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Abstract
We study an overloaded service system with servers of types § = {s1,..., sy}, serving
customers of types € = {cy, ..., cy} under FCFS. Customers arrive in Poisson streams,

join the queue and then abandon or get served. Service is skill based, which is described
by a compatibility graph G, where (i, j) € G if server type s; is trained to serve customer
type c;. The service duration depends on both server and customer type. This system
is motivated by applications in areas as diverse as manufacturing, call centers, housing
assignment, health care and data servers. At this level of generality, the design in terms
of sta [nghknd cross-training decisions is a challenging problem. Based on recent results
in [1, 2] and on some asymptotic assumptions, we propose an algorithm to determine, for
given data, the required levels of sta [ngko meet target levels of service quality and labor
division. The algorithm is validated through a systematic simulation study, showing that
it is remarkably robust and accurate. As such, we believe that the algorithm will prove
to be useful in aiding the design and e [eckive operation of complex systems with skill
based routing.

Keywords: Service system; first come first served policy; multi type customers and servers;
infinite bipartite matching; matching rates; overloaded queues; skill-based routing.
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1 Introduction

In this paper we consider a service system with several types of customers and several types
of servers, each with a specific set of skills. Each customer requires a single service from a
single server, and service is skill based. Such systems are very common in all walks of life,
and make up a large part of day to day interactions; for example, applications can be found
in flexible manufacturing and assembly [20, 12, 13, 8], call centers [7, 6, 18, 4], public housing
assignment [14, 15] and multimedia servers [3].

We assume that the system is overloaded, and that, as a result, servers are always busy
and a fraction of the customers are forced to abandon. We consider the operation of this
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system under FCFS, i.e., servers give priority to earlier, long waiting customers. FCFS is very
commonly used, because it is fair to the customers, it is simple to implement, it requires
little information about the parameters and the current state of the system, and it is robust
under time varying conditions. Systems with skill-based routing have been studied under
various routing rules, including FCFS [16], fixed-queue ratio [9] or static priority [18], but,
as suggested by [18], to optimize performance, determining the right level of cross-training
seems more important than the choice of routing rule.

We specify the system as follows: Customers are of types C = {cy, ..., c;}, servers are of
types 8 = {s1,...,ss}, and a bipartite graph G of compatible matches between €, §. Graph
G specifies the level of cross-training: it has arc (i, j) € G if server type s; has the skills
to serve customer type ¢;. In addition we assume the following data: Customers of type c;
arrive in independent Poisson streams of rate A;, and have patience distribution F; which is
absolutely continuous. There are n; servers of type s;, and the service times are customer-
server-type dependent, i.e., the service of a customer of type ¢; by a server of type s; has a
random duration distributed as G;;, with rate u,;; and average m;; = 1/u;;. Service is FCFS:
whenever a server becomes available, he will go to the longest waiting compatible customer. In
the event that a customer arrives to find several idle servers, he will be assigned to the longest
idle compatible server. In the sequel, we adopt the notational convention to use subscript i
for customers of type ¢; and subscript j for servers of type s;.

Important performance aspects of such a system, with given data A;, F;, G, n;, G;;, under
FCFS policy, include waiting times, abandonment rates, routing flows between customer types
and server types, and workload of each server type. The performance can be measured from
actual operation of the system or by simulation. However, the problem of obtaining analytic
closed form expressions for these performance measures is quite intractable. To mention
just one intractable problem: there are no expressions available to evaluate the workload
of each type of server. We note that, in case of server-type dependent service times G;; = G;
and some special structured compatibility graphs G, the workload and routing flows can be
determined for the approximating deterministic fluid model [16]. However, the other cases
remain unsolved.

The design and e [eckive operation of systems with skill based routing involve many deci-
sions on structure, quality of service, and dimensioning, on a multi-variate level: In the design
of the system, one can redefine some of the skills, increase or decrease the level of cross-
training (i.e., add or subtract arcs from G), improve or degrade the service duration. On the
operational side, one needs to find the right balance of sta [nghiven by the ;. One also needs
to control the service quality level for each of the customer types, measured in waiting times
and abandonment rates. Adequate methods to do this at the level of generality considered in
this paper are currently not available.

The goal of this paper is to present a structured method to evaluate such systems, with
the aim to support their design and e [cieht operation. We present an algorithm which, given
the service requirements (summarized by A;, F;, G;;), proceeds in the following steps: We
first decide on the service quality level for each customer type, we then decide on a balanced
division of labor for the various server types, and finally we compute the required sta [ngh ;.
Once this algorithm is available, it can support the design process: It can be used to re-specify
service quality levels, re-dimension the system, re-adjust service durations, and re-design the
compatibility graph until, ideally, the system design meets all requirements.

Our algorithm is based on recent results in [1, 2], and on some assumptions on the asymp-
totic behavior of the system under many server scaling. Our main assumption is that, under



many server scaling, the sequence of types are i.i.d. for customers that are served and for
servers that start service, and that the two sequences are independent. In this paper we do
not prove the validity of these assumptions, nor derive the conditions under which they might
hold. Instead, we show experimentally, by simulation, that they provide good enough approx-
imations for systems with a realistic number of servers.

The rest of the paper is structured as follows: In Section 2 we outline the theory behind
our approach and in Section 3 we demonstrate the algorithm on two illustrative examples,
with three types of customers and with three types of servers, each of which is skilled to
serve two types of customers. In one design all the customers receive the same level of
service, whereas in the other design, the customers are partitioned into two sets, with di Cerent
levels of service. For a system with as few as eight servers of each type, we obtain excellent
agreement between the desired performance, as calculated from our algorithm, and the actual
performance as obtained from simulation. In Section 4 we perform a systematic exploration
of the performance of our approach, via simulation. Motivated by the principle of limited
flexibility [12, 8, 13, 18], the exploration in Section 4 is restricted to systems with servers
having at most two skills. In Section 4.3 we experimentally investigate the validity of the
assumptions on asymptotic behavior of the system under many server scaling. We conclude
in Section 5 with a short discussion of our approach, and some promising directions for
further research.

2 Theoretical results

In this section we outline the theory behind our approach in three parts: In Section 2.1 we de-
scribe the model of FCFS infinite matching of [1], yielding a formula to calculate the matching
rates r;;, i.e., the long-run fraction of customers of type ¢; that are served by servers of type
sj. Then, in Section 2.2 we state our assumptions on many server scaling, which enable us to
use the formula for r;;. Finally, in Section 2.3 we describe our algorithm for dimensioning the
system to achieve desired service quality levels and desired division of labor.

2.1 FCFS infinite matching model

In [1] the following FCFS infinite matching model is analyzed: There are two random se-
quences, ¢!, c?, ... of customers and s', s2, ... of servers, where ¢ are i.i.d. chosen from
C with probabilities o, ..., «; and s" are i.i.d. chosen from 4§ with probabilities 8, ..., ;.
The two sequences are matched on a FCFS basis, according to the compatibility graph G: the
first server s! is matched to the first customer in the sequence compatible with him, and server
s is matched to the first customer in the sequence which is compatible with him, and has not
been matched to any of the previous serverss', ..., s" .

The matching process can be described by a Markov chain (the precise formulation of
which is not relevant here). Denote by 4(C) the set of server types compatible with the subset
of customer types C, by C(S) the set of customer types compatible with the subset of server
types S, and by U(S) the set of customer types which are unique to S, i.e., these customer
types can be served only by server types S. Letac = ) . -, and fs = Zs,»es B;. The Markov
chain is ergodic if and only if the following three equivalent conditions hold, referred to as



Complete Resource Pooling:

(i) ac < Bsc), forall non trivial subsets C,
(ii) Bs <aees), TForall non trivial subsets S, 1)
(iii) ays) < Bs, for all non trivial subsets S.

Under complete resource pooling, the long-run fraction of matches of customers of type
c; to servers of type s; exists almost surely. We call it The Matching Rate and denote it by r;;.
An explicit formula for the matching rates is derived in [1]. The formula is quite complex, and
summarized below.

Define for a given pair ¢;, s;, and a given permutation Sy, S,, ..., S; of the server types:
k) = QUS).....5) By = Bisy....s)
and o QULS),.... SINC s\ ei )
ULS1,.... S IN{ci} Iseees k Si)\Ci
P = — Vi = - ) Xe =1—¢ — Yy .

Then the matching rate r;; is:

J—1
rii = B; ) B[[Buw—aw)
Py k=1

— (k) = Bo — ¢; T+ Bo— o
+ , 2

k
= Bw —dwxe | Po —aox 1 Bo —anx

where the summation is over #;, the set all the permutations of 4. The normalizing constant

IS:
B'=3"

Py

1

Bisiy — usi) Bisy.sop — 4uisi, ) Bisi,nSy 1) — CUSy,.Sy 1))

When there is no complete resource pooling (1), the systemm decomposes in a unique way
to L subsystems consisting of ¢V, M .. e® 8D This is discussed in [2], where the
subsystems are recursively determined as follows:

e = argmingcey ), ew /’50), O =g\ s, 1=1..... L 3)
C k<l

Each of the sub-systems G, ¥ with its sub-graph of G, has complete resource pooling, and
matching rates calculated from (2) with «; and B; replaced by

b Yeen T Ygesn B

o

“4)

2.2 Many server scaling

We now return to the system as described in the introduction, and scale the system as follows:
We use a common scaling factor, and we let A; and n; increase by that scaling factor, leaving
all other quantities (i.e., graph G and distributions F;, G;;) unchanged. Under this scaling,
we make the following assumptions on the performance of the system. We believe that these



assumptions hold asymptotically under appropriate conditions, and that they provide good
approximations for actual systems of moderate size. We do not attempt to prove the asymp-
totic validity, but below we will provide some intuitive plausibility arguments to support our
assumptions on the asymptotic behavior and in the next section we will experimentally inves-
tigate the quality of the approximation.

(i)

(i)

(iii)

(iv)

v)

There will be a decomposition of the customer and server types into subsets of types
c® 8D 1 =1,..., L, where customers of types in C® will be served exclusively by
servers of types in 8¢). The special case L = 1 is the complete resource pooling case,
with equal service quality levels for all customers.

There will be critical patience times w > ... > w®, such that customers of type
¢; € C with patience less than w” will abandon, and those with patience exceeding
w® will be served after a wait of exactly w®. Let:

= w? ¢ee?,

W

A=) m(l = Fw)), (5)
C,‘E@

a = (1= Fiw))/x.

Then A will be the rate at which the system is serving, and «; the fraction of services that
are given to type c¢; customers. The sequence, in order of arrivals, of customers that will
be served ..., ¢", ... will be of types drawn i.i.d. with probabilities «;.

The instants of service completions (which are also service starts, since servers will
always be busy), by the servers of the di Cerent types, will form independent Poisson pro-
cesses. There will be probability values 8; such that the sequence of successive servers
completing service ..., s", ... will be of types drawn i.i.d. with probabilities 8;, and this
sequence is independent of the sequence in (ii) of types of customers that are served.

There will be complete resource pooling as in (1) in each of the sub-systems G, §0,
and the matching rates between customers and servers will be given by (2), with «; and

B; replaced by ozi(l) and /8](.1), and the following relation will hold:
l’lj :)\,(1) Z r,-]-m,-j, (6)
ciee®
where
0= 3" = Fi(w)). (7)
C,'E@([)
In the decomposition with w” > ... > w®)| the sets of servers 8¢ will satisfy the

right-hand part of (3) forall/ =1, ..., L.

To justify (ii), we note first that it holds for single-type systems, and for single-server
multi-type customer systems [19, 11]. Intuitively, in an overloaded system with abandon-
ments, when arrival rates and service rates are scaled up and patience is unchanged, then
variability of the waiting times decreases. As a result, in the limit all customers of the same
type will wait the same time before reaching service. This justifies the existence of w;. Since



patience of successive customers are independent, removing the customers which abandon
(i.e. those with patience < w;) will leave the types of the customers in the remaining sequence
independent and drawn with probabilities ;.

To justify (iii), each server of type j will work all the time, serving a stationary sequence
of customers which are compatible with him, so that his service start times will in the limit
form a stationary point process. Because there are so many other servers, this point process
will be largely independent of the other servers. The total sequence of instants of service
completions for servers of type j will then be a superposition of many almost stationary,
almost independent point processes, which should converge to an independent homogeneous
Poisson process.

Once we accept that customers which are served arrive in a sequence of i.i.d. types drawn
from probabilities «;, servers arrive in a sequence of i.i.d. types drawn from probabilities 3;,
and that the two sequences are independent, the decomposition and matching rates follow.
Complete resource pooling will occur if there is a unique value of w which allows for complete
resource pooling with the resulting 8; and n;. If that is not the case, there will be a subset
Y for which the number of servers of types in 8(C") is not su [cieht to provide service for
all customers in GV with patience w. This will define the first sub-system, €, 81V, which
will have the least preferential service (and thus greatest critical patience time). Continuing
with the remaining customer and server types, the unique decomposition, will emerge as in
[2]. The values of the matching rates, in each of the sub-systems of the decomposition, are
then given by (2). Expression (6) for n; simply equates the amount of work done per time unit
(assuming that servers are always busy) and the expected amount of work o Cerkd per time
unit by the fraction r;; of the customers that are served over all ¢; € C(s;).

2.3 Algorithm for design and evaluation

In the previous section we argued that, as arrival rates and sta [nglincrease by a common scal-
ing factor, the system naturally decomposes into subsystems G, 8¢ with increasing service
quality levels for its customers. In this section we propose an algorithm that takes this decom-
position as starting point, and we will act as if arrival rates and sta Cngllevels are su LCciehtly
large such that the assumptions (i)-(v) are reasonable. For given input data, the algorithm
proceeds by first deciding on quality of service for each customer type and division of labor
for each server type, and then computes the required sta [ngh ; to meet these specifications.

Input: The compatibility graph G, the arrival rates A;, the patience distributions F;, and the
service-time distributions G;;, of which we only need the means m;;.

Quality of service decision: We specify the partition of the customer types into ¥, [ =
1, ..., L, where higher [ implies more preferential service, and construct the correspond-
ing decomposition of server types 4), using the right-hand part of (3). For each class of
preference, we specify the cut-o [Cwhiting time w"), decreasing in .

Division of labor decision: For each subsystem C?, 8¢) we specify the fraction of services
performed by each type of server, ,3;”.

Calculations: Compute, for each subsystem, A and ", using (4), (5) and (7). Check that o’
and B provide complete resource pooling. Calculate the matching rates rij using (2),



with «; and B; replaced by ozl.(l) and ﬂ;l). Compute the sta [ngl; using (6) for all server
types s; € 80,

Output: Number of servers of each type, n;, the matching rates r;;, the cut-o [Owaiting times
w;, the abandonment rates F;(w;).

Note that, if in the calculation step, complete resource pooling does not hold, then the di-
vision of labor, specified by ,B;.l) should be adapted such that it does (which is always possible).
In the following sections we will investigate, by simulation experiments, whether the desired
performance is indeed achieved by the sta Cngllevels proposed by our algorithm.

3 First glance on the algorithm

In this section we first illustrate the algorithm for a simple network with three customer types
and three server types. We refer to this network as an “almost complete” network because
all possible arcs (i, j) are included, except for the ones with i = j; see Figure 1. We first

0 1 1

_1 0_1 0_ 3
;=3 =3 a3 =15

Figure 1: The “almost complete” network. Nodes on the top row represent customer types,
and the ones on the bottom row server types. The dashed arcs are present in the case of
complete resource pooling, but vanish in the case of incomplete resource pooling.

specify the input data. Let a? denote the portion of all arrivals which is of type ¢;. In this
example we set «® = (0.2, 0.5, 0.3). For all customers, patience is exponential with mean 10,
so F;(t) = 1 — e %", The service-time distributions G, ; are as follows:

Service-time distributions Mean service times
Gij S1 52 53 mi ;| st S22 83
Cl pareto(3, 3) pareto(2, 3) Cl 45 3
(53 exp(0.2) exp(0.125) ) 5 8
3 uniform(2, 6) uniform(1, 5) c3 4 3

In the following sections we will investigate two cases: Equal service quality for all customer
types and service quality di Cerentiation among customer types.

3.1 Complete resource pooling

In this case we decide to provide equal service quality to all customers, corresponding to
complete resource pooling. The target waiting times are w; = 1.0, yielding approximate aban-

donment rates 6; = Fj(w;) = 1 — e %' ~ 0.095 for all customer types. Hence o = o’ =



(0.2, 0.5, 0.3). The next step is to divide labor: 8 = (0.3,0.4, 0.3). From (1) it is readily ver-
ified that these values of @ and 8 provide complete resource pooling. For this network type,
the matching rates have also been derived in [5]:

3 -1
= GBIl —a)( = B) — ap] [HZ % B ,3} |

(I —o; =) —aj — B)) <1 —a —
yielding
0 A6 47
15 1115
ij pix] 146
% s
230 223
So
0 192 ai
0 ' e
[rijmijl=| %3 0 33
312
s 223

and thus, from (6), we get the sta [ngllevels:

1608 1602 2441
11157 11157 1115

n(x) = re ! ( ) ~ 1(1.305, 1.300, 1.981),

where A is the total arrival rate (and scaling parameter). The actual number of servers of
each type is of course integer, and obtained by rounding to the nearest one. This concludes
the setup of the experiment. In the next paragraph we present the simulation results and
investigate whether the service quality level in terms of expected waiting time, abandonment
rates and matching rates are indeed as predicted by the algorithm.

Simulation results: For A = 10, 30, 50, 100, we have performed 100 simulation runs, each of
100, 000 matches, from which the first 25, 000 have been discarded as warm-up interval; this
setup has been used for all simulation experiments in this paper. The simulated mean waiting
times E[W;], abandonment rates §; and matching rates r;; are summarized in Table 1. We note
that the half-width of the 95% confidence intervals for all simulation results in this paper are
less than 2%.

The simulation results show that, by scaling up A, the performance of the sta [ngllevels
proposed by the algorithm gets closer to its theoretical target. This suggests that the asymp-
totic assumptions are correct. Note that the performance, and especially the matching rates
are already rather close to their target values for moderate systems of around 50 servers. This
is remarkable, since the waiting time density, although narrowing, is not yet concentrated at
the asymptotic value w; = 1.0 (even for A = 100). This indicates that the algorithm is fairly
robust, in the sense that, although the asymptotic assumptions do not quite hold yet, the
proposed sta [ngklosely meets the desired performance.

3.2 Incomplete resource pooling

Now we decide to give preferential treatment to customers of type c¢; and c3. Type ¢, cus-
tomers will have to wait longer for service, and so more will abandon. We use service levels
wy, = 2and w; = w3z = % corresponding to abandonment rates 6 ~ (0.05, 0.18, 0.05) and,
by (5), we get @ = (0.215, 0.463, 0.322). Our decision of preferential treatment results in the



Simulated mean waiting times and abandonment rates

A n E[W] E[W,] E[W3]| 6, ) 63
10 (13, 13,20) 0.870 1.226 0.884 | 0.086 0.119 0.088
30 (39, 39, 59) 0.924 1.110 0.928 | 0.089 0.105 0.089
50 (65, 65, 99) 0.929 1.053 0.932 | 0.089 0.100 0.089

100 | (130, 130,198) | 0.956 1.025 0.958 | 0.090 0.096 0.090
Target 1.000 1.000 1.000 | 0.095 0.095 0.095
Matching rates
Simulated A = 10 Simulated A = 100 Target

rij 81 A\ 853 S1 52 53 81 A\ 53
o} 0.153 0.050 0.158 0.043 0.158 0.042
c | 0.234 0.257 | 0.240 0.258 | 0.242 0.258
c3 | 0.067 0.238 0.060 0.242 0.058 0.242

Simulated densities of the waiting times

--- =50 — A=100

-~ 1=10 — 1=30 -~~~ A2=10 — 2=30 --- A=50 — A=100 -~ A=10 — A2=30 --- A=50 — A=100

Table 1. Simulation results for the case of complete resource pooling.

partitioning CV = {¢,}, 81V = {5, 53} and CP = {¢|, 3}, ® = {s5,}. For each subsystem, we
choose appropriate values ,Bj(.l) resulting in complete resource pooling: Y = (0.5, 0.5) and
B@® = (1). Note that 8; = 3 = 0.5 x a» = 0.232 and B, = a; + a3 = 0.537.

A graphical representation of the original system (with incomplete resource pooling) and
the two subsystems (each with complete resource pooling) is depicted in Figure 2. We now
calculate the sta Cnglfor both subsystems. The matching rates for the first subsystem are
ry1 = rp3 = 0.5 and for the second one, r;, = 0.4, r3, = 0.6. This leads to the following
sta [nglfor the first subsystem:

ni(A) = rad(1 — Fy(wy))ra may = 1.023%,  n3(h) = rad(1 — Fa(wy))ras3ma s = 1.6372,
and for the second subsystem:

na(A) = A(af(1 = Fi(w1)) 4+ o3(1 — F3(w3)) (r1.omy12 + r3omsz) = 1.7124.

Simulation results: The simulated mean waiting times E[W;], abandonment rates 6; and
matching rates r;; are summarized in Table 2. The results confirm the ones in the case of



a1 =0215 o;=0463 «3=0322 aP =1 o? =04 o? =06

B1=0231 p,=0537 pB3=0231 Y =05 BY =05 PR =1

Figure 2. The two subsystems in case of incomplete resource pooling. The nodes on the top
row represent the customer types, and the nodes on the bottom row represent the server
types. The dashed arcs vanish (i.e., are not used) in the decomposed system.

complete resource pooling: Already for moderate values of A, the predicted performance
of the sta [ngllevels gets fairly close to its theoretical target. Note that, for A = 10, the
decomposition is not fully realized yet, as 2% of the matches are on links between the two
subsystems, but for A > 50 such matches are less than 0.1% (although not shown in Table 2).

4 Systematic exploration

In this section we will explore, more systematically, the performance of the approximations
generated by our algorithm.

4.1 Exponential systems

In this section we study a system with five customer types and five server types. Motivated
by the principle of limited flexibility [12, 8, 13, 18], we only consider servers having two skills.
We assume that a server of type s; is specialized in handling customers of type c;, and can
also serve customers of type c;,, but at a slower speed; see Figure 3. Arrivals are distributed

0_ 3 0_ 1 0_ 3 0_ 3 0_ 3
1= 10 9 =10 d3 =75 % =10 ¥5 = 25

Figure 3: The network of Section 4.

over the five types as follows: «® = (0.3, 0.1, 0.15, 0.3, 0.15). For all customer types, patience
is exponential with mean 5. The service times are also exponential (but this assumption will

10



Simulated mean waiting times and fractions of abandonment

A n E[Wi] E[W,] E[W3]| 6, 0> )
10 (10,17, 16) 0.685 2.404 0.687 | 0.068 0.221 0.069
30 (31,51, 49) 0.596 2.011 0.596 | 0.059 0.184 0.059
50 (51, 86, 82) 0.504 2.017 0.505 | 0.049 0.183 0.050

100 | (102,171, 164) | 0.525 2.010 0.526 | 0.051 0.180 0.051
Theoretical 0.500 2.000 0.500 | 0.050 0.180 0.050
Matching rates |
Simulated A = 10 Simulated A = 100 Theoretical
rij 81 A\ 853 S1 52 53 81 A\ 53
c1 | 0.000 0.209 0.008 | 0.000 0.215 0.000 | 0.000 0.215 0.000
¢ 10225 0.000 0.231|0.231 0.000 0.233 | 0.231 0.000 0.231
c3; [ 0.011 0.316 0.000 | 0.001 0.321 0.000 | 0.000 0.322 0.000

Simulated densities of the waiting times

--- =50 — A=100

-~ A=10 — A2=30 --- A=50 — A=100 -~ A=10 — 1=30 -~ A=10 — A2=30 --- A=50 — A=100

Table 2: Simulation results for the case of incomplete resource pooling.

be relaxed in Section 4.2). The mean service times m;; are calculated as follows:

ni;

mij = -Pijs i,j=1,...,5,
J

with m; the mean amount of work of a type c¢; customer, v; the service speed of a type s;
server and p;; the slow-down factor of service speed, where

1 ifi = j,
m=2,3,4,3,4), v=1(1,08,1.1,0.9,1), pi,j=13125 ifi=j(modJ)+1,
0 otherwise.
This results in the following values for m;;:
i 1 2 3 4 5
m; 2.00 3.75 3.64 3.33 4.00

375 6.25 3.41 5.56 2.50

My,

Below we present three cases: complete resource pooling and incomplete resource pooling
with the system decomposing into two and three subsystems, respectively. The simulation

11



setup is as before: 100 runs, each of 100, 000 matches with a warm-up of 25,000. The resulting
half-width of the 95% confidence intervals are less than 1% for all simulations results.

Complete resource pooling: We set w; = 1, yielding an abandonment rate of 0.181. We
choose B = (0.2,0.2,0.3,0.15,0.15), which together with « = «°, guarantees complete re-
source pooling according to (1). For the sta [nghe obtain n(X) = A(0.339, 0.835, 0.845, 0.606,
0.359). We simulate this system for A = 20, 40, 60, 100, 200. The results are listed in Table 3.
Clearly the system performance gets closer to its target values as XA increases, but this seems
to happen at a slower pace compared to the (smaller) system in the previous section. This
may be due to the greater variation among m;;, as shown in the table above. Note that for all
A, even for L = 10, the matching rates are quite close to their target values.

Two-subsystem decomposition: We now impose two service levels. The target waiting times
are w; = wy = 1 (low service quality), and w3 = wy = ws = 0.5 (high service qual-
ity). This leads to abandonment rates of 0.181 for customer types ¢; and ¢;, and 0.095 for
customer types c3, ¢4 and c¢s, and thus a = (0.282,0.094, 0.156, 0.312, 0.156). The system
decomposes into two subsystems: CV = {c|, 2}, 8V = {s1, 52,55} and C® = {cs, ¢4, cs5},
8@ = {53, 54}. We have «V’ = (0.75, 0.25) and choose B = (0.6, 0.1, 0.3), ensuring complete
resource pooling for the first subsystem. For the second one, we have «® = (0.25, 0.5, 0.25)
and set B® = (0.5,0.5). Note that, for the whole network, work is divided according to
B = (0.226, 0.038, 0.312, 0.312, 0.113), for which, by (1), there is no complete resource pooling.
For the sta [nglwe obtain n(A) = 1(0.479, 0.123, 0.956, 1.206, 0.246). The simulation results
are reported in Table 4, showing similar performance as in the complete resource pooling
case. Note that, for “high service” customers the mean waiting times and abandonment rates
are much closer to their target values than for “low service” customers.

Three-subsystem decomposition: Now we select three service levels, w = (2,1, 1, 0.5, 0.5).
The corresponding abandonment rates are 6 = (0.330, 0.181, 0.181, 0.095, 0.095). Accord-

ingly, the system decomposes into three subsystems, namely €V = {c¢}, 8V = {s}, s5},
C? = {cy,c3}, 8% = (57,53}, and C® = {cy4, c5}, 8 = {s4). For the first subsystem, we
have o'V = (1) and set BV = (0.7,0.3), for the second subsystem, «® = (0.4,0.6) and

BP® = (0.5,0.5), and finally, «® = (0.5,0.5) and 8@ = (1). It is readily verified that there
is complete resource pooling in each subsystem, but no complete resource pooling in the
whole network with g = (0.173,0.126, 0.126, 0.501, 0.074). By (5), we get the sta [ngllevels
n(A) = A(0.282, 0.435,0.372,1.659,0.151). The simulation results can be found in Table 5.
The conclusions are similar the ones for the other two cases: There is a clear distinction
between the mean waiting times of customer types, which gets sharper as the arrival rate
increases.

4.2 Non-exponential systems

To investigate sensitivity with respect to service-time distributions, we consider the system
with complete resource pooling of Section 4.1, but now with non-exponential service-time
distributions. We use the following four distributions, matched to the mean service times
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2
exp(l/m; ;), Gamma(2, m; ;/2), Uniform(0, 2m; ;), Pareto(gm,-,j, 3).

In all simulations we have chosen A = 60. From the previous section, we know that our
algorithm prescribes the sta Cngln = (20, 50, 51, 36, 22). The results in Table 6 suggest that
the service-time distribution has hardly any e [ect on the system performance. This implies
that the performance of the sta [Cnglproposed by our algorithm does not require a priori
knowledge of the service-time distributions — having good estimates of the means is su [cieht.

4.3 Validation of asymptotic assumptions

The aim of this section is to experimentally investigate the assumptions on the asymptotic be-
havior of the system, under many server scaling. First, we investigate the Poisson assumption
by considering the sequence of service starts and testing whether the inter-occurrence times
are independent and exponentially distributed. Second, we validate whether the sequences
of customer types and server types are i.i.d. sequences. We perform a simulation of 35, 000
matches (the first 10, 000 of which are considered as warm-up) of the model with complete
resource pooling, with arrival rate A = 100 and uniform service times, described in Section
4.2.

Poisson assumption: Assumption (iii) in Section 2.2 states that the sequences of service
starts for each of the server types s; form independent Poisson processes. To verify the Pois-
son assumption, we first consider the sequence of service starts of all server types together.
In Figure 4(a) we plot the cumulative number of service starts versus the time. From this plot
we can conclude that the process of service starts is homogeneous with constant rate 82.1,
being close to A(1 — F;(w;)) = 100(1 — 0.181) = 81.9. Figure 4(b) shows the inter-occurrence
times of the last 1, 000 service starts. The abundance of observations makes it di Cculk to
draw conclusions, but the plot suggests that there is no autocorrelation. This is confirmed by
Figure 4(c), showing the estimated autocorrelation function for lags 1 - 30, which lies between
the critical values (using a significance level of 0.05). Common goodness-of-fit tests clearly
indicate that the null hypothesis, stating that the inter-occurrence times of service starts are
exponentially distributed, cannot be rejected (P-values greater than 0.2). This supports the
Poisson assumption. Additional tests indicate that the process of service starts for each of the
server types s; is also Poisson.

Server and customer sequences: We now test whether the sequences of types of servers
that start service, and customers that receive service, are i.i.d. To do so, we first consider the
simulated sequence s', s2, ..., sV of server types corresponding to these matches. We use two
methods to test the i.i.d. assumption. First, we estimate the autocorrelation coe [ciehts of this
sequence at lags 1, 2, 3, ... and test whether they are significantly di Cerent from zero. The
estimated autocorrelation coe Lciehts for the first five lags are —0.001, 0.006, —0.007, 0.005,
and 0.000, all between the common thresholds of izl_a/z/\/ﬁ ~ £0.012, supporting the hy-
pothesis of independent server types for « = 0.05. Conducting the same test to the sequence
c',c?, ..., cN of types of customers that will be served, in order of arrivals, yields autocorre-
lation coe Lciehts —0.010, —0.010, —0.005, —0.006, and —0.008, also not significantly di Cerent
from zero.
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Figure 4: Simulated service starts. Figure (a) plots the cumulative number of service starts
versus the time. Figure (b) shows the inter-occurrence times of 1, 000 successive service starts.
Figure (c) shows the estimated autocorrelation function for lags 1 - 30.

The second method considers all successive pairs in the sequence of server types, i.e.,
(s', s?), (5%, 5, ..., V1, sY) and compares the number of occurrences of each pair to its
expected value. If there is no dependence between the server types of two successive service
starts, the fraction of (s;, s;) pairs in this list should be the product of the product of the
fraction of (s;, -) pairs and the fraction of (-, s;) pairs. Tables 7(a) and 7(b) show the fraction
of occurrences of each pair, and the expected values under the null hypothesis. The tables
indicate that the simulated fractions are close to the expected fractions, implying that the
sequence is indeed i.i.d. Pearson’s x? test strongly confirms this assumption. We applied the
same method to all pairs in the sequence of customer types, and the results are shown in
Tables 7(c) and 7(d). Also in this case the statistical tests do not reject the i.i.d. hypothesis.

Finally, we have tested the correlation between the sequence of server types and the se-
quence of customer types. The estimated correlation coe [cieht is 0.008, which lies between
the bounds £0.012. The estimated cross-correlation function also shows no significance for
the lags —5, —4,...,4,5.

To summarize, all tests clearly indicate that the i.i.d. assumption is not violated.

Remark 1. For illustration purposes, we used a single simulation run with uniform service times
to motivate the conclusions in this section. However, the conclusions are based on multiple sim-
ulation runs, for all service-time distributions considered in Section 4.2, and multiple statistical
tests for goodness of fit and correlation.

5 Concluding remarks

In this paper we developed an algorithm for the sta [nglof many-server systems with skill-
based routing in overload, i.e., in the e [ciehcy driven regime. The algorithm is based on
recent exact closed-form results for the infinite-matching model, and on some, intuitively ap-
pealing asymptotic assumptions. These assumptions have been experimentally validated, but
they still lack a rigorous justification. The algorithm has been explored through simulation,
showing that it is remarkably robust and accurate. Hence, we believe that it provides a useful
tool to support the design and e Ceckive operation of complex systems with skill based routing.

A hopeful direction for further research is to consider other regimes of interest: The qual-
ity driven (QD) regime (in which there is no overload), and the critical, quality and e LCciehcy
driven (QED) regime (in which the load is exactly one). Preliminary results indicate that the
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techniques used in this paper may also work for the QD and QED regimes.
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. Simulated mean waiting times

E[Wi] E[W,] E[W3] E[W4 E[Ws]
20 7,17, 17, 12,7) 1.351 0.631 0.561 0.869 1.242
40 (14,33, 34,24, 14) 1.252  0.729 0.683 0.905 1.159
60 (20, 50, 51, 36, 22) 1.206 0.773 0.740 0.921 1.116
100 | (34, 84, 85, 61, 36) 1.121 0.813 0.792 0919 1.053
200 | (68,167,169,121,72) | 1.082 0903 0.893 0.966 1.042

Target 1.000 1.000 1.000 1.000 1.000
Simulated abandonment rates
A 0 6, 05 04 (7]

20 (7,17,17,12,7) 0.245 0.125 0.111 0.165 0.227
40 (14,33, 34,24, 14) 0.225 0.139 0.131 0.168 0.210
60 (20, 50, 51, 36, 22) 0.216 0.145 0.140 0.169 0.202
100 | (34, 84, 85, 61, 36) 0.200 0.150 0.147 0.168 0.190
200 | (68,167,169,121,72) | 0.192 0.163 0.162 0.173 0.186
Target 0.181 0.181 0.181 0.181 0.181

Target matching rates
s s

52 53 S4

c; | 0.192 0.108

¢ | 0.008 0.092

c3 0.108 0.042

C4 0.258 0.042

Ccs 0.108 0.042

52 S4 S1 52 853 S4 S5

c; | 0.184 0.095 c; | 0.187 0.104
c; | 0.016 0.091 ¢ | 0.010 0.093
c3 0.108 0.056 c3 0.108 0.048
C4 0.244 0.064 c4 0.252 0.050
Cs 0.094 0.048 Cs 0.103 0.044

Table 3: Simulation results for the network in Figure 3 with complete resource pooling.



Simulated mean waiting times \

E[Wy] E[W,] E[W3] E[W4] E[Ws]
20 (10, 2, 19, 24, 5) 1.366 1.362 0.533 0.417 0.515
40 (19,5, 38, 48, 10) 1.277 1230 0.490 0.422 0.487
60 (29,7,57,72,15) 1.200 1.164 0.483 0.432 0.480
100 | (48,12,96,121,25) | 1.117 1.085 0452 0419 0.451
200 | (96, 25,191,241,49) | 1.045 1.023 0.489 0472 0.489
Target 1.000 1.000 0.500 0.500 0.500
Simulated abandonment rates \
A n 92 94
20 (10,2, 19,24,5) 0.248 0.248 0.106 0.084 0.102
40 (19,5, 38, 48, 10) 0.230 0.223 0.095 0.083 0.095
60 (29,7,57,72,15) 0.215 0.210 0.093 0.084 0.093
100 | (48,12,96,121,25) | 0.201 0.196 0.087 0.081 0.087
200 | (96, 25,191,241,49) | 0.187 0.184 0.092 0.089 0.092
Target 0.181 0.181 0.095 0.095 0.095
N 52 53 S4 S
cy | 0.169 0.113
cy | 0.056 0.038
c3 0.156
C4 0.156 0.156
Cs 0.156
52 853 S4 S1 52 853 S4 S5
c1 | 0.170 0.100 c1 | 0.160 0.110
¢y | 0.069 0.021 ¢y | 0.060 0.033
c3 0.007 0.150 c3 0.002 0.160
C4 0.160 0.170 C4 0.160 0.160
Cs 0.150 0.011 Cs 0.150 0.003

Table 4: Simulation results for the network in Figure 3 with two-subsystem decomposition.




.~ Simulated mean waiting times |

E[W,] E[W,] E[W3] E[W4] E[Ws]
20 6,9, 7, 33, 3) 2483 1.658 1.252 0.449 0.459
40 | (11,17,15,66,6) | 2.454 1.548 1.138 0.438 0.443
60 | (17,26,22,100,9) | 2.255 1.417 1.096 0411 0413
100 | (28,43,37,166,15) | 2.150 1317 1.066 0.443 0.443
200 | (56, 87,74,332,30) | 2.057 1.188 1.033 0.474 0.474

Target 2.000 1.000 1.000 0.500 0.500
Simulated abandonment rates
A n 6 92 93 94 [7)

20 (6,9,7,33,3) 0.403 0.294 0.232 0.090 0.092
40 | (11,17,15,66,6) | 0.393 0.272 0.209 0.087 0.088
60 | (17,26,22,100,9) | 0.366 0.250 0.200 0.080 0.081
100 | (28,43,37,166,15) | 0.351 0.233 0.194 0.085 0.085
200 | (56, 87,74,332,30) | 0.336 0.210 0.186 0.089 0.089
Target 0.330 0.181 0.181 0.095 0.095

Target matching rates
s s

52 53 S4
¢ | 0.173 0.074
c2 0.101
c3 0.025 0.126
C4 0.334
Cs 0.167
52 S4 S1 52 853 S4 S5
¢y | 0.156 0.076 c; | 0.167 0.075
¢ [ 0.020 0.071 ¢ | 0.004 0.091
c3 0.050 0.099 c3 0.031 0.119
C4 0.027 0.326 c4 0.008 0.334
Cs 0.175 0.001 Cs 0.171

Table 5: Simulation results for the network in Figure 3 with three-subsystem decomposition.



Simulated mean waiting times \

Service-time dist. | E[W] E[W,] E[W3] E[W4] E[W;s]
Exponential 1.209 0.774 0.740 0921 1.118
Gamma 1.197 0.788 0.755 0.930 1.114
Uniform 1.195 0.789 0.756 0.929 1.112
Pareto 1.183 0.793 0.761 0.929 1.107
Target 1.000 1.000 1.000 1.000 1.000
S Simulated abandonment rates

Service-time dist. 01 6> 03 04 Os

Exponential 0.216 0.145 0.139 0.170 0.202
Gamma 0.215 0.147 0.142 0.171 0.201
Uniform 0.213 0.147 0.142 0.171 0.201
Pareto 0.212 0.148 0.143 0.170 0.200
Target 0.181 0.181 0.181 0.181 0.181

--- exponential — uniform --- gamma — pareto --- exponential — uniform --- gamma — pareto --- exponential — uniform --- gamma — pareto

" 05 10 15 20 25 30 " 05 10 15 20 25 30 " 05 10 15 20 25 30

Wi W, Ws

--- exponential — uniform --- gamma — pareto --- exponential — uniform --- gamma — pareto

05 10 15 20 25 30 ‘ 05 10 15 20 25 30

W4 WS

Table 6: Simulation results for the network in Figure 3 with complete resource pooling and
general service-time distributions.
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Simulated sequence of server types

1 2 3 4 5 Total
0.038 0.042 0.060 0.028 0.030 | 0.198
0.040 0.040 0.059 0.031 0.030 | 0.199
0.060 0.058 0.090 0.045 0.047 | 0.300
0.031 0.030 0.046 0.023 0.022 | 0.151

5 0.030 0.030 0.045 0.024 0.022 ] 0.151
Total | 0.198 0.199 0.300 0.151 0.151 | 1.000

B W N =

(@)

Expected sequence of server types

1 2 3 4 5 Total
0.039 0.040 0.059 0.030 0.030|0.198
0.040 0.040 0.060 0.030 0.030 | 0.199
0.059 0.060 0.090 0.045 0.045 | 0.300
0.030 0.030 0.045 0.023 0.023 | 0.151

5 0.030 0.030 0.045 0.023 0.023 | 0.151
Total | 0.198 0.199 0.300 0.151 0.151 | 1.000

AW N =

(b)

Simulated sequence of customer types

1 2 3 4 5 Total
0.086 0.030 0.046 0.092 0.042 | 0.297
0.031 0.010 0.014 0.031 0.015|0.102
0.044 0.016 0.022 0.047 0.022 | 0.152
0.091 0.031 0.047 0.088 0.046 | 0.303

5 0.045 0.016 0.022 0.044 0.020 | 0.147
Total | 0.297 0.102 0.152 0.303 0.147 | 1.000

AW N =

(©)

Expected sequence of customer types

1 2 3 4 5 Total
0.088 0.030 0.045 0.090 0.044 | 0.297
0.030 0.010 0.016 0.031 0.015|0.102
0.045 0.016 0.023 0.046 0.022 | 0.152
0.090 0.031 0.046 0.092 0.044 | 0.303

5 0.044 0.015 0.022 0.044 0.022 | 0.147
Total | 0.297 0.102 0.152 0.303 0.147 | 1.000

AW N =

(d)

Table 7: The first table shows the fraction of occurrences of each pair (s;, s;) in the sequence
of server types at each service start. The second table shows the expected fractions under the
null hypothesis that the server types of two successive service starts are independent. The
third and fourth table show similar results for the sequence of customer types.
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