 0, 1, . . . and h = 1, 2, . . . , k1 + k2. As before, the O(1) terms cancel. From the proof of the
Proposition 3.4 we have learned to include O(δ) terms as well, because multiplied by δφ′ (1)n,h (ξ) these
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terms are O(δ2) as well. This leads to the following equations:

0 =µ2

[
φ
′ (1)
0,k1+k2

(ξ)+
1
2
φ
′′ (0)
0,k1+k2

(ξ)

]
− µ2

(
1−

λ1

µ1

)[
φ
′ (1)
0,k1+1(ξ)−

1
2
φ
′′ (0)
0,k1+1(ξ)

]
+ ωφ

′ (0)
0,k1+1(ξ, δ),

0 =µ2

[
φ
′ (1)
0,h2−1(ξ)+

1
2
φ
′′ (0)
0,h2−1(ξ)

]
− µ2

(
1−

λ1

µ1

)[
φ
′ (1)
0,h2
(ξ)−

1
2
φ
′′ (0)
0,h2

(ξ)

]
+ ωφ

′ (0)
0,h2
(ξ),

0 =µ2

[
φ
′ (1)
1,k1+k2

(ξ)+
1
2
φ
′′ (0)
1,k1+k2

(ξ)

]
− µ2

(
1−

λ1

µ1

)[
φ
′ (1)
1,1 (ξ)−

1
2
φ
′′ (0)
1,1 (ξ)

]
+ ωφ

′ (0)
1,1 (ξ),

0 =− µ2

(
1−

λ1

µ1

)[
φ
′ (1)
1,h1
(ξ)−

1
2
φ
′′ (0)
1,h1

(ξ)

]
+ ωφ

′ (0)
1,h1
(ξ),

0 =µ2

[
φ
′ (1)
n1+1,k1+k2

(ξ)+
1
2
φ
′′ (0)
n1+1,k1+k2

(ξ)

]
− µ2

(
1−

λ1

µ1

)[
φ
′ (1)
n1+1,1(ξ)−

1
2
φ
′′ (0)
n1+1,1(ξ)

]
+ ωφ

′ (0)
n1+1,1(ξ),

0 =− µ2

(
1−

λ1

µ1

)[
φ
′ (1)
n1+1,h1

(ξ)−
1
2
φ
′′ (0)
n1+1,h1

(ξ)

]
+ ωφ

′ (0)
n1+1,h1

(ξ),

0 =− µ2

(
1−

λ1

µ1

)[
φ
′ (1)
n1,k1+1(ξ)−

1
2
φ
′′ (0)
n1,k1+1(ξ)

]
+ ωφ

′ (0)
n1,k1+1(ξ),

0 =µ2

[
φ
′ (1)
n1,h2−1(ξ)+

1
2
φ
′′ (0)
n1,h2−1(ξ)

]
− µ2

(
1−

λ1

µ1

)[
φ
′ (1)
n1,h2

(ξ)−
1
2
φ
′′ (0)
n1,h2

(ξ)

]
+ ωφ

′ (0)
n1,h2

(ξ),

for h1 = 2, . . . , k1 and h2 = k1 + 2, . . . , k1 + k2. As we have done already a couple of times before,
we can use the generating functions to easily sum all of these equations. Each equation contains
the following three types of terms: φ′ (0)n1,h(ξ), φ

′ (1)
n1,h(ξ), and φ′′ (0)n1,h (ξ). We denote the corresponding

generating functions with Q̃′ (0)h (z, ξ), Q̃′ (1)h (z, ξ), and Q̃′′ (0)h (z, ξ). After summing all equations, we
obtain the following equation:

µ2
λ1

µ1

k1+k2∑
h=1

Q̃′ (1)h (1, ξ)− µ2

k1∑
h1=1

Q̃′ (1)h1
(1, ξ) (3.29a)

+
1
2
µ2

k1+k2∑
h2=k1+1

Q̃′′ (0)h2
(1, ξ)+

1
2
µ2

(
1−

λ1

µ1

) k1+k2∑
h=1

Q̃′′ (0)h (1, ξ) (3.29b)

+ ω

k1+k2∑
h=1

Q̃′ (0)h (1, ξ) (3.29c)

= 0.

Note that the derivation of (3.29a) and (3.29b) follows closely the manner in which (3.26) has been
derived. The last term (3.29c) follows directly from collecting the ω-terms.

Using the results obtained in appendices the equation can be rewritten to

λ1µ
2
2

µ2
1

P ′′0 (ξ)+ µ2

(
1−

λ1

µ1

)
P ′′0 (ξ)+ ωP ′0(ξ) = 0. (3.30)
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The proof that (3.29a) can be rewritten to the first term in (3.30) can be found in Appendix B. The
second and third term follow from (A.5) and the fact that Q̃ (0)

h (1, ξ) = L̃ (0)
h (1)P0(ξ). Equation (3.30)

can be rewritten to (3.28), which concludes this proof. �

3.6 The scaled number of customers in the critically loaded queue

Now we can finally present the density of the scaled number of customers in Q2, denoted by P0(ξ). It
is obtained by solving the differential equation (3.28):

P0(ξ) = ηe−ηξ , (3.31)

with
ω

η
= µ2 +

λ1µ2(µ2 − µ1)

µ2
1

.

We have used that
∫
∞

0 P0(ξ)dξ = 1 and that
∑
∞

n1=0
∑
∞

n2=0
∑k1+k2

h=1 p(n1, n2, h) = 1. Without loss of
generality, we may take ω = µ2, which means that

1
η
= 1−

λ1

µ1
+ µ2

λ1

µ2
1
. (3.32)

We motivate this choice for ω by noting that we consider the scaled queue length δN2 for δ ↓ 0. By
choosing ω = µ2, and using (3.2), our scaling becomes equivalent to considering the scaled queue
length (1 − ρ)N2, which is commonly used. Finally, by applying the multiclass distributional law of
Bertsimas and Mourtzinou [2] it directly follows that the scaled waiting time at Q2 also follows an
exponential distribution with parameter λ2η.

3.7 Main result

The analysis of the present section has the following immediate consequence for the joint (scaled)
queue-length distribution in heavy traffic, which is the main result of this paper.

Main result: For λ1/k1 < λ2/k2 and λ2 = µ2 ((1− ρ1)− δ), we have:

lim
δ↓0

P[N1 ≤ n1, δN2 ≤ ξ ] = L(n1)
(
1− e−ηξ

)
, (3.33)

where L(·) is the cumulative probability distribution of the queue length of a queueing system with
multiple vacations satisfying Properties P1–P5, and η is given by (3.32).

4 Final remarks and suggestions for further research

Interpretation. The main result (3.33) derived in the preceding section has the following intuitively
appealing interpretation:

1. The number of customers in the stable queue has the same distribution as the number of cus-
tomers in a k-limited vacation system with Erlang-k2 distributed vacations.
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2. The scaled number of customers in the critically loaded queue is exponentially distributed with
parameter η.

3. The number of customers in the stable queue and the (scaled) number of customers in the
critically loaded queue are independent.

Below we explain these properties heuristically.

Property 1 can be explained by the fact that if Q2 is in heavy-traffic, then exactly k2 customers are
served at this queue during each cycle. If we place an outside observer at Q1, then, from his per-
spective, this queue behaves like a k-limited vacation model in heavy-traffic, where the vacation dis-
tribution is given by the convolutions of k2 exponentially distributed service times distributions in
Q2.

For Property 2, we note that the total workload in the system equals the amount of work in an M/G/1
queue in which the two customer classes are combined into one customer class with arrival rate λ1+λ2

and hyperexponentially distributed service times, i.e., the service time is with probability λi/(λ1+λ2)

exponentially distributed with parameter µi , i = 1, 2. Based on standard heavy-traffic results for
the M/G/1 queue, this implies that the distribution of the scaled total workload converges to an
exponential distribution with mean ρE[R], where R is a residual service time. For a hyperexponential
distribution, we have

E[R] =
λ1/µ

2
1 + λ2/µ

2
2

ρ
,

which implies that the total (scaled) asymptotic workload is exponentially distributed with parameter
λ1/µ

2
1 + λ2/µ

2
2. In heavy traffic, almost all customers are located in Q2 so the total number of

customers at this queue is exponentially distributed with mean µ2(λ1/µ
2
1 + λ2/µ

2
2). Since λ2 ↑

µ2(1 − λ1/µ1), the scaled number of customers in Q2 is exponentially distributed with parameter
η. Using the multiclass distributional law of Bertsimas and Mourtzinou [2], it can be shown that the
scaled asymptotic waiting time of customers in Q2 is exponentially distributed with parameter λ2η.

Finally, Property 3 follows from the time-scale separation in heavy-traffic which implies that the
dynamics of the stable queue evolve at a much faster time scale than the dynamics of the critically
loaded queue. Since the amount of “memory” of the stable queue asymptotically vanishes compared
to that of the critically loaded queue, the number of customers in Q1 and the scaled queue length of
Q2 become independent in the limit.

Two critically loaded queues. In the current paper we have analysed the heavy-traffic behaviour in
case only Q2 becomes critically loaded, i.e., when Assumption (2.1) is satisfied. The limiting regime
in which both queues become saturated simultaneously (λ1/k1 = λ2/k2), shows fundamentally dif-
ferent system behaviour. That is, for general ρ the waiting time at Q1 is an (unknown) function of the
visit time at Q2 and 1/(1−ρ). This implies that O(1−ρ) variations in the visit time at Q2 are relevant
for the heavy-traffic behaviour at Q1. More colloquially, it is not sufficient anymore to use a scaling
that implies that exactly k2 customers are served at Q2 during each cycle, i.e., the probability that
there are served less than k2 customers cannot be neglected, when analysing the asymptotic behaviour
of Q1.

Further research. The analysis in this paper allows different kind of extensions. Firstly, one could
consider phase-type interarrival-time or service-time distributions. The approach introduced in the
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present paper may be extended, without complicating the analysis, to such a system. Another exten-
sion could be the introduction of switch-over times whenever the server switches between queues.
Such an extension requires more severe adaptations to the approach and the analysis, and is the topic
of a forthcoming paper. Finally, we want to mention that the singular-perturbation technique can also
be applied to derive the HT analysis of a system consisting of more than two (say N ) queues, with one
queue becoming critically loaded. Following the lines of the current paper, one can show that in this
limiting regime the stable queues have the same joint queue-length distribution as in a polling model
with N − 1 queues and an extended switch-over time, whereas the scaled queue-length distribution
of the critically loaded queue is again exponentially distributed. As such, the results of the present
paper provide a theoretical basis for the transformation of large polling systems into smaller systems
for approximation purposes, cf. LaPadula and Levy [17].
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Appendix

A A vacation model with k-limited service

In this appendix we study a queueing model with multiple vacations and k-limited service. The main
goal is to find the PGF of the queue-length distribution, as to prove (3.9)-(3.11). At the end of this
appendix some additional properties of this queue-length distribution are given, which will be used in
Section 3.5 and in Appendix B.

The service times in this vacation model are exponentially distributed with parameter µ1, and the
vacation length is Erlang(k2) distributed with parameterµ2. The service discipline is k-limited service,
with at most k1 customers being served during one visit period. Although the queue-length distribution
for the case with generally distributed service and vacation times has been studied by Lee [19], we
provide the proof here to keep the paper self-contained, but also because our state space is slightly
different and we do not look at embedded epochs, yielding slightly different expressions than in [19].

The starting point is to obtain generating functions from the balance equations (3.6a)-(3.6h). Multi-
plying Equation (3.6h) with zn1 , summing over all n1 = 1, 2, . . . , and adding Equation (3.6b), yields
the following equation:

L̃ (0)h2
(z) = H̃(z)L̃ (0)h2−1(z), (A.1)

for h2 = k1 + 2, . . . , k1 + k2, where H̃(z) is defined in (3.8). The interpretation of (A.1) is that the
number of customers in the system during a certain vacation stage is simply the number of customers
present at the previous stage of the vacation, plus the arrivals during one (exponentially distributed)
stage. Obviously, no customers leave the system during a vacation.

Multiplying Equation (3.6g) with zn1 , summing over all n1 = 1, 2, . . . , and adding Equation (3.6a),
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yields the following equation:

L̃ (0)k1+1(z) = H̃(z)

(
µ1

µ2

k1−1∑
h=1

π
(0)
1,h + π

(0)
0,k1+k2

+
µ1

µ2z
L̃ (0)k1

(z)

)
. (A.2)

Multiplying Equation (3.6f) with zn1+1, summing over all n1 = 1, 2, . . . , and adding Equation (3.6d)
multiplied by z, yields the following equation:

L̃ (0)h1
(z) =

G̃(z)
z

(
L̃ (0)h1−1(z)− π

(0)
1,h1−1z

)
, (A.3)

for h1 = 2, 3, . . . , k1, where G̃(z) is defined in (3.8).

Multiplying Equation (3.6e) with zn1+1, summing over all n1 = 1, 2, . . . , and adding Equation (3.6c)
multiplied by z, yields the following equation:

L̃ (0)1 (z) = G̃(z)
µ2

µ1

(
L̃ (0)k1+k2

(z)− π (0)0,k1+k2

)
. (A.4)

We now have k1 + k2 equations, each of which expresses L̃ (0)h (z) in terms of L̃ (0)h−1(z) (and L̃ (0)1 (z)
in terms of L̃ (0)k1+k2

(z)). Finally, we can solve these equations to find the expressions for L̃ (0)h (z), for
h = 1, 2, . . . , k1 + k2. The results are given in (3.9)-(3.11).

Note that there are still k1 unknowns: π (0)1,h1
, for h1 = 1, . . . , k1 − 1, and π (0)0,k1+k2

. These can be found
using the roots of the denominator of (3.9). Rouché’s Theorem states that the denominator has k1

roots on and inside the unit circle. The requirement that (3.9) should be regular inside the unit circle,
implies that the numerator of (3.9) should have these same roots [1]. Hence, we have a set of equations
involving the roots and the numerator of (3.9) to eliminate these k1 unknowns.

Some additional properties. In this paragraph we derive some results that are used throughout this
paper, particularly in Section 3.5 and in Appendix B. From a balancing argument, we know that
the fraction of time that the system is in a vacation is 1 − ρ (where, in this system, ρ = λ1/µ1).
Conversely, the fraction of time that the system is serving customers is ρ. Hence,

k1∑
h=1

L̃ (0)h (1) =
λ1

µ1
,

k1+k2∑
h=k1+1

L̃ (0)h (1) = k2 L̃ (0)k1+k2
(1) = 1−

λ1

µ1
. (A.5)

Moreover, from (A.1) we know that L̃ (0)h2
(1) = L̃ (0)h2−1(1) for h2 = k1 + 2, . . . , k1 + k2. It follows that

L̃ (0)h2
(1) =

1
k2

(
1−

λ1

µ1

)
, h2 = k1 + 1, . . . , k1 + k2.

From (A.3) and (A.4) we now have

L̃ (0)h1
(1) =

µ2

µ1

(
1
k2

(
1−

λ1

µ1

)
− π

(0)
0,k1+k2

)
−

h1−1∑
i=1

π
(0)
1,i , h1 = 1, . . . , k1. (A.6)
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The following relation for the unknowns π (0)0,k1+k2
and π (0)1,h1

(h1 = 1, . . . , k1 − 1) can be derived by
combining all of these results:

k1π
(0)
0,k1+k2

+
µ1

µ2

k1−1∑
h=1

(k1 − h)π (0)1,h =
1
k2

[
k1

(
1−

λ1

µ1

)
− k2

λ1

µ2

]
. (A.7)

This relation turns out to be crucial to derive many results in this paper, without having to know the
exact expressions for all of the individual probabilities.

Remark A.1 A balancing argument has been the starting point to derive all of the above properties.
A rigorous way to derive these results, is by using L’Hôpital’s rule on (3.9) to determine L̃ (0)k1+k2

(1),
and subsequently deriving an expression for

∑k1+k2
h=1 L̃ (0)h (1), which we know is equal to one.

B The second-order perturbed balance equations

The main goal of this appendix is to prove that (3.29a) can be written as the first term in (3.30). If we
rearrange the summations slightly, we can write the equation that we need to prove as follows:

µ2
λ1

µ1

k1+k2∑
h2=k1+1

Q̃′ (1)h2
(1, ξ)− µ2

(
1−

λ1

µ1

) k1∑
h1=1

Q̃′ (1)h1
(1, ξ) =

λ1µ
2
2

µ2
1

P ′′0 (ξ). (B.1)

This equation should follow from Equations (3.16a)-(3.16h). In order to prove it, we take the following
steps:

1. First, we take the generating functions of Equations (3.16a)-(3.16h) to develop relations for
Q̃′ (1)h (z, ξ) (h = 1, . . . , k1 + k2).

2. The next step involves solving these equations to find an expression for Q̃′ (1)k1+k2
(z, ξ).

3. Step 3 is to reformulate (B.1) in terms of Q̃′ (1)k1+k2
(1, ξ). It turns out that in this stage all terms

containing probabilities φ′ (1)n,h (ξ) (or their generating functions) are eliminated.

4. The last step involves some more algebraic manipulations which eliminate all terms containing
probabilities φ′′ (0)n,h (ξ) and, eventually, prove (B.1).

Step 1: Find relations for the generating functions. Multiplying Equation (3.16h) with zn1 , sum-
ming over all n1 = 1, 2, . . . , and adding Equation (3.16b), yields the following equation:

Q̃(1)
h2
(z, ξ) = H̃(z)

(
Q̃(1)

h2−1(z, ξ)+ Q̃′ (0)h2−1(z, ξ)−
(

1−
λ1

µ1

)
Q̃′ (0)h2

(z, ξ)
)
, (B.2)

for h2 = k1 + 2, . . . , k1 + k2, where H̃(z) is defined in (3.8).
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Multiplying Equation (3.16g) with zn1 , summing over all n1 = 1, 2, . . . , and adding Equation (3.16a),
yields the following equation:

Q̃(1)
k1+1(z, ξ) =H̃(z)

(
µ1

µ2

k1−1∑
h=1

φ
(1)
1,h(ξ)+ φ

(1)
0,k1+k2

(ξ)+
µ1

zµ2
Q̃(1)

k1
(z, ξ)+ φ′ (0)0,k1+k2

(ξ)

−

(
1−

λ1

µ1

)
Q̃′ (0)k1+1(z, ξ)

)
. (B.3)

Multiplying Equation (3.16f) with zn1+1, summing over all n1 = 1, 2, . . . , and adding Equation
(3.16d) multiplied by z, yields the following equation:

Q̃(1)
h1
(z, ξ) =

G̃(z)
z

(
Q̃(1)

h1−1(z, ξ)− φ
(1)
1,h1−1(ξ)z −

zµ2

µ1

(
1−

λ1

µ1

)
Q̃′ (0)h1

(z, ξ)
)
, (B.4)

for h1 = 2, 3, . . . , k1, where G̃(z) is defined in (3.8).

Multiplying Equation (3.16e) with zn1+1, summing over all n1 = 1, 2, . . . , and adding Equation
(3.16c) multiplied by z, yields the following equation:

Q̃(1)
1 (z, ξ) =

µ2

µ1
G̃(z)

(
Q̃(1)

k1+k2
(z, ξ)− φ(1)0,k1+k2

(ξ)+ Q̃′ (0)k1+k2
(z, ξ)− φ′(0)0,k1+k2

(ξ)

−

(
1−

λ1

µ1

)
Q̃′ (0)1 (z, ξ)

)
. (B.5)

Step 2: Solve these relations and determine Q̃′ (1)
k1+k2

(z, ξ). Solving Equations (B.2)-(B.5) requires
a lot of straightforward, but tedious, computations. For reasons of compactness we will present some
relevant intermediate results in this appendix, but leave the exact derivations to the reader. Firstly, one
can use (B.2), combined with (A.1), to express Q̃(1)

k1+k2
(z, ξ) in terms of Q̃(1)

k1+1(z, ξ) and Q̃′ (0)k1+k2
(z, ξ):

Q̃(1)
k1+k2

(z, ξ) = H̃(z)k2−1 Q̃(1)
k1+1(z, ξ)+ (k2 − 1)

(
1−

(
1−

λ1

µ1

)
H̃(z)

)
Q̃′ (0)k1+k2

(z, ξ). (B.6)

Second, we use (B.3) to express Q̃(1)
k1+1(z, ξ) in terms of Q̃(1)

k1
(z, ξ) and Q̃′ (0)k1+1(z, ξ). Subsequently, we

use (B.4) and (A.3) to express Q̃(1)
k1
(z, ξ) in terms of Q̃(1)

1 (z, ξ) and Q̃′ (0)h (z, ξ):

Q̃(1)
k1
(z, ξ) =

(
G̃(z)

z

)k1−1

Q̃(1)
1 (z, ξ)−

k1−1∑
h=1

φ
(1)
1,h(ξ)z

(
G̃(z)

z

)k1−h

−
zµ2

µ1

(
1−

λ1

µ1

) k1∑
h=2

(
G̃(z)

z

)k1−h+1

Q̃′ (0)h (z, ξ). (B.7)

Finally, we use (B.5) to express Q̃(1)
1 (z, ξ) in terms of Q̃(1)

k1+k2
(z, ξ) again. After some rearrangement

of the terms, this leads to the following expression for Q̃(1)
k1+k2

(z, ξ):

Q̃(1)
k1+k2

(z, ξ) =
A(1)(z, ξ)+ A′ (0)(z, ξ)

D(z)
, (B.8)
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where

A(1)(z, ξ) = H̃(z)k2

[
φ
(1)
0,k1+k2

(ξ)
(

1−
(
G̃(z)/z

)k1
)
+
µ1

µ2

k1−1∑
h=1

φ
(1)
1,h(ξ)

(
1−

(
G̃(z)/z

)k1−h
)]
,

(B.9)

A′ (0)(z, ξ) = k2 Q̃′ (0)k1+k2
(z, ξ)− H̃(z)k2

µ1

µ2

k1−1∑
h=1

φ
′ (0)
1,h (ξ)

(
1−

(
G̃(z)/z

)k1−h
)

−

(
1−

λ1

µ2

)[
H̃(z)k2

k1∑
h=1

Q̃′ (0)h (z, ξ)
(
G̃(z)/z

)k1−h+1
+ k2 H̃(z)Q̃′ (0)k1+k2

(z, ξ)

]
, (B.10)

D(z) = 1−
(
G̃(z)/z

)k1 H̃(z)k2 . (B.11)

Note that A(1)(z, ξ) only contains the probabilities φ(1)n,h(ξ). All probabilities φ′ (0)0,k1+k2
(ξ), and their

generating functions, are contained in A′ (0)(z, ξ). Also note that A(1)(z,ξ)
D(z) is exactly the same expres-

sion as (3.9), but with constants π (0)n,h replaced by φ(1)n,h . The reason is that, if one would ignore the
probabilities φ′ (0)n,h (ξ) in the balance equations (3.16a)-(3.16h), the system is completely equivalent to
the system (3.6a)-(3.6h), which corresponds to the vacation system studied in Appendix A.

Step 3: reformulate the original problem in terms of Q̃′ (1)
k1+k2

(1, ξ). In order to solve (B.1), we
need to determine

∑k1
h1=1 Q̃′ (1)h1

(1, ξ) and
∑k1+k2

h1=k1+1 Q̃′ (1)h1
(1, ξ). After substituting z = 1 in Equations

(B.2)-(B.5), we can express these sums in terms of Q̃′ (1)k1+k2
(1, ξ) and Q̃′′ (0)h (1, ξ):

k1∑
h1=1

Q̃′ (1)h1
(1, ξ) = k1

µ2

µ1

(
Q̃′ (1)k1+k2

(1, ξ)− φ′ (1)0,k1+k2

)
−

k1−1∑
h=1

(k1 − h)φ′ (1)1,h

+ k1 Q̃′′ (0)1 (1, ξ)−
µ2

µ1

(
1−

λ1

µ1

) k1∑
h=1

(k1 − h + 1)Q̃′′ (0)h (1, ξ), (B.12)

k1+k2∑
h1=k1+1

Q̃′ (1)h1
(1, ξ) = k2 Q̃′ (1)k1+k2

(1, ξ)−
λ1

µ1

(
k2 − 1

2

)(
1−

λ1

µ1

)
P ′′0 (ξ). (B.13)

Since Q̃′′ (0)h (1, ξ) for h = 1, . . . , k1 can be determined directly using (A.6), it only remains to
determine Q̃′ (1)k1+k2

(1, ξ). Fortunately, according to the following lemma we can focus on the part

limz→1
A′ (0)(z,ξ)

D(z) only.

Lemma B.1 The probabilities φ′ (1)0,k1+k2
and φ′ (1)0,h (h = 1, . . . , k1− 1) in the left hand side of Equation

(B.1) cancel out. Using (B.12) and (B.13), we can express this statement in a more formal presenta-
tion:

lim
z→1

µ2
λ1

µ1

(
k2

A(1)(z, ξ)
D(z)

)
− µ2

(
1−

λ1

µ1

)(
k1
µ2

µ1

(
A(1)(z, ξ)

D(z)
− φ

(1)
0,k1+k2

)
−

k1−1∑
h=1

(k1 − h)φ(1)1,h

)
= 0.

(B.14)
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Proof:
Using L’Hôpital’s rule it can be shown that

lim
z→1

A(1)(z, ξ)
D(z)

=

(
1− λ1

µ1

)
C (1)

k1

(
1− λ1

µ1

)
− k2

λ1
µ2

, (B.15)

where

C (1)
= k1φ

(1)
0,k1+k2

+
µ1

µ2

k1−1∑
h=1

(k1 − h)φ(1)1,h.

After substituting (B.15) in (B.14), it is easily shown that the left hand side of (B.14) indeed equals
zero. �

Step 4: solve the original problem. We are almost ready to solve Equation (B.1), but we compute
two helpful intermediate results first.

Lemma B.2 Define Y := limz→1
∂
∂z Q̃′ (0)k1+k2

(z, ξ). This can be written as

Y =
[

2
µ2

µ1

(
k1

(
1−

λ1

µ1

)
− k2

λ1

µ2

)]−1

×

[(
1−

λ1

µ1

)2 k1−1∑
h=1

h(k1 − h)φ′ (0)1,h +(
λ1

µ1

(
1−

λ1

µ1

)2

(k1 + 1)−
λ2

1

µ1µ2

(
1−

λ1

µ1

)
(k2 − 1)+ 2

(
λ1

µ1

)2
)

P ′0(ξ)

]
. (B.16)

Proof:
Equation (B.16) follows after differentiating (3.9) with respect to z, and subsequently applying L’Hô-
pital’s rule twice. Obviously, some basic algebraic manipulations are required to obtain the presenta-
tion in (B.16). �

Lemma B.3 Define X := limz→1
A′ (0)(z,ξ)

D(z) . This can be written as

X = −
µ2

µ1
Y +

[
k1

(
1−

λ1

µ1

)
− k2

λ1

µ2

]−1

×{
φ
′ (0)
0,k1+k2

(
k1

(
1−

λ1

µ1

)(
k2
λ1

µ1
+

(
λ1

µ1
− k1

(
1−

λ1

µ1

))
µ2

µ1

))
+

(
1−

λ1

µ1

)(
k2
λ1

µ2
+
λ1

µ1
−
µ1

µ2
− k1

(
1−

λ1

µ1

)) k1−1∑
h=1

(k1 − h)φ′ (0)1,h

+

(
1−

λ1

µ1

)2 k1−1∑
h=1

h(k1 − h)φ′ (0)1,h

−

(
1−

λ1

µ1

)2 (k1

k2

(
λ1

µ1
− k1

(
1−

λ1

µ1

))
µ2

µ1
+
λ1

µ1

(
µ1

µ2
+ k1

))
P ′0(ξ)

}
. (B.17)

Proof:
This equation follows from applying L’Hôpital’s rule to A′ (0)(z,ξ)

D(z) and, hence, differentiating (B.10) and
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(B.11) with respect to z. Substitution of z = 1 gives the desired result after, again, many algebraic
manipulations. �

Finally, we are ready to present the main result of this appendix, which is the proof of Equation (B.1).
Using Lemma B.1, and Equations (B.12) and (B.13), we can write the left hand side of Equation (B.1)
as

µ2
λ1

µ1

(
k2 X ′ −

λ1

µ1

(
k2 − 1

2

)(
1−

λ1

µ1

)
P ′′0 (ξ)

)
− µ2

(
1−

λ1

µ1

)[
k1
µ2

µ1
X ′ + k1 Q̃′′ (0)1 (1, ξ)−

µ2

µ1

(
1−

λ1

µ1

) k1∑
h=1

(k1 − h + 1)Q̃′′ (0)h (1, ξ)

]
,

where X ′ is the derivative of X with respect to ξ . Using Lemma B.3 and Lemma B.2 (and Equa-
tion (A.6) to determine Q̃′′ (0)h (1, ξ) for h = 1, . . . , k1) we can show that the above expression reduces

to λ1µ
2
2

µ2
1

P ′′0 (ξ).
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