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Preface

The present document was developed for the lectures (3× 2× 45 minutes) I gave at
the EURANDOM Activity Month in Risk and Queueing in March 2013. The main
purpose was to show some more practically oriented aspects of the Monte Carlo
method. Parts are solutions of exercises in S. Asmussen & P.W. Glynn, Stochastic
Simulation. Algorithms and Analysis, Springer 2007 (henceforth referred to as AG),
resulting from my teaching over the years. Other parts are extracted from AG and
one (Ch. 5) is related to new research results.

Another purpose of the lectures was to to give an impression of how I have done
my teaching in the area. The Aarhus form (the one in Lund was closely related)
was a 2 quarter = 14 weeks course. Each week would have a topic like Importance
Sampling, Gaussian Processes etc. with 2×45 min lectures and a project done in a
3h computer lab (some preparation or extra time would usually be needed). The
lectures would go through the basic theory with a special view towards the exercise.
The project would typically be one of the exercises marked Assignment in AG. This
form has worked very well and been favorably received by the students. I personally
thinks one need some practical work to get the flavor and an understanding of
the Monte Carlo area — doing a course as lectures alone does not achieve that.
Unfortunately, it is my impression that very few courses at this level, even worldwide,
are organized this way. I highly recommend others to follow up on this!

My students have been half Statistics students and half MathFinance students,
who were given a set of exercises only in that area. This is reflected in some bias
towards MathFinance in the material incorporated here [the story would have been
different if I have had many physics student, say!].

AG is deliberately written without reference to specific software. However, in
my own teaching I have been using Matlab. Some code is incorporated at a few
places and some general issues discussed in the Appendix. Matlab programs for the
2012 course for statistics students have been supplied by Ólöf Thórisdóttir and will
be posted at my web page http://home.imf.au/asmus under the heading Papers
and programs for downloading.

Thanks goes to Anders Alexander Vedel Helweg-Mikkelsen, Leonardo Rojas-
Nandyapa, Anders Rønn Nielsen and Ólöf Thórisdóttir for supplying most of the
exercise solutions. Another purpose of this document has been to collect them even
if some do not refer to topics discussed in the EURANDOM minicourse. They are
often inserted in the form given to me or close to, without attempting a perfectly
uniform style for which much additional work would have been required. One should
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ii Preface

certainly take all material presented here with a grain of salt!
Lars Madsen deserves a special thanks for, as on many other occasion, helping

with the set-up, improving the typography and solving problems that were beyond
my LATEX ability

Søren Asmussen
Aarhus and Eindhoven, March 2013
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1 Random Variate Generation

1.1 Uniform random numbers
The point of view of AG is that the average user should keep clear of uniform ran-
dom number generation and use available software (commercial or public domain).
Modern algorithms are much better than some decades ago, pass all goodness-of-fit
tests and there is little chance of competing neither in terms of accuracy or speed.

An example of such an algorithm is the following developed by L’Ecuyer and
used in many software packages (e.g., Arena, or SAS)

1. xn ←−
(
A1xn−2 − A2xn−3

)
modM1 ,

2. yn ←−
(
B1yn−1 −B2yn−3

)
modM2 ,

3. zn ←− (xn − yn)modM1 ,

4. If zn > 0, return un = zn/(M1 + 1); else return un = M1/(M1 + 1) ,

where M1 = 4,294,967,087, M2 = 4,294,944,443, A1 = 1,403,580, A2 = 810,728,
B1 = 527,612, B2 = 1,370,589 (the seed is the first three x’s and the first three y’s).

I have seen the claim that this is what Matlab uses but also that it is a Mersenne
twister.

A recent algorithm worth mentioning is L’Ecuyer’s mrg32k3a.

1.2 Non-uniform random numbers
Again, the point of view of AG is that modern software does an excellent job. In
Matlab, there are lots of routines producing standard distributions like the gamma,
normal etc., and there is little point in trying to improve these or compete.

However, in a few situations the need arises to generate r.v.’s from non-standard
distribution. Two such cases, from which we will give examples, are MCMC (Markov
chain Monte Carlo, Example 1) and Lévy processes (Section 1.2).

Assume we want to generate a real-valued r.v. X from the distribution F . There
are two standard methods around, inversion and acceptance-rejection.

Inversion assumes the c.d.f. F (x) = P(X ≤ x) to be known and the inverse F−1 to
be computable. X can then be generated as F−1(U) where U is uniform. Standard
example: the exponential distribution, where F (x) = 1−e−x, F−1(x) = − log(1−x).

1



2 Chapter 1. Random Variate Generation

Main limitation: F−1 may not be computable. Even F needs not be so, or at least
of a complicated form, say involving special functions.

In acceptance-rejection, the density f(x) (the target) of X needs to be available.
One then finds a density g(x) (the proposal), such that easily simulated and has the
property f(x) ≤ Cg(x), for some known constant C <∞; see Fig. 1.1.
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Figure 1.1

The A-R algorithm is

r=0;
while r

y= a r.v. from g; u=rand;
r=u>f(y)/(Cg(y));

end;
x=y;

In earlier years, I have been using the following exercise as introduction to non-
uniform r.v. generation:

Exercise AG II.2.9.

Produce 100,000 standard normal r.v.’s using each of the following methods: (a) in-
version using the approximation AG.II.(2.2) of Φ−1, (b) Box-Muller, (c) Marsaglia
polar, (d) A–R as in Example AG.II.2.7, (e) ratio-of-uniforms and (as comparison)
(f) a routine of a standard package, say Matlab. The desired results are the CPU
time needed for each of the methods.

The weakness of the exercise is that the results are highly implementation dependent.
In particular when comparing of speeds, Matlab will always beat anything produced
by the student and methods (like (b)) that can be programmed with Matlab’s matrix
facilities will come out favorably compared to those that don’t (like (d) where the
A-R step must use something like while. In the 2012 class, I used instead:
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Exercise Nov 1, 2012.

Generate r.v.’s from the density f(x) = 2xe−x
2 , x > 0, using (a) inversion, (b) ac-

ceptance-rejection with the standard exponential density g(x) = e−x as proposal.
Report your results as histograms compared to f(x).

This makes the student try both inversion and A-R, but is deceivingly simple: For
inversion, F−1 is explicitly available (F (x) = 1 − e−x

2 , F−1(u) =
√
− log(1− u))

and for A-R, the dominating constant C can just be computed by noting that
f(x)/g(x) = 2xe−x

2+1 is maximized for x = 1 with maximum C = 2.

Solution.

The implementation is straightforward. Fig. 1.2 summarizes the results of using
inversion and acceptance-rejection in terms of an empirical histogram plotted along
with the true density.

Figure 1.2

Example 1.

Consider a stochastic volatility model

Xk+1 = φXk + σUk, Yk = θeXk/2Vk + ωVk

where U, V are standard normal. We think of the Y as the asset prices and of the
θeXk/2 as the stochastic volatilities given in terms of the autoregressive process X.
One may be interested in recovering X1, . . . , XN and thereby the volatilities from
an observed sequence Y1, . . . , YN . One approach is MCMC, where one generates a
Markov chain ξ = (ξn1, . . . , ξnN)n=1,2,... with state space RN such that the stationary
distribution is the distribution of X1, . . . , XN given Y1, . . . , YN . For large values of n
one can then think of (ξn1, . . . , ξnN) as a typical value in this conditional distribution.

The Markov chain ξ is conveniently simulated by Gibbs sampling, where (ξ(n+1)1,
. . . , ξ(n+1)N) is generated from (ξn1, . . . , ξnN) by updating one component at a time.



4 Chapter 1. Random Variate Generation

Component k is then generated from the conditional distribution of Xk given Xk−1,
Xk+1, Yk. After some algebra, the density of this distribution comes out as propor-
tional to

exp
{
−α(x− µ)2 − βex−µ

}
for some constants α, β, µ which in addition toXk−1, Xk+1, Yk involve also φ, θ, σ2, ω2

(which are assumed known). R.v. generation from this density is of course non-
standard.

For more detail, see references in footnote.1.

Lévy processes via the Lévy density

A Lévy process X has the form

X(t) = mt+ σB(t) + J(t) ,

where B is standard Brownian motion and J an independent pure jump process
specified by its Lévy measure ν (which may be infinite); the intuitive description is
that jumps of size x occur at Poisson intensity ν(dx). Examples of Lévy measures
(usually specified by their Lebesgue density) are in the following table.

Process Density of ν

Gamma αe−λx/x x > 0
0 x < 0

Inverse Gaussian
1√

2πx3/2
e−xγ

2/2 x > 0

0 x < 0

Stable C+/y
α+1 y > 0

C−/|y|α+1 y < 0

Tempered stable (CGMY) C+e
−Mx/x1+Y x > 0

C−e
Gx/|x|1+Y x < 0,

NIG αδK1

(
α|x|

)
eβx/π|x| 0 < x <∞

(normal inverse Gaussian)

Generalized hyperbolic
eβx

|x|

∫ ∞
0

exp
{
−|x|

√
2y + α2

π2y
[
J2
−λ
(
δ
√
2y
)
+ Y 2

−λ
(
δ
√
2y
)] dy 0 < x <∞

Here K1, Jµ, Yµ are certain Bessel functions (for the generalized hyperbolic case,
there is a similar expression with an added exponential term if the parameter λ is
non-negative).

1p. 184 in O. Cappé, E. Moulines, & T. Rydén (2005) Inference in Hidden Markov Models.
Springer-Verlag.
N. Shephard & M. Pitt (1997) Likelihood analysis og non-Gaussian measurement time series.
Biometrika 84, 653–667. Erratum 2004 in 91, 249–250.
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For simulation of the paths, the simplest case is that the distribution of X(h) is
known for any h in a form that allows for simulation; then one can just simulate
discrete skeletons as for Brownian motion. Examples are the Gamma and inverse
Gaussian Lévy processes. There are also some Lévy processes that can be simulated
by subordination, i.e. as X(t) = Y

(
T (t)

)
, where Y is a Lévy process (often Brownian

motion) and T a subordinator (an increasing Lévy process). An example is the NIG
process where Y is Brownian motion and T is the inverse Gaussian Lévy process.
However, in many examples (e.g. GGMY and hyperbolic) none such simplification
is available and one has to proceed via the Lévy measure ν.

The easy case when the total mass λ =
∫
ν(dx) is finite. Then X(t) =

∑N(t)
1 Yi

where N is Poisson with rate λ and the Yi are i.i.d. with distribution ν/λ, and
simulation is straightforward (provided, of course, that simulation from F is within
reach). If, as most often, λ = ∞ one instead truncates. This means defining
νε,+, νε,+, νε,0 as the restrictions of ν to (ε,∞), (−∞,−ε), resp. [−ε, ε] allowing
to write X = Xε,+ + Xε,+ + Xε,0 for Lévy processes corresponding to these Lévy
measures. The advantage is that Xε,+, Xε,+ are compound Poisson. Xε,0 is either
put to 0 or approximated by a Brownian motion with the same drift and variance
(for accuracy, ε needs to be sufficiently small for both procedures).

As the examples above show, many Lévy densities are sufficiently complicated
that generating the jumps of Xε,+, Xε,+ is a non-standard problem in r.v. genera-
tion. Another such non-standard problem arises when generating the minimal en-
tropy process X∗ associated with a given X (this comes up in risk-neutral pricing).
Namely, ν∗(dy) = exp{λ(ey − 1)} ν(dy), and the additional factor exp{λ(ey − 1)}
invariably creates difficulties no matter how easy it is to simulate from X itself

Exercise Nov 1, 2012.

Generate paths of a CGMY Lévy process with suitably chosen parameters by a com-
pound Poisson approximation (forgetting about small jump approximations).

Solution.

We took C+ = C− = 1.5, G = M = 1, Y = 1 and ε = 0.5 [this value of ε may
be too large for use in realistic settings; however, we are here only interested in
demonstrating the methodology]. Xε,+ and Xε,= are simulated separately. The
method for generating jumps of Xε,+ (the case of Xε,= is similar) is to first generate
the number of jumps as Poisson(λε). To generate the jump sizes, one can split the
interval (ε,∞) up into K + 1 subintervals (K = 3 on Fig. 1.3) and compute the
masses p1, . . . , pK+1 over each by numerical integration. One then first selects an
interval w.p. pk/(p1 + · · · + pK+1) for k, and has to simulate from the distribution
with density proportional to the Lévy density restricted to this interval. For k ≤ K,
this is done by A-R with a uniform proposal. For k = K + 1, one uses that the
Lévy measure is bounded by e−x and applies A-R with g(x) = e−(x−tN ), x > tN as
proposal and x−1−Y as acceptance probability [this requires tN > 1].

Carrying out this procedure gives the results depicted in Fig. 1.4.
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Figure 1.3

Figure 1.4

An example of a sample path of the compound Poisson corresponding to a given
set of jumps is shown in Fig. 1.5 (the positions may be generated as iid uniforms on
(0, 1))

Figure 1.5
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Figure 1.6

It is tempting instead of the approximation with boxes to use one with trapezoids,
cf. Fig. 1.6. However, the belief that this may lead to fewer rejections is false at
least if one uses the most obvious method to generate from the distribution with
density proportional to the the dominating chord on interval k, namely A − R: in
the end the number of rejections will be the same!

Remark 1.1. A large number of Lévy densities are close to a power x−α+1 for
small x and close to an exponential e−µx for large x. One may ask whether this
observation can be used to build a general procedure for simulating a jump ≥ ε
by using a Pareto proposal for small x, an exponential proposal for large x and
somehow interpolate in between. I don’t believe this is possible because there is no
general handle on the behavior of the Lévy density in the intermediate range. One
will most often have to use the box procedure above.

The box procedure may be a resort for r.v. generation from other complicated
densities than truncated Lévy densities.

Example 2.

Simulation from a density truncated to (a, b) also comes up in other context, in
particular stratification. Even if simulation from the original density f may be easy,
so needs not be the case when truncating. If inversion applies to f , so it does to f
truncated to (a, b), cf. AG p. 39. But assume for example that f is the density of a
NIG r.v., i.e.

f(x) =
αδ

π
exp
{
δ
√
α2 − β2 − βµ

}K1

(
α
√
δ2 + (x− µ)2

)√
δ2 + (x− µ)2

eβx ,

where K1 is a Bessel function. A r.v. from f can be generated in a simple way
as Z1/2V where Z is inverse Gaussian and V standard normal. When truncating,
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there is no adaptation of this procedure, and one has to use for example the box
procedure.



2 Variance Reduction

In a vast number of applications of Monte Carlo simulation, the aim is to produce
an estimate of a number z that can be written as an expected value EZ for some
r.v. Z. For example, z can be a probability, in which case Z = 1A, or an option
price (e.g. of the form e−rT E[eY −K]+ so that Z = e−rT [eY −K]+. The Monte Carlo
method then proceeds by simulating R i.i.d. replications Z1, . . . , ZR of Z, estimate
z by the empirical mean ẑ = (Z1 + · · · + ZR)/R, and report the final result of
the simulation experiment as a (say) 95% confidence interval ẑ ± 1.96s/

√
R where

s2 =
∑R

1 (Zr − ẑ)2/(R− 1) is the empirical variance. We also talk about the Crude
Monte Carlo (CMC) method.

Variance reduction methods aim at finding an alternative algorithm, which es-
timates z with smaller variance within the same amount of computer time. Often
this means finding a different ZVR with EZVR = z and proceeding as in the CMC
for a confidence interval.

Variance reduction is typically most readily available in well-structured prob-
lems. Also, variance reduction typically involves a fair amount of both theoretical
study of the problem in question and added programming effort. For this reason,
variance reduction is most often worthwhile only if it is substantial. Assume, for
example, that a sophisticated method reduces the variance by 25% compared to the
CMC method, i.e., σ2

VR = 0.75σ2
CMC in obvious notation, and consider the numbers

RCMC, RVR of replications to obtain a given precision ε (say in terms of half-width
of the 95% confidence interval). Then

ε =
1.96σCMC√
RCMC

=
1.96σVR√
RVR

, RVR =
σ2
VR

σ2
CMC

RCMC = 0.75RCMC ,

so that at best (assuming that the expected CPU times TCMC, TVR for one replication
are about equal), one can reduce the computer time by only 25%. This is in most
cases of no relevance compared to the additional effort to develop and implement
the variance reduction method. If TVR > TCMC/0.75, as may easily be the case,
there is no gain at all.

2.1 Importance sampling

The idea behind importance sampling is changing the basic distribution underlying
the simulation experience. For a simple example, assume Z = ϕ(X,Y ) whereX,Y

9



10 Chapter 2. Variance Reduction

are random vectors with densities fX(x), fY (y). If f̃(x) is a different density for
X, one then has

z = Eϕ(X,Y ) =

∫∫
ϕ(x,y)fX(x)fY (y) dy dx

=

∫∫
ϕ(x,y)

fX(x)

f̃X(x)
f̃X(x)fY (y) dy dx = Ẽ[ZL] ,

where L = fX(x)(X)/f̃X(X) is the likelihood ratio and Ẽ refers to a probability
measure P̃ under which the density of X is fX(x)(x), not fX(x), whereas the
density of Y remains fY (x)(y). Thus one can let ZIS = ZL = ϕ(X,Y )L(X)

where X is generated from f̃X(x), not from fX(x) as for CMC.
Virtually all implementations of IS follows this pattern or minor extensions. The

abstract formulation is that the likelihood ratios (Radon-Nikodym derivatives) are
connected by L̃ = dP̃/dP = 1/L where L = dP /dP̃.

Example 3.

Let z = P(X ∈ A) where A = {(x, y) : x ≥ a, y ≥ a} and let X ∼ N (0,C) be
n = 2-dimensional normal (Gaussian) where

C =

(
4 −1
−1 4

)
.

We try to estimate z by changing the distribution of X to N (µ, C̃). Then

fX(x) =
1

(detC)1/2
exp

{
− 1

2
xTC−1x

}
,

f̃X(x) =
1(

det C̃
)1/2 exp

{
− 1

2
(x− µ)TC̃−1(x− µ)

}
.

We took a = 3, C̃ = δC and chose by trial-and-error δ = 1/2, 1, 2, µ = (2, 2), (2, 0),
(0, 0), (−2, 0) (−2,−2). Performing R = 10, 1000 replications gave the following
values of the estimated variance ratio s2IS/s2CMC:

δ = 1/2 δ = 1 δ = 2
µ = (2, 2) 0.00135±0.00004 0.00139±0.00004 0.00137±0.00005
µ = (2, 0) 0.00150±0.00031 0.00130±0.00009 0.00132±0.00007
µ = (0, 0) 0.00096±0.00125 0.00131±0.00022 0.00142±0.00011

µ = (−2, 0) 0.00000±0.00000 0.00082±0.00072 0.00130±0.00021
µ = (−2,−2) 0.00000±0.00000 0.00000±0.00000 0.00143±0.00050

We note that µ = (0, 0), δ = 1 corresponds to CMC and observe that IS may give
variance reduction, i.e. s2IS/s2CMC < 1, but not always. Choosing µ wtih negative
components and δ > 1 appears disadvantageous.
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The common general rule of thumb for chosing the importance distribution is
that “P̃ should give more weight than P in areas of the sample space where Z
is large”. This together with the preliminary findings in Example 3 motivates to
proceed as in the following two exercises.

Exercise AG.V.1.4.

Let z,X,A be as in Example 3. For a = 1, 3, 10:

(i) Try first to give simulation estimates of z = P(X ∈ A) and associated 95%
confidence intervals using the CMC method.

(ii) Find next the point b ∈ A that maximizes the N (0,C) density and repeat (i),
with the CMC method replaced by importance sampling, where the impor-
tance distribution is N (b,C).

(iii) In (ii), experiment with importance distributions of the form N (b, δC)

Solution.

(i) The results shown in Table 2.1 are Crude Monte Carlo simulation estimates
corresponding to R = 1,000,000 replications.

a ẑ σ̂2

1 6.510 · 10−2 6.09 · 10−2

3 1.354 · 10−3 1.35 · 10−2

10 — —

Table 2.1: CMC.

In the last line where a = 10, P(X ∈ A) is so low that X ∈ A was never
observed. Therefore both mean and variance came out as zero. The values of the
empirical variance are in the good agreement with the theoretical variance z(1− z).

CMC requires large sample sizes for even moderately small probabilities. For
example, for a = 3 the number R of replicates required to get the second significant
digit in ẑ correct is given by

1.96
√

1.35e− 2√
R

= e− 4

which gives R = 700, 130. For the third digit, 100 times as many are required!

(ii) Observe that the point a = (a, a)T maximizes the N (0,C) density in the set A.
Importance sampling simulation estimates are given in Table 2.2, using N (a,C) as
importance distribution (again, R = 1,000,000).
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a ẑIS(a) σ̂2
IS(a)

1 6.50 · 10−2 1.99 · 10−2

3 1.38 · 10−3 2.04 · 10−5

10 1.17 · 10−17 1.00 · 10−32

Table 2.2: IS as in (ii).

(iii) Finally, we experiment with importance sampling distributions of the form
N (a, δC) for different δ > 0. The Radon-Nikodym derivative is given by

L(X, a, δ) =
√
δn/2 exp

{
− 1

2

(
XTC−1X − (X − a)TC−1(X − a)

δ

)}
.

where n (here 2) is the dimension of X. In the numerical estimates shown in
Table 2.3 the value of δ was chosen in such way that the variance of the estimator
was minimized.

a δ ẑIS(a, δ) σ̂2
IS(a, δ)

1 0.644 6.53 · 10−2 1.64 · 10−2

3 0.308 1.39 · 10−3 8.28 · 10−6

10 0.057 1.18 · 10−17 7.25 · 10−34

Table 2.3: IS as in (iii).

Since C corresponds to negative correlation, it seems reasonable to think that
variance reduction could be obtained by letting C̃ have positive off-diagonal ele-
ments, but this has not been implemented.

Exercise Exercise AG.V.2.8.

Consider a European call basket option with payout e−rT
[
S(T )−K

]+ and S(t) =
S1(t)+· · ·+S10(t), where the log-returns of the 10 spot prices are geometric Brownian
motions and we for simplicity assume independence and that the yearly volatilities
σi all equal σ = 0.25. The initial spot prices are 6, . . . , 15, we take T = 2 years,
r = 4%, andK = 300. Since S(0) = 105, we are thus in the “out-of-the-money” case.
The assignment is to illustrate the efficiency of importance sampling by comparing
the half-width of the confidence interval for the price Π to that of the crude Monte
Carlo method. The importance distribution (this is only one possibility) is obtained
by adding the same µ to the drifts r − σ2

i under the risk-neutral measure, with µ

determined from pivotal runs such that ẼS(T ) ≈ K.

Solution.

K = 300 is unrealistically out-of-the-money so we took K = 150 instead. With
K = 150 one finds through pilot runs that adding µ = 0.142 to the drifts of all ten
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assets ensures approximate fulfillment of the condition ẼS (T ) ≈ K. 1 A comparison
of the first 50 sample paths under the crude Monte Carlo method and under the
Monte Carlo method with importance sampling is given in Fig. 2.1.

Figure 2.1

One sees that ZCMC = 0 (corresponding to S(T ) ≤ K) in many replications,
which one therefore somehow feel are vasted, and that IS resolves this problem.

The resulting gain in efficiency is apparent from the confidence intervals and
corresponding half-widths reported in Table 2.4.

q̂0.025 ẑ q̂0.975 P̃ [S (T ) > K] ẼS (T ) Half-width

CMC 4.96 · 10−2 5.44 · 10−2 5.92 · 10−2 0.0071 113.3 0.0132
IS 5.30 · 10−2 5.40 · 10−2 5.51 · 10−2 0.4685 149.7 0.0028

Table 2.4

There is in fact an optimal choice of P̃ or, equivalently, L̃ = dP̃/dP: Assuming
Z ≥ 0 for simplicity, let P∗ be defined by

dP∗

dP
=
Z

z
, i.e., P∗(dω) =

Z

z
P(dω)

or L∗ = E |Z|/|Z|. Then ZL has variance 0 under P̃. The optimal choice P̃ =
P∗ can, however, never be implemented in practice, since the evaluation of the
estimator involves knowledge of the unknown z. Nevertheless, it is suggested that
large variance reduction can be achieved by sampling outcomes ω ∈ Ω in rough
proportion to Z(ω). If z = P(A), Z = 1A, then

P∗(dω) =
1{ω ∈ A}

P(A)
P(dω) ,

1The equation ẼS (T ) ≈ K can in fact be solved explicitly for µ, but in many other examples,
one has to resort to pivotal runs.
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so that P∗(·) = P(· |A). Thus, when computing probabilities, we wish to use a
sampling distribution P̃ that resembles as closely as possible the conditional distri-
bution of P given A. In Exercise AG.V.1.4 on Gaussian probabilities, we are not
aware of any reasonably precise description of the distribution of X = (X1 X2)
given X1 ≥ a,X2 ≥ a. The proposed IS schemes aim at coming somewhat in that
direction, with a modest level of ambition. Similar remarks apply in the option
pricing exercise AG II.2.9, where one would ideally try to describe the conditional
distribution of S1(T ), . . . , S10(T ) given S1(T ) + · · ·+ S10(T ) > K.

2.2 Control variates

The idea is to look for an r.v. W that has a strong correlation (positive or neg-
ative) with Z and a known mean w, generate (Z1,W1), . . . , (ZR,WR) rather than
Z1, . . . , ZR, and combine the empirical means ẑ, ŵ to an estimator with lower vari-
ance than the CMC estimator ẑ of z = EZ.

The naive method is to choose some arbitrary constant α and consider the es-
timator ẑ + α(ŵ − w). The point is that since w is known, we are free just to add
a term α(ŵ − w) with mean zero to the CMC estimator ẑ, so that unbiasedness is
preserved. The variance is

σ2
Z + α2σ2

W + 2ασ2
ZW , (2.1)

where
σ2
Z

def
= Var Z, σ2

W
def
= Var W, σ2

ZW
def
= Cov(Z,W ).

In general, nothing can be said about how (2.1) compares to the variance σ2
Z

of the CMC estimator ẑ (though sometimes a naive choice such as α = 1 works to
produce a lower variance). However, it is easily seen that (2.1) is minimized for α =
−σ2

ZW/σ
2
W , and that the minimum value is

σ2
Z(1− ρ2) , where ρ

def
= Corr(Z,W ) =

σ2
ZW√
σ2
Zσ

2
W

. (2.2)

One then simply estimates the optimal α by replacing σ2
ZW , σ

2
W by their empirical

values,

α̂
def
= −s

2
ZW

s2W
,

where

s2Z
def
= s2

def
=

1

R− 1

R∑
r=1

(Zr − ẑ)2, s2W
def
=

1

R− 1

R∑
r=1

(Wr − ŵ)2 ,

s2ZW
def
=

1

R− 1

R∑
r=1

(Zr − ẑ)(Wr − ŵ) ,
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and uses the estimator ẑCV = ẑ+α̂(ŵ−w), which has the same asymptotic properties
as ẑ + α(ŵ − w); in particular, the asymptotic variance is σ2

Z(1 − ρ2)/R, and a
confidence interval is constructed by replacing σ2

Z , ρ
2 by their empirical values s2Z ,

s4ZW/s
2
Zs

2
W .

The procedure reduces the variance by a factor 1− ρ2. Thus, one needs to look
for a control variate W with |ρ| as close to 1 as possible. The exact value of ρ will
be difficult to asses a priori, so that in practice one would just try to makeW and Z
as dependent as possible (in some vague sense). It is, however, an appealing feature
that even if one is not very successful, the resulting variance is never increased.

Example 4.

A famous example of control variates occurs in Asian options, where the key step
in estimating the price is evaluating the expected value of [S(0)A − K]+, where
A

def
=
∑p

1 eB(iT/p)/p is the average of a discretely sampled geometric Brownian motion
{B(t)}, with drift say µ and variance σ2 (S(0) > 0, K, T are constants). The idea
is that whereas the distribution of A is intractable, such is not the case for the
geometric average

A∗
def
=
( p∏
i=1

eB(iT/p)
)1/p

=

p∏
i=1

e(p−i+1)Yi/p ,

where Yi
def
= B(iT/p)−B

(
(i−1)T/p

)
. Namely, since the Yi are i.i.d.N (µT/p, σ2T/p),

we have that logA∗ is normal with mean and variance

θ
def
=
µT

p

p∑
i=1

(p− i+ 1), respectively ω2 def
=
σ2T

p2

p∑
i=1

(p− i+ 1)2

(θ, ω2 can be reduced but we omit the details). Thus, we can takeW def
=
[
S(0)A∗−K

]+
as control variate, since the expectation∫ ∞

log
(
K/S(0)

)(s0ez −K)
1√

2πω2
e−(z−θ)

2/2ω2

dz

is explicitly available by the Black–Scholes formula (Appendix A2).

Exercise Sept. 20, 2012.

Redo the basket option, Ex. AG.V.1.8, with the following modifications:

(1) Take K so that the option is in-the-money (say K = 100), and forget about
importance sampling.

(2) Use both uncorrelated logreturns as in V.1.8 and a correlation between all
logreturns of 0.38.

(3) Use W = e−rT [A∗−K]+ as control variate, where A∗ is the geometric average
G of the 10 asset prices.
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(4) Supplement with W 2 as control.

Solution.

The CMC estimator can be written as

Z = e−rT [A−K]+, A = 1
10

10Si(0)eYi .

The corresponding geometric average is

A∗
def
=
( 10∏
i=1

(
10Si(0)eYi

)1/10
= xeY where x = 10

( 10∏
i=1

(
10Si(0)

)1/10
and Y =

∑10
1 Yi/10. Thus the proposed control W becomes e−rT [xeY −K]+. Under

the risk-neutral measure P ∗, Y ∼ N (µY , σ
2
Y ) where

µY = E∗ Y = (r − σ2/2)T , σ2
Y = Var∗ Y = 1

10
(1 + 9ρ)σ2T ,

and the required expression for EW comes out from the Black-Scholes formula in
the form given in Appendix A2.

The details for W 2 are rather similar.
The outcome of implementing the geometric mean as control is summarized in

Table 2.5.

α̂ ρ̂ 1− ρ̂2 w ŵ w − ŵ

Control variate −2.9502 0.38481 0.85192 0.0014161 0.0014868 7.0746 · 10−5

Table 2.5

The resulting variance reduction is seen from Table 2.6.

q̂0.025 ẑ q̂0.975

Crude Monte Carlo 0.050644 0.055584 0.060524
Control variate 0.050816 0.055375 0.059935

Table 2.6

Exercise AG.V.7.1.

Suggest some variance reduction methods for evaluating∫ ∞
0

(x+ 0.02x2) exp{0.1
√

1 + cos x− x} dx

by Monte Carlo integration.
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Solution.

The integral can be simulated either as Eh1(X1) or Eh2(X2) where X1 has density
e−x and X2 has density xe−x, and

h1(x) = (x+ 0.02x2)e0.01
√
1−cosx , h2(x) = (1 + 0.02x)e0.01

√
1−cosx .

The second way is much better: the ratio of standard deviations came out as 1.15 :
0.04.

The contribution from the 0.02 term is much smaller than the one from the
preceeding one. When using cosX2 as control variate, one obtained ρ2 = 0.97. One
then needs the formula ∫ ∞

0

cosx xe−x dx = 0 .

There should be many more ideas for variance reduction!

Exercise AG.V.2.3, New exercise.

Consider Exercise AG.V.1.4 and let S = X1 + X2 and D = X1 −X2. Experiment
with

1{X1≥a}, 1{S≥2a}, 1{X1≥a} + 1{X2≥a}, 1{|D|<c}

as control variates.

Solution.

Table 2.7 show simulation estimates of P(X ∈ A) using the indicated W as control
variate. As ẑ we employed Crude Monte Carlo.

W (1− ρ)2 ẑCV σ̂2
CV

0 (CMC) 1.375000 · 10−3 1.373110 · 10−3

1{X1≥a} 0.981357 1.332530 · 10−3 1.301513 · 10−3

1{S≥2a} 0.981416 1.328600 · 10−3 1.301591 · 10−3

1{X1≥a} + 1{X2≥a} 0.814486 1.334705 · 10−3 1.080202 · 10−3

1{|D|<c} 0.997934 1.325516 · 10−3 1.323498 · 10−3

Table 2.7

2.3 Stratification

My experience from teaching is that the general formulation of stratification as given
in AG is difficult for the students to grasp. In the 2012 course and the EURANDOM
minicourse, I instead started with presenting following exercise for afterwards to
proceed to the general theory.
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Poll exercise.

A survey sampling company is to make a poll for the 2011 election in a country like
Denmark. It counts votes for Blue or Red block (the goal is to give an estimate of
the precentage p of R votes together with an associated confidence interval), and it
uses a sample of 2, 000. There is a total of 4 million voters, and we will imagine
that 2.05 m (i.e., 51.25%) would vote for R at the time of the poll (of course, this
number is not known to the company!).

(1) The crudest method is to select 2, 000 people at random from the whole popu-
lation and ask for their vote. Explain that this would give a confidence interval
of order 2.1% [you don’t need to simulate; this is a simple calculation in the
binomial distribution].

(2) In practice polls, are often based on more detailed information. Let us assume
that the company divides the communities in the country into three types,
a: countryside, b: suburb or city with an annual income > 300.000 DKK, c:
suburb or city with an annual income ≤ 300.000 DKK, with 1.5, 1.0, resp.
1.5 m inhabitants, respectively. An alternative to 1) is then stratification with
strata a, b, c and proportional allocation. Give a point estimate for p and an
associated confidence interval, assuming that (at the time of the poll) 0.5 m
in stratum a would be R-voters, 0.3 m in stratum b and 1.25 m in stratum c.

(3) Finally consider a poststratification scheme aB,aR,bB,bR,cB,cR where, e.g.,
cR stands for the group of voters in c who voted R at the 2007 election.
Note that the number of voters is known, but the poll cannot select the cR-
number RcR in exact proportionality because for any c voter, it is not public
whether he/she is cB or cR. Carry out the simulation assuming the following
distribution of the voters (here cRB is the number of voters in c who voted R
in 2007 and will vote B in 2011 etc.):

aBB aBR aRB aRR bBB bBR bRB bRR cBB cBR cRB cRR

0.95 0.15 0.05 0.35 0.65 0.15 0.05 0.15 0.10 0.20 0.15 1.05

Solution.

(1) is just binomial sampling, so the half-width of the confidence interval is
1.96

√
p(1− p)/

√
2000 = 0.22. Proportional allocation in (2) gave 0.19, and post-

stratification 0.16.
This reduction may not appear much, and is certainly not so either in a Monte

Carlo context. However, in survey sampling it is worthwhile: the sample size N
needed to get 0.16 in the simple scheme (1) is given by 0.22/0.16 =

√
N/2000 which

gives N = 3438, implying an added cost of 75% for the company.
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Exercise (new).

Consider again the Gaussian problem P(X ∈ X) in Exercise AG.V.1.4 and the
quantities

1{X1≥a}, 1{S≥2a}, 1{X1≥a} + 1{X2≥a}, 1{|D|<c}

that we earlier tried as controls. Use them instead for stratification.

Solution.

Consider the following sets:

Ω0 = {S ≤ 2a}
Ω11 = {6 < S ≤ 7, |D| ≤ 3}
Ω12 = {6 < S ≤ 7, 3 < |D| ≤ 5}
Ω13 = {6 < S ≤ 7, 5 < |D|}
Ω21 = {7 < S ≤ 8, |D| ≤ 3}
Ω22 = {7 < S ≤ 8, 3 < |D| ≤ 5}
Ω23 = {7 < S ≤ 8, 5 < |D|}
Ω31 = {8 < S, |D| ≤ 3}
Ω32 = {8 < S, 3 < |D| ≤ 5}
Ω33 = {8 < S, 5 < |D|}

We observe that some of above sets are disjoint with respect to A. That is,

P((Ω0 ∪ Ω12 ∪ Ω13 ∪ Ω22 ∪ Ω23) ∩ A) = 0.

and therefore a further variance reduction can be obtained by noting that

P(A) = P((Ω11 ∪ Ω21 ∪ Ω31 ∪ Ω32 ∪ Ω33) ∩A)

= P(A|Ω11)p11 + P(A|Ω21)p21 + P(A|Ω31)p31

+ P(A|Ω32)p32 + P(A|Ω33)p33

where pij = P(Ωij). So, the last expression can be used to build a estimator via
stratification provided that we count with a method to simulate from every set Ωij (a
description on how to simulate from these r.v.’s is found at the end of the exercise).
The estimator is as follows

ẑST = ẑ11p11 + ẑ21p21 + ẑ31p31 + ẑ32p32 + ẑ33p33

where ẑij is the Crude Monte Carlo estimate of P(A|Ωij). However, since we have
removed some of the original strata, the variance of the estimator takes the following
shape

σ̂2
ST =

(p11/p)
2σ̂2

11

R11/R
+

(p21/p)
2σ̂2

21

R21/R
+

(p31/p)
2σ̂2

31

R31/R
+

(p32/p)
2σ̂2

32

R32/R
+

(p33/p)
2σ̂2

33

R33/R
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where Rij is the number of replications used for each estimator ẑij and

p = p11 + p21 + p31 + p32 + p33.

The number of replications Rij using proportional allocation is given by

Rij =
pij R

p11 + p21 + p31 + p32 + p33
.

The results for this estimator are given in Table 2.8.

a ẑST σ̂2
ST

3 1.382303 · 10−3 1.733475 · 10−6

Table 2.8

Exercise Dec 6, 2012.

Consider an European call option with payout
[
eY −K

]+ where Y has a NIG dis-
tribution with parameters µ = 0,δ = 1, α = 2, β = 1 and K is chosen such that the
option is in-the-money. Compute the expected payout using (a) crude Monte Carlo,
(b) stratification of Y with proportional allocation, and report on the variance re-
duction. For simulation of Y as well as for the stratification, a chord algorithm may
be relevant.

Solution.

The NIG draws can be generated in exactly the same way that the CGMY draws
were generated in a previous exercise on random variate generation. Since the
approach used in that exercise relied on splitting the support of the distribution
into several segments, one can use these very segments for the stratification as well.
Setting K = 1 and using 20 segments one achieves a considerable variance reduction
with proportional proportional allocation as seen in Table 2.9.

q̂0.025 ẑ q̂0.975

Crude Monte Carlo 0.9861 1.0793 1.1725
Stratification 1.0215 1.0459 1.0703

Table 2.9

Brownian bisection and stratification

When considering stratification applied to BM, a difficulty is that when generating
BM in (say) [0, 1] from (say) N = 1000, it is infeasible to stratify all N increments
since even just 2 strata for each would give a total of 2N strata. If, as in many other
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contexts, one would concentrate on the most important variables, what comes to
mind is to take first B(1) as the most important, then B(1/2), next B(1/4), B(3/4),
and so on. Values between the binary grid points can then be filled out with Brow-
nian bridges or by continuing the bisection construction. See Fig. 2.2.2

Figure 2.2

In each step of the bisection, one needs to fill in the midpoint between two binary
grid points, which is easily done from the formula

B(t+ h)
∣∣B(t) = a, B(t+ 2h) = b ∼ N ((a+ b)/2, h/2) .

Exercise AG.X.2.1.

Redo the Asian option in Exercise AG.IX.6.2 for N = 6 sampling points, using
bisection and stratification. The simplest way may be to generate the Brownian
motion at N ′ = 8 half-yearly sampling points and ignore the last two. The stratifi-
cation can be done, for example, by taking eight strata for the r.v. generating B(8),
four for the one

Solution.

Stratification reduces the half-width of the confidence interval with a factor of about
2 (not very impressive!).

Exercise AG.X.2.1.

Redo Exercise AG.III.4.2 (the Kolmogorov–Smirnov test) using bisection and strat-
ification. The stratification can be done, for example, by taking eight strata for the
r.v. generating, B(1/2), and four for each of the ones for B(1/4), B(3/4). What
about B(1)?

2That the minimum of B occurs at 1/2 as on the Figure is of course an event of probability
zero!
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Solution.

EM was estimated to about 0.83. Stratification reduces the variance with a factor
of about 2 (not very impressive!).

2.4 Conditional Monte Carlo

Here Z = ZCMC is replaced by ZCond
def
= E

[
ZCMC

∣∣W ] for some r.v. W (more gener-
ally, one could consider E

[
ZCMC

∣∣G ] for some σ-field G). Clearly, EZCond = EZCMC

= z. Since

σ2
CMC = Var(ZCMC) = Var

(
E
[
ZCMC

∣∣W ])+ E
(
Var

[
ZCMC

∣∣W ])
= σ2

Cond + E
(
Var

[
ZCMC

∣∣W ]) ≥ σ2
Cond,

conditional Monte Carlo always provides variance reduction, which is appealing.
The difficulty is to find W such that the conditional expectation is computable.

Example 5.

Consider an option with expected pay-out z = E[S(0) exp{µT +σB(T )−αN(T )}−
K]+ for some suitable probability distribution P, where B is standard Brownian
motion and N an independent Poisson(λ) process. This can be seen as the Black-
Scholes model with independent disasters at the epoch of N , such that a disaster
decreases the asset price by a factor e−α. We use conditional Monte Carlo with
W = N(T ). Then

E
[[
S(0) exp{µT + σB(T )− αN(T )} −K

]+ ∣∣∣N(T )
]

= E[
[
x exp{µT + σB(T ))} −K

]+
where x = S(0) exp{−αN(T )} should be treated as a constant. Here the r.h.
expectation can indeed be evaluated explicitly and is given by the Black-Scholes
formula as in the Appendix. Thus, we don’t need to simulate both B(T ) and N(T ),
but can simulate only N(T ).

Example 6.

Consider an option with expected pay-out E
[
S(0)ex(T ) −K

]
where x(0) = 0,

dX(t) = µ dt+ eV (t) dB(t)

with V independent of B. This is a stochastic volatility model. One can use
conditional Monte Carlo, conditioning on the whole path of V , noting that the
conditional distribution of

∫ T
0

eV (t) dB(t) given V is normal with mean zero and
variance

∫ T
0

e2V (t) dt and using again Black-Scholes.
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Exercise V.4.4, new.

Consider Exercise V.1.4 and S := X1 +X2 and D := X1 −X2.

(i) Show that S and D are independent.

(ii) Show that the region A can be rewritten in terms of the variables S and D as

A = {(S,D) : 2a− S ≤ D ≤ S − 2a}

(note that the condition S ≥ 2a is implicit), so we have

P(X ∈ A) = P(2a− S ≤ D ≤ S − 2a)

=

∫ ∞
2a

P(2a− S ≤ D ≤ S − 2a|S = s)fS(s)ds

(iii) Implement conditional Monte Carlo, conditioning on S.

Solution.

1. It is well-known that S andD have a multivariate normal distribution. Therefore,
in order to prove that those r.v.’s are actually independent it only remains to
prove that their correlation is 0. Hence

Corr(S,D) = Corr(X1 +X2, X1 −X2) = Var(X1)− Var(X2) = 0

From a similar computation we obtain that S ∼ N (0, 6) and D ∼ N (0, 10).

2. It can be easily proved that with a change of variables the region A can be
rewritten in terms of the variables S and D as

A = {(S,D) : 2a− S ≤ D ≤ S − 2a}

(note that the condition S ≥ 2a is implicit), so we have

P(X ∈ A) = P(2a− S ≤ D ≤ S − 2a)

=

∫ ∞
2a

P(2a− S ≤ D ≤ S − 2a|S = s)fS(s)ds

3. Easy.

4. Then, the conditional Monte Carlo algorithm is as follows

(a) Simulate S ∼ N (0, 6).
(b) If S ≤ 2a return 0. Else return

Φ

(
S − 2a√

10

)
− Φ

(
2a− S√

10

)
We obtained a point estimate of 1.385e − 03 (as should be) and a variance of
4.583e− 04, to be compared with the binomial variance of 1.384e− 03.





3 Stochastic Differential Equations

3.1 Euler and Milstein
A stochastic differential equation (SDE) in one dimension has the form X(0) = x0,

dX(t) = a
(
t,X(t)

)
dt+ b

(
t,X(t)

)
dB(t) , t ≥ 0, (3.1)

where {B(t)}t≥0 is standard Brownian motion. The precise mathematical meaning
is

X(t) = x0 +

∫ t

0

a
(
s,X(s)

)
ds+

∫ t

0

b
(
s,X(s)

)
dB(s) , t ≥ 0, (3.2)

where the first integral is an ordinary integral and the second has to be interpreted
in the Itô sense.

The numerical methods for SDEs are modeled after those for ODEs. The Euler
method uses a tangential approximation∫ h

0

a
(
s,X(s)

)
ds ≈ h a

(
0, X(0)

)
,

∫ h

0

b
(
s,X(s)

)
dB(s) ≈ B(h) b

(
0, X(0)

)
(3.3)

for small h. This leads to The Euler scheme Xh(0) = x0,

Xh
n = Xh

n−1 + a
(
thn−1, X

h
n−1
)
h+ b

(
thn−1, X

h
n−1
)

∆h
nB ,

where the ∆h
nB are i.i.d. N (0, h) for fixed h and Xh

n
def
= Xh(thn). When considering

the time horizon 0 ≤ t ≤ 1, we take h = 1/N with N ∈ N.
The proof that Xh → X as h ↓ 0 is contained in the standard proof of the

existence of a strong solution to (3.1) (regularity conditions are required). Thus,
taking h small enough one is on safe grounds. Students often ask what ‘small
enough’ means. The answer is that this depends on the time horizon and other
features under study. A large value of h will produce an inaccurate approximation
while a small one requires larger amounts of simulations. Fig. 3.1 illustrates some
features of this balance. The aim in this particular problem [the submarine exercise
below] is to estimate a certain probability p and the time horizon is of order 4.

The upper plot shows estimates of p as function of h, with the conclusion that
step sizes smaller than e-03 will produce significative bias. The left plot in the
bottom gives the corresponding variances, exhibiting similar bias behavior. Finally
the right plot in the bottom shows the CPU time. We see that that this grows
linearly with respect to the inverse size step size h, as was to be expected.

25
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A frequently used refinement of Euler is the Milstein scheme. The idea is that
the approximation

∫ h

0

b
(
t,X(t)

)
dB(t) ≈ b

(
0, X(0)

)
B(h)

in (3.3) is the main source of error for the Euler scheme. To improve it, estimate
the error by Itô’s formula for b

(
t,X(t)

)
:1

∫ h

0

b
(
t,X(t)

)
dB(t)− b

(
0, X(0)

)
B(h)

=

∫ h

0

{
b
(
t,X(t)

)
− b
(
0, X(0)

)}
dB(t)

=

∫ h

0

{∫ t

0

[
bt
(
s,X(s)

)
+ a
(
s,X(s)

)
bx
(
s,X(s)

)
+ 1

2
b2
(
s,X(s)

)
bxx
(
s,X(s)

)]
+

∫ t

0

b
(
s,X(s)

)
bx
(
s,X(s)

)
dB(s)

}
dB(t)

1The O(h3/2) term comes by noting that a Lebesgue integral
∫ t

0
C(s) ds is of order O(h) for

t ≤ h and an Itô integral
∫ t

0
D(s)B(ds) of order O(h1/2) since B(t) has mean 0 and standard

deviation h1/2. Thus a double Lebesgue integral is of order O(h2), a double Itô integral of order
O(h) (dominating both O(h) and O(h3/2) for h small) and a mixed integral of order O(h3/2)
(dominating O(h)).
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∼ O(h3/2) + b(0, x0)bx(0, x0)

∫ h

0

∫ t

0

dB(s) dB(t)

∼ b(0, x0)bx(0, x0)

∫ h

0

B(t) dB(t) = b(0, x0)bx(0, x0)
{

1
2
B(h)2 − 1

2
h
}
.

This leads to the Milstein scheme Xh
0 = x0,

Xh
n = Xh

n−1 + ah+ b∆h
nB + 1

2
bbx{∆h

nB
2 − h} , (3.4)

where a = a(thn−1, x
h
n−1) and similarly for b, bx.

It seems intuitively obvious that Milstein must be better than Euler but we will
see that there are in fact some twists to this. Discussions of properties and the
comparison Milstein vs. Euler is usually carried out via the concepts of strong and
weak error. The motivation and the precise definitions are as follows:

(s) Xh should be a good approximation of the sample path of X, that is, a good
coupling, as measured by the strong error

es(h)
def
= E

∣∣X(1)−Xh(1)
∣∣ = E

∣∣X(1)−Xh
N

∣∣ .
(w) Xh(1) = Xh

N should give a good approximation of the distribution of X(1).
That is, egw(h) =

∣∣E g(X(1))− E g(Xh
N)
∣∣ should be small for g smooth.

We say that Xh converges strongly to X at time 1 with order β > 0 if es(h) = O(hβ),
and weakly if for all g in a suitable class of smooth functions. It can then be proved
that the Euler scheme converges strongly with order β = 1/2 and weakly with order
β = 1, whereas the convergence order of Milstein is β = 1/2 in both the strong and
weak sense.

Example 7.

Starting from the same 512 = 29 i.i.d. N (0, 2−9) r.v.’s V1, . . . , V512, we simulated ge-
ometric BM with µ = 2, σ2 = 4 in [0, 1] using the Vi as common random numbers for
the updating. We took h = 1/n with n = 4, 8, . . . , 512 and implemented both Euler
(dashed line) and Milstein (dot-dashed line); the solid line is interpolation between
the exact value of GBM at the grid point (e.g. exp{(µ− σ2/2)/4 + V1 + · · ·+ V128}
at t = 1/4); the normal r.v.’s used in the updating for, for example, h = 2−6 are
V1 + · · · + V8, V9 + · · · + V16, etc.). The results are given in Fig. 3.2 and illustrate
the better strong convergence properties of the Milstein scheme.
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Figure 3.2

The example and the better strong rate of Milstein are, however, somewhat
deceiving because most applications call for good weak properties and not strong.
What is measured by the strong error is how well a given scheme performs in terms
of reconstructing the exact solution as function of the Brownian motion driving the
SDE. But in all examples we can think of, it is the approximation of the distribution
of the SDE that matters rather than this coupling, and here the cited theoretical
results on error rates do not give any argument favoring Milstein over Euler (maybe
it is surprising that the weak order is not improved!)

Nevertheless, we recommend using Milstein whenever possible. The additional
effort is certainly negligible – one needs an expression for the partial derivative bx,
but given this, all other quantities needed in the Milstein correction have already
been computed for the use in Euler.

One important case where Milstein is not possible is multidimensions. For mul-
tidimensional coupled SDE’s of the form

dXi(t) = ai
(
t,X(t)

)
dt+

q∑
j=1

bij
(
t,X(t)

)
dBj(t) , i = 1, . . . , q , (3.5)

the generalization of Euler is straightforward. However, Milstein gets into difficulties
because the multidimensional Itô formula has a form that makes the correction term
to Euler contain r.v.’s of the form

Ijk =

∫ h

0

Bk(s) dBj(s) ,

whose density cannot be found in closed form when j 6= k and for which there is no
straightforward r.v. generation.
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3.2 Three exercises

Exercise AG.X.4.2.

At time t = 0, a submarine located at (0, 0) fires a torpedo against an enemy vessel
whose midpoint is currently at (0, 4) (the unit is km). The vessel is 0.14 km long,
its speed measured in km/h at time t is Z1(t), a Cox–Ingersoll–Ross process with
parameters α1 = 6, c1 = 30, β1 = 1, and the direction is given by the angle 30o NW.
The information available to the submarine commander is a N (c1, σ

2) estimate ĉ1 of
c1, where σ2 = 4. The speed of the torpedo is another Cox–Ingersoll–Ross process
Z2(t) with parameters α2 = 60, c2 = 60, β2 = 7, the angle (in radians!) giving the
direction is θ(t) =

(
θ(0) + ωB(t)

)
mod 2π, where B is standard Brownian motion

and ω2 = 0.04, and θ(0) is chosen by the submarine commander such that the
torpedo would hit the midpoint of the vessel in the absence of stochastic fluctuations,
that is, if the vessel moved with speed ĉ1, and the torpedo with constant direction
θ(0) and speed c2. See Figure 3.3.

θ(0) 30◦

Figure 3.3

Compute the probability p that the torpedo hits the vessel, taking Z1(0) =
c1, Z2(0) = c2.

Hint: Verify that (except in the extreme tails of ẑ), θ(0) is the arcsin of (ĉ1/2c1) sin 30o.

Solution.

Motivated from Fig. 3.1, we used step size h = e−04 (that such a small h is needed
may come as some of a surprise), giving a point estimate of order ẑ = 0.3. Since we
just are dealing with simple binomial sampling, the variance is of order 0.21/R.

Fig. 3.4 shows plots of 50 different sample paths of the torpedo.



30 Chapter 3. Stochastic Differential Equations

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Figure 3.4

Exercise AG.X.4.1.

A bank wants to price its 5-year annuity loans in a market in which the short rate
r(t) at time t is stochastic. A loan is paid off continuously at a constant rate, say p,
and thus the amount paid back is determined by

s(0) = 0, ds(t) =
(
p+ s(t)r(t)

)
dt ,

whereas an amount q(0) kept in the bank will develop according to

dq(t) = q(t)r(t) dt.

Thus, for a loan of size q(0) the payment rate p should be determined such that
Ec(5) = Eq(5) (ignoring profit and administration costs). To determine this, it
suffices by an obvious proportionality argument to give estimates of the two expec-
tations when p = 1, q(0) = 1.

Note that a short rate r(t) corresponds to an interest per year of ε = er(t) − 1.
The bank employs the Cox–Ingersoll–Ross process as model for {r(t)}. This

means that we have a drift toward c, which we thus can interpret as the typical
long-term interest rate and which the bank estimates corresponds to ε = 6%; the
interest rate at time 0 corresponds to ε = 6.5%.

For your simulations of {r(t)}, use the Milstein scheme. Do first some pilot
runs to determine (by sample path inspection) some values of the remaining two
parameters α, β that appear to give reasonable fluctuations of r(t). Compare finally
your results with the deterministic values corresponding to r(t) ≡ c.

Solution.

Figure 3.5 gives a sample path of {r(t)}0≤t≤5 corresponding to α = 1, β = 0.045;
the shape is what we consider realistic (fluctuations of reasonable size and speed).
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Figure 3.5

The ‘obvious proportionality argument’ goes a follows. Write sp(t) for s(t) cor-
responding to a certain p and qb(t) for q(t) corresponding to q(0) = b. For a given
b, we are then looking for the solution p∗(b) to E sp∗(b)(5) = E qb(5). However, it
is clear that sp(t) = ps1(t), qb(t) = bq1(t). Thus, the desired p∗(b) is given by
bE q1(5)/E s1(5), so that it suffices to estimate E q1(5)/E s1(5). To give a confi-
dence interval, one must then use the delta method with f(z1, z2) = z1/z2, cf. the
book pp. 75–76

Simulation is straightforward; since b(x) = β
√
x, the Milstein correction in

X.(4.1) is just
1

2
β
√
x · β

2
√
x
{∆h

nB
2 − h} =

β2

4
{∆h

nB
2 − h} .

After r(t) has been computed by Milstein, one just uses Euler for s1(t), q1(t). With
h = 0.05, the estimate of E q1(5)/E s1(t) with R = 10.000 was 0.23 with a half-width
of the confidence interval of order e− 05 [surprisingly narrow!].

With a constant r, we have s1(t) = (ert−1)/r, q1(t) = ert, and with r = 0.06, this
comes out very close to 0.23. That is, the stochastic interest makes little difference,
at least with the chosen parameters.

Exercise AG.X.3.1.

Let p(t, T ) be the price at time t of a zero-coupon bond expiring at time T > t. The
return on such a bond corresponds to a continuous interest rate of

r(t, T )
def
= − 1

T − t
log p(t, T ) .

Typically, r(t, T ) depends not only on the short rate r(t) = r(t, t+) at time t but
also on T , and the curve {r(t, t+ u)}u≥0 is the term structure at time t.
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Defining the instantaneous forward rate f(t, T ) as

f(t, T )
def
= − ∂

∂T
log p(t, T ) , we have p(t, T ) = exp

{
−
∫ T

t

f(t, s) ds
}
.

The (one-factor) Heath–Jarrow–Morton model postulates that for any fixed T ,

df(t, T ) = α(t, T ) dt+ v(s, T ) dB(t) , (3.6)

where the driving BM is the same for all T .
To identify a risk-neutral measure P∗, one combines the nonarbitrage argument

with the identity

exp
{
−
∫ T

0

f(0, s) ds
}

= E∗ exp
{
−
∫ T

0

r(s) ds
}
,

which holds because both sides must equal p(0, T ). After some calculations, this
gives that under P∗, the f(t, T ) evolve as in (3.6) with α(t, T ) replaced by

α∗(t, T )
def
= v(t, T )

∫ T

t

v(t, s) ds .

For these facts and further discussion, see, e.g., the book by Björk.
Your assignment is to give projections (some typical sample paths) of the risk-

neutral term structure {r(5, 5 + u)}0≤u≤10 after t = 5 years, using the Vasicek
volatility structure v(t, T ) = βe−α(T−t) and the initial term structure r(0, T ) =(
6 + T/30 − e−T

)
/100, which has roughly the shape of the data in Jarrow’s book

p. 3. The parameters α, β should be calibrated so that sample paths of the short
rate in [0, 5] look reasonable.

Generate, for example, the r(5, 5 + u) at a quarter-yearly grid and use 10 yearly
grid points for the f(s, T ). Thus, you will need to calculate the f(i/10, 5 + j/4)
for i = 1, . . . , 50, j = 1, . . . , 40. Note that the initial values f(0, T ) are analytically
available from the expression for r(0, T ). For calibration of a, b, use f(t − 1/10, t)
as approximation for r(t).

Solution.

To obtain the risk-neutral term structure, we simulate f (t, s) along the grid (dif-
ferent from the one suggested in the exercise text but more convenient) spanned by
t ∈ (0, 0.1, . . . , 5) and T ∈ (5, 5.25, . . . , 15):

(t, T ) 5 5.25 · · · 15

0 ◦ ◦ · · · ◦

0.1

...

5 • • · · · •
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The risk-neutral term structure at time t = 5, that is {r (5, 5 + u)}0≤u≤10, is then
found using the sequence {f (5, 5 + u)}0≤u≤10 (indicated with • in the grid) and the
fact that yields and forward rates are related by the equation

r (t, T ) =
1

T − t

∫ T

t

f (t, s) ds

which we approximate with

r (t, T ) =
1

T − t
∑
t≤s≤T

f (t, s) ∆s

where ∆s = 0.25 is the time increment in the maturity (T ) direction.
To initialize the construction of the grid we need the sequence {f (0, u)}0≤u≤10

(indicated with ◦ in the grid). This is found by combining the inverse of the above
relation, f (t, T ) = ∂

∂T
[r (t, T ) (T − t)], with our knowledge of the initial term struc-

ture, r (0, T ) = 1
100

(
6 + T

30
− e−T

)
, such that the time 0 forward rates can be found

as
f (0, T ) =

1

100

[
6 +

T

30
− e−T +

(
1

30
+ e−T

)
(T − t)

]
The remaining rows are found by iteratively using the Euler discretization of the

SDE for the forward rate under the risk-neutral measure P?. Here, the actual drift
α (t, T ) is replaced with the risk-neutral drift α? (t, T ) such that (with time step h)

f (t+ h, T ) = α? (t, T )h+ v (t, T ) ∆hB (t) , ∆hB (t) ∼ N (0, h)

Note that the same Brownian increment is used across all maturities, T , since for
a given t the forward rate curve is described by a deterministic function. With
the Vasicek volatility structure the volatility is v (t, T ) = βe−α(T−t) and the drift
α? (t, T ) is found from the HJM restriction

α? (t, T ) = v (t, T )

∫ T

t

v (t, s) ds =
β2

α
e−α(T−t)

(
1− e−α(T−t)

)
.

Finally, in order to assess the choice of the parameters, α and β, we consider the
short rate path r (t, t) = f (t, t). To obtain this path we extend the above grid to a
trapez and find the short rate path as the sequence indicated with ×

(t, T ) 0 0.25 0.5 · · · 5 · · · 15

0 × ◦ · · · ◦

0.1

... . . .

0.5 ×
... . . .

5 ×• · · · •
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Note that the forward rate is not defined in the triangle below the line of ×’s.
Choosing α = 1 and β = 0.03 one obtains the series depicted in Figure 3.6 [of

course, this is just one example because of randomness].

Figure 3.6

What about Euler vs Milstein and strong vs weak error in these three exercises?
In the bank loan exercise, we are certainly asking for the distribution of smooth
functionals so weak error is the relevant concept and there is no strong argument for
Milstein. In the submarine exercise, we are again asking for distributional properties
(a certain probability p), but an indicator function is not smooth and overall, the
setting is more complex than looking at a smooth function at a fixed time as is done
when considering weak error. In the HJM exercise, we are interested in r(5, 5 + u)
in a whole range of u-values, and since the driving BM is the same for different u,
couplings and accordingly Milstein are potentially relevant.



4 Gaussian Processes

4.1 Cholesky factorization and fBM examples
A stochastic process X =

(
X(t)

)
is Gaussian if for any t1, . . . , tn the joint distribu-

tion of X(t1), . . . , X(tn) is n-dimensional Gaussian. Time may be discrete, t ∈ N or
t ∈ Z, or continuous, t ∈ [0,∞) or −∞ < t <∞.1

A stochastic process is determined by its finite-dimensional distributions, and
multivariate Gaussian distributions are determined by the means and covariances.
A Gaussian process is therefore specified by the µ(t) = EX(t) and the r(s, t) =
Cov

(
X(s), X(t)

)
.

A main example of a Gaussian process receiving much current attention in var-
ious application areas is fractional Brownian motion, where µ(t) = 0,

r(t, s) =
σ2

2

(
|t|2H + |s|2H − |t− s|2H

)
(4.1)

The case H = 1/2 is standard Brownian motion, and H is called the Hurst param-
eter.

In this generality, the problem of simulating a Gaussian process (or rather a
discrete skeleton on a finite time segment) is essentially equivalent to simulating
from a multivariate Gaussian distribution N (µ,Σ). This is available as the routine
mvn in Matlab. The main method is Cholesky factorization, which is is an algorithm
for writing a given symmetric p × p matrix Σ = (Σij)i,j=1,...,p as Σ = CCT, where
C = (cij)i,j=1,...,p is (square) lower triangular (cij = 0 for j > i). One can then
generate X as µ + CY where Y = (Y1 . . . Yp) with Y1, . . . , Yp i.i.d. standard
normal. Also Cholesky factorization is available in Matlab.

The main difficulty with Cholesky factorization is speed. The complexity is
O(p3) which quickly sets a limit for the dimension p with which one can deal in
reasonable time (in the exercises, p = 1000 was feasible but p = 10,000 not).

Exercise Nov 22, 2012.

Consider an Asian option with payout Z = [eX(1) + · · ·+ eX(12)−K]+ where the X-
process is fBM with the variance constant is chosen s.t. Var

[
X(12)

]
= 1 and K = 2

[the value of K may be changed later]. Compute the expected payout for the Hurst
parameter H taking values 0.1, 0.2, . . . , 0.9, using Cholesky factorizartion.

1Also the case of multidimensional time, for example t ∈ R2, is important for applications, and
one then speaks of Gaussian random fields. We do not cover this here.

35



36 Chapter 4. Gaussian Processes

Solution.

Using (4.1), one can find the variance constant σ2 by solving the equation

Var[X(12)] = r(12, 12) = σ2122H = 1.

That is, σ2 = 12−2H . Table 4.1 provides the expected payoffs for the nine different
values of H

H 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

EZ 0.264 0.218 0.186 0.162 0.143 0.127 0.114 0.103 0.094

Table 4.1

Fig. 4.1 shows the first three sample paths for each value of H. Here it is clear
that higher values of H are associated with considerably smoother paths, as is seen
also from a figure in AG.

Figure 4.1

4.2 The stationary case
An important class of Gaussian processes is the stationary ones, where µ(t) does
not depend on t and r(s, t) only on |t − s|. Here methods faster than Cholesky
factorization are available.

One such merthod is spectral simulation. Consider for simplicity the case of a
discrete-time process X0, X1, X2, . . . and write rk = r(k). Then the sequence {rk}
is positive definite, and so by Herglotz’s theorem, it can be represented as

rk =

∫ 2π

0

eikλ ν(dλ) (4.2)
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for some finite real measure ν on [0, 2π), the spectral measure. The spectral repre-
sentation of the process is

Xn =

∫ 2π

0

einλ Z(dλ) , (4.3)

where {Z(λ)}λ∈[0,2π) is a complex Gaussian process that is traditionally described
as having increments satisfying

E
[(
Z(λ2)− Z(λ1)

)(
Z(λ4)− Z(λ3)

)]
= 0,

E
∣∣Z(λ2)− Z(λ1)

∣∣2 = ν(λ1, λ2] (4.4)

for λ1 ≤ λ2 ≤ λ3 ≤ λ4. After some manipulations with complex numbers, this leads
to the following procedure, where we assume the existence of a spectral density s:
define Z1, Z2 by

dZi(λ) =
√

1
2
s
(
Bi(λ)

)
dBi(λ) ,

where B1, B2 are independent standard Brownian motions. Then X can be con-
structed by

Xn = 2

∫ π

0

cos(nλ)Z1(dλ)− 2

∫ π

0

sin(nλ)Z2(dλ). (4.5)

When simulating using (4.5), discretization is needed and for this reason spectral
simulation is not exact (in particular, it destroyes the long-range dependence of
fBM).

Another fast method is the stationary case is circulant embeddings, which has the
advantage over Cholesky factorization of having a far better complexity, O(N logN)
compared to O(N3) due to the fact that the needed matrix manipulations can be
done via the FFT.

A circulant of dimension n is a n× n matrix of the form

C =


c0 cn−1 · c2 c1
c1 c0 cn−1 · c2
· c1 c0 · ·

cn−2 · · · cn−1
cn−1 cn−2 · c1 c0

 ;

note the pattern of equal entries cij
def
= ck on {ij : i− j = k mod n}. Again, we label

the rows and columns 0, 1, . . . , n− 1.
The first step is to embed the covariance matrix Σ of X0, . . . , XN as the upper

left corner of a circulant of order 2M . It is easy to see that this is possible if and
only if M ≥ N . If M = N , the circulant C is unique and equals

r0 r1 · rN−1 rN rN−1 rN−2 · r2 r1
r1 r0 · rN−2 rN−1 rN rN−1 · r3 r2
· · · · · · · · · ·
rN rN−1 · r1 r0 r1 r2 · rN−2 rN−1
rN−1 rN · r2 r1 r0 r1 · rN−3 rN−2
· · · · · · · · · ·
r1 r2 · rN rN−1 rN−2 rN−3 · r1 r0


.
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For example, if N = 3, r = (8 4 2 1)T, then

Σ =


8 4 2 1
4 8 4 2
2 4 8 4
1 2 4 8

 and C =


8 4 2 1 2 4
4 8 4 2 1 2
2 4 8 4 2 1
1 2 4 8 4 2
2 1 2 4 8 4
4 2 1 2 4 8

 .

The idea of this circulant embedding is that the eigendecomposition C = FΛF /n
of C, where Λ is the diagonal matrix with the eigenvalues on the diagonal, is easy
to evaluate and that one thereby also obtains a square root D (in the sense that
DD

T
= C), namelyD def

= (1/n1/2)FΛ1/2, provided all entries of Λ are nonnegative,
that is, provided the vector Fc is nonnegative. Of course, D is typically complex,
but this is no problem: we may choose ε = (ε0 , . . . , ε2N−1) with components that
are i.i.d. and standard complex Gaussian (i.e., the real and the imaginary parts are
independent N (0, 1)), and then the real and the imaginary parts, say X0, . . . , X2N

and X ′0, . . . , X ′2N , of Dε will be (dependent) 2N -dimensional Gaussian with covari-
ance matrixC. ThereforeX0, . . . , XN andX ′0, . . . , X ′N have the desired distribution.

Exercise AG.XI.2.1 (extended).

Let X be a stationary Gaussian process with mean zero and covariance function

γ(s) = γ(t, t+ s) =

{
(2 + |s|)(1− |s|)2 −1 < s < 1,

0 |s| ≥ 1.

Simulate a discrete skeleton of X using Cholesky factorization as well as circulant
embeddings to get a Monte Carlo estimate of

z = P
(

sup
0≤t≤2

X(t) > 2
)
.

Solution.

Since we are using a discrete skeleton to produce an approximation of the real
probability the accuracy depends largely on the size step h used for this purpose.
The upper panel in Fig. 4.2 shows estimates of z as function of the step size h for
both methods. It is seen that there could be some significative bias if we use step
sizes smaller than 2−10.

The second graph shows the time required to produce an estimate and illustrates
the superiority of the circulant embeddings method over Cholesky factorization

The results in Table 4.2 are estimates using h = 2−10.

Method ẑ V̂ar(ẑ)

Cholesky Factorization 0.654 0.226
Circulant-Embeddings 0.640 0.230
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5 Conditional Monte Carlo and
Heavy Tails

We consider the problem of estimating z = P(Sn > x) for large x, where Sn =
Y1 + · · · + Yn with Y1, . . . , Yn i.i.d. with common distribution F and x is large so
that z is small.

With light tails, there is a standard algorithm: consider the exponentially twisted
distribution Fθ(dy) = eθyF (dy)/E eθY , choose θ as solution of the equation Eθ Sn =
x and use importance sampling where the Yk are simulated as i.i.d. ∼ Fθ.

In the heavy-tailed case, E eθY = ∞ for all θ > 0, and exponential twisting is
therefore impossible. Various importance sampling algorithm have been suggested,
but we shall here concentrate on some conditional Monte Carlo ideas which are at
the same time extremely efficient and easy to implement.

Assume for simplicity the existence of densities to avoid multiple ties and define
Sk =

∑
j≤k Yk, Mk = maxj≤k Yk. Using exchangeability in the first step,

z = P(Sn > x) = n P(Sn > x,Mn = Yn)

= n E
[
P(Sn > x,Mn = Yn |Y1, . . . , Yn−1)

]
= n EF

(
Mn−1 ∨ (x− Sn−1)

)
where in the last step we noted that for Sn > x,Mn = Yn to occur, we must have
Sn−1 + Yn > x, Yn > Mn−1. We thereby arrive at the so-called Asmussen-Kroese
estimator 1

ZAK(x) = nF
(
Mn−1 ∨ (x− Sn−1)

)
.

Before proceeding with the discussion of ZAK(x), we need to survey some back-
ground material. F is said to belong to the subexponential class if

F
∗2

(x)

F (x)
=

P(Y1 + Y2 > x)

P(Y > x)
→ 2 .

The main cases are:

Regular variation: F (x) = L(x)/xα with L slowly varying (for example asymp-
totically constant or a power of the logarithm).

1S. Asmussen & D.P. Kroese (2006) Improved algorithms for rare event simulation with heavy
tails. Adv. Appl. Probab. 38, 545–558.
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The lognormal case: Y = eµ+σV with V ∼ N (0, 1).

Heavy Weibull tails: F (x) = e−x
β with 0 < β < 1.

The definition of subexponentiality extends to n > 2: if F is subexponential,
then

F
∗n

(x)

F (x)
=

P(Sn > x)

P(Y > x)
→ n

The implication is that

z = z(x) = P(Sn > x) ∼ nF (x) , x→∞ . (5.1)

The relative error e(x) of a simulation estimator Z = Z(x) for z = z(x) is
defined by e2(x) = VarZ/z2, and Z is said to have bounded relative error if
lim supx→∞ e(x) < ∞. If instead only lim supx→∞ z(x)εe(x) < ∞ for all ε > 0,
one speaks of logarithmic efficiency.

Theorem 5.1. The Asmussen-Kroese estimator has bounded relative error in the
regularly varying case.

Proof. If Mn−1 ≤ x/2(n− 1), then x − Sn−1 > x/2, implying ZAK ≤ nF (x/2). If
instead Mn−1 > x/2(n− 1) then ZAK(x) ≤ nF

(
x/2(n− 1)

)
. The result follows by

combining (5.1) and the consequence lim supF (ax)/F (x) < ∞ for all a of regular
variation. �

AK also proved that there is logarithmic efficiency in the Weibull case, but
the poof of this is much more difficult, and bounded relative error will in fact be
established below.

Theorem 5.1 was improved by Hartinger & Kortschak (2009) who proved that
there is in fact vanishing relative error, i.e. e(x)→ 0 as x→∞

We proceed to some recent analysis,2 which gives precise estimates of e(x) as
well as improvements of ZAK.

The analysis draws on methods from second order regular variation asymptotics
which states that

P(Sn > x) ∼ nF (x) + n(n− 1)EY f(x) . (5.2)

To illustrate the idea we sketch the proof of (5.2) for n = 2. One divides according
to which of Y1, Y2 is the largest and whether the smaller one exceeds x/2 or not,
and gets

2S. Asmussen & D. Kortschak (2012) On error rates in rare event simulation with heavy tails.
Proceedings of the Winter Simulation Conference.
S. Asmussen & D. Kortschak (2013/14) Error rates and improved algorithms for rare event sim-
ulation with heavy Weibull tails. Methodology and Computing in Applied Probability (accepted).
Available from www.thiele.au.dk.
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P(Y1 + Y2 > x, Y1 > Y2, Y2 ≤ x/2)

=

∫ x/2

0

F (x− y)F (dy) =

∫ x/2

0

[F (x) + yf(x) + · · · ]F (dy) ,

P(Y1 + Y2 > x, Y1 > Y2, Y2 > x/2)

= O(F (x/2)2) = o(f(x)) ,

and so easy estimates give

P(Y1 + Y2 > x)

= 2F (x) + 2

∫ x/2

0

[yf(x) + · · · ]F (dy)

∼ 2F (x) + 2EY · f(x)

as desired. Note that this Taylor expansion is not useful for light tails: here
F (x), f(x) (and the higher order derivatives) are of the same order [just think of
the exponential!].

We return to the AK estimator Z(AK(x) = nF
(
Mn−1 ∨ (x− Sn−1)

)
.

Theorem 5.2. Assume f(x) = αL(x)/xα+1, where f is the density of F . If α > 2
or, more generally, E[Y 2] <∞ then

Var ZAK ∼ n2Var[Sn−1]f(x)2 = n2(n− 1)Var[Y1]f(x)2.

If α < 2 then VarZAK ∼ n2(n− 1)kαF (x)3 where

kα =
(

2α + 1
3
23α − 22α + α

∫ 1/2

0

(
(1− y)−α − 1

)2
y−α−1dy

)
.

The rates for VarZAK in Theorem 5.2 have to be compared with the bounded
relative error rate L(x)2/x2α. For α > 2, one sees an improvement to L(x)2/x2α+2,
for α < 2 to L(x)3/x3α. We next exhibit an estimator improving this rate for
1 < α < 2. The estimator is

Z = ZAK + n (ESn−1 − Sn−1) f(x) (5.3)

Theorem 5.3. Assume f ′(x) = −α(α−1)L(x)/xα+2. If α > 4 or, more generally,
E[Y 4] <∞, then the estimator in (5.3) satisfies

VarZ ∼ 1
4
n2Var[S2

n−1]f
′(x)2.

If 2 < α < 4 then Var Z ∼ n2(n− 1)kαF (x)3 where

kα = α

∫ ∞
0

(
((1− z) ∨ z)−α − 1− αz

)2
z−α−1dz .
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The reduction of variance from bounded relative error to AK to (5.3) becomes

L(x)2

x2α
→ L(x)3

x3α
→ L(x)4

x4α

We finally give a brief survey of the results for the Weibull case F (x) = e−x
β

with 0 < β < 1 (related distributions, say modified by a power, are easily included,
but for simplicity, we refrain from this). The density is f(x) = βxβ−1e−x

β and
f ′(x) = −p(x)F (x) where p(x) = β2x2(β−1) + β(1− β)xβ−2.

Theorem 5.4. If 0 < β < log(3/2)/ log(2), then the Asmussen-Kroese estimator’s
variance is asymptotically given by

Var(ZAK) ∼ n2Var(Sn−1)f(x)2.

Note that log(3/2)/ log(2) ≈ 0.585 was also found to be critical by Asmussen and
Kroese to be the threshold for logarithmic efficiency to hold.

Theorem 5.5. Denote with f (k) the k-th derivative of the density f . Define the
estimator

Zm = ZAK + n
m∑
k=1

(−1)k−1

k!

(
ESkn−1 − Skn−1

)
f (k−1)(x). (5.4)

If 0 < β < β0, then the estimator Zm in (5.4) has vanishing relative error. More
precisely,

Var(Zm(x)) ∼ n2

(m+ 1)!2
Var((Sn−1)

m+1)f (m)(x)2.

Remark 5.6. The rates for the variances in Theorems 5.4 and 5.5 have to be
compared with the bounded relative error rate e−2β. Note that f(x) = βxβ−1e−x

β

and f (k)(x) = (−1)kpk(x)F (x) where pk is regularly varying with index (k+1)(β−1).
Thus ZAK improves the bounded relative error rate by a factor of x1−β and (5.4) by
a factor of x(k+1)(1−β).

When m = 1, the estimator Z in (5.4) has the form ZAK + α(Sn−1 − ESn−1),
so it is a control variate estimator, using Sn−1 as control for ZAK. It is natural to
ask whether the α = −nf(x) at least asymptotically coincides with the optimal
α∗ = −Cov(ZAK, Sn−1)/Var(Sn−1). This can indeed be checked to be the case.

Remark 5.7. In applications to ruin theory and the M/G/1 queue, the number
n of terms in Sn is an independent r.v. With some effort, the theory can be refined
to this case, but we will not present the details here.

We finally give a numerical example. In Table 5.1, the relative squared error of
various of the estimators for z = P(Sn > x) is given for a Weibull Y with β = 0.25
and n = 10. The column Z0,N corresponds to the simple AK estimator ZAK and
Zm,N to the higher order estimator of order m in (5.4).
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x z Z0,N Z1,N Z2,N Z3,N Z4,N

666 0.077 0.11 1.08 936 8480000 3.08 · 1011
2493 0.0099 0.084 0.159 13.1 187000 1.51 · 108
7412 0.001 0.0485 0.0318 1.44 164 33500

17,785 1 · 10−4 0.0225 0.00943 0.041 1.62 26.9
36,647 1 · 10−5 0.00944 0.00329 0.0053 0.0654 0.699
67,708 1 · 10−6 0.00396 0.0012 0.00151 0.00446 0.0886
115,355 1 · 10−7 0.00158 0.000506 0.00049 0.000729 0.000247
184,647 1 · 10−8 0.000598 0.000216 0.00015 4.62 · 10−5 2.94 · 10−5
281,317 1 · 10−9 0.000286 9.41 · 10−5 5.77 · 10−5 2.29 · 10−5 7.02 · 10−6
411,776 1 · 10−10 0.000116 4.94 · 10−6 1.09 · 10−6 4.67 · 10−7 8.14 · 10−7
583,108 1 · 10−11 5.82 · 10−5 1.84 · 10−6 1.63 · 10−5 1.59 · 10−8 4.40 · 10−8
803,069 1 · 10−12 3.95 · 10−5 6.26 · 10−7 4.72 · 10−7 1.25 · 10−9 2.59 · 10−10

Table 5.1: Relative squared error for Weibull Y with β = 0.25 and n = 10

The picture is that already Z0,N has excellent precision. Indeed, in the case of
10,000 replications the halfwidth of the confidence interval is

1.96
√

0.084√
10000

z = 5.7 · 10−6 , resp.
1.96
√

3.95 · 10−5√
10000

z = 1.2 · 10−16

for z = P(Sn > x) = 10−3, resp. 10−12, corresponding to 3, resp. 4 correct significant
digits. For z = 10−12, Z1,N gives an extra digit and Z3,N another one. Note also
that in view of the computational simplicity of the estimators, 10,000 replications
is very modest.

It is also seen that whereas the relative precision of Zm,N = Zm,N(x) increases
in x when m is fixed, there is some degradation as m increases with x fixed.





6 Example from Stochastic
Optimization

The material on stochastic optimization was prepared by Leonardo Rojas-Nandyapa.

Exercise (new).

Assume that

X1 ∼ Gamma(2, 2), X2 ∼ Gamma(2, 1), X3 ∼ Gamma(2, 2/3)

Find the θ∗ optimizing the expression

z(θ) = P(max{θX1 +X2, (1− θ)X3} ≤ 3)

where θ ∈ [0; 1].

Solution.

We use 3 different algorithms to find an estimate θ̂ of θ∗. In each algorithm an
estimate of z′(θ) is used. Hence two derivative estimators – -Likelihood Ratio and
Finite Differences — will be applied.

Robbins-Monro algorithm

The algorithm is
θn+1 = θn −K 1

n
Yn+1

where K is close to 1/z′′(θ∗) and Yn+1 is an estimator of z′(θn). Then it holds that

√
n(θn − θ∗)

D−→ N (0, σ2)

where

σ2 =
K2ω2

2Kz′′(θ∗)− 1

with ω2 the variance of the derivative estimator Y at the optimizer θ∗. Hence the
(θn)–sequence gives an estimate of θ.
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The LR estimator of z′(θ) and z′′(θ)

Let fθ denote the joint density of (Z1, Z2, Z3) = (θX1, X2, (1− θ)X3). Since

Z1 ∼ erlang(2, 2
θ
), Z2 ∼ erlang(2, 1), Z3 ∼ erlang(2, 2

3(1−θ))

we have

fθ(z1, z2, z3) =

(
2

θ

)2

z1 exp
(
−2
θ
z1
)
z2 exp(−z2)

(
2

3(1− θ)

)2

exp

(
− 2

3(1− θ)
z3

)
Furthermore

z′(θ0) = Eθ0 [ZS]

where

Z = 1(max{Z1 + Z2, Z3} ≤ 3) and S =
f ′θ0(Z1, Z2, Z3)

fθ0(Z1, Z2, Z3)

From plain differentiation we have

f ′θ(z1, z2, z3) :=
∂

∂θ
fθ(z1, z2, z3)

=

(
−2

θ
+

2

θ2
z1 −

2

1− θ
+

2

3(1− θ)2
z3

)
fθ(z1, z2, z3).

Simulating m iid copies (Z1, S1), . . . , (Zm, Sm) under Pθ0 yields an estimate Y of
z′(θ0):

Y =
1

m

m∑
i=1

ZiSi .

Similarly an estimator

ẑ′′(θ0) =
1

m

m∑
i=1

ZiTi

of z′′(θ0) is obtained where (Z1, T1), . . . , (Zm, Tm) are iid copies of

Z = 1(max{Z1 + Z2, Z3} ≤ 3) and T =
f ′′θ0(Z1, Z2, Z3)

fθ0(Z1, Z2, Z3)
.

Here we have

f ′′θ (z1, z2, z3)

fθ(z1, z2, z3)
=

(
−2

θ
+

2

θ2
z1 −

2

1− θ
+

2

3(1− θ)2
z3

)2

+

(
2

θ2
− 4

θ3
z1 +

1

(1− θ)2
− 4

3(1− θ)3
z3

)
.
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Polyak–Ruppert algorithm

This algorithm is a development of the Robbins–Monro algorithm. Like before a
sequence (θn) is derrived succesively by

θn+1 = θn −K
1

nγ
Yn+1

with some constantsK and 0 < γ ≤ 1. Again each Yn+1 is an independent reproduc-
tion of the LR estimator of z′(θn). This algorithm differs from the Robbins–Monro
as the final estimate, θ̂n, of θ∗ is given as the average of the (θn)–sequence.

θ̂n =
1

n

n∑
i=1

θi.

Kiefer–Wolfowitz algorithm

As before a sequence (θn) is defined successively

θn+1 = θn −K
1

nγ
Yn+1.

But now each Yn+1 is a central finite difference (FD) estimator of z′(θn).

The FD estimator of z′(θ)

Define for each θ

Z(θ) = 1(max{θX1 +X2, (1− θ)X3} ≤ 3).

From m independent copies of (X1, X2, X3) the estimator Yn+1 is expressed by

Yn+1 =
1

n

n∑
i=1

1

ci
(Z(θ + ci/2)− Z(θ − ci/2))

where (cn) is a suitable sequence of constants with cn → 0 and for each i the same
(X1, X2, X3)–vector is used to produce both Z(θ − ci/2) and Z(θ + ci/2).

The results

In the Robbins–Monro algorithm we take θ0 = 0.5 andK = 1/ẑ′′(θ0). The likelihood
ratio derivative estimator has m = 10 replications in each step.

Moreover in Polyak–Ruppert γ is taken to be 0.8.
In Fig. 6.1 the sequence (θn) is sketched for both the RM and the PR algorithms.

We see that the Polyak–Rupert algorithm stabilizes faster than the Robbins–Monro.
In the Kiefer–Wolfowitz algorithm we choose γ = 0.8 and cn = n−0.8/6. But here
et seems necessary to let m = 100 – the number of replications in each step. In
Fig. 6.2the (θn)–sequence is sketched with both m = 10 and m = 100 replications



50 Chapter 6. Example from Stochastic Optimization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.55

0.6

0.65

Robbins−Monro

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.55

0.6

0.65

Polyak−Rupert

Figure 6.1: Shows the (θn)–sequence for the RM and the PR algortihms

Algorithm Lower Estimate Upper

Robbins–Monro 6.1897 · 10−1 6.2434 · 10−1 6.2971 · 10−1

Polyak–Rupert 6.2434 · 10−1 6.2592 · 10−1 6.2749 · 10−1

Kiefer–Wolfowotz 6.2301 · 10−1 6.2579 · 10−1 6.2857 · 10−1

Table 6.1

in each step. With m = 10 the sequence hasn’t stabilised after 50,000 (and experi-
ments show that 150,000 won’t suffice either). Since the number of steps affects the
computation time much more than the number of replications in each step m = 100
seems reasonable.

Table 6.1 shows the estimates for the optimal θ together with confidence inter-
vals. For the the RM algorithm the interval is constructed using the asymptotic
normal distribution. In the PR and the KW case both the estimate and the interval
is constructed using sectioning and student t confidence intervals. That is running
the algorithm N = 5 times and then utilise that each of the 5 estimates asymptoti-
cally follow a normal distribution. Since the PR and the KW intervals takes 5 runs
of the algorithm and the RM only uses a single run they should not be compared
directly. Similarly the bigger computational effort caused by the larger amount of
replications in each step should be taken into account in the comparison of the KW
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.55

0.6

0.65

Kiefer−Wolfowitz, m=10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.55

0.6

0.65

Kiefer−Wolfowitz, m=100

Figure 6.2: Shows the (θn)–sequence for KW algorithm both in the m = 10 case
and the m = 100 case.

interval with the PR interval.





7 Miscellaneous

7.1 Introductory exercises from AG Ch. 1
Exercise AG.I.6.1.

In a soccer tournament with 16 teams, the first 8 games are 1-2 (i.e., team 1 versus
team 2), 3-4, . . ., 15-16, the next four (the quarterfinals) the winner of 1-2 versus the
winner of 3-4 and so on until the final. Ties are decided by sudden death (the winner
is the first to score). Team i is characterized by three parameters λi, pi, γi, such
that normally the number of major possibilities for a goal it creates is Poisson(λi)
and the probability of preventing the opponent from scoring on one of their major
possibilities is pi. However, a bad day may occur w.p. γi and then λi, pi are reduced
to 2/3 of their values. The parameters are as follows:

1 2 3 4 5 6 7 8

λ 4.2 6.2 6.4 4.9 6.2 3.2 6.6 6.2
p 0.65 0.80 0.82 0.66 0.78 0.82 0.47 0.53
γ 0.36 0.23 0.23 0.32 0.42 0.19 0.37 0.41

9 10 11 12 13 14 15 16

λ 4.2 4.1 8.7 3.3 6.8 0.7 4.1 4.9

p 0.65 0.60 0.88 0.55 0.72 0.50 0.74 0.69
γ 0.36 0.30 0.23 0.19 0.30 0.38 0.32 0.29

Explain that in a match between teams i and j, the score is Nij goals to Nji, where
Nij is Poisson(µij) given two independent r.v.’s Yi, Yj that are 2/3 w.p. γi, γj and
1 otherwise, and µij

def
= λiYi(1 − pjYj), and similarly for Nji. Show also that the

conditional probability that team i wins a possible draw is µij/
(
µij + µji

)
. Give

next a table over estimated values of the probabilities of the different teams to win
the tournament.

Solution.

Table 7.1 shows the estimated probabilities1 of the different teams to win the tour-
nament using R = 1 · 106 replications.

1In general, it is bad style to give as many digits as here. An excuse is that the probabilities
vary from approx. 1/2 to 1e− 05.
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i ẑi i ẑi

1 0.001638 9 0.005361
2 0.078196 10 0.005712
3 0.102803 11 0.493091
4 0.010395 12 0.003386
5 0.039142 13 0.119012
6 0.035517 14 0.000011
7 0.010613 15 0.029786
8 0.015461 16 0.049876

Table 7.1: ẑi = P(Team i wins the tournament).

Confidence intervals were not asked for, but are trivial to give since the method
is just binomial sampling.

An interesting twist of the exercise is to study the importance of the drawing
of matches, i.e. to order the teams at random in each of the R replications. Not
implemented here.

Exercise AG.I.6.3.

A company holding a European call option with maturity T = 1 year and strike
price K delta hedges every week. Assuming the log-returns to follow the GBM
Black–Scholes model with (yearly) volatility σ = 0.25, S(0) = K = 1, and r = 4%
per year, investigate how good the delta hedge replicates the payout [S(T ) −K]+,
say by plotting 25 values of the pairs ([S(T )−K]+, w(T )), where w(t) is the value
of the hedging portfolio at time t.

Explanation. Let Π(x, t, T ) be the price at time t of the option given S(t) = x
and ∆(t) = (∂/∂x)Π(x, t, T )

∣∣
x=S(t)

(which can be computed by straightforward dif-
ferentiation in the Black-Scholes formula). The portfolio that is delta hedging the
option at times 0 = t0 < t1 < · · · < tn < T invests in a1(ti) = ∆(ti) units of the
underlying asset, whereas the amount a2(ti) put in the bank is chosen so as to make
the portfolio self-financing, i.e., one should have

a1(ti−1)S(ti) + a2(ti−1)e
r(ti−ti−1) = a1(ti)S(ti) + a2(ti) .

The initial weights a1(0), a2(0) are chosen such that w(0−) = Π
(
S(0), 0, T

)
, and the

terminal value of the hedge becomes w(T ) = a1(tn)S(T ) + a2(tn)eT−tn . See further
Björk’s book.

Solution (I).

The desired plot is in Fig. 7.1. The line is the diagonal x = y, where the continuous-
time hedge would lie. The conclusion is that the discrete hedge time works very
good (maybe surprisingly good!).
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Figure 7.1

Solution (Anders Alexander Helweg-Mikkelsen).

The condition a1(ti) = ∆(ti) determines the entire sequence {a1(t)}Tt=0. Also, the
fact that the initial value of the hedging portfolio should equal that of the call
option provides an initial condtion for a2(0) while the self-financing condition gives
an equation relating a2(ti) to a2(ti−1) such that the sequence {a2(t)}Tt=0 can be
recovered as well. Using these sequences to construct the hedging portfolio gives
rise to the results shown in Fig. 7.2. While the hedging portfolio appears to replicate
the option well, Fig. 7.2 reveals that the hedging portfolio can attain negative values
whereas the option value remains positive. Fig. 7.3 performs the same comparison
in terms of a scatter plot of the value of the hedging portolio against the option
value where we obviously expect a to see a line close to the diagonal x = y.
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Figure 7.2

Figure 7.3
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7.2 VaR and copulas
Exercise AG II.3.8 .

A portfolio has 10 assets of current values(
x1 x2 . . . x10

)
=
(
5 2 10 8 8 3 15 4 1 2

)
.

The value of the holdings of asset i next week is xieYi , where Y1, . . . , Y10 are (possibly
dependent) r.v.’s. Thus, the loss is

L
def
=

10∑
i=1

xi(1− eYi),

and the VaR (value at risk) is the 99% quantile in the distribution of L.
There is good statistical evidence that the marginal distributions of the Yi are

normal with mean zero (as is often the case for a short time horizon) and volatilities

4 7 1 5 3 5 2 6 4 4

(in %), respectively (thus, for example, Y2 ∼ N (0, 0049)). However, the depen-
dence structure is less well understood. Your assignment is to estimate the VaR for
the given normal marginals and the following six dependence structures: the three
N10(0,Σ) distributions where Σ corresponds to symmetric correlation 0, 0.3, 0.6,
and the three Student t10(Σ, f) copulas with the same Σ’s and f = 1.

Note that the c.d.f. of the t-distribution with f = 1 is 1/2 + arctan(x)/π. The
α-quantile of an r.v. L is estimated by simulating R replications L1, . . . , LR, forming
the order statistics L(1) < · · · < LR), and using the estimate L(α(R+1)) (thus, it is
convenient to choose R such that α(R + 1) is an integer).

Solution.

Ten repetitions with R = 9, 000 replications in each produced the following table,
with the three Gaussian values followed by the three t-values in each column:

1.49 2.62 3.40 1.70 2.78 3.60
1.52 2.64 3.44 1.99 3.21 3.94
1.51 2.64 3.32 1.69 2.89 3.48
1.53 2.56 3.46 1.75 2.94 3.53
1.52 2.61 3.42 1.72 2.89 3.55
1.51 2.62 3.43 1.81 2.95 3.59
1.56 2.70 3.50 1.83 2.91 3.59
1.48 2.60 3.39 1.89 3.10 3.54
1.53 2.65 3.30 1.72 2.84 3.62
1.52 2.75 3.39 1.74 2.80 3.60

One observes, as expected, the values to be increasing in the correlation and some-
what larger for the Gauss copulas than for the t-copulas. Comparing the values for
different repetitions show quite some variation, confirming the folklore that quantile
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estimation is difficult. Note (AG.III.4a) that there is a normal confidence interval
procedure, but it requires density estimation, a topic difficult in itself. In the class,
we have therefore been using bootstrap (AG.III.5c) to get confidence intervals, see
the next exercise.

Exercise AG.III.5.1.

Complement your solution of Exercise AG.II.3.8 by giving an upper 95% bootstrap
confidence limit for the VaR. For simplicity, you may consider the multivariate
Gaussian copula only.

Solution.

Tables 7.2–7.3 provide an upper 95% Bootstrap confidence limit for the VaR cor-
responding to the Gaussian copula and the t-copula respectively. We have used
R = 10,000 and b = 1000.

ρ Upper Limit

0 1.550479
0.3 2.697105
0.6 3.478171

Table 7.2: Gaussian copula

ρ Upper Limit

0 3.498314
0.3 4.954051
0.6 5.527842

Table 7.3: t-copula

7.3 Steady-state simulation

Exercise AG.IV.8.1.

Perform perfect sampling of the Moran dam (Example AG.IV.8.5) for the case
in which V is geometric with mean 2 and m = 3, and p is variable. Use both
independent updating and monotone updating, and compare the two methods in
terms of the size of values of p for which you are able to produce Z within reasonable
time.

Solution.

Table 7.4 below shows the estimated stationary probabilities using p = 30 and
R = 1 · 105.
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i p̂i i p̂i i p̂i

0 0.56912
1 0.08150 11 0.00956 21 0.00107
2 0.06514 12 0.00858 22 0.00097
3 0.05456 13 0.00635 23 0.00087
4 0.04365 14 0.00521 24 0.00068
5 0.03565 15 0.00433 25 0.00048
6 0.02814 16 0.00368 26 0.00046
7 0.02385 17 0.00311 27 0.00048
8 0.01828 18 0.00226 28 0.00027
9 0.01522 19 0.00178 29 0.00018
10 0.01252 20 0.00151 30 0.00036

Table 7.4: Stationary Probabilities

The comparison between independent updating and monotone updating is given in
Fig. 7.4 below.
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Figure 7.4

The graphs in the first row correspond to the results with independent updating
while the second to monotone updating. The approximated stationary distributions
are displayed in the first column. The second column shows a measure of the error
the approximations. Finally, the third column corresponds to histogram that depict
the distribution of the backward coupling time τ .

From the figure above it is seen that the monotone updating method provides
more accurate results than independent updating. Moreover, the monotone updat-
ing method is more efficient from a practical point of view since it requires a smaller
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amount of simulations and it is more likely to finish with less updates than the
independent updating (this is easily seen from the distribution of τ). In fact, in
our examples, monotone updating was around 2.5 times faster than independent
updating.

Exercise AG.IV.6.3.

Consider an (s, S) inventory system in which the number of items stored at time t is
V (t). Demands arrive (one at a time) according to a Poisson process with intensity
λ. When V (t−) = s+ 1, V (t) = s, an order of size S − s is placed and arrives after
a random time Z (the lead time). Demands arriving while V (t) = 0 are lost. It is
assumed that S − s > s.

Write a program for regenerative simulation of p, the long-run probability that
a demand is lost. Use whatever values of s, S, λ you like and whatever distribution
of Z you prefer.

Solution.

In the results for Table 7.5 we have chosen s = 15, S = 100 and Gamma(2, 5) as
the distribution of Z where we have used R = 100, 000 replications.

p̂ Lower Limit Upper Limit Var(p̂)
1.677632 e− 02 1.666819e-02 1.688446e-02 3.043777e-03

Table 7.5: Confidence Interval

7.4 Derivative estimation

If z = z(θ) is a number depending on a parameter θ, the problem of computing the
derivative z′(θ) of z(θ) comes up in a number of applications, including the Greeks
in finance. Methods are discussed in AG Ch. VII and examples given. At my Aarhus
course, we have most often treated the topic but did not do so at the EURANDOM
minicourse. Here is an exercise:

Exercise AG.VII.3.1.

For the compound Poisson sum C =
∑N

1 Vi in the insurance risk setting, assume
that λ = 1000 and that the Vi are lognormal with µ = 0, σ2 = 1. Let z(λ) =
f Pλ(C > 5EC). Give an estimate of z′(λ) and an associated confidence interval
by means of the LR method.
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Solution.

5EC war replaced by x = 1.1EC. Then z(λ) = Pλ(C > x) ≈ 0.3. The LR
estimator of z′(λ) is calculated just as in Example VII.3.3 and with R = 100, 000
replications, the confidence interval came out as 0.0013±5.6e-5.

Exercise AG.VII.2.4.

Consider the delta z′(θ) of a weekly sampled Asian option with price z(θ) where θ
is the initial price of the underlying asset. Assume the GBM Black–Scholes model,
maturity T = 1 years, strike price K = 120, θ0 = 100, r = 5% per year, and
σ = 0.25.

1. Compute z(θ), z′(θ), and associated confidence intervals.

2. Improve the efficiency of your method by antithetic sampling of the Brownian
increments.

3. If time permits, do some experiments on variance reduction by changing the
drift of the Brownian motion. At least outline what the changed estimates
are!

Solution.

(i) With R = 100,000 replications, the confidence interval for z(θ) came out as
1.19±0.05, and for z′(θ) as 0.154±0.005
(ii) The improvement by using antithetic sampling is minor: Remember from AG
p. 144 that the variance is reduced by a factor ρ compared to CMC. We obtained
ρ = −0.075 in the case of z(θ) and ρ = −0.148 in the case of z′(θ).
(iii): not implemented here.

7.5 The stochastic counterpart method
Assume we want to estimate the minimum or maximum of a smooth function w(θ)
of θ ∈ Θ ⊆ R or, equivalently (under some regularity conditions), the solution of
w′(θ). In the stochastic counterpart method, one then provides a smooth simulation
estimate ŵ(θ) of w(θ) and finds the zero θ∗ by deterministic algorithms such as
Newton-Raphson. How to give confidence intervals is discussed in AG.III.4.

Exercise (new).

Consider the PERT net in AG Example VIII.5.1 and let

M(θ) = max(θX1 +X2, (1− θ)X3)

where

X1 ∼ Erlang(2, 1/2) X2 ∼ Erlang(2, 1) X3 ∼ Erlang(2, 3/2)
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and g(θ) = 1{M(θ) > d} (with d = 3). Your task is to find the value θ = θ∗ that
minimizes

w(θ) := E[g(θ)] = P(M(θ) > 3).

Solution.

To start with, we use Crude Monte Carlo to generate the graph in Figure 7.5 which
depicts w(θ) as a function of θ in the interval [−1, 2]. It is clear that w(θ) has a
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Figure 7.5: w(θ).

global minima and we can safely restrict our search to the open interval (0, 1). To
do so, observe that with θ ∈ (0, 1)

θX1 ∼ Erlang(2, θ/2) and (1− θ)X3 ∼ Erlang(2, 3(1− θ)/2)

and hence we can write w(θ) as∫
{M(θ)>3}

f(x1; 2, 1/2)f(x2; 2, 1)f(x3; 2, 3/2) dx1 dx2 dx3

=

∫
{max(x1+x2,x3)>3}

f(x1; 2, θ/2)f(x2; 2, 1)f(x3; 2, 3(1− θ)/2) dx1 dx2 dx3

where f(· ; k, λ) is the density of an Erlang distribution with parameters k and λ. So,
using importance sampling with importance distribution corresponding to θ̃ = 1/2
we can rewrite w(θ) as

Eθ[1(max(X1 +X2, X3) > 3)]

= E1/2

[
f(X1; 2, θ/2)f(X3; 2, 3(1− θ)/2)

f(X1; 2, 1/4)f(X3; 2, 3/4)
1(max(X1 +X2, X3) > 3)

]
.

Define W (θ,X1, X2, X3) as

f(X1; 2, θ/2)f(X3; 2, 3(1− θ)/2)

f(X1; 2, 1/4)f(X3; 2, 3/4)
1(max(X1 +X2, X3) > 3)
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which after some simplifications becomes

W (·) =
1

16

exp
{

2
3
(2θ−1)(3(θ−1)X1+θX3)

θ(θ−1)

}
θ2 (θ − 1)2

1(max(X1 +X2, X3) > 3)

It can be proved thatW (θ) satisfy the necessary conditions required by the stochas-
tic counterpart method (valid derivative interchange). Hence, the Monte Carlo
estimator θ̂∗ of θ∗ is given by the root of

ẑ(θ) :=
1

R

R∑
i=1

Zi(θ) where Zi(θ) =
∂

∂θ
W (θ,X1i, X2i, X3i)

Using R = 107 replications gave the 95% confidence interval 0.6258 ± 0.0014. The
following are expressions for the partial derivatives of W

∂

∂θ
W (·) = 2W (·)

(
X1

θ2
− X3

3(1− θ)2
− 1− 2θ

θ(1− θ)

)
∂2

∂θ2
W (·) = 4W (·)

[(
X1

θ2
− X3

3(1− θ)2
− 1− 2θ

θ(1− θ)

)2

− X1

θ3
− X3

3(1− θ)3
+
θ2 − θ + 1

2

θ2(1− θ2)

]
.

Exercise (new).

Consider the coalescent in Example AG.XIII.4.4 with K = k = 31 and n = 42. Give
a simulation estimate θ∗ of the maximum likelihood estimator θ̂ using the stochastic
counterpart method.

Solution.

Point estimate 7.56 with (estimated) variance 153 per replication.

7.6 Markov Chain Monte Carlo
Exercise (new).

Consider the coalescent in Example AG.XIII.4.4 with K = k = 31 and n = 42 and
assume that the the value θ∗ = 7.56 found in the exercise at the end of Section 7.5
is the correct one. Give a histogram of the posterior of W42
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Solution.

We assume that the value θ∗ given in Exercise III.4.3 is the correct one. The figure
7.6 shows an histogram that depicts the posterior of W42 given K = 31.

Moreover, the Table 7.6 shows an equitailed 95% confidence interval based on
the posterior.

2.5% Percentile 97.5% Percentile

0.863947 3.017179

Table 7.6

Finally, the value 1.924317 is the Markov chain value giving the highest likeli-
hood.

Exercise AG XIII.5.2.

A classsical data set contains the numbers of cases of mastitis (an inflammatory
disease) in 127 herds of dairy cattle. With ni the number of herds having i cases,
the data (adjusted for herd size) are as follows:

i 0 1 2 3 4 5 6 7 8 9 10 11 12
ni 7 12 8 9 7 8 9 6 5 3 4 7 4

i 13 14 15 16 17 18 19 20 21 22 23 24 25
ni 5 2 1 4 3 3 4 2 2 4 1 0 5
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Assume that for a given herd j, the number of cases is Poisson(λj), where the λj are
Gamma(α, βj) and the βj are themselves Gamma(a, b). Use Gibbs sampling with
α = 0.1, a = b = 1 to give histograms of the posterior distribution of λj for a herd
with 0, 10, or 20 cases and to report the posterior means of α, a, b.

Solution.

The figure 7.7 shows the histograms of the posterior distribution of λi for cases of
herds with 0, 10 and 20 cases using the Gibbs sampler.
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7.7 An example on neutron cascades
Exercise AG.XIV.10.4.

A rod of fuel in a nuclear reactor is represented as a line segment of length x.
Spontaneous emissions of neutrons occur according to a Poisson process on [0, x]×
[0,∞) with unit rate, with the second coordinate representing time. Each split
creates one new neutron, and the old and the new neutron choose independently
to move left or right w.p. 1/2 for each direction. Give simulation estimates of the
temperature T = T (X) of the rod as a function of x, where T (x) is defined as the
expected number of splits within one time unit. Take α = 1. Hint: Reduce to the
study of characteristics of cascades as in the book.

Solution.

Consider the neutron transport process in AG.XIV.10c. Fig. 7.8 shows simulation
estimates of the average number of collision per cascade as a function of the size of
the reactor (height) using µ = 1, a = 5 and λ = 0 (no spontaneous emissions).



66 Chapter 7. Miscellaneous

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Size of the reactor (height)

A
ve

ra
ge

 n
um

be
r 

of
 c

ol
lis

io
ns

Figure 7.8



Appendix

A1 Matlab issues
AG is written without focus on any specific software. For my teaching, I have
invariably been using Matlab and this is also chosen for the present document. The
choice of Matlab was motivated by the language being easy to learn, the many built-
in facilities and its widespread use on a global basis (but note that R is popular
among statisticians). For Monte Carlo use, the Statistics Toolbox is indispensable,
and for special applications other toolboxes are useful, say the Finance Toolbox.

To get started with Matlab, just search Google for “Matlab, tutorial”. A vast
number of choices will come up. Later, the Help facility will prove most useful.

Matlab is matrix-based so that many operations need not be done element by
element but can be done for matrices. For a simple example, if x is a n × n ma-
trix, the block for i=1:n, for j=1:m, x(i,j)=rand; end; end; and the command
x=rand(n,m); both fill x with pseudo-random numbers. Similarly,

for i=1:n, for j=1:m
if y(i,j)<z(i,j), x(i,j)=1; else x(i,j)=0; end;

end; end;

and x=(y<z); are equivalent. Matrix commands as in the second implementations
are much faster and can condens programs quite a lot. The cost is that readability
as in the first may be lost. For this reason, I myself am not using the matrix facilities
in full and to do also requires more of programming skill. Two further examples
follow.
Example 8.

When constructing a covariance matrix V from a correlation matrix P and a vector
v of volatilities, the routines

for i=1:length(v), for j=1:length(v)
V(i,j)=P(i,j){*}v(i){*}v(j);

end; end;

and V=diag(v){*}P{*}diag(v); are equivalent.

Example 9.

Generating R paths, each with T time steps, from a Brownian motion with drift a,
volatility b, and starting value s can be done by combining the initialization

67
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mS=zeros(T+1,R); mS(1,:)=s{*}ones(1,R); mEps=rannorm(0,1,T,R);

with either
for i=1:R, for j=1:T

mS(j+1,i)=mS(j,i)+a{*}h+b{*}sqrt(h){*}mEps(j,i);
end; end;

or
mS(2:Steps+1,:)=a{*}h+b{*}sqrt(h){*}mEps;
mS = cumsum(mS);

Complicacted subroutines are most conveniently incorporated as separate m-files.
In simpler cases, one can use the @ structure. For example,

∫ 2

1
ex dx is computed via

f=@(x) exp(x); quad(f,1,2) (note that quad(exp,1,2) won’t work!).
Speed is seldom a concern in the examples considered here. However, one should

note that programming structures such as for to, while etc. are slow in Matlab.
The execution time of a block may be obtained by writing tic at the start and
toc at the end. Comparisons of execution times of different algorithms are highly
implementation dependent.

For plotting, note the subplot structure that enables a number of different figures
to be nicely collected in one) for an example, see Fig. 7.4). Graphics can be exported
in .pdf format as needed for Mac LATEX or in .eps format in most other LATEX
implementations.

A2 A variant of the Black-Scholes formula
Lemma A.1. If Z ∼ N (µ, σ2), then

E[xeZ −K]+ = xeµ+σ
2/2Φ(y0 − σ) − KΦ(y0)

where y0 = (logK − log x− µ)/σ, Φ(z) = 1− Φ(z) =

∫ ∞
z

1√
2π

e−y
2/2 dy.

Proof.

E[xeZ −K]+ =

∫ ∞
−∞

[xeµ+σy −K]+
1√
2π

e−y
2/2 dy

=

∫ ∞
y0

[xeµ+σy −K]
1√
2π

e−y
2/2 dy

= xeµ
∫ ∞
y0

eσy
1√
2π

e−y
2/2 dy −KΦ(y0)

= xeµ+σ
2/2

∫ ∞
y0

1√
2π

e−(y−σ)
2/2 dy −KΦ(y0)

= xeµ+σ
2/2Φ(y0 − σ)−KΦ(y0) �

The Black-Scholes formula is an expression for e−rT E[xeZ − K]+ where Z ∼
N ((r − σ2)T, σ2T ). Of course, this comes out as a special case of the lemma.


