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Abstract

We study a network of parallel single-server queues, where the speeds of the servers are varying over time
and governed by a single continuous-time Markov chain. We obtain heavy-traffic limits for the distributions of
the joint workload, waiting time and queue length processes. We do so by using a functional central limit theorem
approach, which requires the interchange of steady-state and heavy-traffic limits. The marginals of these limiting
distributions are shown to be exponential with rates that can be computed by matrix-analytic methods. Moreover,
we show how to numerically compute the joint distributions, by viewing the limit processes as multi-dimensional
semi-martingale reflected Brownian motions in the non-negative orthant.

Keywords: Layered queueing networks, machine-repair model, functional central limit theorem, semi-martingale
reflected Brownian motion.

1 Introduction
In this paper, we consider a parallel network of N single-server queues. The speeds of the servers vary over time
and are in addition mutually dependent. More specifically, we assume that these service speeds are governed by
a single, irreducible, continuous-time Markov chain with a finite state space. For this network, we are interested
in both the marginal and the joint workload processes for each of the queues, as well as the processes describing
the virtual waiting time and the queue length. Stationary distributions for these processes are difficult to obtain,
since the workload process pertaining to one queue, as well as the virtual waiting time and the queue length
processes, are correlated with the corresponding processes of the other queues. Even if one were interested in
marginal processes, one would run into the problem that the service speed process does not have independent
increments, complicating the analysis considerably. Our goal in this paper is to derive the heavy-traffic behaviour
of the network by obtaining the limiting stationary distributions of the aforementioned processes. These results
can serve as simple and accurate approximations when the network is heavily utilised or can be combined with
known light-traffic results to obtain approximations for arbitrarily loaded systems (see e.g. [18]).

The study of this general network is motivated in part by the fact that it captures a large class of so-called lay-
ered queueing networks (LQNs). LQNs are queueing networks that are characterised by simultaneous or separate
phases where entities are no longer necessarily classified in the traditional roles of ‘servers’ and ‘customers’, but
may also have a dual role of being either a server to higher-layer entities or a customer to lower-layer entities.
Recent applications in engineering, business, and the public sector led to systems with complex, often layered,
service architectures. For example, this phenomenon occurs naturally in various computer-science problems; see
[20] and references therein for an overview. Another important example of an LQN that we will refer to later is a
network inspired by a manufacturing application. This network consists of machines, that each process their own
queue of products in the role of upper-layer servers, but break down from time to time so that they require service
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from a repairman. At moments of breakdown, the machines take the role of customers at the lower layer, where
the repairman acts as the server. This model can be interpreted as an extension of the well-known machine-repair
problem (cf. [44, Chapter 5]). Since the number of machines is larger than the number of repairmen, the machines
compete with each other for access to the repairman. As a result, consecutive downtimes of a single machine are
correlated. These dynamics in the lower layer make exact analysis of the queues in the upper layer notoriously
difficult, so that one has to resort to approximations (see [16, 17, 18]). The extended machine-repair model fits the
network studied in this paper.

It is interesting to note that the layers of an LQN may interact significantly. For instance, we will observe in
the sequel that under heavy-traffic assumptions, the workload, virtual waiting time and queue length processes
for a single-server queue in isolation exhibit so-called state-space collapse (cf. [39]). However, in the limit these
processes are still dependent on characteristics of the service-speed processes pertaining to the servers. In the
LQN-setting, this means that the lower layer (modelled by the single continuous-time Markov chain) significantly
affects the dynamics of the upper-layer queues. For example, the marginal distributions of the workload, virtual
waiting time and queue length processes will turn out to be exponential with parameters that involve the asymptotic
mean and variance of the service speed process pertaining to the corresponding queue. As a result, the formulation
and study of LQNs is important, as analysis of each of the layers separately appears to be insufficient.

Another important feature of the model is the fact that the service speeds vary over time. In many classical
queueing models, service rates are assumed to be constant. This assumption, however, may not always be ap-
propriate. For example, in telecommunication systems with congestion control mechanisms or systems where the
servers represent human beings, the service speed may be influenced by factors such as the workload present in
the system. This leads to the formulation of queues with state-dependent service rates; see e.g. [3] for an overview.
Another branch of work on time-varying service speeds is that of service rate control, where the aim is to minimise
waiting and capacity costs (e.g. [2, 21, 43, 47]) or to optimise a trade-off between service quality and service speed
(e.g. [26]) based on the state of the system by dynamically varying the service speed. In our case, the service
speeds depend on an external environment that is governed by a Markov process. Several single-server queueing
models with Markov-modulated service speeds have been studied in the literature. The case where the server
alternates between two service speeds has been analysed in [5, 49]. In [22, 37], models are considered where the
service speed of the server is governed by a birth-and-death process. Results for the case where the service speed
is governed by an arbitrary continuous-time Markov process can be found in [38], which analyses the busy period
of the server and stability conditions, and in [34], where matrix geometric methods are used to approximate per-
formance measures. In [45], exact results are derived for a system where arrivals occur only at transition epochs
of the modulating Markov process. In this paper, we focus on a queueing network where the service speeds of all
servers in the network are simultaneously governed by a single continuous-time Markov chain. This allows us to
incorporate mutual dependencies between the service speeds into the model.

We are mainly interested in the heavy-traffic asymptotics of the network of queues. The study of queues
in heavy traffic was initiated by Kingman with a series of papers in the 1960s, starting with [31]; see [32] for
an overview of these early results. These papers were largely focused on the use of Laplace transforms. In
our case, however, Laplace transforms for the stationary distribution of the total workload process or even the
workload process for a queue in isolation are hard to obtain. The workload process of a queue in isolation can
in principle be modelled as a reflected Markov-additive process (MAP). For the definition and an overview of the
standard theory on MAPs, see [1, Section XI.2]. However, the stationary distribution of the workload process
is not easily derived from that. For example, standard techniques such as relating the Laplace transforms of the
stationary workload conditional on the states of the modulator to each other typically lead to a linear system with
a number of equations smaller than the number of unknowns, defying straightforward solutions, as shown in [27].
Less straightforward computations might involve studying the singularities of the characterising matrix exponent
pertaining to the reflected MAP (cf. [27]). In the past, stationary distributions for special cases of reflected MAPs
have also been analysed by studying its spectral expansion (e.g. [35]) or by determining the boundary probabilities
in terms of the solution of a generalised eigenvalue problem (e.g. [46]).

For our heavy-traffic analysis, we will use a functional central limit theorem approach mainly developed by
Iglehart and Whitt; see [48] for an overview. This approach requires a continuous mapping argument, and the
interchange of steady-state and heavy-traffic limits. As will also turn out for our case, this is not always trivial;
see for example [14, 33].

As we study networks with general service speeds, our model also captures a class of queues with service
interruptions. Single-server queues with service interruptions have received some interest in the heavy-traffic
literature. In particular, in [30], a single-server queue is considered where the durations and the frequency of
the vacations, which occur at moments the queue empties, do not scale with the traffic intensity. Its heavy-traffic
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asymptotics are shown to be equivalent to those for similar queues without service interruptions, but have different
rates. This paper also considers queues with rare long service interruptions, i.e., queues where the durations
and frequency scale with the traffic intensity appropriately. Following this paper, queueing networks with rare
long service interruptions were studied in [8] and [48, Section 14.7]. As opposed to these models, our model
incorporates the possibility for the durations of consecutive service interruptions to be interdependent through the
Markovian random environment; see also [10]. Furthermore, the start of a service interruption in our model is not
restricted to a point in time the queue empties, and the durations do not depend on the traffic intensity.

For the network we study in this paper, we find that the marginal workload, virtual waiting time and queue
length processes pertaining to a queue in isolation exhibit state-space collapse under heavy-traffic assumptions
and have exponential limiting distributions. Moreover, we show that the limiting distribution of the joint workload
process (as well as that of the virtual waiting time and the queue length processes) corresponds to the stationary
distribution of an N -dimensional semi-martingale reflected Brownian motion (SRBM) with state spaceRN+ . Such
an SRBM behaves like a standard N -dimensional Brownian motion in the non-negative orthantRN+ , but is pushed
back at the (N − 1)-dimensional boundaries of the orthant in a direction specified by the reflection matrix.

In many queueing networks, SRBMs arise as the heavy-traffic limit of the workload process, see e.g. [6].
As a result, approximations for queueing networks have been proposed by replacing the workload process with
an SRBM, as these so-called Brownian models require less restrictive assumptions than the classical results for
queueing networks and work particularly well when the system is heavily utilised (see e.g. [23]). Regarding the
stability of an SRBM, necessary and sufficient conditions are derived in [24] for a unique stationary distribution to
exist under certain assumptions of the reflection matrix. For general reflection matrices, necessary and sufficient
stability conditions are obtained in [7, 19] for the cases N = 2 and N = 3. As for the stationary distribution
itself, even when positive conclusions can be drawn about its existence, the computation of it is a hard problem
when N ≥ 2. It is shown in [25] that under rather strict assumptions on the reflection matrix and the covariance
matrix of the underlying Brownian motion, the stationary distribution has a product form, each marginal being
exponential. For N = 2, tail asymptotics for the stationary distribution are derived in [12, 13]. Conjectures on
the tail asymptotics for higher dimensions are given in [36]. For two-dimensional SRBMs in a wedge, necessary
and sufficient conditions are defined in [15] for the stationary density to be written as a finite sum of terms of
exponential product form.

In our case, the reflection matrix is an identity matrix, so that positive conclusions about the existence of a
stationary distribution can be drawn. However, computing this distribution is challenging. The conditions needed
for the stationary distribution to have a product form do not generally apply to our model, and results such as those
of [15] seem hard to translate to our setting. In this paper, we therefore use the numerical methods developed
in [11] for steady-state analysis of multi-dimensional SRBMs to analyse the joint limiting distribution of the
stationary workload process. This allows us to compute quantities such as the correlation coefficients between the
marginal components.

The rest of this paper is organised as follows. Section 2 describes the model in detail, gives the necessary
notation and gives several preliminary results. In Section 3, we derive the heavy-traffic limit for a properly scaled
workload process, and observe that the stationary distribution of the marginal workload processes converges to
an exponential distribution. Section 4 extends these results to heavy-traffic limits for the virtual waiting time and
queue length processes. Finally, in Section 5 we study how one can compute the joint distribution of the limiting
processes pertaining to the workloads, virtual waiting times and the queue lengths, by viewing these as SRBMs.

2 Notation and preliminaries

In this section, we introduce the notation used in this paper, and we present several preliminary results. In the
remainder of this paper, vectors and matrices are printed in bold face. Furthermore, 0 and 1 represent vectors of
appropriate size where each of the elements are equal to zero and one respectively.

We study the heavy-traffic asymptotics of a network consisting ofN parallel single-server queuesQ1, . . . , QN ,
each with its own dedicated arrival stream. Type-i customers arrive at Qi according to a Poisson process with rate
λi and have a service requirement distributed according to a random variable Bi with finite first two moments
E[Bi] and E[B2

i ]. In particular, we represent by Bi,j the service requirement of the j-th arriving type-i customer.
Further, we denote by {Ni(t), t > 0} a unit-rate Poisson process. Then, the cumulative workload that enters Qi
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during the time interval [0, t) is given by

Vi(λit) =

Ni(λit)∑
j=1

Bi,j ,

where the arrival rate is left as part of the argument, as this will prove to be useful for heavy-traffic scaling purposes
in the sequel. In the remainder of this paper, we will refer to {Vi(t), t ≥ 0} as the arrival process of Qi. The mean
corresponding to this arrival process is given by mV,i = E[Vi(1)] = E[Bi]. Similarly, the variance is given by
σ2
V,i = Var[Vi(1)] = E[Ni(1)]Var[Bi] + Var[Ni(1)]E[Bi]

2 = Var[Bi] + E[Bi]
2 = E[B2

i ]. Note that the arrival
process has stationary and independent increments, so that t−1E[Vi(t)] = mV,i and t−1Var[Vi(t)] = σ2

V,i for any
t > 0.

The service speeds of the N servers serving Q1, . . . , QN may vary over time and are mutually dependent.
More specifically, the joint process of these service speeds is modulated by a single, irreducible, stationary,
continuous-time Markov chain {Φ(t), t ≥ 0} with finite state space S and invariant probability measure π =
(πi)i∈S . When this Markov chain resides in the state ω ∈ S, the server of Qi drains its queue at service rate
φi(ω). We have as a consequence that the workload that the server of Qi has been capable of processing during
the time interval [0, t) is represented by

Ci(t) =

∫ t

s=0

φi(Φ(s))ds.

Note that, as the Markov process {Φ(t), t ≥ 0} is in stationarity, the increments of the process {Ci(t), t ≥ 0} are
also stationary. The mean corresponding to the process {Ci(t), t ≥ 0} is given by

mC,i = E[Ci(1)] =

∫ 1

s=0

∑
ω∈S

φi(ω)P(Φ(s) = ω)ds =
∑
ω∈S

φi(ω)πω.

Since the Ci-process has stationary increments, it holds that t−1E[Ci(t)] = mC,i for any t > 0. We denote the
asymptotic variance limt→∞ t−1Var[Ci(t)] by σ2

C,i. Similarly, the long-run time-averaged covariance between
the service speed processes of the servers at Qi and Qj is represented by γCi,j = limt→∞

1
tCov[Ci(t), Cj(t)].

Computing expressions for σ2
C,i and γCi,j is not trivial. We focus on this problem in Section 5.2.

A queue Qi is said to be ‘stable’ if the expected amount of arriving work λiE[Bi] per time unit is smaller than
the average workload mC,i its server is capable of processing per time unit. Equivalently, Qi is stable if its load,
defined as ρi = λiE[Bi]

mC,i
, is less than one. We are interested in the performance of the network of queues in heavy

traffic; i.e., the case for which the arrival rates λ1, . . . , λN are scaled so that (ρ1, . . . , ρN )→ 1. For this purpose,
it is convenient to introduce the index r. In the r-th system, each arrival rate λi is taken so that βi(1− ρi)−1 = r,
where the βi-parameters control the rate at which the arrival rates are scaled by r, while the series of service
requirements Bi,1, Bi,2, . . . and the Ci-processes are not scaled by r. The heavy-traffic limit for any performance
measure of the system corresponds to the limit r → ∞. We denote by λi,r the arrival rate of type-i customers
corresponding to the r-th system, so that λi,r → mC,i

E[Bi] when r → ∞. For notational convenience, we write for
two functions f(r) and g(r) that f(r) = o(g(r)) if limr→∞ f(r)/g(r) = 0.

Let {W r(t) = (W1,r(t), . . . ,WN,r(t)), t ≥ 0} be the process that describes the workload in each queue of
the r-th system at time t and letW r = (W1,r, . . . ,WN,r) = W r(∞) denote the workload in the system in steady
state. The processes {Dr(t), t ≥ 0} and {Lr(t), t ≥ 0} as well asDr and Lr are similarly defined for the virtual
waiting time (the delay faced by an imaginary customer arriving at time t) and the queue length (excluding the
customer in service) respectively.

The workload Wi,r(t) present in Qi at time t can be represented by the one-sided reflection of the net-input
process {Vi(λi,rt)− Ci(t), t ≥ 0}, under the assumption that Wi,r(0) = 0:

Wi,r(t) = Vi(λi,rt)− Ci(t)− inf
s∈[0,t]

{Vi(λi,rs)− Ci(s)}

= sup
s∈[0,t]

{Vi(λi,rt)− Vi(λi,rs)− (Ci(t)− Ci(s))}.

As the joint process {(C1(t), . . . , CN (t)), t ≥ 0} has stationary increments, we have that the vector
(
C1(t) −

C1(s), . . . , CN (t) − CN (s)
)

is in distribution equal to
(
C1(t − s), . . . , CN (t − s)

)
. By noting that the joint
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process {(V1(λ1,rt), . . . , VN (λN,rt)), t ≥ 0} has reversible increments, substituting u = t− s and subsequently
taking the limit u→∞ (the steady-state limit), we obtain

W r
d
=
(

sup
u≥0
{V1(λ1,ru)− C1(u)}, . . . , sup

u≥0
{VN (λN,ru)− CN (u)}

)
, (1)

where d
= means equality in distribution. We are particularly interested in the distribution of the scaled workload

W̃ r = W r

r (as well as the similarly defined scaled virtual waiting time D̃r and scaled queue length L̃r) in heavy
traffic, i.e., as r → ∞. It is easily seen from (1) that the scaled workload can be written in terms of the similarly
scaled net-input process. After scaling time by a factor r2, we have

W̃ r
d
=
(

sup
t≥0

{V1(λ1,rr
2t)− C1(r2t)

r

}
, . . . , sup

t≥0

{VN (λN,rr
2t)− CN (r2t)

r

})
. (2)

Due to the time scaling by r2, we can obtain heavy-traffic limits for the joint scaled net-input process involved in
(2) using the functional central limit theorem (cf. [48]). In particular, we have that

{(V1(λ1,rr
2t)− E[V1(λ1,rr

2t)]√
λ1,rr

, . . . ,
VN (λN,rr

2t)− E[VN (λN,rr
2t)]√

λN,rr

)
, t ≥ 0

}
d→{ZV (t), t ≥ 0} (3)

and {(C1(r2t)− E[C1(r2t)]

r
, . . . ,

Cn(r2t)− E[CN (r2t)]

r

)
, t ≥ 0

}
d→{ZC(t), t ≥ 0}, (4)

as r → ∞, where {ZV (t), t ≥ 0} and {ZC(t), t ≥ 0} are N -dimensional Brownian motions. As the arrival
processes {Vi(t), t ≥ 0}, i = 1, . . . , N are independent, {ZV (t), t ≥ 0} has zero drift and covariance matrix
ΓV = diag(σ2

V,1, . . . , σ
2
V,N ). The Brownian motion {ZC(t), t ≥ 0} has zero drift, and covariance matrix ΓC

with elements ΓCi,j = γCi,j . To derive a heavy-traffic limit for the joint scaled net-input process based on (3) and
(4), note that E[Vi(λi,rr

2t)] = λi,rr
2E[Bi]t and E[Ci(r

2t)] = mC,ir
2t, so that

E[Ci(r
2t)]− E[Vi(λi,rr

2t)]

r
=
mC,ir

2t− λi,rr2E[Bi]t

r
= βimC,it, (5)

where the last equality follows from that fact that r = βi(1− λi,rE[Bi]
mC,i

)−1. By combining (3) and (4) with (5), it
then follows that, as r →∞,{(V1(λ1,rr

2t)− C1(r2t)

r
, . . . ,

VN (λN,rr
2t)− CN (r2t)

r

)
, t ≥ 0

}
d→{Z(t), t ≥ 0}, (6)

where {Z(t) = (Z1(t), . . . , ZN (t)), t ≥ 0} is an N -dimensional Brownian motion with drift vector µ =
(−β1mC,1, . . . ,−βNmC,N ) and covariance matrix

Γ = diag(
mC,1

E[B1]
σ2
V,1, . . . ,

mC,N

E[BN ]
σ2
V,N ) + ΓC . (7)

For the sake of notational convenience, we write

Z = (sup
t≥0
{Z1(t)}, . . . , sup

t≥0
{ZN (t)}), (8)

and we denote its i-th element by Zi. It is tempting to conclude from a combination of (2) and (6) that W̃ r

converges to Z in distribution as r → ∞ by use of a continuous mapping argument. However, complications
arise since the supremum applied to càdlàg functions on the infinite domain [0,∞) is not necessarily a continuous
functional. To overcome this, we have to justify the interchange of the heavy-traffic and the steady-state limits.
This forms the main result of the next section.
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3 Heavy-traffic asymptotics of the workload

In this section, we derive the following heavy-traffic asymptotic result for the scaled workload W̃ r.

Theorem 3.1. For the scaled workload vector W̃ r, we have

W̃ r
d→Z,

as r →∞, with Z defined in Section 2.

In order to prove this theorem, we need some auxiliary results. As mentioned before, Theorem 3.1 cannot be
proved directly by the use of the continuous mapping theorem, as the supremum of càdlàg functions on an infinite
domain [0,∞) is not necessarily a continuous functional. However, it is continuous in case of a finite domain
[0,M), M ∈ R+; see e.g. [48]. The proof uses this fact in combination with an additional result stated in Lemma
3.4. To prove Lemma 3.4, we start with two auxiliary results in Lemmas 3.2 and 3.3 that establish upper bounds
for the tail probabilities

P( sup
t∈[0,T )

{Vi(λi,rt)− E[Vi(λi,r)]t} ≥ x) and P( sup
t∈[0,T )

{E[Ci(1)]t− Ci(t)} ≥ x)

respectively, for any i ∈ {1, . . . , N} and r, x, T ∈ R+.

Lemma 3.2. For the arrival process {Vi(λi,r), t ≥ 0} of Qi, we have that

P( sup
t∈[0,T )

{Vi(λi,rt)− E[Vi(λi,r)]t} ≥ x) ≤ λi,rE[B2
i ]T

x2
,

for any r, x, T ∈ R+.

Proof. As the process {Vi(λ1t)− E[Vi(λi,r)]t, t ≥ 0} is a right-continuous martingale, we have that

P( sup
t∈[0,T )

{Vi(λi,rt)− E[Vi(λi,r)]t} ≥ x) ≤ P( sup
t∈[0,T )

{|Vi(λi,rt)− E[Vi(λi,r)]t|} ≥ x)

≤
supt∈[0,T ){E[(Vi(λi,rt)− E[Vi(λi,r)]t)

2]}
x2

=
supt∈[0,T ){Var[Vi(λi,rt)]}

x2
,

where the second inequality follows from Doob’s inequality (cf. [40, Theorem II.1.7]). Since Var[Vi(λi,rt)] =
λi,rσ

2
V,it is strictly increasing in t, the lemma follows.

Lemma 3.3. For the service speed process {Ci(t), t ≥ 0} pertaining to the server of Qi, there exist for every
x, T ∈ R+ a set of positive real constants c1, c2, c3 and c4 such that

P( sup
t∈[0,T )

{E[Ci(1)]t− Ci(t)} ≥ x) ≤ c1T

x2
+
c2
T

+
c3T

ec4
√
x
.

Proof. The lemma is a consequence of Proposition 1 in [28]. To apply this proposition, define h = maxω∈S φi(ω),
H(t) = ht − Ci(t) and b = E[H(1)] = h − E[Ci(1)], so that P(supt∈[0,T ){E[Ci(1)]t − Ci(t)} > x) =
P(supt∈[0,T ){H(t) − bt} > x). Note that {H(t), t ≥ 0} represents increments of the regenerative process
{h− φi(Φ(t)), t ≥ 0}. This process regenerates for example every time the Markov process {Φ(t), t ≥ 0} enters
the reference state ω = Φ(0). We denote the n-th of such regeneration times by Tn. Furthermore, we define
γ∗n = supTn−1≤t≤Tn{H(t)−H(Tn−1)} and νn = Tn − Tn−1. Note that ν1, ν2, . . . can be seen as i.i.d. samples
from a random variable Y , and represent return times of state ω in the Markov chain {Φ(t), t ≥ 0}. Proposition 1
in [28] now implies that, for all x, T ∈ R+, there exist positive real constants d1, d2, d3 and d4 such that

P( sup
t∈[0,T )

{E[Ci(1)]t− Ci(t)} > x) ≤ d1(e−d2
x2

T + e−d3T + Te−d4
√
x), (9)

if E[e
√

sup0≤t≤Y {H(t)}] < ∞ and E[e
√
γ∗n ] < ∞ for any n ∈ N+. This statement follows by substituting the

variables Bt and Q(x) in [28, Proposition 1] by H(t) as defined above and
√
x respectively. The lemma is a
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consequence from (9) by noting that e−x < x−1 for all x > 0 and taking c1 = d1d
−1
2 , c2 = d1d

−1
3 , c3 = d1

and c4 = d4, if the necessary conditions mentioned hold. To show that this is the case, observe that H(t) is
non-decreasing in t and takes values from [0, ht]. By combining this with the fact that

√
x < εx+ 1

ε for any x ≥ 0

and ε > 0, we have that E[e
√

sup0≤t≤Y {H(t)}] = E[e
√
H(Y )] ≤ E[e

√
hY ] < E[eεhY+ε−1

] = eε
−1E[eεhY ] for any

ε > 0. Similarly, as γ∗n ≤ hνn for any n > 0, we have that E[e
√
γ∗n ] ≤ E[e

√
hνn ] = E[e

√
hY ] < E[eεhY+ε−1

] =

eε
−1E[eεhY ] for all n ∈ N and any ε > 0.

It is thus left to show that there exists a value ε > 0 for which E[eεY ] < ∞. For this purpose, note that the
regeneration time Y constitutes the return time of state ω in the Markov chain {Φ(t), t ≥ 0}. Thus, Y can be
decomposed into the period of time between the entry into state ω at the start of the regeneration period and the
subsequent departure from state ω, which we denote by Y1, and the period of time between this departure and
the next entry into state s, which we denote by Y2. The former period Y1 is exponentially distributed with a rate
α that equals the total outgoing rate of state ω in the Markov process {Φ(t), t ≥ 0}, so that E[eεY1 ] = α

α−ε for
ε < α. The latter period Y2 is easily seen to be stochastically smaller than a geometrically distributed random
variable, denoted by G, with success parameter q = minω′∈S\ω P(Φ(t + 1) = ω | Φ(t) = ω′), t > 0. As
the Markov process {Φ(t), t ≥ 0} is irreducible and has a finite state space, q must be positive. Therefore,
E[eεY2 ] ≤ E[eεG] = qeε

1−(1−q)eε for ε < − log(1 − q). Summarising, as Y1 and Y2 are mutually independent, we
have that

E[eεY ] = E[eεY1 ]E[eεY2 ] ≤ α

α− ε
qeε

1− (1− q)eε
<∞

for 0 < ε < min{α,− log(1− q)}. This concludes the proof.

Based on the results obtained in Lemmas 3.2 and 3.3, we can now establish the final auxiliary result needed to
prove Theorem 3.1 in the following lemma.

Lemma 3.4. The scaled net-input process {Vi(λi,rr
2t)−Ci(r2t)
r , t > 0} satisfies

lim
M→∞

lim
r→∞

P( sup
t≥M

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ x) = 0

for all x ∈ R+.

Proof. The first part of the proof is inspired by the proof of (20) in [41]. For any R, let bi,r =
E[Vi(λi,r)]+E[Ci(1)]

2 ,
so that bi,r − E[Vi(λi,r)] = E[Ci(1)]− bi,r =

mC,i−λi,RE[Bi]
2 = 1

2βimC,ir
−1. Due to the subadditivity property

of the supremum operator, we have for any M > 0 that

P( sup
t≥M

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ x)

≤ P( sup
t≥M

{Vi(λi,rr2t)− bi,rr2t
r

}
+ sup
t≥M

{bi,rr2t− Ci(r2t)
r

}
≥ x)

≤ P( sup
t≥M
{Vi(λi,rr2t)− bi,rr2t}+ sup

t≥M
{bi,rr2t− Ci(r2t)} ≥ rx)

≤ P( sup
t≥M
{Vi(λi,rr2t)− bi,rr2t} ≥ 0) + P( sup

t≥M
{bi,rr2t− Ci(r2t)} ≥ 0)

≤
∞∑
j=0

P( sup
t∈[2jM,2j+1M)

{Vi(λi,rr2t)− bi,rr2t} ≥ 0) +

∞∑
j=0

P( sup
t∈[2jM,2j+1M)

{bi,rr2t− Ci(r2t)} ≥ 0)

=

∞∑
j=0

P( sup
t∈[2jr2M,2j+1r2M)

{Vi(λi,rt)− E[Vi(λi,r)]t−
1

2
βimC,ir

−1t} ≥ 0)

+

∞∑
j=0

P( sup
t∈[2jr2M,2j+1r2M)

{E[Ci(1)]t− Ci(t)−
1

2
βimC,ir

−1t} ≥ 0).

As t runs over [2jr2M, 2j+1r2M ] in the last expression, we have that the negative terms − 1
2βimC,ir

−1t have a
value of at most− 1

2βimC,ir
−12jr2M = −2j−1βimC,irM . Replacing the negative terms by these upper bounds,
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moving them to the right-hand sides of the inequalities, and consequently enlarging the intervals of the suprema
to also include [0, 2jr2M), we obtain

P( sup
t≥M

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ x)

≤
∞∑
j=0

P( sup
t∈[0,2j+1r2M)

{Vi(λi,rt)− E[Vi(λi,r)]t} ≥ 2j−1βimC,irM)

+

∞∑
j=0

P( sup
t∈[0,2j+1r2M)

{E[Ci(1)]t− Ci(t)} ≥ 2j−1βimC,irM)

≤
∞∑
j=0

λi,rE[B2
i ]2j+1r2M

22j−2β2
im

2
C,ir

2M2
+

∞∑
j=0

( c12j+1r2M

22j−2β2
im

2
C,ir

2M2
+

c2
2j+1mC,ir2M

+
c32j+1r2M

ec4
√

2j−1βimC,irM

)
for certain positive constants c1, c2, c3 and c4. The last inequality follows from Lemmas 3.2 and 3.3. Simplifying
this expression leads to

P( sup
t≥M

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ x) ≤ 16(λi,rE[B2

i ] + c1)

β2
im

2
C,iM

+
c2

mC,ir2M
+

∞∑
j=0

fi,j(r,M), (10)

where fi,j(r,M) := c32j+1r2Me−c4
√

2j−1βimC,irM . The lemma now follows trivially from (10) by taking the
limit r →∞ and subsequently the limit M →∞, if limr→∞

∑∞
j=0 fi,j(r,M) = 0.

We now show that this condition holds. The derivative of fi,j with respect to r reads

∂

∂r
fi,j(r,M) = c32jrMe−hi,j(M)

√
r(4− hi,j(M)

√
r),

where hi,j(M) := c4
√

2j−1βimC,iM . Note that ∂
∂rfi,j(r,M) is negative if and only if 4 − hi,j(M)

√
r is

negative. Due to the monotonicity of hi,j(M) and
√
r in j and r respectively, there exist positive constants j0 and

r0, such that for any j ≥ j0 and r ≥ r0 the latter statement holds true. Thus, there exist positive constants j0 and
r0, so that supr≥r∗ fi,j(r,M) = fi,j(r∗,M) for every r∗ ≥ r0. This leads to an upper bound for

∑∞
j=0 fi,j(r,M)

when r ≥ r∗:

∞∑
j=0

fi,j(r,M) =

j0−1∑
j=0

fi,j(r,M) +

∞∑
j=j0

fi,j(r,M) ≤
j0−1∑
j=0

fi,j(r,M) +

∞∑
j=j0

fi,j(r∗,M). (11)

In the limiting case of r →∞, we can apply (11) with r∗ taken arbitrarily large so that the condition r0 ≤ r∗ ≤ r
still holds. By doing this, we obtain

lim
r→∞

∞∑
j=0

fi,j(r,M) ≤ lim
r→∞

j0−1∑
j=0

fi,j(r,M) +

∞∑
j=j0

lim
r∗→∞

fi,j(r∗,M).

Combining this inequality with the fact that limr→∞ fi,j(r,M) = 0 results in limr→∞
∑∞
j=0 fi,j(r,M) ≤ 0.

We also trivially have that limr→∞
∑∞
j=0 fi,j(r,M) ≥ 0 due to the non-negativity of fi,j(r,M) for any i ∈

{1, . . . , n}, j ∈ N+ and r,M ∈ R+. This results in the fact that limr→∞
∑∞
j=0 fi,j(r,M) = 0, which concludes

the proof.

Using these auxiliary results, we can now prove Theorem 3.1.

Proof of Theorem 3.1. Using the representation of the distribution of W̃ r given in (2), it is clear that it is enough
to show that the tail probability of the right-hand side of (2) in the heavy-traffic limit r → ∞ coincides with the
tail probability of Z, i.e.:

lim
r→∞

P(

N⋂
i=1

{
sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
) = P(

N⋂
i=1

{
sup
t≥0
{Zi(t)} ≥ xi

}
) (12)
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for all x1, . . . , xN > 0. First, we obtain a lower bound for the left-hand side of (12):

lim
r→∞

P(

N⋂
i=1

{
sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
)

≥ lim
r→∞

P(

N⋂
i=1

{
sup

t∈[0,M)

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
) = P(

N⋂
i=1

{
sup

t∈[0,M)

{Zi(t)} ≥ xi
}

) (13)

for all M ∈ R+, where the inequality follows from the monotonicity property of the supremum functional, and
the equality follows from (6) together with a combination of the continuous mapping theorem and the continuity
property of the supremum operator applied to càdlàg-functions on the finite domain [0,M).

Second, we derive an upper bound for the left-hand side of (12). Denote by EM,i the event that

sup
t∈[0,M)

{Vi(λi,rr2t)− Ci(r2t)
r

}
= sup

t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
,

or colloquially speaking, the event that the scaled net-input process of Qi attains its largest value before time
t = M . Furthermore, we denote by EcM,i its complementary event. By De Morgan’s law, we have that

P(

N⋂
i=1

{
sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
) = P(

N⋂
i=1

{
sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi;EM,i

}
)

+ P(

N⋂
i=1

{
sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
;

N⋃
i=1

EcM,i). (14)

An upper bound for the first term of the right-hand side in (14) is given by

P(

N⋂
i=1

{
sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi;EM,i

}
) ≤ P(

N⋂
i=1

{
sup

t∈[0,M)

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
)

(15)

for all M ∈ R+. For the second term of the right-hand side in (14), we have that

P(

N⋂
i=1

{
sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
;

N⋃
i=1

EcM,i)

≤
N∑
i=1

P(sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi;EcM,i) ≤

N∑
i=1

P( sup
t≥M

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi), (16)

for allM ∈ R+. Thus, by combining (14)–(16) and taking the limit r →∞, we obtain the following upper bound
for the right-hand side of (14):

lim
r→∞

P(

N⋂
i=1

{
sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
)

≤ P(

N⋂
i=1

{
sup

t∈[0,M)

{Zi(t)} ≥ xi
}

) +

N∑
i=1

P( sup
t≥M

{Vi(λi,rr2t)− Ci(r2t)
R

}
≥ xi). (17)

When taking the limit M → ∞, we have that the lower bound for the left-hand side of (12) established
in (13) converges to P(

⋂N
i=1

{
supt∈[0,∞){Zi(t)} ≥ xi

}
). The upper bound found in (17) also converges to

this expression, as the second term in the right-hand side of (17) vanishes due to Lemma 3.4. From this, (12)
immediately follows, which proves the theorem.

Remark 3.1. The joint distribution of the vector Z is not straightforward to derive explicitly. As a result, it is
hard to give an explicit characterisation of the distribution of the joint workload vector in heavy traffic. However,
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explicit expressions for the marginal distribution of Zi are easier to obtain. Note that Zi = supt≥0 Zi(t) is the all-
time supremum of a one-dimensional Brownian Motion with negative drift−βimC,i and variance mC,i

E[Bi]σ
2
V,i+σ

2
C,i.

It is well-known that the all-time supremum of a Brownian Motion with negative drift −a and variance b is
exponentially ( 2ab ) distributed. Therefore, the distribution of the steady-state scaled workload W̃i,r present in Qi

converges to an exponential distribution with rate 2βi

(
σ2
V,i

E[Bi] +
σ2
C,i

mC,i

)−1
as r →∞. We will study the derivation

of the joint distribution of W̃ r as r →∞ in Section 5.3.

4 Extension to virtual waiting times and queue lengths

In Section 3, we derived a heavy-traffic limit theorem for the scaled workload vector W̃ r. In this section, we
extend this result to heavy-traffic limits for the distributions of the virtual waiting-time vector D̃r and the queue-
length vector L̃r by regarding the joint distribution of D̃r and W̃ r as well as that of L̃r and W̃ r in Section 4.1
and Section 4.2 respectively. It turns out that, when r →∞, both D̃r and L̃r are elementwise equal to W̃R up to
a multiplicative constant.

4.1 Heavy-traffic asymptotics of the virtual waiting time

We now study the distribution of the scaled virtual waiting time in heavy traffic. First, we obtain the tail proba-
bility of the joint distribution of D̃r and W̃ r as r → ∞ in Proposition 4.1, using the simple fact that the event
{Di,r(u) > si} is tantamount to the event {Wi,r(u) > Ci(si) − Ci(u)}, as explained below. Based on this, we
obtain an extension of Theorem 3.1 for the scaled virtual waiting time in Corollary 4.2.

Proposition 4.1. The tail probability of the limiting joint distribution of D̃r and W̃ r satisfies

lim
r→∞

P(D̃1,r ≥ s1, . . . , D̃N,r ≥ sN , W̃1,r ≥ t1, . . . , W̃N,r ≥ tN )

= P(Z1 ≥ max{mC,1s1, t1}, . . . , ZN ≥ max{mC,NsN , tN})

with Z1, . . . , ZN defined in Section 2.

Proof. To derive this result, we first study the relation between D̃r and W̃ r. If the waiting time faced by an
imaginary type-i customer arriving at time u is longer than si time units, the workload present in Qi just before
u is larger than Ci(si)− Ci(u). This is evident, since the latter number represents the amount of work the server
of Qi is able to process in the si time units following time u. In other words, {Di,r(u) > si} is tantamount to the
event {Wi,r(u) > Ci(si)− Ci(u)} for i = 1, . . . , N . In terms of tail probabilities, this leads to

P(D1,r(u) > s1, . . . , DN,r(u) > sN ,W1,r(u) > t1, . . . ,WN,r(u) > tN )

= P(W1,r(u) > max{C1(s1)− C1(u), t1}, . . . ,WN,r(u) > max{CN (sN )− CN (u), tN}).

Thus, in steady state (i.e., u→∞), we have

P(D1,r > s1, . . . , DN,r > sN ,W1,r > t1, . . . ,WN,r > tN )

= P(W1,r > max{C1(s1), t1}, . . . ,WN,r > max{CN (sN ), tN}). (18)

Based on this, we obtain an expression for the tail probability of the joint distribution of D̃r and W̃ r:

P(D̃1,r ≥ s1, . . . , D̃N,r ≥ sN , W̃1,r ≥ t1, . . . , W̃N,r ≥ tN )

= P(D1,r ≥ rs1, . . . , DN,r ≥ rsN ,W1,r ≥ rt1, . . . ,WN,r ≥ rtN )

= P(W1,r ≥ max{C1(rs1), rt1} . . . ,WN,r ≥ max{CN (rsN ), rtN})

= P(W̃1,r ≥ max
{C1(rs1)

r
, t1

}
, . . . , W̃N,r ≥ max

{CN (rsN )

r
, tN

}
), (19)

where we used (18) in the second equality.
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In the remainder of the proof, we focus on showing that

lim
r→∞

P(W̃1,r ≥ max
{C1(rs1)

r
, t1

}
, . . . , W̃N,r ≥ max

{CN (rsN )

r
, tN

}
)

= P(Z1 ≥ max{mC,1s1, t1}, . . . , ZN ≥ max{mC,NsN , tN}), (20)

which combined with (19) directly implies the result to be proved. To this end, we observe that by viewing
{Ci(t), t ≥ 0} as a renewal-reward process with the times where {Φ(t), t ≥ 0} enters a certain reference state as
renewal epochs, we have that r−1Ci(rsi) → mC,isi almost surely as r → ∞ due to standard results in renewal
theory. Denote by F εi,r for any ε > 0 the event that 1

rCi(rsi) ∈ [mC,isi − ε,mC,isi + ε] and let F ε,ci,r be its
complementary event. Thus, limr→∞ P(F εi,r) = 1. Similarly to the proof of Theorem 3.1, we now partition all
combinations of events into

⋂N
i=1 F

ε
i,r, the case where each of the events F ε1,r, . . . , F

ε
N,r holds true, and

⋃N
i=1 F

ε,c
i,r ,

the case where at least one of these events does not hold true. Then, we have as a result of De Morgan’s law that

P(W̃1,r ≥ max
{C1(rs1)

r
, t1

}
, . . . , W̃N,r ≥ max

{CN (rsN )

r
, tN

}
)

= P(W̃1,r ≥ max
{C1(rs1)

r
, t1

}
, . . . , W̃N,r ≥ max

{CN (rsN )

r
, tN

}
;

N⋂
i=1

F εi,r) + o(1).

Letting r →∞ in this expression, using the definition of the event F εi,r and applying Theorem 3.1, we obtain the
following lower bound for the left-hand side of (20):

lim
r→∞

P(W̃1,r ≥ max
{C1(rs1)

r
, t1

}
, . . . , W̃N,r ≥ max

{CN (rsN )

r
, t1

}
)

≥ P(Z1 ≥ max{mC,1s1 + ε, t1}, . . . , ZN ≥ max{mC,NsN + ε, tN}). (21)

Similarly, an upper bound for the left-hand side of (20) is given by

lim
r→∞

P(W̃1,r ≥ max
{C1(rs1)

r
, t1

}
, . . . , W̃N,r ≥ max

{CN (rsN )

r
, t1

}
)

≤ P(Z1 ≥ max{mC,1s1 − ε, t1}, . . . , ZN ≥ max{mC,NsN − ε, tN}). (22)

In Remark 3.1, we found that Zi is exponentially distributed for i = 1, . . . N , so that the joint distribution of
Z has no discontinuity points. In particular, there is no discontinuity in the point (mC,1s1, . . . ,mC,NsN ). As
a consequence, by taking the limit ε → 0 in the right-hand sides of (21) and (22), we obtain (20), which, as
explained above, proves the proposition.

From Proposition 4.1, the heavy-traffic limit for the virtual waiting time follows in the following corollary.

Corollary 4.2. For the scaled virtual waiting time vector D̃r, it holds that

D̃r
d→
( 1

mC,1
, . . . ,

1

mC,N

)
Z,

as r →∞, with Z defined in Section 2.

Proof. This is an immediate result from Proposition 4.1 by taking t1 = . . . = tN = 0.

Remark 4.1. Similar to the observations of Remark 3.1, explicit expressions for the joint distribution of D̃r as
r → ∞ are hard to derive. However, again an explicit characterisation for the marginal distribution of the scaled
virtual waiting time in a single queue as r →∞ is easier to obtain. By Theorem 3.1 and Corollary 4.2, the heavy-
traffic distributions of D̃r and W̃ r only differ elementwise by the multiplicative factors 1

mC,i
, i = 1, . . . , N . Due

to this, it follows from Remark 3.1 that the distribution of D̃i,r converges to an exponential distribution with rate

2βi

(
mC,iσ

2
V,i

E[Bi] + σ2
C,i

)−1
as r →∞ for i = 1, . . . , N . We will study the derivation of the joint distribution of D̃r

as r →∞ in Section 5.3.
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4.2 The joint queue-length distribution

In this section, we obtain an extension of Theorem 3.1 for the scaled steady-state queue length L̃r in heavy traffic.
Let BRi,r be the remaining service requirement of a type-i customer in service in the r-th system if Li,r > 0, and
zero otherwise. It is then trivially seen that

W r = (BR1,r, . . . , B
R
N,r) +

( L1,r∑
j=1

B̂1,j , . . . ,

LN,r∑
j=1

B̂N,j

)
(23)

for all i > 0, where B̂i,j represents the service requirement of the waiting customer in the j-th waiting position of
Qi and is distributed according toBi. These service requirements are mutually independent as well as independent
fromW r and Lr. Note that B̂i,j is defined differently from Bi,j , which we defined in Section 2 to be the service
requirement of the j-th arriving type-i customer since the start of the queueing process. The scaled version of (23)
is given by

W̃ r = (B̃R1,r, . . . , B̃
R
N,r) +

1

r

( rL̃1,r∑
j=1

B̂1,j , . . . ,

rL̃N,r∑
j=1

B̂N,j

)
, (24)

where B̃Ri,r = 1
rB

R
i,r for i = 1, . . . , N . It is intuitively tempting to conclude that (B̃R1,r, . . . , B̃

R
N,r) → 0 as

r → ∞, and based on that, conclude that W̃ r and L̃r are equal elementwise up to a multiplicative constant.
However, this is not straightforward, since, for example, L̃r and (B̃R1,r, . . . , B̃

R
N,r) are not independent. We make

these results rigorous in this section. Inspired by [50, Proposition 1], we first obtain another representation for the
joint distribution of L̃i,r and W̃i,r for a single queue Qi in Lemma 4.3. Based on this result, we derive the heavy-
traffic asymptotics for (L̃i,r, W̃i,r, B̃

R
i,r) in Lemma 4.4, which imply that B̃Ri,r → 0 as r → ∞. We subsequently

conclude that (B̃R1,r, . . . , B̃
R
N,r) → 0 as r → ∞ and derive the joint distribution of L̃r and W̃ r as r → ∞ in

Proposition 4.5. From this, an extension of Theorem 3.1 for the scaled queue length L̃r follows in Corollary 4.6.
In order to construct an additional representation for the joint distribution of L̃i,r and W̃i,r, we need to intro-

duce some additional notation. Denote by W r
i,n and Lri,n the workload present in Qi and the queue length of Qi

respectively in the r-th system, just before the n-th arrival of a type-i customer. Furthermore, Ari,j refers to the
time between the j-th and the j + 1-st arriving type-i customer in the r-th system, so that SA,ri,n =

∑n
j=1A

r
i,j

and SBi,n =
∑n
j=1Bi,j represent the cumulative series of interarrival times and service requirements of type-i

customers. By construction of the heavy-traffic scaling, Ari,j
d→Ai,j and E[Ari,j ] → E[Ai,j ] as r → ∞, where

Ai,j are i.i.d. samples from an exponential
(
mC,i
E[Bi]

)
distribution. Finally, we define Sri,n = SBi,n − Ci(S

A,r
i,n ). The

needed representation is now given in the following lemma.

Lemma 4.3. For any x, y > 0 and i = 1, . . . , N , the joint distribution of L̃i,r and W̃i,r satisfies

P(L̃i,r ≥ x; W̃i,r ≥ y) = P(Wi,R +Bi ≥ Ci(SA,ri,drxe);

r−1 max
{
Wi,r + Sri,drxe, max

j∈{1,...,drxe}
{Sri,drxe − S

r
i,j}
}
≥ y).

Proof. The proof is inspired by [50, Proposition 1]. Observe that, for any k ≥ 1 and n ≥ 1, the event {Lri,n+k ≥
k} coincides with the event that the workload the server atQi was capable of processing between the arrival of the
n-th and n + k-th customer, Ci(S

A,r
i,n+k−1) − Ci(SA,ri,n−1), does not exceed the sum W r

i,n + Bi,n of the workload
present in Qi just before the arrival of the n-th customer and the service requirement of this customer. Hence, we
have that

{Lri,n+k ≥ k} = {W r
i,n +Bi,n ≥ Ci(SA,ri,n+k−1)− Ci(SA,ri,n−1)}. (25)

Moreover, due to Lindley’s recursion W r
i,n+1 = max{W r

i,n + Sri,n − Sri,n−1, 0}, or W r
i,n+k = max{W r

i,n +
Sri,n+k−1 − Sri,n−1,maxj∈{0,...,k−1}{Si,n+k−1 − Si,n+j}}, we have for the event {W r

n+k ≥ y} for any y ≥ 0
that

{W r
n+k ≥ y} =

{
max

{
W r
i,n + Sri,n+k−1 − Sri,n−1, max

j∈{0,...,k−1}
{Sri,n+k−1 − Sri,n+j}

}
≥ y
}
. (26)
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By combining (25) and (26), taking probabilities, letting n → ∞ and observing that the vector (Lri,n,W
r
i,n)

weakly converges to (Li,r,Wi,r), we obtain

P(Li,r ≥ k;Wi,r ≥ y) = P(Wi,r +Bi ≥ Ci(SA,ri,k );

max
{
Wi,r + Sri,k, max

j∈{1,...,k}
{Sri,k − Sri,j}

}
≥ y),

for any k ≥ 1, y ≥ 0. By noting that P(L̃i,r ≥ x, W̃i,r ≥ y) = P(Li,r ≥ drxe, r−1Wi,r ≥ y), the desired
statement follows immediately.

Based on Lemma 4.3, we derive the heavy-traffic asymptotics of (L̃i,r, W̃i,r, B̃
R
i,r) in the following lemma.

This lemma directly implies that B̃Ri,r → 0 as r →∞.

Lemma 4.4. For any queue, the scaled steady-state queue length, workload and remaining service requirement
exhibit state-space collapse under heavy-traffic assumptions. In particular, we have that

(L̃i,r, W̃i,r, B̃
R
i,r)

d→
(

1

E[Bi]
, 1, 0

)
Zi

as r →∞ for any i ∈ {1, . . . , N}, with Zi defined in Section 2.

Proof. Again, the proof is inspired by [50, Proposition 1]. We first focus on the joint distribution of L̃i,r and W̃i,r.
Note that due to the strong law of large numbers, r−1SA,ri,drxe → E[Ai,j ]x = E[Bi]x

mC,i
almost surely as r → ∞.

Moreover, we have already seen in the proof of Proposition 4.1 that t−1Ci(t) → mC,i almost surely as t → ∞.
Consequently, we have that

Ci(S
A,r
i,drxe)

r
=
Ci(S

A,r
i,drxe)

SA,ri,drxe

SA,ri,drxe

r
→ E[Bi]x (27)

in probability as r → ∞. We further have due to the weak law of large numbers that r−1SBi,drxe → E[Bi]x, so
that r−1Sri,drxe → 0 and r−1 maxj∈{1,...,drxe}{Sri,drxe − S

r
i,j} → 0 as r → ∞. Let, for any ε > 0, Gεi,R denote

the event

{r−1Ci(SA,ri,drxe) ∈ [E[Bi]x− ε,E[Bi]x+ ε]; r−1SBi,drxe ∈ [E[Bi]x− ε,E[Bi]x+ ε];

r−1Sri,drxe ∈ [−ε, ε]; r−1 max
j∈{1,...,drxe}

{Sri,drxe − S
r
i,j} ∈ [0, ε]}.

Due to the convergence results above, limr→∞ P(Gεi,r) = 1, so that, because of the law of total probability,

P(L̃i,r ≥ x; W̃i,r ≥ y) = P(L̃i,r ≥ x; W̃i,r ≥ y;Gεi,r) + o(1).

A combination with Lemma 4.3 leads by taking the limit r →∞ to, since B̃i → 0 as r →∞,

lim
r→∞

P(W̃i,r ≥ max{E[Bi]x+ ε, y + ε})

≤ lim
r→∞

P(L̃i,r ≥ x; W̃i,r ≥ y) ≤ lim
r→∞

P(W̃i,r ≥ max{E[Bi]x− ε, y − ε}).

By first applying Theorem 3.1 on the left-hand side and the right-hand side, next noting that the distribution of Zi
has no discontinuity points (cf. Remark 3.1), and finally letting ε→ 0, we obtain

lim
r→∞

P(L̃i,r ≥ x; W̃i,r ≥ y) = P(Zi ≥ max{E[Bi]x, y}). (28)

It remains to consider the convergence of B̃Ri,r. We show that limr→∞ P(B̃Ri,r > δ) = 0 for all δ > 0, which
finalises the proof of the desired statement. Note that due to representation (24), we have that

P(B̃Ri,r > δ) = P(W̃i,r >
1

r

rL̃i,r∑
j=1

B̂i,j + δ). (29)
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Let Hε
i,r denote the event { 1n

∑n
j=1 B̂i,j ∈ (E[Bi] − ε,E[Bi] + ε) for all n ≥

√
r}. By using the law of total

probability and noting that limr→∞ P(Hε
i,r) = 1 due to the weak law of large numbers, we thus have similar to

earlier calculations that

P(B̃Ri,r > δ) = P(W̃i,r >
1

r

rL̃i,r∑
j=1

B̂i,j + δ;Hε
i,r) + o(1) = P(W̃i,r > L̃i,r

1

rL̃i,r

rL̃i,r∑
j=1

B̂i,j + δ;Hε
i,r) + o(1).

By taking the limit r →∞ and using the established convergence of L̃i,r, we obtain

lim
r→∞

P(W̃i,r > L̃i,r(E[Bi] + ε) + δ) ≤ lim
r→∞

P(B̃Ri,r > δ) ≤ lim
r→∞

P(W̃i,r > L̃i,r(E[Bi]− ε) + δ).

By letting ε→ 0 and noting, as before, that the limiting distribution of W̃i,r has no discontinuity points, this leads
to

lim
r→∞

P(B̃Ri,r > δ) = lim
r→∞

P(W̃i,r > L̃i,rE[Bi] + δ) = 0,

where the second equality follows from (28) for any δ > 0, which completes the proof.

Based on the previous results, we now obtain the limiting joint distribution of L̃r and W̃ r in the following
proposition.

Proposition 4.5. The tail probability of the limiting joint distribution of L̃r and W̃ r satisfies

lim
r→∞

P(L̃1,r ≥ s1, . . . , L̃N,r ≥ sN , W̃1,r ≥ t1, . . . , W̃N,r ≥ tN )

= P(Z1 ≥ min{E[B1]s1, t1}, . . . , ZN ≥ min{E[BN ]sN , tN}) (30)

with Z1, . . . , ZN defined in Section 2.

Proof. Equation (24) implies that the event {L̃i,r ≥ si} coincides with the event {W̃i,r ≥ B̃Ri,r + 1
r

∑rsi
j=1 B̂i,j},

as the B̂i,j can only take non-negative values. Thus, we have

P(L̃1,r ≥ s1, . . . , L̃N,r ≥ sN , W̃1,r ≥ t1, . . . , W̃N,r ≥ tN )

= P(W̃1,r ≥ max{B̃R1,r +
1

r

rs1∑
j=1

B̂1,j , t1}, . . . , W̃N,r ≥ max{B̃RN,r +
1

r

rsN∑
j=1

B̂N,j , tN}).

Let Hε
i,r be defined as in the proof of Lemma 4.4. Recall that limr→∞ P(

⋂N
i=1H

ε
i,r) = 1, so that due to the law

of total probability,

P(L̃1,r ≥ s1, . . . , L̃N,r ≥ sN , W̃1,r ≥ t1, . . . , W̃N,r ≥ tN )

= P(W̃1,r ≥ max{B̃R1,r + s1
1

rs1

rs1∑
j=1

B̂1,j , t1}, . . . , W̃N,r ≥ max{B̃RN,r + sN
1

rsN

rsN∑
j=1

B̂N,j , tN};
N⋂
i=1

Hε
i,r)

+ o(1).

Note that, according to Lemma 4.4, B̃Ri,r → 0 as r →∞ for i = 1, . . . , N , so that also (B̃R1,r, . . . , B̃
R
N,r)→ 0 as

r →∞. Letting r →∞ and exploiting the definition of Hε
i,r, we obtain

lim
r→∞

P(W̃1,r ≥ max{E[Bi] + ε, t1}, . . . , W̃N,r ≥ max{E[BN ] + ε, tN})

≤ lim
r→∞

P(L̃1,r ≥ s1, . . . , L̃N,r ≥ sN , W̃1,r ≥ t1, . . . , W̃N,r ≥ tN )

≤ lim
r→∞

P(W̃1,r ≥ max{E[B1]− ε, t1}, . . . , W̃N,r ≥ max{E[BN ]− ε, tN}).

By taking the limit ε → 0, an application of Theorem 3.1 and the notion that the distribution of Z has no
discontinuity points yields the desired result.
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Corollary 4.6. For the scaled queue length vector L̃r, it holds that

L̃r
d→
( 1

E[B1]
, . . . ,

1

E[BN ]

)
Z,

as r →∞, with Z defined in Section 2.

Proof. The desired statement follows immediately from Proposition 4.5 by taking t1 = . . . = tN = 0.

Remark 4.2. In line with the observations in Remarks 3.1 and 4.1, Corollary 4.6 does not straightforwardly lead
to explicit expressions for the limiting joint distribution of L̃r. However, explicit expressions for the limiting
marginal distribution of the scaled steady-state queue length of a single queue are available. Note that Lemma
4.4 implies that, for i = 1, . . . , N , L̃i,r and W̃i,r only differ elementwise up to a multiplicative constant 1

E[Bi] as

r →∞. It then follows immediately from the findings in Remark 3.1 that the distribution of L̃i,r converges to an

exponential distribution with rate 2βiE[Bi]
(
σ2
V,i

E[Bi] +
σ2
C,i

mC,i

)−1
as r → ∞. Note that this result can also be found

by an application of the distributional form of Little’s law (cf. [29]) on the distribution found for Di,r in Remark
4.1. We will study the derivation of the joint distribution of L̃r as r →∞ in Section 5.3.

5 Application to a two-layered network
In this section, we apply the results obtained so far in this paper to the manufacturing example of the LQN
mentioned in Section 1. As this particular LQN consists of two layers, we will also refer to this example as the
two-layered network. We first describe this two-layered network in more detail in Section 5.1 and show that this
particular model fits naturally in the general framework described in Section 2. Then, in Section 5.2, we study
the question of how to compute the covariance matrix Γ of the N -dimensional Brownian Motion Z based on this
example. More specifically, we obtain expressions for the covariance terms γCi,j , by using results from the literature
on Markov additive processes. Finally, we compute the limiting distributions of W̃ r, D̃r and L̃r. Doing so in an
exact fashion turns out to be hard. Therefore, we study how to numerically obtain the limiting distributions, by
viewing Z as an N -dimensional SRBM in Section 5.3.

5.1 Description of the two-layered network
The two-layered network is an extension of the machine-repair model and consists of N machines M1, . . . ,MN

as well as a single repairman R, see Figure 1. The second layer of this network constitutes the classical machine-
repair model, where each machine breaks down after a stochastic lifetime and the repairman repairs the machines
in the order of breakdown. In the event of a breakdown, the machine requires a stochastic amount of repair time
from the repairman. For this purpose, it moves to the repair buffer, where it will wait if the repairman is busy
repairing, otherwise repair will start instantly. Note that each machine can have its own lifetime and repair-time
distribution. Contrary to the classical machine-repair model, we assume that each machine Mi also processes
its own queue Qi of products at a service speed of one when it is operational. The products arriving at Qi do
so according to a Poisson (λi) process, and their individual service requirement Bi is generally distributed with
finite first two moments E[Bi] and E[B2

i ]. The products are served by their machine in the order of arrival. This
forms the first layer of the layered network. Observe that the downtimes of the machines are mutually correlated,
since the machines compete with each other for repair facilities in the second layer. Due to this correlation, exact
analysis for the queue lengths of arbitrarily loaded queues in the first layer is difficult.

The two-layered network fits the general model given in Section 2, provided that the lifetimes and repair
times of each machine follow a phase-type distribution. The equivalence between the first layer of the two-
layered network and the parallel single-server queues in the general model is immediate. To also fit the second
layer in the general framework, observe that the availability of the machines can be modelled naturally as a
continuous-time Markov chain, due to the phase-type nature of lifetimes and repair times. To reduce complexity
of upcoming calculations, we assume for the remainder of Section 5 that N = 2 and that the lifetime and repair-
time distributions of machine Mi are exponentially distributed with rate σi and νi respectively. In this case, the
state of the machines M1 and M2 is modelled by the continuous-time Markov chain {Φ(t), t ≥ 0} operating on
the state space S = {(U,U), (U,R), (R,U), (W,R), (R,W )}. A state ω = (ω1, ω2) ∈ S represents for each
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Figure 1: The two-layered model under consideration.

machine Mi its condition of being up (ωi = U ), in repair (ωi = R), or waiting in the repair buffer for repair
(ωi = W ) at time t. The generator matrixQ with elements qi,j , i, j ∈ S is given by

Q =


−σ1 − σ2 σ2 σ1 0 0

ν2 −ν2 − σ1 0 σ1 0
ν1 0 −ν1 − σ2 0 σ2
0 0 ν2 −ν2 0
0 ν1 0 0 −ν1

 .

The continuous-time Markov chain {Φ(t), t ≥ 0} is irreducible and aperiodic, so that its invariant probability
measure π is uniquely determined by the equations πQ = 0 and π1 = 1 and can be obtained explicitly in terms
of the model parameters σ1, σ2, ν1 and ν2. Since the machines drain their queues of products at service rate one
if they are operational (and zero otherwise), the connection with the general framework in Section 2 is completed
by choosing the state-dependent service speeds as φi(ω) = 1{ωi=U}, where 1{A} denotes the indicator function
on the event A.

5.2 Derivation of the covariance matrix
Now that the two-layered network is cast as a special instance of the general model given in Section 2, we show
how to compute expressions for the covariance matrix Γ of the N -dimensional Brownian motion Z completely in
terms of the model’s parameters. We do this based on the example of the two-layered network described in Section
5.1. However, the following methods can also be used to find the covariance matrix Γ for any instance of the
model given in Section 2 without any conceptual complications. By (7), it remains to compute expressions for the
covariance terms γCi,j = limt→∞

1
tCov[Ci(t), Cj(t)] for all i, j ∈ {1, . . . , N}. In order to compute these, observe

that the increments of {Ci(t), t ≥ 0} and {Cj(t), t ≥ 0} are conditionally independent given {Φ(t), t ≥ 0}.
Therefore, we can view {(Φ(t), Ci(t)), t ≥ 0}, {(Φ(t), Cj(t)), t ≥ 0} and {(Φ(t), Ci(t) + Cj(t)), t ≥ 0} as
MAPs. A functional-central limit theorem for MAPs obtained in [42] leads to expressions for σ2

C,i, σ
2
C,j and

limt→∞
1
tVar[Ci(t) + Cj(t)], i.e., the variance parameters of the limits of the scaled Markov additive processes.

From these variance parameters, expressions for γCi,j immediately follow.
To state the results of [42], we first introduce some preliminary notation. Let ωref ∈ S be an arbitrary

reference state. Furthermore, denote by τk the time of the k-th jump of {Φ(t), t ≥ 0} for k = 1, 2, . . .. Let
T0 = inf{t > 0 : Φ(t) = ωref,Φ(t−) 6= ωref} be the first time {Φ(t), t ≥ 0} enters the reference state, and
let T1, T2, . . . be the subsequent entrance times into the reference state. The instantaneous drift and variance
parameters of a process {Y (t), t ≥ 0} that is modulated by {Φ(t), t ≥ 0}, are given by

dYi = E[
Y (τk + w)− Y (τk)

w
| Φ(z) = i for τk ≤ z ≤ τk + w]
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and

vYi = E[
(Y (τk + w)− Y (τk))2 − (dYi w)2

w
| Φ(z) = i for τk ≤ z ≤ τk + w].

The vector ϕY representing the second moment of Y is given by

ϕYi =
E[(Y (τk)− Y (τk−1))2 | Φ(τk−1) = i]

E[τk − τk−1 | Φ(τk−1) = i]
.

The matrix MY = (MY
i,j)i,j∈S is defined to be a |S| × |S| matrix with elements MY

i,i = MY
i,ωref

= 0 and

MY
i,j = − qi,jqi,i

dYi for j ∈ S\{{i}∪{ωref}}. Finally, the vector fY is given by fYi = E[Y (T0)−Y (0) | Φ(0) = i].
Using this additional notation, the following lemma, which is directly implied by the work of [42], holds.

Lemma 5.1. Let {(Φ(t), Y (t)), t ≥ 0} be a Markov additive process, where {Y (t), t ≥ 0} is the additive part
modulated by the continuous time Markov chain {Φ(t), t ≥ 0} and has an average drift of zero and no jumps.
Furthermore, assume that dYi and vYi are well-defined for all i ∈ S. Then, { 1√

s
Y (st), t ≥ 0} converges in

distribution, as s→∞, to a driftless Brownian motion starting at 0 with variance parameter πϕY + 2πMY fY .
In particular, we have that

lim
t→∞

1

t
Var[Y (t)] = πϕY + 2πMY fY .

Proof. The convergence in distribution immediately follows from [42, Theorem 3.4] by taking X(t) = Φ(t) and
Di,j = Vi,j = υi = 0 for all i, j in the notation of that paper. To show the result for the asymptotic variance of
the modulated process Y , let M(t) = maxk:Tk≤t{k} count the number of times the Markov chain returned to the
reference state up till time t, so that {M(t), t ≥ 0} can be interpreted as a (delayed) renewal process. Then, we
have that

lim
t→∞

Var[Y (t)]

t
= lim
t→∞

Var[Y (
∑N(t)
i=1 (Ti − Ti−1))] + o(t)

t

= lim
t→∞

E[M(t)]Var[Y (T1 − T0)] + Var[M(t)]E[Y (T1 − T0)]2

t

=Var[Y (T1 − T0)] lim
t→∞

E[M(t)]

t

=
Var[Y (T1 − T0)]

E[T1 − T0]
,

where the second equality follows from the fact that the summands of Y (
∑N(t)
i=1 (Ti − Ti−1)) =

∑N(t)
i=1 (Y (Ti)−

Y (Ti−1)) are independent and identically distributed to Y (T1 − T0), so that Y (
∑N(t)
i=1 (Ti − Ti−1)) can be seen

as a compound Poisson process. The third equality holds because the modulated process has an average drift of
zero, so that E[Y (T1 − T0)] = 0. The fourth equality follows from standard results on renewal theory. Section 3
in [42] shows that Var[Y (T1 − T0)] = E[(Y (T1 − T0))2] = (πϕY + 2πMY fY )E[T1 − T0], which concludes
the proof.

We now apply this lemma to obtain the covariance matrix for the two-layered model with N = 2. More
specifically, we compute σ2

C,1, σ2
C,2 and limt→∞

1
tVar[C1(t) + C2(t)], out of which expressions for γC1,2 will

follow.
To derive an expression for σ2

C,1, let Y1(t) = 1
tC1(t)− E[C1(t)] = 1

tC1(t)− (π(U,U) + π(U,R))t. It is easily
seen that the drift of Y1(t) equals 1 − (π(U,U) + π(U,R)) when the modulator Φ resides in the states (U,U) and
(U,R), and −(π(U,U) + π(U,R)) otherwise. The drift vector dY1 is thus given by

dY1
i = 1{i∈{(U,U),(U,R)}} − (π(U,U) + π(U,R)).

Due to the Markov nature of the process {Φ(t), t ≥ 0}, we have that E[τk − τk−1 | Φ(τk−1) = i] = −qi,i.
Moreover, since Y1 locally behaves like a pure drift process, it holds that E[(Y (τk) − Y (τk−1))2 | Φ(τk−1) =

i] = E[(dY1
i )2(τk − τk−1)2 | Φ(τk−1) = i] = 2

(
d
Y1
i

−qi,i

)2
. The vector ϕY1 is thus given by ϕY1

i = −2
(
d
Y1
i

qi,i

)
.
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When taking ωref = (R,W ) as the reference state, the elements fY1
i = E[Y (T1)− Y (0) | Φ(0) = i] of the vector

fY1 are easily seen to satisfy the set of equations

fY1
i = −d

Y1
i

qi,i
−

∑
j∈S\{(R,W )}

qi,j
qi,i

fY1
i ,

since E[Y (τk)− Y (τk−1) | Φ(τk−1) = i] = −d
Y1
i

qi,i
. This system of equations leads to a unique, explicit solution

for the vector fY1 . The matrix MY1 pertaining to Y1 has elements MY1
i,j = −1{j /∈{i}∪{(R,W )}}

qi,j
qi,i

dY1
i . An

application of Lemma 5.1 then leads to

σ2
C,1 = lim

t→∞

1

t
Var[C1(t)] = lim

t→∞

1

t
Var[Y1(t)] = πϕY1 + 2πMY1fY1 .

When studying Y2(t) = C2(t)− E[C2(t)] =
C2(t)−(π(U,U)+π(R,U))t

t , an expression for σ2
C,2 can be found similarly

to the computations above. Alternatively, interchanging the indices of the model parameters in the expression of
σ2
C,1 also leads to this expression.

Finally, an expression for limt→∞
1
tVar[C1(t) + C2(t)] can be found by considering

Y1,2(t) = C1(t) + C2(t)− (E[C1(t) + C2(t)]) = C1(t) + C2(t)− (2π(U,U) + π(U,R) + π(R,U))t.

The process {(Φ(t), Y1,2(t)), t ≥ 0} is then again a MAP that satisfies the assumptions of Lemma 5.1. It is easily
seen that the vector dY1,2 with elements dY1,2

i = 1{i∈{(U,U),(U,R)}} + 1{i∈{(U,U),(R,U)}} − (2π(U,U) + π(U,R) +
π(R,U)) specifies the conditional drift of the modulated process Y1,2 when the modulator Φ resides in state i.
Analogous to the computations in the previous paragraph, we obtain the vectors ϕY1,2 and the matrix MY1,2

with elements ϕY1,2

i = −2
(d
Y1,2
i )2

qi,i
, and MY1,2

i,j = −1{j /∈{i}∪{(R,W )}}
qi,j
qi,i

d
Y1,2

i respectively. The vector fY1,2 is

uniquely and explicitly determined by the system of equations fY1,2

i = −d
Y1,2
i

qi,i
−
∑
j∈S\{(R,W )}

qi,j
qi,i

f
Y1,2

i for all
i ∈ S. Applying Lemma 5.1 now yields

lim
t→∞

1

t
Var[C1(t) + C2(t)] = lim

t→∞

1

t
Var[Y1,2(t)] = πϕY1,2 + 2πMY1,2fY1,2 .

After these preliminary computations, the covariance matrix Γ can be expressed explicitly in terms of the
model parameters. The covariance parameters γC1,1 and γC2,2 are by definition equal to σ2

C,1 and σ2
C,2, for which

we have already derived explicit expressions. As for the remaining parameters, we have that both γC1,2 and γC2,1
are equal to

lim
t→∞

1

t
Cov[C1(t), C2(t)] =

1

2

(
lim
t→∞

1

t
Var[C1(t) + C2(t)]− lim

t→∞

1

t
Var[C1(t)]− lim

t→∞

1

t
Var[C2(t)]

)
.

Since we already computed the three terms between brackets in the right-hand side, expressions for all of the
covariance parameters γCi,j are now available in terms of the model parameters σ1, σ2, ν1 and ν2. As the rest of
the terms appearing in (7) were already expressed in terms of the model’s parameters, the covariance matrix Γ is
now explicitly known.

5.3 Numerical evaluation of the limiting distribution of Z

Now that Γ can be computed explicitly, we investigate in this section the joint distribution of Z, the limiting
distribution of the scaled workload W̃ r, in stationarity. We do this by viewing this distribution as the stationary
distribution of an SRBM. We obtain numerical results for the example of the two-layered network. Since the
limiting distributions of D̃r or L̃r equal the distribution Z up to a scalar as observed in Corollaries 4.2 and 4.6,
the results also directly relate to the limiting distributions of the scaled virtual waiting time and the scaled queue
length.
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To study the joint distribution ofZ, we observe that this distribution is the stationary distribution of the process
{Z(t), t ≥ 0}, where

Z(t) =

(
sup
s∈[0,t]

{Z1(s)}, . . . , sup
s∈[0,t]

{ZN (s)}

)
d
=

(
Z1(t)− inf

s∈[0,t]
{Z1(s)}, . . . , ZN (t)− inf

s∈[0,t]
{ZN (s)}

)
=Z(t) +RY (t).

In this expression Z(t) is the N -dimensional Brownian motion defined in Section 2, R is the N × N identity
matrix, and Y (t) = (Y1(t), . . . , YN (t)) = (− infs∈[0,t] Z1(s), . . . ,− infs∈[0,t] ZN (s)). Observe that {Y (t), t ≥
0} is a continuous, non-decreasing process starting in 0, of which the elements Yi can only increase at times t
when Zi(t) = 0 (i = 1, . . . , N ). A process with such a representation is known to be an SRBM (see e.g. [9,
Section 7.4]). As briefly mentioned in the introduction, such a process evolves like a Brownian motion in the
interior of the positive orthant RN+ , but is pushed back when it reaches a boundary face {z ∈ RN+ : zj = 0}
in a direction determined by the j-th column of the reflection matrix R, j = 1, . . . , N . The j-th element of the
regulator process {Y (t), t ≥ 0} indicates the cumulative amount of ‘effort’ spent in pushing back at the j-th
boundary face. An SRBM is thus identified by the drift vector µ and the covariance matrix Γ of the underlying
Brownian motion {Z(t), t ≥ 0}, together with the reflection matrixR.

The stationary distribution of an SRBM is known to be the solution of a partial differential equation problem
called the basic adjoint relationship (BAR). For a one-dimensional SRBM, the BAR can be solved, and the station-
ary distribution turns out to be exponential, provided that the drift pertaining to the underlying Brownian motion
is negative (see, e.g., [9, Theorem 6.2]). Observe that {Zi(t), t ≥ 0} can be written as a one-dimensional SRBM
similar to the computations above, so that the limiting distributions of W̃i,r, D̃i,r and L̃i,r are indeed exponential
distributions in line with Remarks 3.1, 4.1 and 4.2. For the multi-dimensional case, it is shown in [24] that if R
is an M -matrix in the definition of [4, Chapter 6], a stationary distribution exists iff the reflection matrix satisfies
R−1µ < 0. Under this condition, the stationary distribution is also shown to be unique. However, determining
an exact solution to the BAR is generally a hard problem. In the special case where the reflection matrix R and
the covariance matrix Γ satisfy a so-called skew-symmetry condition, the density of the stationary distribution is
known to be of product form, of which each marginal is exponential (see [25]).

Numerical algorithms for solving the BAR however exist, so that the stationary distribution of SRBMs can
be computed numerically. In [11] an algorithm has been developed to compute the stationary distribution, by
exploiting a certain orthogonality property of the solution to the basic adjoint relationship. By taking a well-
chosen reference density such as the product form density mentioned above, and introducing a reference measure,
this algorithm computes in an iterative manner an unknown vector that can be thought of as some adjusting factor
of how far the actual density of the stationary distribution is from the reference density. The computed unknown
vector and the reference density then together form the desired solution.

For the model as given in Section 2, a unique stationary distribution for Z = limt→∞Z(t) exists, as the
reflection matrix R and the drift vector µ of the N -dimensional Brownian Motion Z satisfy the conditions men-
tioned. The skew-symmetry conditions only hold in our setting when Γ is a diagonal matrix, but this is only the
case for very specific choices of the service speed functions φi(·) and/or the Markov chain {Φ(t), t ≥ 0}. In
the application of the two-layered network for instance, we have that γC1,2 > 0 by the expressions found in the
previous section, so that the skew-symmetry condition is violated. The numerical algorithm developed in [11],
however, can be applied generally to the model described in Section 2.

We end this section by applying the numerical algorithm to the two-layered network given in Section 5.1 and
observing several parameter effects. Note that the limiting distributionZ coincides with the stationary distribution
of an SRBM with parametersR being a 2×2 identity matrix,µ =

(
−β1(π(U,U) + π(U,R)),−β2(π(U,U) + π(R,U))

)
and Γ = diag

(
E[B2

1 ]
E[B1]

(π(U,U) + π(U,R)),
E[B2

2 ]
E[B2]

(π(U,U) + π(R,U))
)

+ ΓC , where ΓC is a 2x2 matrix consisting of

the elements γCi,j computed in Section 5.2.
For a number of instances of the two-layered network, we have computed several characteristics of the station-

ary distribution, such as the first two moments and the cross-moment of Z1 and Z2. The results are summarised
in Table 1, where for each of the instances the found values for E[Z1], E[Z2] and the correlation coefficient
Corr[Z1, Z2] = E[Z1Z2]−E[Z1]E[Z2]√

E[Z2
1]−E[Z1]2

√
E[Z2

2]−E[Z2]2
are given. Recall that the marginal distribution of Zi is exponential,

so that E[Z2
i ] = 2E[Zi]

2. Observe also that the limiting distributions of D̃r and L̃r are equal to the distribution of
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Instance no. β1 β2 E[B1] E[B2
1 ] E[B2] E[B2

2 ] σ1 σ2 ν1 ν2 E[Z1] E[Z2] Corr[Z1, Z2]

1 1 1 1 2 1 2 1
10

1
10

1
10

1
10

4.33 4.33 0.274

2 1
2

1 1 2 1 2 1
10

1
10

1
10

1
10

8.67 4.33 0.228

3 1 1 1 5 1 5 1
10

1
10

1
10

1
10

5.83 5.83 0.195

4 1 1 1
2

1
2

2 8 1
5

1
20

1
5

1
20

3.84 7.18 0.445

5 1 1 1 2 1 2 1 1 1 1 1.33 1.33 0.080

6 1 1 1 2 1 2 1
20

1
20

1
5

1
5

2.06 2.06 0.124

Table 1: Numerical results for several instances of the two-layered network.

Z up to a scalar, so that Corr[Z1, Z2] does not only represent the correlation coefficient pertaining to the limiting
distribution of the scaled workload W̃ r, but also to that of the scaled virtual waiting time and the scaled queue
length. It follows from Table 1 that the competition between the machines of the repair facilities can be of such
a level, that the correlation coefficient pertaining to the queue lengths is significant. Moreover, by taking the first
instance as a reference, we observe that the correlation coefficient is highly influenced by the relative convergence
speed of the arrival rates (instance no. 2), the variability of the service times (instance no. 3), the level of asymme-
try in the model parameters (instance no. 4), the frequence of machine breakdowns and speed of machine repairs
with respect to the arrivals and services of products (instance no. 5), and the duration of the machine lifetimes
with respect to that of their repairs (instance no. 6).
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