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Abstract

In this paper we study a model describing a copolymer in a micro-emulsion. The
copolymer consists of a random concatenation of hydrophobic and hydrophilic monomers,
the micro-emulsion consists of large blocks of oil and water arranged in a percolation-type
fashion. The interaction Hamiltonian assigns energy —a to hydrophobic monomers in oil
and energy — [ to hydrophilic monomers in water, where «, 8 are parameters that without
loss of generality are taken to lie in the cone {(a,3) € R%?: a > |B|}. Depending on
the values of these parameters, the copolymer either stays close to the oil-water interface
(localization) or wanders off into the oil and/or the water (delocalization). We derive two
variational formulas for the quenched free energy per monomer, one that is “column-based”
and one that is “slope-based”. Using these variational formulas we identify the phase
diagram in the («, 8)-cone. There are two regimes: supercritical (the oil blocks percolate)
and subcritical (the oil blocks do not percolate). The supercritical and the subcritical
phase diagram each have two localized phases and two delocalized phases, separated by
four critical curves meeting at a quadruple critical point. The different phases correspond
to the different ways in which the copolymer can move through the micro-emulsion.
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0 Outline

In Section 1, we introduce the model and present a variational formula for the quenched free
energy per monomer, which we refer to as the slope-based variational formula, involving the
fractions of time the copolymer moves at a given slope in the interior of the two solvents and
the fraction of time it moves along the interfaces between the two solvents. This variational
formula is the corner stone of our analysis. In Section 2, we identify the phase diagram. There
are two regimes: supercritical (the oil blocks percolate) and subcritical (the oil blocks do not
percolate). We obtain the general structure of the phase diagram, and state a number of
properties that exhibit the fine structure of the phase diagram as well. The latter come in the
form of theorems, hypotheses and conjectures.

In Section 3, we give a precise definition of the various ingredients that are necessary
to state the slope-based variational formula, including various auxiliary quantities that are
needed for its proof. Among these is the quenched free energy per monomer of the copolymer
crossing a block column of a given type, whose existence and variational characterization are
given in Section 4. In Section 5, we derive an auxiliary variational formula for the quenched
free energy per monomer, which we refer to as the column-based variational formula, involving
both the free energy per monomer and the fraction of time spent inside single columns of a
given type, summed over the possible types. In Section 6, we use the column-based variational
formula to prove the slope-based variational formula. In Section 7 we use the slope-based
variational formula to prove our results for the phase diagram.

Appendices A—G collect several technical results that are needed along the way.

For more background on random polymers with disorder we refer the reader to the mono-
graphs by Giacomin [2] and den Hollander [4], and to the overview paper by Caravenna, den
Hollander and Pétrélis [1].

1 Model and slope-based variational formula

In Section 1.1 we define the model, In Section 1.2 we state the slope-based variational formula.

1.1 Model

To build our model, we distinguish between three scales: (1) the microscopic scale associated
with the size of the monomers in the copolymer (= 1, by convention); (2) the mesoscopic scale
associated with the size of the droplets in the micro-emulsion (L,, > 1); (3) the macroscopic
scale associated with the size of the copolymer (n > L,).

Copolymer configurations. Pick n € N and let W, be the set of n-step directed self-
avoiding paths starting at the origin and being allowed to move upwards, downwards and to
the right, i.e.,

Wa = {m = (mi)ig € (No x Z)"*': 1m0 = (0,1),
Tip1 —m € {(1,0),(0,1),(0,-1)} VO <i<n, m #m; V0O <i<j<n}. (1.1)

The copolymer is associated with the path 7. The i-th monomer is associated with the bond
(mi—1,m;). The starting point 7 is chosen to be (0,1) for convenience.



Figure 1: Microscopic disorder w in the copolymer. Dashed bonds represent monomers of
type A (hydrophobic), drawn bonds represent monomers of type B (hydrophilic).

Microscopic disorder in the copolymer. Each monomer is randomly labelled A (hy-
drophobic) or B (hydrophilic), with probability % each, independently for different monomers.
The resulting labelling is denoted by

w={w;: i€ N} e{A BN (1.2)

and represents the randomness of the copolymer, i.e., w; = A and w; = B mean that the i-th
monomer is of type A, respectively, of type B (see Fig. 1). We denote by P,, the law of the
microscopic disorder.
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Figure 2: Mesoscopic disorder €2 in the micro-emulsion. Light shaded blocks represent droplets
of type A (oil), dark shaded blocks represent droplets of type B (water). Drawn is also the
copolymer, but without an indication of the microscopic disorder w that is attached to it.

Mesoscopic disorder in the micro-emulsion. Fix p € (0,1) and L,, € N. Partition
(0,00) x R into square blocks of size L,:

(0,00) xR=|J AL, (z), AL, (z)=a2Ln+(0,L)" (1.3)
rENgXZ

Each block is randomly labelled A (oil) or B (water), with probability p, respectively, 1 — p,
independently for different blocks. The resulting labelling is denoted by

Q={Qx): zeNgx2Z} e {A B}oxZ (1.4)

and represents the randomness of the micro-emulsion, i.e., Q(z) = A and Q(x) = B mean that
the z-th block is of type A, respectively, of type B (see Fig. 2). The law of the mesoscopic



disorder is denoted by Pq and is independent of P,,. The size of the blocks L,, is assumed to
be non-decreasing and to satisfy

logn

lim L, =00 and lim L, =0, (1.5)

n—oo n—o0 n
i.e., the blocks are large compared to the monomer size but small compared to the copolymer
size. For convenience we assume that if an A-block and a B-block are next to each other,
then the interface belongs to the A-block.

Path restriction. We bound the vertical displacement on the block scale in each column
of blocks by M € N. The value of M will be arbitrary but fixed. In other words, instead of
considering the full set of trajectories W,, we consider only trajectories that exit a column
through a block at most M above or M below the block where the column was entered (see
Fig. 3). Formally, we partition (0,00) x R into columns of blocks of width L,, i.e.,

(0, OO) X R = UjeNOCj7Ln7 Cj,Ln == UkGZALn (]a k;)a (16)

where Cj 1, is the j-th column. For each m € W,,, we let 7; be the time at which 7 leaves the
(j — 1)-th column and enters the j-th column, i.e.,

1j =sup{i € Ng: m; € Cj_1,} =inf{i e Ng: m; € C;} — 1, j=1,...,N. -1, (1.7)

where N, indicates how many columns have been visited by 7. Finally, we let v_1(7) = 0
and, for j € {0,..., Ny — 1}, we let vj(7m) € Z be such that the block containing the last step
of the copolymer in C;,, is labelled by (j,v;(7)), i.e., (77, —1,7r ;) € ALy (j,v(m)). Thus,
we restrict W, to the subset W), ys defined as

Wynt = {m € Wyt |vj(m) —vj_1(m)| < M Vj€{0,..., Nz — 1}}. (1.8)

]
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Figure 3: Example of a trajectory m € W, »s with M = 2 crossing the column Cy r, with
vo(m) = 2.

In Remark 1.2 below we discuss how the mesoscopic vertical restriction can be relaxed by
letting M — oo.



Hamiltonian and free energy. Given w, 2, M and n, with each path m € W), »r we associate
an energy given by the Hamiltonian

n
HYP (moB) = (at{wi=0f  =al+pi{w=0 =B}) @9
i=1
where Q(L;Flm) denotes the label of the block the step (m;—1, ;) lies in. What this Hamiltonian
does is count the number of AA-matches and BB-matches and assign them energy « and £,
respectively, where «, 5 € R. (Note that the interaction is assigned to bonds rather than
to sites, and that we do not follow the convention of putting a minus sign in front of the
Hamiltonian.) Similarly to what was done in our earlier papers [5], [6], [7], [8], without loss
of generality we may restrict the interaction parameters to the cone

CONE = {(a, B) € R%: o > |B|}. (1.10)

For n € N and M € N, the free energy per monomer is defined as
w,Q .
F2 o, B M) = Llog Z27 (0, ;M) with Z27 (a5 M) = Y efma ™) )

“n
7T€Wn7]\4

and in the limit as n — oo the free energy per monomer is given by

fla, B M,p) = lim £ (o, B; M), (1.12)

=1l
n—oo
provided this limit exists w, §2-a.s.

Henceforth, we subtract the term o) | 1{w; = A} from the Hamiltonian, which by the
law of large numbers w-a.s. is §n(1 + o(1)) as n — oo and corresponds to a shift of —% in
the free energy. The latter transformation allows us to lighten the notation, starting with the
Hamiltonian in (1.9), which becomes

n

2 (r50,8) =Y (5 1{w; =B} —al{w = A}) 1 {Q@;_m) - B} . (1.13)

i=1

1.2 The slope-based variational formula for the quenched free energy per
step

Theorem 1.1 below gives a variational formula for the free energy per step in (1.12). This
variational formula, which is the corner stone of our paper, involves the fractions of time the
copolymer moves at a given slope through the interior of solvents A and B and the fraction
of time it moves along AB-interfaces. This variational formula will be crucial to identify the
phase diagram, i.e., to identify the typical behavior of the copolymer in the micro-emulsion as
a function of the parameters «, 5, p. Of particular interest is the distinction between localized
phases, where the copolymer stays close to the AB-interfaces, and delocalized phases, where
it wanders off into the solvents A and/or B. We will see that there are several such phases.

To state Theorem 1.1 we need to introduce some further notation. With each [ € Ry =
[0, 00) we associate two numbers v4 ;, vg; € [141, 00) indicating how many steps per horizontal
step the copolymer takes when traveling at slope [ in solvents A and B, respectively. We



further let vz € [1,00) denote the number of steps per horizontal step the copolymer takes
when traveling along AB-interfaces. These numbers are gathered into the set

B={v=(va,vp,vr) €ECxC x[1l,00)} (1.14)

with
C = {l — u; on Ry : continuous with w; > 141 VI € R+}. (1.15)

Let k(u,l) be the entropy per step carried by trajectories moving at slope | with the
constraint that the total number of steps divided by the total number of horizontal steps is
equal to u € [1 4 1,00) (for more details, see Section 3.1). Let ¢z(u; «, ) be the free energy
per step when the copolymer moves along an AB-interface, with the constraint that the total
number of steps divided by the total number of horizontal steps is equal to u € [1,00) (for
more details, see Section 3.2). Let p = (pa,pp,pz) € Mi1(Ry URy U{Z}), where pa(dl)
and pp(dl) denote the fractions of horizontal steps at which the copolymer travels through
solvents A and B at a slope that lies between [ and [ + dl, and pz denotes the fraction of
horizontal steps at which the copolymer travels along AB-interfaces. The possible p form a
set

Ry € Mi(Ry URL U{Z}) (1.16)
that depends on p and M (for more details, see Section 3.4). With these ingredients we can

now state our slope-based variational formula.

Theorem 1.1 [slope-based variational formula] For every («,3) € CONE, M € N and
€ (0,1) the free energy in (1.12) ezists for P-a.e. (w,$2) and in L*(P), and is given by

(
(

=
sl

,0)
v)’

fle, B; M,p) = sup sup (1.17)

PERp M VE B

-l
el

N(p,v) = / vagR(vag,l) pa(dl) +/ vgy [Ropg, 1) + 252] pp(dl) + vz ¢z(vr; @, B) pr,
0 0
D(f),v) = / VA ﬁA(dl) + / VB ﬁB(dl) + vz pz, (1.18)
0 0
with the convention that N(p,v)/D(p,v) = —oo when D(p,v) = co.

Remark 1.2 We are unable to prove the existence of the quenched free energy per step
f(a, B;p) of the free model, i.e., the model with no restriction on the mesoscopic vertical
displacement. By monotonicity,

fla, Broo,p) = lim f(a, 55 M,p) = sup f(a,B; M,p) (1.19)
—00 MeN

exists for all a, f and p. Taking the supremum over M € N on both sides of (1.17), we obtain
a variational formula for f(a, 8;00,p), namely,
N —
fla,B;00,p) = sup sup = ([_)’ v) (1.20)
PERp.co VEB D(p,v)




with Rpoo = UpenRp . Clearly, we have f(a, 8;p) > f(a,8;00,p), and we expect that
equality holds. Indeed, if the inequality would be strict, then the free energy per step of the
free model would be controlled by trajectories whose mesoscopic vertical displacements are
unbounded. The energetic gain the copolymer may obtain from a large vertical displacement
in a given column comes from the fact that it may reach a height where the mesoscopic disorder
is more favorable. However, the energetic penalty associated with such a displacement is large
as well (see Lemma C.6 in Appendix C). Therefore we do not expect such trajectories to be
optimal, in which case f(«, 3;p) is indeed given by the same variational formula as in (1.20).

1.3 Discussion

The variational formula in (1.17-1.18) is tractable, to the extent that the k-function is known
explicitly, the ¢z-function has been studied in depth in the literature (and much is known
about it), while the set B is simple. The key difficulty of (1.17-1.18) resides in the set Ry ur,
whose structure is not easy to control. However, it turns out that we need to know relatively
little about this set in order to identify the phase diagram.

In Appendix F we will show that the supremum in (1.17) is attained at some (not necessar-
ily unique) p € R, p and some unique v € B. Each maximizer corresponds to the copolymer
having a specific way to configure itself optimally within the micro-emulsion.

Column-based variational formula. The slope-based variational formula in Theorem 1.1
will be obtained by combining two auxiliary variational formulas. Both formulas involve the
free energy per step ¥ (0, ug; a, ) when the copolymer crosses a block column of a given type
O, taking values in a type space Vjy, for a given ug € RT that indicates how many steps on
scale L,, the copolymer makes in this column type. A precise definition of this free energy per

block column will be given in Section 3.3.2.

The first auxiliary variational formula is stated in Section 3 (Proposition 3.5) and gives
an expression for ¥ (0, ue;, 3) that involves the entropy &(-,l) of the copolymer moving
at a given slope [ and the quenched free energy per monomer ¢z of the copolymer near a
single linear interface. Consequently, the free energy of our model with a random geometry is
directly linked to the free energy of a model with a non-random geometry. This will be crucial
for our analysis of the phase diagram in Section 2. The microscopic disorder manifests itself
only through the free energy of the linear interface model.

The second auxiliary variational formula is stated in Section 5 (Proposition 5.1). It is re-
ferred to as the column-based variational formula, and provides an expression for f(«, 5; M, p)
by using the block-column free energies 1 (0, ug; a, 3) for © € V); and by weighting each col-
umn type with the frequency p(d®) at which it is visited by the copolymer. The numerator
is the total free energy, the denominator is the total number of monomers (both on the meso-
scopic scale). The variational formula optimizes over (ue)gcy,, € By;,, and p € Rpm. The
reason why these two suprema appear in (1.17) is that, as a consequence of assumption (1.5),
the mesoscopic scale carries no entropy: all the entropy comes from the microscopic scale,
through the free energy per monomer in single columns.

Removal of the corner restriction. In our earlier papers [5], [6], [7], [8], we allowed the
configurations of the copolymer to be given by the subset of W,, consisting of those paths that
enter pairs of blocks through a common corner, exit them at one of the two corners diagonally
opposite and in between stay confined to the two blocks that are seen upon entering. The
latter is an unphysical restriction that was adopted to simplify the model. In these papers we



derived a variational formula for the free energy per step that had a simpler structure. We
analyzed this variational formula as a function of «, 3, p and found that there are two regimes,
supercritical and subcritical, depending on whether the oil blocks percolate or not along the
coarse-grained self-avoiding path. In the supercritical regime the phase diagram turned out
to have two phases, in the subcritical regime it turned out to have four phases, meeting at
two tricritical points.

In Section 2 we show how the variational formula in Theorem 1.1 can be used to identify
the phase diagram. It turns out that there are two types of phases: localized phases (where
the copolymer spends a positive fraction of its time near the AB-interfaces) and delocalized
phases (where it spends a zero fraction near the AB-interfaces). Which of these phases occurs
depends on the parameters «, 3, p. It is energetically favorable for the copolymer to stay close
to the AB-interfaces, where it has the possibility of placing more than half of its monomers
in their preferred solvent (by switching sides when necessary), but this comes with a loss of
entropy. The competition between energy and entropy is controlled by the energy parameters
a, f (determining the reward of switching sides) and by the density parameter p (determining
the density of the AB-interfaces). It turns out that the phase diagram is different in the
supercritical and the subcritical regimes, where the A-blocks percolate, respectively, do not
percolate. The phase diagram is richer than for the model with the corner restriction.

Figure 4: Picture of a directed polymer with bulk disorder. The different shades of black,
grey and white represent different values of the disorder.

Comparison with the directed polymer with bulk disorder. A model of a polymer
with disorder that has been studied intensively in the literature is the directed polymer with
bulk disorder. Here, the set of paths is

W, = {m = (i,m)i-y € (Ng x ZHY" L o =0, |mi —ml =1V0<i< n}, (1.21)
where || - || is the Euclidean norm on Z?, and the Hamiltonian is
n
HY(m) =AY w(i, m), (1.22)
i=1

where A > 0 is a parameter and w = {w(i,z): i € N, x € Z%} is a field of i.i.d. R-valued
random variables with zero mean, unit variance and finite moment generating function, where
N is time and Z? is space (see Fig. 4). This model can be viewed as a version of a copolymer



in a micro-emulsion where the droplets are of the same size as the monomers. For this model
no variational formula is known for the free energy, and the analysis relies on the application
of martingale techniques (for details, see e.g. den Hollander [4], Chapter 12).

In our model (which is restricted to d = 1 and has self-avoiding paths that may move north,
south and east instead of north-east and south-east), the droplets are much larger than the
monomers. This causes a self-averaging of the microscopic disorder, both when the copolymer
moves inside one of the solvents and when it moves near an interface. Moreover, since the
copolymer is much larger than the droplets, also self-averaging of the mesoscopic disorder
occurs. This is why the free energy can be expressed in terms of a variational formula, as in
Theorem 1.1. This variational formula acts as a jumpboard for a detailed analysis of the phase
diagram. Such a detailed analysis is lacking for the directed polymer with bulk disorder.

The directed polymer in random environment has two phases: a weak disorder phase
(where the quenched and the annealed free energy are asymptotically comparable) and a
strong disorder phase (where the quenched free energy is asymptotically smaller than the
annealed free energy). The strong disorder phase occurs in dimension d = 1,2 for all A > 0
and in dimension d > 3 for A > \., with A\. € [0, 0] a critical value that depends on d and
on the law of the disorder. It is predicted that in the strong disorder phase the copolymer
moves within a narrow corridor that carries sites with high energy (recall our convention of
not putting a minus sign in front of the Hamiltonian), resulting in superdiffusive behavior in
the spatial direction. We expect a similar behavior to occur in the localized phases of our
model, where the polymer targets the AB-interfaces. It would be interesting to find out how
far the coarsed-grained path in our model travels vertically as a function of n.

2 Phase diagram

In Section 2.1 we identify the general structure of the phase diagram. The results in this
section are valid for the free energy f(a, 8; M, p) with M € NU{oo}, i.e., for the model where
the mesoscopic vertical displacement is < M and for the limiting model obtained by letting
M — oo (recall (1.20)), which we believe to coincide with the free model (recall Remark 1.2).
In particular, we show that there is a localized phase £ in which AB-localization occurs, and
a delocalized phase D in which no AB-localization occurs. In Section 2.2, we focus on the
free energy f(a, B; M,p) with M € N of the restricted model and obtain various results for
the fine structure of the phase diagram, both for the supercritical regime p > p. and for the
subcritical regime p < p., where p. denotes the critical threshold for directed bond percolation
in the positive quandrant of Z2. This fine structure comes in the form of theorems, hypotheses
and conjectures, which we discuss in Section 2.3. The reason why in Section 2.2 we do not
consider the limiting case M = oo is that, contrary to what we find in Appendix F for the
variational formula in (1.17), the supremum of the variational formula in (1.20) is not a priori
attained at some p € 7@1,700. This makes the content of the hypotheses harder to understand
and harder to exploit.

2.1 General structure

Throughout this section, M € NU{oo}, but we suppress the M-dependence from the notation.
To state the general structure of the phase diagram, we need to define a reduced version of
the free energy, called the delocalized free energy fp, obtained by taking into account those



trajectories that, when moving along an AB-interface, are delocalized in the A-solvent. The
latter amounts to replacing the linear interface free energy ¢z (vr; a, 8) in (1.17) by the entropic
constant lower bound #(vz,0). Thus, we define

Np(p,v
fpla, Bip) = sup sup D’*”) (2.1)
PER, vEB D(p,'U)

Np(ﬁ,v) = /OOO VA, I%(UAJ,Z) [ﬁA + pz (50](dl) + /Ooo vB [R(UB,Z,Z) + '8%&] ﬁB(dl), (2.2)

Do(po) = [ vadlpa+ proala) + [ omipa(a) (2.3)

provided Dp(p,v) < co. Note that fp(a, 3;p) depends on (a, 3) through o — 3 only.
We partition the CONE into the two phases D and £ defined by

L = {(a, B) € CONE: f(a, B; p) > fp(e, B;p)},
D = {(a, B) € CONE: f(a, B; p) = fp(a, B;p)}
The localized phase £ corresponds to large values of 3, for which the energetic reward to
spend some time travelling along A B-interfaces exceeds the entropic penalty to do so. The

delocalized phase D, on the other hand, corresponds to small values of 3, for which the
energetic reward does not exceed the entropic penalty.

For a > 0, let J, be the halfline in CONE defined by
Jo={(a+B,8): Be[-F,00)} (2.5)
Theorem 2.1 (a) For every a € (0,00) there ezists a B.(a) € (0,00) such that

LNJo={(a+p,8): B € (Bea),0)},
DNJo={(a+8,8): Be[-% ()]}

(b) Inside phase D the free energy f is a function of a— 8 only, i.e., f is constant on Jo, ND
for all o € (0,00).

(2.4)

(2.6)

2.2 Fine structure

Throughout this section M € N, but once again we suppress the M-dependence from the
notation. This section is organized as follows. In Section 2.2.1, we consider the supercritical
regime p > p., and state a theorem. Subject to two hypotheses, we show that the delocalized
phase D (recall (2.4)) splits into two subphases D = D; U Dy. We give a characterization
of the critical curve o — B.(a) (recall (2.6)) in terms of the single linear free energy and
state some properties of this curve. Subsequently, we formulate a conjecture stating that the
localized phase L also splits into two subphases £ = £1 UL, which are saturated, respectively,
non-saturated. In Section 2.2.2, we consider the subcritical regime p < p., and state several
conjectures concerning the splitting of the localized phase £ and of the delocalized phase D.

For p € (0,1) and («,3) € CONE, let O, 4 denote the subset of R, containing those p
that maximize the variational formula in (1.17), i.e.,

_ = D . . _ N(ﬁ)”)
Op.a,p = {P €Rp: fla,Bip) = U 55, 0) } (2.7)

10



For ¢ € (0,00), define v(c) = (va(c),vB(c),vz(c)) € B as

UA,Z(C) = X;l(c)a le [Oa 00)7
vpi(c) =x; ' (c+ O‘T_B), l €0, 00), .
vz(c) =z, 0y (udz(u))(2) = ¢ > 0y (udz(u))(2), (2.10)
where
xi(v) = (Qu(uh(u,1))(v) (2.11)

and x; ' denotes the inverse function. Lemma B.1(v-vi) ensures that v — x;(v) is one-to-one
between (1 + 1, 00) and (0,00). The existence and uniqueness of z in (2.10) follow from the
strict concavity of u +— wu¢z(u) (see Lemma3.3) and Lemma C.1 (see (C.1-C.2)). We will
prove in Proposition 7.1 that the maximizer v € B of (1.17) necessarily belongs to the familly

{v(e): c € (0,00)}.

2.2.1 Supercritical regime

BC(O‘)
‘ /
B f s
/ £2
/
P Bu(a)
/
/
> (e
N D1 DQ
AN
AN
\ *
N «

Figure 5: Qualitative picture of the phase diagram in the supercritical regime p > p..

Let T, be the subset of 7_3p containing those p that have a strictly positive B-component
and are relevant for the variational formula in (1.17), i.e.,

To={p € Ry pu0.06) >0, [~(1+1) pa + psll) < . (2.12)

Note that 7, does not depend on («, 3).

Splitting of the D-phase. We partition D into two phases: D = D; U Dy. To that end
we introduce the delocalized A-saturated free energy, denoted by fp,(p), which is obtained by
restricting the supremum in (2.1) to those p € R, that do not charge B. Such p, which we

11



call A-saturated, exist because p > p., allowing for trajectories that do not visit B-blocks.
Thus, fp,(p) is defined as

ND psv
fo,(p) = sup sup =——— 2(, ) (2.13)
PERP veEB D'D(pﬂ})
75 ([0,00))=0

with o
No,(p.0) = [ varioard) pa + prbol(@), (2.14)
0

provided Dp(p,v) < co. Note that fp,(p) is a constant that does not depend on («, 3).
With the help of this definition, we can split the D-phase defined in (2.4) into two parts:

e The D;-phase corresponds to small values of 8 and small to moderate values of «. In
this phase there is no AB-localization and no A-saturation. For the variational formula
in (1.17) this corresponds to the restriction where the AB-localization term disappears
while the A-block term and the B-block term contribute, i.e.,

Dy = {(a, B) € CONE: f(a, B; p) = fp(e, B; p) > [, (D) }- (2.15)

e The Dy-phase corresponds to small values of 5 and large values of . In this phase there
is no AB-localization but A-saturation occurs. For the variational formula in (1.17)
this corresponds to the restriction where the AB-localization term disappears and the
B-block term as well, i.e.,

Dy = {(a, ) € CONE: f(a, B; p) = fp,(p)}- (2.16)

To state our main result for the delocalized part of the phase diagram we need two hy-
potheses:

Hypothesis 1 For all p > p. and all o € (0,00) there exists a p € Op o such that pz > 0.

Hypothesis 2 For all p > p.,

wun, Jo-90) [P + pr dol(dl)
et Joo(L+ 1) pp(dl)

< o0, (2.17)

where
g(l) = VAl [/%(@AJ, ) — fDQ] (2.18)
and v = v(fp,) as defined in (2.8-2.10).

Hypothesis 1 will allow us to derive an expression for 5.(«) in (2.6). Hypothesis 2 will allow
us to show that D; and D, are non-empty.

Remark 2.4 The function g has the following properties: (1) g(0) > 0; (2) g is strictly
decreasing on [0, 00); (3) lim; o g(I) = —o0. Property (2) follows from Lemma B.1(ii) and
the fact that u — ui(u,!) is concave (see Lemma B.1(i)). Property (3) follows from fp, > 0,
Lemma B.1(iv) and the fact that v4; > 1+1 for I € [0, 00). Property (1) follows from property
(2) because [;° g(1)[pa + prdo)(dl) = 0 for all p maximizing (2.13).
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Let
o =sup{a > 0: fp(a,0; p) > fp,(p)}- (2.19)

Theorem 2.5 (a) If Hypothesis 2 holds, then o* € (0, 00).
(b) For every a € [0, a*),

JoaND1=JoaND ={(a+B,6): Be[-F, Be(a)]. (2.20)
(c) For every a € [a*,00),
JaNDy=JoND = {(a+B,6): B€[-5,0()]}. (2.21)
(d) If Hypothesis 1 holds, then for every a € [0, 0)
Be(a) =inf {8 > 0: ¢z(va0;a+ B,B) > &(0a0,0)} with v =v(fp(a,0; p)).  (2.22)

(e) a— B.(a) is concave, continuous, non-decreasing and bounded from above on [a*,00).
(f) Inside phase Dy the free energy f is a function of a— 3 only, i.e., f is constant on Jo, Dy
for all a € [0, *].

(9) Inside phase Do the free energy f is constant.

Splitting of the L-phase. We partition £ into two phases: £ = £ U £L2. To that end we
introduce the localized A-saturated free energy, denoted by fr,, which is obtained by restricting
the supremum in (1.17) to those p € R, that do not charge B, i.e.,

feo(a, B;p) = sup  sup (2.23)

— /[ — b
PERp veEB D(p,v)
pB([0,00))=0

provided D(p,v) < oo.
With the help of this definition, we can split the £-phase defined in (2.4) into two parts:

e The Li-phase corresponds to small to moderate values of o and large values of 3. In
this phase AB-localization occurs, but A-saturation does not, so that the free energy is
given by the variational formula in (1.17) without restrictions, i.e.,

L= {(a,ﬁ) € CONE: f(a, B;p) > max{fp(a, S;p), fﬁz(a,ﬁ;p)}}. (2.24)

e The Lo-phase corresponds to large values of a and 8. In this phase both A B-localization
and A-saturation occur. For the variational formula in (1.17) this corresponds to the
restriction where the contribution of B-blocks disappears, i.e.,

Ly = {(a,B8) € CONE: f(a,B;p) = fr,(cv, B;p) > fpla,B; p)}- (2.25)
Conjecture 2.6 (a) For every a € (0,a*] there exists a fo(a) € (Be(r),0) such that

LinJo={(a+B8,8): BE (Bela),Be()]},
LoNJo={(a+B,8): B€[Bea),00)}.

(b) For every a € (a*,00), the set L1 N J, = 0.

(2.26)
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Figure 6: Qualitative picture of the phase diagram in the subcritical regime p < pe.

2.2.2 Subcritical regime

Splitting of the D-phase. Let
K = inf pg([0,00)). (2.27)
PERp
Note that K > 0 because p. < p.. We again partition D into two phases: D = D; U Dsy. To
that end we introduce the delocalized mazimally A-saturated free energy, denoted by fp, (p),
which is obtained by restricting the supremum in (2.1) to those p € R, achieving K. Thus,

Ip,(p) is defined as
_ Np(p,v)
fo,(p) = sup  sup =——, (2.28)
PERp vEB D(pa U)
pp([0,00))=K
provided Dp(p,v) < oo. Note that, contrary to what we had in the supercritical regime,
/D, (p) depends on (a, f3).

With the help of this definition, we can split the D-phase defined in (2.4) into two parts:

e The D;-phase corresponds to small values of 8 and small to moderate values of a. In
this phase there is no AB-localization and no maximal A-saturation. For the variational
formula in (1.17) this corresponds to the restriction where the AB-localization term
disappears while the A-block term and the B-block term contribute, i.e.,

Dy = {(o, 8) € CONE: f(a,B; p) = fp(a, B; p) > fp,(p)} (2.29)

e The Dy-phase corresponds to small values of 5 and large values of a.. In this phase there
is no AB-localization and maximal A-saturation. For the variational formula in (1.17)
this corresponds to the restriction where the AB-localization term disappears and the
B-block term is minimal, i.e.,

Dy = {(a, ) € CONE: (e, 8; p) = fp,(p)}- (2.30)
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Let
o =inf{a>0: Fpp([0,00)) =K Vp€ OpooVa' >a}. (2.31)

Conjecture 2.7 (a) a* € (0,00).
(b) Theorems 2.5(b,c,d,f) hold with o* replaced by &*.
(c) Theorem 2.5(g) does not hold.

Splitting of the L-phase. We again partition £ into two phases: £ = £ U Ly. To that
end we introduce the localized mazimally A-saturated free energy, denoted by fr,, which
is obtained by restricting the supremum in (1.17) to those p € R, achieving K. Thus,
fr,(a, B; p) is defined as

N p,v
feo(a,B85p) = sup  sup 7(_ ),
FERp veB D(p,v)
pB([0,00))=K

(2.32)

provided D(p,v) < oo.
With the help of this definition, we can split the £-phase defined in (2.4) into two parts:

e The Li-phase corresponds to small to moderate values of o and large values of 3. In
this phase AB-localization occurs, but maximal A-saturation does not, so that the free
energy is given by the variational formula in (1.17) without restrictions, i.e.,

L1 = {(a, 8) € CONE: f(a,B;p) > max{fp(e, B;p), fr,(c, B;p)}}. (2:33)

e The Lo-phase corresponds to large values of o and 8. In this phase both AB-localization
and maximal A-saturation occur. For the variational formula in (1.17) this corresponds
to the restriction where the contribution of B-blocks is minimal, i.e.,

Ly = {(a, B) € CONE: f(a,B;p) = fr,(a,Bip) > fple, 85 p)}- (2.34)

Conjecture 2.8 Conjecture 2.6 holds with &* instead of *.

2.3 Proof of the hypotheses

Hypothesis 1 can be understood as follows. At (a,0) € CONE, the BB-interaction is vanishes
while the AA-interaction does not, and we have seen earlier that there is no localization of
the copolymer along AB-interfaces when 5 = 0. Consequently, when the copolymer moves at
a non-zero slope [ € R\ {0} it necessarily reduces the time it spends in the B-solvent. To be
more specific, let p € R, pr be a maximizer of the variational formula in (1.17), and assume
that the copolymer moves in the emulsion by following the strategy of displacement associated
with p. Consider the situation in which the copolymer moves upwards for awhile at slope > 0
and over a horizontal distance h > 0, and subsequently changes direction to move downward
at slope I’ < 0 and over a horizontal distance A’ > 0. This change of vertical direction is
necessary to pass over a B-block, otherwise it would be entropically more advantageous to
move at slope (hl + R'l')/(h + h') over an horizontal distance h + h’ (by the concavity of
% in Lemma B.1(i)). Next, we observe (see Fig. 7) that when the copolymer passes over a
B-block, the best strategy in terms of entropy is to follow the AB-interface (consisting of this
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B-block and the A-solvent above it) without being localized, i.e., the copolymer performs a
long excursion into the A-solvent but the two ends of this excursion are located on the AB-
interface. This long excursion is counted in pz. Consequently, Hypothesis 1 (pz > 0) will be
satisfied if we can show that the copolymer necessarily spends a strictly positive fraction of
its time performing such changes of vertical direction. But, by the ergodicity of w and €2, this
has to be the case.

Figure 7: Entropic optimization when the copolymer passes over a B-block.

The statement of Hypothesis 2 is technical, but can be rephrased in a simpler way. Recall
Remark 2.4 and note that there is an [y € (0, 00) such that g > 0 on [0,lp) and g < 0 on (ly, 00).
Assume by contradiction that Hypothesis 2 fails and that the ratio in (2.17) is unbounded.
Then, by spending an arbitrarily small amount of time in the B-solvent, the copolymer can
improve the best saturated strategies by moving some of the mass of pa(ly,o0) to pa(0,1p),
and that the entropic gain of this transformation is arbitrarily larger than the time spent in
the B-solvent. In other words, failure of Hypothesis 2 means that spending an arbitrarily
small fraction of time in the B-solvent allows the copolymer to travel flatter when it is in the
A-solvent during a fraction of the time that is arbitrarily larger than the fraction of the time
it spends in the B-solvent. This means that, instead of going around some large cluster of the
B-solvent, the copolymer simply crosses it straight to travel flatter. However, the fact that
large subcritical clusters scale as round balls contradicts this scenario, because it means that
the time needed to go around the cluster is of the same order as the time required to cross
the cluster, which makes the unboundedness of the ratio in (2.17) impossible.

3 Key ingredients

In Section 3.1, we define the entropy per step &(u,!) carried by trajectories moving at slope
I € R, with the constraint that the total number of steps divided by the total number of
horizontal steps is equal to u € [1 + [,00) (Proposition 3.1 below). In Section 3.2, we define
the free energy per step ¢z(u) of a copolymer in the vicinity of an AB-interface with the
constraint that the total number of steps divided by the total number of horizontal steps is
equal to pu € [1,00) (Proposition 3.2 below). In Section 3.3, we combine the definitions in
Sections 3.1-3.2 to obtain a variational formula for the free energy per step in single columns
of different types (Proposition 3.5 below). In Section 3.4 we define the set of probability
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laws introduced in (1.16), which is a key ingredient of the slope-based variational formula
in Theorem 1.1. Finally, in Section 3.5, we prove that the quenched free energy per step
f(a, B;p) is strictly positive on CONE.

3.1 Path entropies at given slope

Path entropies. We define the entropy of a path crossing a single column. To that aim, we
set

H={(u,l) €[0,00) x R: uw>1+]l|},
Hr={(w,)eH:leZ uecl+|I|+Z},  LeN, (3.1)

and note that H N Q? = UpenHy. For (u,l) € H, we denote by Wy, (u,1) the set containing
those paths m = (0, —1) + 7 with 7 € W, (recall (1.1)) for which 7,7, = (L,lL) (see Fig. 8).
The entropy per step associated with the paths in Wy (u,l) is given by

Fr(u,l) = 2= log Wi (u,1)]. (3.2)

u.L steps

(0,0)

Figure 8: A trajectory in Wy (u, ).
The following propositions will be proven in Appendix A.

Proposition 3.1 For all (u,l) € HNQ? there exists a &(u,l) € [0,log 3] such that

lim Rr(u,l)= sup Fr(u,l) = K(u,l). (3.3)
L—oo LEN
(uw,)eH, (u,l)EH

An explicit formula is available for %(u,!), namely,

R e e (3.0

where k(a,b), a > 1+ b, b > 0, and A(u), u > 1, are given in [5], Section 2.1, in terms
of elementary variational formulas involving entropies (see [5], proof of Lemmas 2.1.1-2.1.2).
The two formulas in (3.4) allow us to extend (u,l) — &(u,l) to a continuous and strictly
concave function on H (see Lemma B.1 ).
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3.2 Free energy for a linear interface

Free energy along a single linear interface. To analyze the free energy per monomer in
a single column we need to first analyze the free energy per monomer when the path moves in
the vicinity of an A B-interface. To that end we consider a single linear interface T separating
a solvent B in the lower halfplane from a solvent A in the upper halfplane (the latter is
assumed to include the interface itself).

For L € Nand p € 14 2, let WE(u) = Wi (p,0) denote the set of pL-step directed
self-avoiding paths starting at (0,0) and ending at (L,0). Recall (1.2) and define

67 ) = oz and o) = Bl (), (3.5)
with
zi— Y eow|Hy )],
TEWL (1)
pL (36)
Hy () =" (Blwi = B} — o l{w; = A}) 1{(mi_1,m) < 0},
=1

where (m;—1,m;) < 0 means that the i-th step lies in the lower halfplane, strictly below the
interface (see Fig. 9).

Proposition 3.2 ([5], Section 2.2.2)
For all (a, ) € CONE and p € QN [1,00) there exists a ¢pz(p) = ¢pz(p; o, B) € R such that

lim gb“L”I(u) = ¢z(p)  for P-a.e. w and in L' (P). (3.7)

It is easy to check (via concatenation of trajectories) that p — poz(u;«, ) is concave.
For technical reasons we need to assume that it is strictly concave, a property we believe to
be true but are unable to verify:

Lemma 3.3 For all (o, f) € CONE the function p — por(p;a, ) is strictly concave on
[1,00).

Solvent A +— UL steps
Solvent B +—— Interface
- 3 >

Figure 9: Copolymer near a single linear interface.

Proof. To show that strict concavity holds we argue by contradiction. Suppose that there
is an interval [u1,uo] on which p — updz(p;a, B) is linear. Then ¢z(n) > A(w,0) for all
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W € 11, 1o] except in at most two points (because pu — pk(p, 0) is strictly concave by Lemma
B.1(i)). Therefore we may assume that ¢z((p1 + p2)/2) > £((p1 + p2)/2,0), and with the
assumed linearity we get

i 1 wI L), 1 w,T _
ng"{,lo 2L log (ZLM Ly ) 9L 108 257 (s +ua) 2 = O (3.8)
where 6 is the left-shift acting on sequences of letters. Write P; i,I(m tg)/2 to denote the Gibbs

measure on W2, (11 + pg)/2) associated with the Hamiltonian H;JL’I(W) defined as in (3.6).
A consequence of (3.8) is that

w,L .
P2L,(,u,1+,u2)/2(7rﬂlL = (L,0)) (3.9)

does not decay exponentially as L — oco. However, the fact that ¢z ((pu1 + pe)/2) > &((u1 +
112)/2,0) implies that the copolymer is localized under P, L’Z(m p2) /2 and therefore the ex-

cursions away from the origin are exponentially tight. Under the event {7, 1 = (L,0)} we
necessarily have that the excursions constituting the first L horizontal steps of the path have
a total length of 1 L. But uy < (p1 + p2)/2 means that the ratio of the total number of steps
and the number of horizontal steps is small for the excursions constituting the first L steps
of the path. But w is ergodic, and therefore the average of the ratio over the trajectory is
necessarily (p1 + p2)/2. O

3.3 Free energy in a single column and variational formulas

In this section, we prove the convergence of the free energy per step in a single column
(Proposition 3.4) and derive a variational formula for this free energy with the help of Propo-
sitions 3.1-3.2. The variational formula takes different forms (Propositions 3.5), depending
on whether there is or is not an AB-interface between the heights where the copolymer enters
and exits the column, and in the latter case whether an AB-interface is reached or not.

In what follows we need to consider the randomness in a single column. To that aim, we
recall (1.6), we pick L € N and once {2 is chosen, we can record the randomness of Cj 1, as

We will also need to consider the randomness of the j-th column seen by a trajectory that
enters C; , through the block A;; with k # 0 instead of £ = 0. In this case, the randomness
of C; 1, is recorded as

Qiwt ) ={QG ke L€ Z} (3.11)

Pick L € N, x € {4, B}Z and consider Cp 1, endowed with the disorder ¥, i.e., Q(0,) = x.
Let (n;)icz € Z” be the successive heights of the AB-interfaces in Co,r divided by L, i.e.,

e <np<ng<0<n<ng <.... (3.12)
and the j-th interface of Cy 1, is Z; = {0,..., L} x {n;L} (see Fig. 10). Next, for r € Ny we set
kry =0if ny > r and k;,,, = max{i > 1: n; < r} otherwise, (3.13)

while for r € —N we set
kry =0if ng <r and k,,, = min{i <0: n; > r+ 1} — 1 otherwise. (3.14)

Thus, |k, | is the number of AB-interfaces between heigths 1 and 7L in Co r..
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Figure 10: Example of a column with disorder x = (..., x(—3), x(—2), x(—1), x(0), x(1), x(2),
..)=(...,B,A,B,B,B,A,,...). In this example, for instance, k_p, = —1 and k; , = 0.

3.3.1 Free energy in a single column

Column crossing characteristics. Pick L, M € N, and consider the first column Cp ;. The
type of Co 1, is determined by © = (x, E, z), where x = () ez encodes the type of each block
in Co,L, i-e., xj = o) for j € Z, and (=, z) indicates which trajectories 7 are taken into
account. In the latter, = is given by (AII, by, b1) such that the vertical increment in Cp z on
the block scale is AII and satisfies |AIl| < M | i.e., 7 enters Co 1, at (0,bpL) and exits Cp 1,

t (L,(AIL 4+ b1)L). As in (3.13) and (3.14), we set ko = kam, and we let Vi be the set
containing those © satisfying kg # 0. Thus, ©® € V;, means that the trajectories crossing
Co,r, from (0,b9L) to (L, (AIl 4 b1)L) necessarily hit an AB-interface, and in this case we set
x = 1. If, on the other hand, © € Vyiny = V\ Vint, then we have kg = 0 and we set x = 1 when
the set of trajectories crossing Co 1, from (0,b9L) to (L, (AIl+4by)L) is restricted to those that
do not reach an AB-interface before exiting Cp 1, while we set x = 2 when it is restricted to
those trajectories that reach at least one AB-interface before exiting Co 1. To fix the possible
values taken by © = (x, E, z) in a column of width L, we put V1, pr = Vint, 1,0 U Vaint, 1, With

Vint,L,M = {(X7 AH7b07b17 ) S {A B}Z X 7 X {L7 T - 1} X {1}
AT < M, kary # 0},
Vaint,L,m = { (¢, AIL by, b1, 2) € {A, BY* xZ x {L,2,..., 1}2 x {1,2}:

|ATI| < M, kam,y = 0}.
(3.15)

Thus, the set of all possible values of © is Vi; = Ur>1Vr, am, which we partition into Vys =
Vint,M U Vnint,M (See Flg 11) with

Vint, M = UreN Vint,L,M
= {(x, AIL by, b1, 2) € {A, BY* x Z x (Qo.1))* x {1}: A < M, kam,y # 0},
Vnint,M = UrenN Vnint,L,M

= {(Xa ATI, b(]abl»x) € {A’B}Z X L% ((@(0,1})2 X {172}: |AH| <M, kAH:X = 0}7
(3.16)
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where, for all I C R, we set Q; = INQ. We define the closure of Vy; as Vs = VintyM u?nint,M
with
Vint,M = {(X?Anab07b17$) € {A’B}Z X Z X [07 1]2 X {]‘} ‘AH| < M’ k;AH:X ;é 0}’

7nint,M = {(X7 AH» b07b17x) S {AaB}Z X Z X [07 1}2 X {LQ}: |AH’ <M, kAH,X = 0}
(3.17)

b,
AN
n,
A § n
n,
ATT=6

n,

b, ATT=-3

N

b

1

Figure 11: Labelling of coarse-grained paths and columns. On the left the type of the column
is in Vin¢, s, on the right it is in Vyine, v (with M > 6).

Time spent in columns. We pick L, M € N, © = (x, AllL by, by, z) € Vi and we specify
the total number of steps that a trajectory crossing the column Co 1 of type O is allowed to
make. For © = (x, AIl by, b1, 1), set

te = 1+ sign(AIl) (AIL + by — bo) 1yamzoy + 101 — bol 1ami—o} (3.18)

so that a trajectory 7 crossing a column of width L from (0,boL) to (L, (AIl + b1)L) makes
a total of uL steps with u € tg + %. For © = (x, AlL by, b1, 2) in turn, recall (3.12) and let

to = 1+ min{2n; — by — by — AIL, 2|ng| + bg + by + AIL}, (3.19)

so that a trajectory m crossing a column of width L and type © € Vyint,r, ar from (0,b9L) to
(L, (AILl + b1)L) and reaching an AB-interface makes a total of uL steps with u € tg + 2.

At this stage, we can fully determine the set Weg ,, 1, consisting of the uL-step trajectories
m that are considered in a column of width L and type ©. To that end, for © € Vin r,m we
map the trajectories m € W (u, AIl+b; —bg) onto Cy 1, such that 7 enters Cp 1, at (0,boL) and
exits Co 1, at (L, (AIl+0b1)L) (see Fig. 12), and for © € Vyine, 1, mr We remove, dependencing on
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uL steps ~_

Figure 12: Example of a uL-step path inside a column of type (x, AlL by, b1, 1) € Vipt,, with

disorder x = (..., x(0),x(1),x(2),...) = (..., A, B, A,...), vertical displacement AIl = 2,
entrance height by and exit height b;.

ulL steps

A

uﬂ |
"IJ td

Figure 13: Two examples of a uL-step path inside a column of type (x,All by, b1, 1)
Vhint,r, (left picture) and (x, AIL bg,b1,2) € Vpint,r (right picture) with disorder x
(., x(0), x(1), x(2), x(3),x(4),...)=(...,B,B,B,B, A, ...), vertical displacement AIl = 2,
entrance height by and exit height b;.

==

I m
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x € {1,2}, those trajectories that reach or do not reach an AB-interface in the column (see
Fig. 13). Thus, for © € Viy, 1, and u € tg + %, we let

Weu,r = {m=(0,bgL) + 7: & € W(u, All + by — by) }, (3.20)
and, for © € Vying,r,m and u € tg + %,

We I = {Tr € (0,boL) + Wr(u, AIl + by — by): 7 reaches no AB—interface} if reg =1,
We u,L = {7r € (0,boL) + Wr(u, ATl + by — by): 7 reaches an AB—interface} if zg = 2,

(3.21)
with zg the last coordinate of ©® € V,;. Next, we set
Vim = {(@,u) €Vrm x[0,00): u€te+ %},
Vir={(0,u) € Vi x Qi o0): u>to},
Vi =1{(0,u) €V x [1,00): u>te}, (3.22)

which we partition into Vi, 1 s U Vi £ ars Viner Y Vaine v and V;knty MmUY V;nt’ - Note that
for every (©,u) € Vj, there are infinitely many L € N such that (©,u) € Vi ur» because
(©,u) € Vi y for all ¢ € N as soon as (0,u) € V] 4.

Restriction on the number of steps per column. In what follows, we set
EIGH = {(M,m) e Nx N: m > M + 2}, (3.23)

and, for (M,m) € EIGH, we consider the situation where the number of steps uL made by a
trajectory m in a column of width L € N is bounded by mL. Thus, we restrict the set Vi, y
to the subset V;",, containing only those types of columns © that can be crossed in less than
mL steps, i.e., 7

VITM = {@ S VL,MZ to < m} (3.24)

Note that the latter restriction only conconcerns those © satisfying xtg = 2. When g =1 a
quick look at (3.18) suffices to state that tg < M + 2 < m. Thus, we set VITM = V’Z‘E,L,M U

1
V:i;t,L,M with Vinmt,L,M = Vint,L,M and with

r{ﬁmL’M:{@e{A,B}Zxe (1.2 1 x {12}

ALl < M, ko =0 and te < m} (3.25)

The sets V7 = V7, UVT - and Vy; = Vizlt’M U V:fnt’M are obtained by mimicking (3.16—

int, nint,

3.17). In the same spirit, we restrict V};M to
Vi ={(0,u) € Vi © € Vi, u<m} (3.26)

* % % .
and V7 = Vige . Y Vaine 2 With

Viztr,rz,M = {(QU) € Vint.o.m X [1,m]: u€te+ %}, (3.27)
nint, LM = {(@,u) € Vamt.Lv X [L,m]: u € te + %}
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XM Nk, M
We set also VM - Vint,M U annt M with Vlnt M — ULENth JL,M and annt M — ULENVnmt L,M>
and rewrite these as

Vit{th ={(©,u) € Vit yy X Qs u > to},
Vintar = 1(0,u) € Vil X Qum): u > to ) (3.28)

*, M

We further set V; v = Vit MY Vnmt M With

*,m

Vi = {(6,u) € vi:ﬁ;,M x [1,m]: u>te},

*, M

_ Y (3.29)
nint,M — {(@,’U,) € Vnint,M X [1,777,]2 u > t®}'

Existence and uniform convergence of free energy per column. Recall (3.20), (3.21)
and, for L € N, w € {A, B} and (0,u) € V[ v, we associate with each 7 € We 1, the

energy
ulL

HuI’IXL( ) Z(ﬁl{wi:B}_al{wz }) { (mi_ IWL)ZB}’ (330)

i=1
where X(Lm_l i) indicates the label of the block containing (m;—1, ;) in a column with disorder
x of width L. (Recall that the disorder in the block is part of the type of the block.) The

latter allows us to define the quenched free energy per monomer in a column of type © and
size L as

1 v,
VE(O,u) = —log Z{(O,u) with  Z{(6,u) = S e, (3.31)
WGW(—),H,L

Abbreviate ¢1,(0,u) = E[¢%(0,u)], and note that for M € N, m > M +2 and (©,u) € V, '}/
all m € We 1 necessarily remain in the blocks Ap(0,7) with i € {-m +1,...,m — 1}
Consequently, the dependence on x of 1% (0, u) is restricted to those coordinates of x indexed
by {—m +1,...,m — 1}. The following proposition will be proven in Section 4.

Proposition 3.4 For every M € N and (©,u) € Vj,; there exists a (0, u) € R such that
T U2(O,0) = ¥(O,u) = ¥(O, . ) w—as (332)

2
(©weVy 5

Moreover, for every (M, m) € EIGH the convergence is uniform in (©,u) € V3.

Uniform bound on the free energies. Pick (a,3) € CONE, n € N, w € {A, BN, Q¢
{A, B}No*Z and let W, be any non-empty subset of W, (recall (1.1)). Note that the quenched
free energies per monomer introduced until now are all of the form

o= tlog 37 o) 539
TEWn,

where H,, () may depend on w and Q and satisfies —an < H,(7) < an for all 7 € W), (recall
that |3| < « in CONE). Since 1 < |[W,,| < [W,| < 3", we have

[tn| < log 3+ o =1 Cue(c). (3.34)

The uniformity of this bound in n, w and Q allows us to average over w and/or 2 or to let
n — 0.
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3.3.2 Variational formulas for the free energy in a single column

We next show how the free energies per column can be expressed in terms of a variational
formula involving the path entropy and the single interface free energy defined in Sections 3.1
and 3.2. Throughout this section M € N is fixed.

For © € Vs we need to specify [ A0 and I g, the minimal vertical distances the copolymer
must cross in blocks of type A and B, respectively, when crossing a column of type ©.

Vertical distance to be crossed in columns of class int. Pick © € Vint’ M and put

I = 1gamso03(m1 — bo) + 1yam<oy (bo — no),
lj = Liansoy(nj — nj—1) + Liancoy(n—ji2 —n—j41) for je{2,... [kel},
lkol+1 = L{am=0} (ALl + b1 — ng ) + Lian<oy (ke +1 — AIL = b1), (3.35)
i.e., l; is the vertical distance between the entrance point and the first interface, [; is the

vertical distance between the i-th interface and the (i + 1)-th interface, and ;41 is the
vertical distance between the last interface and the exit point.

Recall that © = (x, All by, b1, z), and let 4 g and Ip g correspond to the minimal vertical
distance the copolymer must cross in blocks of type A and B, respectively, in a column with
disorder x when going from (0, bg) to (1, AIl + by), i.e.,

lko|+1 ke | +1
lae =Lans0) D, bl n—a) +lgancoy D Llixto,pn=ay
j=1 i=1
ke |+1 kel +1
lB,@ = 1{AH>0} Z ljl{x(nj,ﬂ:B} + 1{AH<0} Z ljl{X(”*ijl):B}' (3'36)
=1 =1

Vertical distance to be crossed in columns of class nint. Depending on x and AIl, we
further partition Vnim, M into four parts

Vnint,A,l,M U Vnint,A,2,M U vnint,B,l,M U Vnint,B,Q,M’ (337)

where Vnint’ Az,m and Vnint, B,z,M contain those columns with label x for which all the blocks
between the entrance and the exit block are of type A and B, respectively. Pick © € Vyint, i
In this case, there is no AB-interface between by and AIIl 4 by, which means that AIl < nq if
AIl > 0 and AIl > ng if AIl < 0 (no and ng being defined in (3.12)).

For © € Vnint, A1,m we have [p g = 0, whereas [4 g is the vertical distance between the
entrance point (0,by) and the exit point (1, AIl + by), i.e.,

lae = 1iam>0y (AIl — by + b1) + Lan<oy (|AIL] + bo — b1) + Tian=oy b1 — bol, (3.38)
and similarly for © € Vnmt, B,1,M Wwe have obviously 46 = 0 and

IB6 = a0y (Al = by + b1) + Lian<oy (|AL] + bo — b1) + 1yam=oy/b1 — bol- (3.39)

For © € Vnint,A,Q,M, in turn, we have Ip g = 0 and /4 g is the minimal vertical distance a
trajectory has to cross in a column with disorder y, starting from (0, by), to reach the closest
AB-interface before exiting at (1, AIl + b), i.e.,

lae = 1iam>0y (Al = by + b1) + Lian<oy (|AIL] + bo — b1) + 1am=0y/b1 — bol, (3.40)
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and similarly for © € Vninu B,2,m We have [4 9 = 0 and

e = liam>0y (AL = by + b1) + Liami<oy (JAI] + bo — b1) + 1 am=03[b1 — bol- (3.41)

Variational formula for the free energy in a column. We abbreviate (h) = (ha, hp, h1)
and (a) = (aa,ap,ar). Note that the quantity h, indicates the fraction of horizontal steps
made by the copolymer in solvent x for x € {A, B} and along AB-interfaces for x = 7.
Similarly, a, indicates the total number of steps made by the copolymer in solvent = for
x € {A, B} and along AB-interfaces for x = Z. For (I4,lp) € [0,00)? and u >[4 + g + 1, we
put

,C(ZA,ZB;U) = {(h),(a) S [0, 1]3 X [O,OO)S: ha+hg+hr=1,ap+ag+az=u
aa>ha+la, ap > hp+1lp, az > hz}. (3.42)

For l4 € [0,00) and u > 1+ l4, we set

Luint,a2(Lasu) = {(h), (a) € L(14,0;u): hp =ap =0},

3.43
Luint, 4,1(Lasu) = {(R), (a) € L(14,0;u): hp =ap = hg = ag =0}, (3.43)
and, for g € [0,00) and u > 1 + Ip, we set
Loin Ig;u) = {(h), € L(0,lg;u): ha = =0t,
oz = {0, @) € £O.p0): ha=ax =0} o

Lint,B,1(Ig5;u) = {(h), (a) € L(0,lp;u): hgy =aa=hr =az = 0}.

The following proposition will be proved in Section 4. The free energy per step in a single
column is given by the following variational formula.

Proposition 3.5 For all © € V) and u > te,

aAk M’ZA +ag [k aB’li +/3;a +a ar
(O, u; a, B) = sup A (hA hA) B[ (hB hB) 2 ] I¢I(h1)’ (3.45)
(h),(a)€L(O;u) u

with

ﬁ@,u = ﬁ(lA,lB; u) lf@ S ?mmM, (3 46)

E@,u = Enint,k,x(lk;u) Zf@ € Vnint,k:,x,My ke {A, B} and x € {17 2} '

The importance of Proposition 3.5 lies in the fact that it expresses the free energy in a

single column in terms of the path entropy in a single column K and the free energy along a
single linear interface ¢z, which were defined in Sections 3.1-3.2 and are well understood.

3.4 Mesoscopic percolation frequencies

In Section 3.4.1, we associate with each path m € W a coarse-grained path that records the
mesoscopic displacement of 7 in each column. In Section 3.4.2, we define a set of proba-
bility laws providing the frequencies with which each type of column can be crossed by the
copolymer. This set will be used in Section 5 to state and prove the column-based variational
formula. Finally, in Section 3.4.3, we introduce a set of probability laws providing the fractions
of horizontal steps that the copolymer can make when travelling inside each solvent with a
given slope or along an AB interface. This latter subset appears in the slope-based variational
formula.
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3.4.1 Coarse-grained paths

For z € Ny x Z and n € N, let ¢, denote the center of the block Ay, (x) defined in (1.3), i.e.,
Con = 2Ly + (3,3)Ln, (3.47)

and abbreviate

(No X Z)p, = {cgn: = € Ng x Z}. (3.48)

Let W be the set of coarse-grained paths on (Ng x Z),, that start at cg, are self-avoiding and
are allowed to jump up, down and to the right between neighboring sites of (Ny x Z),, i.e.,
the increments of II = (ﬁj)jeNo € W are (0,Ly),(0,—Ly) and (L,,0). (These paths are the
coarse-grained counterparts of the paths 7 introduced in (1.1).) For I € NU {o0}, let W, be
the set of [-step coarse-grained paths.

Recall, for m € W, the definitions of N and (vj(7))j<n,—1 given below (1.7). With =
we associate a coarse-grained path e WN that descrlbes how 7T moves with respect to
the blocks. The construction of II is done as follows: Iy = €(0,0) II moves vertically until it
reaches ¢(q ), moves one step to the right to c(y ,,), moves vertically until it reaches ¢y ),
moves one step to the right to c(,,), and so on. The vertical increment of II in the J-th
column is Aﬁj = (vj —vj—1)Ly, (see Figs. 11-13).

Figure 14: Example of a coarse-grained path.

To characterize a path m, we will often use the sequence of vertical increments of its
associated coarse-grained path II, modified in such a way that it does not depend on L,
anymore. To that end, with every m € W,, we associate II = (Hk) P ! such that Iy = 0 and,

. 1 - _
Iy, = ZAHj with AHJ = anva j=0,...,Ny — 1. (349)
Pick M € N and note that m € W, y if and only if |AIl;| < M for all j € {0,..., N — 1}.

3.4.2 Percolation frequencies along coarse-grained paths.

Given M € N, we denote by M;(Vys) the set of probability measures on Vjy;. Pick Q €
{A, BYNoxZ T € 7ZNo such that IIp = 0 and |AIL;| < M for all i > 0 and b = (b;)jen, €
Qo). Set Otraj = (E)jen, with

E] = (AHJJbJJbJ+1)7 J € N07 (350)
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let
X = {z e {1,211 (Q4, I + ), Zi, 2;) € Vur Vi € No}, (3.51)

and for x € Xy set
@j = (Q(], Hj + '), AH]', bj, bj+1,xj)7 7 € Np. (3.52)
With the help of (3.52), we can define the empirical distribution

N-—1
1 _
pN(UILL,)(0) = — > lio,—e), NEN,O€Vy, (3.53)

j=0
Definition 3.6 For Q € {A, BYYo*Z qnd M € N, let

RQM,N = {pN(erL bvx) with b = (bj)jeNo < (Q(OJ})NO?
I = (TI)jen, € {0} x Z": |AIl| < M Vj € N, (3.54)
T = (xj)jENo € {1,2}N0: (Q(], Hj + -),AHj,bj,ij,xj) S VM}

and
RS, = closure( Nnren Unsnr RY N), (3.55)

both of which are subsets of M1 (V).

Proposition 3.7 For every p € (0,1) and M € N there ezists a closed set Ry © M1(Vay)
such that
RSy = Ry for P-a.e. Q. (3.56)

Proof. Note that, for every Q € {A, BYNoXZ the set RQM does not change when finitely
many variables in ) are changed. Therefore RS]&I is measurable with respect to the tail o-
algebra of 2. Since () is an i.i.d. random field, the claim follows from Kolmogorov’s zero-one
law. Because of the constraint on the vertical displacement, R, s does not coincide with

Ml(VM) N

Each probability measure p € Rp s is associated with a strategy of displacement of the
copolymer on the mesoscopic scale. As mentioned above, the growth rate of the square blocks
in (1.5) ensures that no entropy is carried by the mesoscopic displacement, and this justifies
the optimization over R, ps in the column-based variational formula.

3.4.3 Fractions of horizontal steps per slope

In this section, we introduce 7?,1,, M as the counterpart of R, ys for the slope-based variational
formula. To that aim, we define

£ ={(hae;hpe, hz,0)ecv,, € ([0, 13 hye+hpe+hre=1Y6, (3.57)
© — hye Borel Vk € {A, B, T},
hre >0if lpe >0Vk € {4, B},
hie =1 if © € Vyintk,1,M,
hzo + hio =1 if © € Vyintk2,m }-
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With each p € Ry, p and h € € associate G, , € My (R UR4 U {Z}), defined by

Gppaldl) = /V hao 1{% c dz} p(dO), (3.58)
M

G (dl) = /v hae1{i2e € di} p(do),
M

Gp,h,IZ/_ hze p(dO),
)20

where l;, o/hk,e = 0 by convention if hy e = 0 for © € V), and k € {A, B}. The set Ry in
(1.17) is defined as

Ry = Closure {5 € Mi(Ry URL U{T)): 3p € Rpur, h€E: p=Gpnfy  (359)

For p € Ry, let pa, pp and pr denote the restriction of p to Ry, Ry and {Z}, respectively, as
in (1.18). The measures p4(dl), pp(dl) represent the fraction of horizontal steps made by the
copolymer when it moves at slope [ in solvent A, respectively, B. The number pz represents
the fraction of horizontal steps made by the copolymer when it moves along the A B-interface.

3.5 Positivity of the free energy

It is easy to prove that for all p € (0,1), M € N and («, 8) € CONE the two variational formulas
(the slope-based variational formula stated in (1.17) and the column-based variational formula
stated in (5.2) below and proved in Section 5) are strictly positive, i.e.,

f(a, B; M, p) > 0. (3.60)

To prove that the variational formula in (1.17) is strictly positive, we define ppo, €
Ml(R+ U R+ U {I}) as

Pror = P*64,0(dl) + (1 — p)?0p,0(dl) + 2p(1 — p)dz. (3.61)

When moving along the z-axis, the pairs of blocks appearing above and below the x-axis have
density p? for type AA, density (1 — p)? for type BB, and density 2p(1 — p) for types AB and
BA. Consequently, pnor belongs to 7_€p and (1.17) implies that, for any choice of v4,vp > 1,
the variational formula in (1.17) is at least

[p* +2p(1 = p)] va £(va,0) + (1 — p)*vp [F(v,0) + 552
[p* +2p(1 = p)lva + (1 —p)*vs '

Thus, it suffices to pick vp = 1, to recall that lim, o uk(u,0) = co (Lemma B.1(iv)), and to
choose v4 large enough so that (3.62) becomes strictly positive.

(3.62)

To prove that the variational formula in (5.2) is strictly positive, we can argue similarly,
taking both sequences (II;);en, and (b;);en, constant and equal to 0.

4 Proof of Propositions 3.4-3.5
In this section we prove Propositions 3.4 and 3.5, which were stated in Sections 3.3.1 and

3.3.2 and contain the precise definition of the key ingredients of the variational formula in
Theorem 5.1. In Section 5 we will use these propositions to prove Theorem 5.1.
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In Section 4.1 we associate with each trajectory m in a column a sequence recording the
indices of the AB-interfaces successively visited by w. The latter allows us to state a key
proposition, Proposition 4.1 below, from which Propositions 3.4 and 3.5 are straightforward
consequences. In Section 4.2 we give an outline of the proof of Proposition 4.1, in Sections 4.3—
4.5 we provide the details.

4.1 Column crossing characteristic
4.1.1 The order of the visits to the interfaces

Pick (M, m) € EIGH. To prove Propositions 3.4 and 3.5, instead of considering (0,u) € V™,
,m

we will restrict to (©,u) € V;"},. Our proof can be easily extended to (©,u) € V:™, .

Pick (©,u) € V-*’t?}w, recall (3.12) and set Jo ., = {N’é,u, . ,/\/g,u}, with

m
Ngu =max{i>1:n; <u} and /\/gu =0 if ng>uwu (4.1)
Ng, =min{i <0: [n;| <u} and N5, =1 if |ng| > u.

Next pick L € N so that (©,u) € Vi | s and recall that for j € Je, the j-th interface of the
©-column is Z; = {0,..., L} x {njL}. Note also that 7 € We , 1 makes uL steps inside the

column and therefore can not reach the AB-interfaces labelled outside {Né) w 7/\/g wt-

First, we associate with each trajectory m € We ,, 1, the sequence J(m) that records the
indices of the interfaces that are successively visited by 7. Next, we pick @ € Weg 1, and
define 7, J; as

T1 :inf{iEN: dj Ej@,ui T EZj}, Ty EIJl, (4.2)

so that J; = 0 (respectively, J; = 1) if the first interface reached by 7 is Zy (respectively, 7).
For : € N\ {1}, we define 7;, J; as

7; = inf {t>7‘i_1: dj € j@,u\{Ji_l},ﬂ'i EIj}, Tr,; EIJZ., (43)

so that the increments of J(7) are restricted to —1 or 1. The length of J(7) is denoted by
m(m) and corresponds to the number of jumps made by 7 between neighboring interfaces

before time ulL, i.e., J(7) = (Ji):-i({r) with
m(m) = max{i € N: 7; <wuL}. (4.4)
Note that (©,u) € V;:IM necessarily implies ko < m(m) <u < m. Set
Sr={i=0)iz1 €Z%: j1€{0,1}, jin —ji e {~1,1}VI<i<r—1}, reN, (45)
and, for © € V, r € {1,...,m} and j € S,, define

Ilh = 1g5,=13(n1 — bo) + 15,03 (bo — o),
li =|nj, —nj,_,| forie{2,...,r},
b1 = 1, —ko+13 (Mhgr1 — AL = b1) + 15 oy (AL + b1 — ngg ), (4.6)
so that (l;)ie(1,..r+1} depends on © and j. Set
Aoj={ie{l,...,r+1}: AbetweenZ;, , andZ;}, (4.7)
Boj={ie{l,...,r+1}: B betweenZ;, , and Z;},
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and set lg j = (ZA@J', l37@7j) with
l0,05 = Dicao,lis 1805 = Diepe ;li- (4.8)

For L € N and (©,u) € V"] ,,, we denote by Sg .1, the set {J(7), 7 € Wo,r}. It is not
difficult to see that a sequeil(;e Jj € S, belongs to Sg .1 if and only if it satisfies the two
following conditions. First, j, € {ke, ke + 1}, since j, is the index of the interface last visited
before the ©-column is exited. Second, v > 14140 + IBe,; because the number of steps
taken by a trajectory m € We 1, satisfying J(m) = j must be large enough to ensures that all
interfaces Z;,, s € {1,...,r}, can be visited by 7 before time uL. Consequently, Se ., 1 does
not depend on L and can be written as Sg , = UL ;56 4,r, Where

Sour = {j €S8 :jrelko,ko+1u>1+ lao,j+ lB,@J'}. (4.9)

Thus, we partition We ,, 1, according to the value taken by J(7), i.e.,

WG,u,L:U U We u,L,j (4.10)

r=1 jeSe u,r

where We ,,,1.,; contains those trajectories 7 € We 4 1, for which J(7) = j.
Next, for j € Sg 4, we define (recall (3.30))

T/}f(&%]) = uiLlog Zf(@,u,]), ¢L(@auaj) = wa(@,u,])], (411)

with o
Z8©u )= > eMfuinl® (4.12)

TEWe,u,L,j

For each L € N satisfying (©,u) € Vi*n’tfnLM and each j € Sg, the quantity [4 ¢ ;L (respec-
tively, Ip,e,;L) corresponds to the minimal vertical distance a trajectory m € We 4.1 ; has to
cross in solvent A (respectively, B).

4.1.2 Key proposition

For simplicity we give the proof for the case (©,u) € V;’tan. The extension to (©,u) € V;i’r:?, M
is straightforward.
Recalling (3.45) and (4.8), we define the free energy associated with O, u, j as
w(e)au:]) = wint(uv l@,j) (413)

wa®(a,500) +up [R(GE, 500) + %5°] + ur o)

= sup
(h),(w)€L(lo,j;w)

Proposition 4.1 below states that lim,_,o0 ¥1,(0, u, j) = (0, u, j) uniformly in (0, u) € V",
and j € Sg 4.

Proposition 4.1 For every M, m € N such that m > M + 2 and every € > 0 there exists an
L. € N such that

[9L(8,u,5) —(0,u,j)| <e V(O,u) €Vl 1y € Sow, L> Le. (4.14)

1mn
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Proof of Propositions 3.4 and 3.5 subject to Proposition 4.1. Pick ¢ > 0, L € N and
(©,u) € V2" ;- Recall (3.36) and note that [4(©)L and I5(O)L are the minimal vertical
distances the ‘érajectories of We 1, have to cross in blocks of type A, respectively, B. For
simplicity, in what follows the ©-dependence of [4 and [ will be suppressed. In other words,
l4 and Ip are the two coordinates of lg ¢ (recall (4.8)) with f = (1,2,...,|ke|) when AIl >0
and f = (0,—-1,...,—|ke|+ 1) when AIIl < 0, so (3.45) and (4.13) imply

Yint (u, L4, lp) = V(O,u, f). (4.15)

Hence Propositions 3.4 and 3.5 will be proven once we show that limz,_, ¥7.(0,u) = (0, u, f)
uniformly in (O, u) € V;’JBM. Moreover, a look at (4.13), (4.15) and (3.45) allows us to assert
that for every j € Sg, we have ¥(0,u,j) < ¥(0,u, f). The latter is a consequence of the
fact that [ — RK(u,l) decreases on [0,u — 1] (see Lemma B.1(ii) in Appendix A) and that

lA = ZA7@7f = min{lA,gvj: j S SQU}?
Ilp=Ipejs= min{lB,@,j: j € S@,u}' (4.16)

By applying Proposition 4.1 we have, for L > L.,

¢L(@’U7j) S T]Z)(@,’UJ, f) + € v(®7u) € V'*71:/LL7M5 V] € S@,U)

m

V(O,u, f) > V(O u, f) = V(O,u) € Vi 4. (4.17)
The second inequality in (4.17) allows us to write, for L > L.,
P(O,u, f) —e < Yr(0,u, f) < (0, u) V(0,u) € Vﬁﬂ,M- (4.18)
To obtain the upper bound we introduce
Ape = {w: 050, u,5) — (O, u.f)| <& V(O,u) € Vs Vi € s@,u}, (4.19)
so that

Yr(0,u) <El[lag vE(0,u)] +E[la, . ¢£(6,u)] (4.20)
< Cu(@) P(AG ) + B[ 14, 10g T e, , e 0n @),

where we use (3.34) to bound the first term in the right-hand side, and the definition of Ay, .
to bound the second term. Next, with the help of the first inequality in (4.17) we can rewrite
(4.20) for L > L. and (©,u) € V"7 4, in the form

¥1(0,u) < Cut(@) P(AL ) + op log | ULy Sp| +9(0, u, f) + 2¢. (4.21)

At this stage we want to prove that limy_,. P(A$ _) = 0. To that end, we use the concen-
tration of measure property in (D.3) in Appendix7D with [ = uL, I' = We u1,j, 1 = €ul,
& = —al{w; = A} + pl{w; = B} for all i € N and T'(z,y) = 1{X€£y) = B}. We then obtain
that there exist C1,Cy > 0 such that, for all L € N, (©,u) € V;;’JZM and j € Se.u,

P(|0%(0,u, j) — $r(0,u, )| > ¢) < Cp e~ 2" uL, (4.22)
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The latter inequality, combined with the fact that [V}"7 ;| grows polynomialy in L, allows
us to assert that limy,_, P(Aiyg) = 0. Next, we note that | U, S,| < oo, so that for L. large
enough we obtain from (4.21) that, for L > L.,

Y (©,u) <Y(O,u, f)+ 3¢ V(O,u) € V;’J’LM. (4.23)

Now (4.18) and (4.23) are sufficient to complete the proof of Propositions 3.4-3.5 in the case
(©,u) € Vi . As mentioned earlier, the proof for the case (©,u) € V2", - is entirely similar.

1m
U

4.2 Structure of the proof of Proposition 4.1

Intermediate column free energies. Let
Gﬂ = {(Lu @,U,j): (@,U) € V;;{t?},,Ma j € S@,u}) (424)

and define the following order relation.

Definition 4.2 For g,g: G}} — R, write g < g when for every € > 0 there exists an L. € N
such that
9(L,0,u,j) <G(L,O,uj) +e  V(L,O,uj)€Gi: L> Le. (4.25)

Recall (4.11) and (4.13), set
wl(Lagvuuj):wL(@)uvj)a ¢4(L7@’u7j) :w(gvu’j)’ (426)

and note that the proof of Proposition 4.1 will be complete once we show that 1, < ¢4 and
g < 1. In what follows, we will focus on ¥; < 4. Each step of the proof can be adapted
to obtain 14 < 11 without additional difficulty.

In the proof we need to define two intermediate free energies 19 and 13, in addition to
and 14 above. Our proof is divided into 3 steps, organized in Sections 4.3—4.5, and consists
of showing that i1 < 1y < 13 < 4.

Additional notation. Before stating Step 1, we need some further notation. First, we
partition We ,, 1 j according to the total number of steps and the number of horizontal steps
made by a trajectory along and in between AB-interfaces. To that end, we assume that
Jj € Seur with r € {1,...,m}, we recall (4.6) and we let

Do,r; = {(di,t;)i1]: dieNandt; € d; + ;L +2Ng V1 <i <r+1},
DF = {(dF,#5)1_,: df e Nand #F € df +2Ng V1 <i <r}, (4.27)
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where d;,t; denote the number of horizontal steps and the total number of steps made by

the trajectory between the (i — 1)-th and i-th interfaces, and d?, ¢ denote the number of

177
horizontal steps and the total number of steps made by the trajectory along the i-th interface.

For (d,t) € Do 1 j, (d*,t*) € DX and 1 <i < r, we set Ty = 0 and
i i1
Vi=> ti+> 5, di=1...,m
j=1 j=1
i i
Ti=>t+Y tr, i=1...r (4.28)
j=1 j=1
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so that V;, respectively, T; indicates the number of steps made by the trajectory when reaching,
respectively, leaving the i-th interface.

Next, we let #: RY — RN be the left-shift acting on infinite sequences of real numbers
and, for v € N and w € {4, B}, we put

u

HY(B) = [B1l{w—py — @ l{u—ay]- (4.29)
i=1
Finally, we recall that
(L, 0,u,§) = & Ellog Z¢ (L, 0, u, )], (4.30)
where the partition function defined in (3.31) has been renamed Z; and can be written in the

form

Z‘f}(L,@,u,j) = Z Z Al Bl Cl, (431)
(dt)€De,1,; (d*tX)eDE

where (recall (4.7) and (3.5))

H et iR, di L H et Rd,; j £ ) - 1(w)( )’ (4.32)

i€Ag j i€Be J

I
r I G l(w)
Bi=][]e P (diz),

i=1

Cr= {Z”ld +7, & L} {srt ey, F=uLl}

It is important to note that a simplification has been made in the term A; in (4.32). Indeed,
this term is not &g, (-, ) defined in (3.2), since the latter does not take into account the vertical
restrictions on the path when it moves from one interface to the next. However, the fact that
two neighboring AB-interfaces are necessarily separated by a distance at least L allows us
to apply Lemma A.5 in Appendix A.2, which ensures that these vertical restrictions can be
removed at the cost of a negligible error.

To show that ¥ < 1y < 13 < 14, we fix (M, m) € EIGH and £ > 0, and we show that
there exists an L. € Ns such that ¢ (L, 0, u,j) < ¥p1(L,0,u,j)+¢ for all (L,0,u,j) € G}
and L > L.. The latter will complete the proof of Proposition 4.1.

4.3 Step 1
In this step, we remove the w-dependence from Z{(L, 0, u,j). To that aim, we put
1
¢2(La@>u7j) = TIOgZ2(L7@7u>j) (433)
U
with

Zy(L,0,u,5) = Y. > Ay By Oy, (4.34)

(dt)€De,r,; (dtT)eDE
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where

PRl (4.35)

Ay = H €ti%di(%’ ) H etikdi(di’ if

i€Ag,; i€Bo,;
r tr
Foz (o)
=1
Cy = (.

Next, for n € N we define

Acp = {30 <t,s<n:t>en, |H “(B)- 5% > at},

B, = {30 <t ds<n:ted+2No, t>en, |¢) (L) - pa(h)] > } (4.36)

By applying Cramér’s theorem for i.i.d. random variables (see e.g. den Hollander [3], Chapter
1), we obtain that there exist C}(e), Ca(e) > 0 such that

95(w

P(|H, "(B) — 55%| > et) < Ci(e) e ¢ seN. (4.37)

By using the concentration of measure property in (D.3) in Appendix D with [ = ¢, T = W1(%),
T(x,y) = 1{(z,y) <0}, n =¢t and § = —al{w; = A} + f1{w; = B} for all i € N, we find
that there exist Cy,C5 > 0 such that
P(|¢) (L) — ga(t)| > ¢]) < Cre~@=  td,seN, ted+ 2N, (4.38)
With the help of (3.34) and (4.30) we may write, for (L,0,u,j) € G}7,
¥1(L, 0,4, §) < Cup(@) P(Acpmr, U Beymr) + 2 E[l{Ag,mLmB;,mL} log Z{ (L, ©,u,5)]. (4.39)

With the help of (4.37) and (4.38), we get that P(A. ,,,) — 0 and P(B. 1) — 0 as L — oc.
Moreover, from ((4.31)-(4.36)) it follows that, for (L,©,u,j) € G} and w € AZ | 1 N BE 7,

Z¥(L,©,u,j) < Zo(L,0,u,j) e L. (4.40)

The latter completes the proof of 11 < 1.

4.4 Step 2

In this step, we concatenate the pieces of trajectories that travel in A-blocks, respectively,
B-blocks, respectively, along the AB-interfaces and replace the finite-size entropies and free
energies by their infinite-size counterparts. Recall the definition of [4¢ ; and Ipe ; in (4.8)
and define, for (L, 0,u,j) € G}}, the sets

Jo,L; = {(OLA, ha,ap,hp) € N*: ag €lao L +ha+2Ng, ap €lpeo;L+hp+ 2N0},
(4.41)

JT = {(aI,hI) eN?: of e hI+2N0},
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and put ¢¥3(L,0,u,j) = ﬁ log Z3(L, O, u, j) with

Zg (L, @, u, j) = Z Z Ag Bg C3, (4.42)

(a,h)ede,L,j (aT,hT)eTT

where

as i lae,L ap il 9B lp,o, ;L B—a
As=¢e ha’ ha e hg’ hp e 2 4B
z
T (2
B3 = eCL ¢(h )

Cs = 1{aA+aB+aI:uL} 1{hA+hB+hI:L}' (443)

)

In order to establish a link between 12 and 13 we define, for (a, h) € Jo,r; and (aT,nt) € J%,

Plap) = {(t.d) € Dot Yicae, (tisdi) = (aa,ha), Yiep, , (tidi) = (ap, hp) },
Quz pzy = {(t*,d") € DF: Y (tF,d¥) = (aF, hF)}. (4.44)

1707
Then we can rewrite Zy as

Zy(L,0,u,5) = > oo > > AB (4.45)

(aﬂh)e‘j@,L,]' (azth)EJZ (tvd)ep(a,h) (tzvdI)EQOlI’hI)
To prove that 19 < 13, we need the following lemma.
Lemma 4.3 For every n > 0 there exists an L, € N such that, for every (L,0,u,j) € Gm

with L > L, and every (d,t) € Do . ; and (d%, tI) € DI satisfying S+ d; + Zz—l dt =
and Z:Jrll tz + 3t =uL,

ti (4, %) —nul <t Rg, (5, W) < iR (g

7 .
tho(% > L < g (Gr) St o(F) +mul i=1,...,r

B fqul i=1,. 041, (4.46)

Proof. By using Lemmas A.1 and C.2 in Appendix A, we have that there exists a in eN
such that, for L > L, (u,l) € Hy and p € 1+ %

Rp(u,l) — R(w, D <n,  |oL (k) — ¢ (w)| <. (4.47)

forLZl, (u,l) GHL v&ntth’u77 and p € 1+ 2 with p > vy,
0<Fip(ul)<m,  0<r(p) <n. (4.48)

Note that the two inequalities in (4.48) remain valid when L = oco. Next, we set r, =
1n/(2v,Cy¢) and L, = L,/r,, and we consider L > L,. Because of the left-hand side of (4.47),
the two inequalities in the first line of (4.46) hold when d; > r,L > f)n. We deal with the
case d; < r,L by considering first the case t; < nul/2Cy¢, which is easy because g, and &
are uniformly bounded by Cy (see (3.34)). The case t; > nulL/2Cy¢ gives t;/d; > uvy > vy,
which by the left-hand side of (4.48) completes the proof of the first line in (4.46). The same
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observations applied to t7, d? combined with the right-hand side of (4.47) and (4.48) provide

107
the two inequalities in the second line in (4.46). O

To prove that 1y < 13, we apply Lemma 4.3 with n = £/(2m + 1) and we use (4.35) to
obtain, for L > L. /2p41), (d,t) € Do 1 j and (d*,t1) € DI,

_(ti LL -
Ay < H etiﬁ(df,&*i)-&-zm_’_l H etiﬁ(jz77i)+ti7+2m+l’ (4.49)

i€Ae i€Bo,;

r t
By<[[e' \/ 2t
=1

Next, we pick (a,h) € Jo,r,;, (af,ht) € T*, (t,d) € Py and (t£,d%) € Q(az 1), and we
use the concavity of (a,b) + ai(a,b) and p > ¢* (i) (see Lemma B.1 in Appendix A and
Lemma C.1 in Appendix C) to rewrite (4.49) as

l iL l iL —
~(aa 'Ae,j _(aB !'B,©,j B—a e(r+1)ul e(r+1)ulL
AQS@QAH(}LA’ hA )-‘r(lBH(hB; hB )+ 2 ap+ om—+1 :A3€ 2m+1 ’ (450)
T
7 .7(a" erul erul
By <ev ? (7)) + o — Bye2m+l,

Moreover, r, which is the number of AB interfaces crossed by the trajectories in We 4 j 1, is
at most m (see (4.10)), so that (4.50) allows us to rewrite (4.45) as

Z5(L,0,u,j) < eul Z Z Cs |P(a,h)| |Q(az7hz)‘ As Bs. (4.51)
(a,h)eTe,L,; (aZ,hT)eTt
Finally, it turns out that [P, )| < (uL)* and [Q,z pz)| < (uL)®". Therefore, since r < m,
(4.42) and (4.51) allow us to write, for (L, 0, u,j) € Gy} and L > L, j3;41,
Zo(L, 0, u,5) < (mL)""" Z3(L, ©, u, j)- (4.52)
The latter is sufficient to conclude that ¥y < 3.

4.5 Step 3

For every (L,©,u,j) € G} we have, by the definition of £(l4e,lB 6 ;u) in (3.42), that
(a,h) € Jo,r1,; and (a®,h?) € J7 satistying as + ap + a = uL and hy + hp + h? = L also
satisfy

T T

(%52 ), (3. . 5)) € Lllao s m.:w). (4.53)

Hence, (4.53) and the definition of ¥z in (3.45) ensure that, for this choice of (a,h) and
(at,h?),

A3Bs < etlvz(wlae.lse.) (4.54)
Because of C3, the summation in (4.42) is restricted to those (a,h) € Jo1; and (a*,h) € J*

for which a4, ap,a® < uL and ha, hg, h* < L. Hence, the summation is restricted to a set of
cardinality at most (uL)3L3. Consequently, for all (L, ©,u,j) € G} we have

Z3(L7 o, u;]) = Z Z A1 B, Cy < (mL)3L3 CULwI(u’ lA’eﬁ"lB’@’j). (4.55)
(a,h)eTe,L,j (aT,hT)eTT

The latter implies that 13 < 14 since ¢4 = z(u, lae j, IBe ) by definition (recall (4.13)
and (4.26)).
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5 Column-based variational formula

To derive the slope-based variational formula that is the cornerstone of our analysis, we state
and prove in this section an auxiliary variational formula for the quenched free energy per step
that involves the fraction of the time spent by the copolymer in each type of block columns and
the free energy per step of the copolymer in a given block column. This auxiliary variational
formula will be used in Section 6 in combination with Proposition 3.5 to complete the proof
of the slope-based variational formula.

With each © € V), we associate a quantity ug € [te,c0) indicating how many steps on
scale Ly, the copolymer makes in columns of type ©, where tg is the minimal number of steps
required to cross a column of type ©. These numbers are gathered into the set

By, = {(“@)eeVM € RVM . ug >t VO € Vi, © — up continuous}, (5.1)

where the continuity in © is with respect to the distance djs defined in (C.7) in Appendix C.2.
We recall Proposition 3.5, which identifies the free energy per step (0, ug; «, ) associated
with the copolymer when crossing a column of type © in ug steps, and we recall that the set
Rp, v introduced in Section 3.4.2 gathers the frequencies with which different types of columns
can be visited by the copolymer.

Proposition 5.1 (column-based variational formula) For every («,3) € CONE, M € N and
p € (0,1) the free energy in (1.12) exists for P-a.e. (w,) and in L' (P), and is given by

flo, B; M,p) = sup sup , (5.2)
pERp,M (ue)eevM EBV]\/I D(p? u)
where
N(p,’LL) :/ u@w(®7u@;avﬁ)p(d@)’
VM
D(p,u) —/ ue p(dO), (5.3)
Vi

with the convention that N(p,u)/D(p,u) = —oco when D(p,u) = oo.

The present section is technically involved because it goes through a sequence of approxi-
mation steps in which the self-averaging of the free energy with respect to w and €2 in the limit
as n — oo is proven, and the various ingredients of the variational formula in Theorem 5.1
that were constructed in Section 3 are put together.

In Section 5.1 we introduce additional notation and state Propositions 5.2, 5.3 and 5.14
from which Theorem 5.1 is a straightforward consequence. Proposition 5.2, which deals with
(M, m) € EIGH, is proven in Section 5.2 and the details of the proof are worked out in
Sections 5.2.1-5.2.5, organized into 5 Steps that link intermediate free energies. We pass to
the limit m — oo with Propositions 5.3 and 5.4 which are proven in Section 5.3 and 5.4,
respectively.
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5.1 Proof of Theorem 5.1
5.1.1 Additional notation

Pick (M, m) € EIGH and recall that 2 and w are independent, ie., P = P, x Pg. For
Qe {A BWoxZ e {A BN, n €N and (a, 3) € CONE, define

w,2
o (M,mi o, B) = Llog 228 (M,ym) with 27 (Mym)= Y e (5.4)
WEWJ,LM,

where WTTM contains those paths in W, »s that, in each column, make at most mL,, steps.
We also restrict the set Ry s in (3.6) to those limiting empirical measures whose support is
included in V]\m/[, i.e., those measures charging the types of column that can be crossed in less
than mL,, steps only. To that aim we recall (3.54) and define, for Q € {A, B}o*%Z and N € N,

R?\j% = {pN(Q7H7b7 .Z') with b= (bj)jGNo € (Q(O,l})l\h?
IT = (ITj) jen, € {0} x Z": |AII;| < M Vj € Ny, (5.5)
T = (wj)jENo € {172}N0: (Q(]7 H] + )7Aﬂjabjabj+lax]) € V]T\)}}

which is a subset of RQM n and allows us to define

Rg\l/[m = closure( Nn7en Un> N/ Rf]\Z”}V)) (5.6)

which, for P-a.e. £ is equal to R\, € Rp -
At this stage, we further define,

FMomia B) = sup sup V(p,u), (5.7)
peR,TM (u@)eeVﬁ EBVJQYIL

here ; ¥(O B) p(d©)
v Ue , Ue; &, P
Vv Vm '

where (recall (3.25))
BV;J; = {(u@)967$ € RV O —ug € CO(Vﬂ,R), to <upg <mVO e Vﬁ}, (5.9)

and where V; is endowed with the distance dy; defined in (C.7) in Appendix C.2.

Let WZ% C Wo'n be the subset consisting of those paths whose endpoint lies at the
boundary between two columns of blocks, i.e., satisfies 7,1 € NL,,. Recall (5.4), and define
Z;‘ZT?(M) and fi’:’Q(M,m;a,ﬂ) as the counterparts of Z:fn(M, m) and ff;lQ(M,m;a,ﬁ)
when WTTM is replaced by WZ?\} Then there exists a constant ¢ > 0, depending on « and
only, such that

Q — Q Q
Zf;z,Ln (M’ m)e el < Zi7ro;,7Ln (M7 m) < chujn,Ln (Ma m)v

(5.10)
neN,we {A BN Qe {4, B}oxZ

The left-hand side of the latter inequality is obtained by changing the last L,, steps of each
trajectory in W7, to make sure that the endpoint falls in L,N. The energetic and entropic
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cost of this change are obviously O(L,). By assumption, lim,_,~ L,/n = 0, which together
with (5.10) implies that the limits of ff;ZQ(M,m;a,ﬁ) and fi’;:’Q(M,m; a,3) as n — oo are
the same. In the sequel we will therefore restrict the summation in the partition function to
WZT/[ and drop the * from the notations.

Finally, let
FR (M, ms o, B) = By [fi (M, m; o, B)],

Jra(M,m; o, ) = Eua[ £ (M, m; o, 8)],
and recall (1.11) to set f2(M;a, B) = By [f<"H(M; o, B)).

(5.11)

5.1.2 Key Propositions

Theorem 5.1 is a consequence of Propositions 5.2, 5.3 and 5.4 stated below and proven in
Sections 5.2.1-5.2.5, Sections 5.3.1-5.3.3 and Section 5.4, respectively.

Proposition 5.2 For all (M, m) € EICH,

7}1_)1110 flffn(M,m; a,p) = f(M,m;a,3) forP—a.e. Q. (5.12)

Proposition 5.3 For all M € N,

lim ! (M;a,8)= sup f(M,m;a,B) forP—a.e.Q. (5.13)
n—oo ’ ’IT'LZM+2

Proposition 5.4 For all M € N,

sup  f(M,m;a,B) = sup sup V(p,u), (5.14)
m>M+2 PERp, M (ue)gevM GBVM

where, in the righthand side of (5.14), we recognize the variational formula of Theorem 5.1
and with By; =~ defined in (3.15).

Proof of Theorem 5.1 subject to Propositions 5.2, 5.3 and 5.4. The proof of Theo-
rem 5.1 will be complete once we show that for all (M, m) € EIGH

lim |f<SY M, m; o, 8) — fSHM,m;a,8)| =0 for P—a.e. (w,Q). (5.15)

n—o0

To that aim, we note that for all n € N the 2-dependence of fﬁ’Q(M, m; «, () is restricted to
{Qx: a:GGn} with G,, = {0,...,%} X {—Lﬂn,...,L—”n}. Thus, for n € N and ¢ > 0 we set

Acn = {12 (M30,8) = [2 (M50, 5)| > €)}, (5.16)
and by independence of w and 2 we can write

Pw,Q(As,n): ZTG{A,B}GH Pw,Q(AE,n N {QGn = T})
— Sreqamon Boll T (M;0,8) — FT(M; 0,8)] > €) Pa({Qa, = Y}).  (5.17)

At this stage, for each n € N we can apply the concentration inequality (D.3) in Appendix D
with I' = WﬁM, l=mn,n=en,

&= —a 1{wi = A} + 51{&)2‘ = B}, 1 €N, (5.18)
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and with T'(z,y) indicating in which block step (x,y) lies in. Therefore, there exist C1,Cy > 0
such that for all n € N and all T € {4, B}%" we have

Po(|f9 Y (M;a, B) — [E(M;a,B)| > &) < Cre™ ==, (5.19)
which, together with (5.17) yields P, o(Ac ) < Cre=C2=*n for all n € N. By using the Borel-
Cantelli Lemma, we obtain (5.15). O
5.2 Proof of Proposition 5.2

Pick (M, m) € EIGH and («a, ) € CONE. In Steps 1-2 in Sections 5.2.1-5.2.2 we introduce an
intermediate free energy f:?n(M ,m;«, ) and show that

lim [£1%, (M, m; 0, B) = f5ly (M,m;a, )| =0 VQ € {A, BY0E, (5.20)
n—o0 ’ ’
Next, in Steps 3—4 in Sections 5.2.3-5.2.4 we show that

lim sup fg?n(M,m;a,B) = f(M,m;a,p) for P — a.e. Q, (5.21)

n—oo

while in Step 5 in Section 5.2.5 we prove that

linginf fg?n(M,m; a, ) = limsup fg?n(]\/[7 m;a, f3) for P — a.e. Q. (5.22)

n—oo

Combing (5.20-5.22) we get

lirginf f{?n(M,m; a, ) = lim sup f{?n(M, m;a, ) = f(M,m;a, ) for P —a.e. Q, (5.23)

n—0o0

which completes the proof of Proposition 5.2.

In the proof we need the following order relation.

Definition 5.5 For g,g: N3 x CONE +— R, write g < § if for all (M, m) € EIGH, (a,f3) €
CONE and € > 0 there exists an n. € N such that

gn, M, m;a, B) < g(n, M,m;a,3) +¢ Vn > ne. (5.24)

The proof of (5.20) will be complete once we show that f{* < f:? and f:? < 3 for all
Q € {A, BNoxZ We will focus on f{* < f§, since the proof of the latter can be easily

adapted to obtain f?? < flg. To prove flg =< f:? we introduce another intermediate free energy
/5t and we show that f! < f§! and f5! < f5%.

For L € N, let
DY = {E= (AL by, by) € {-M,...,M} x {$,2,...,1}?}. (5.25)
For L, N € N, let

5%N = {@traj = (Zi)iefo,...,N—1} € (DN by = 1, bo; = b1 V1 <i <N — 1}7 (5.26)
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and with each Oy, € 5%4]\, associate the sequence (Hi)f\io defined by Iy = 0 and II; =
Zj;%) All; for 1 <4 < N. Next, for Q € {4, B}No*Z and O, € ZS%N, set

Xg;“jg = {z e {1,2}0-N"1 QT + ), Z5, 1) €V VO < i < N — 1}, (5.27)

and, for x € X Q, set
0, = (Q(Z,HZ + ‘),Ei,xi) for i€ {0, ., N — 1} (5.28)
and

N-1
M,m,L .
Z/[et;::xm = {u = (ui)ie{oj_”]v_l} S [1,m]N: U; € t@i + % Y0 <1< N — 1, Z U; = %}
=0
(5

29)

Note that Z/lg[mL p— L]

For = € W;",, we let N be the number of columns crossed by m after n steps. We
denote by (ug (7r) JUN, —1( )) the time spent by 7 in each column divided by L,,, and we
set ug(m) = 0 and u]( WEDYN Ouk( m) for 1 < j < N,. With these notations, the partition
function in (5.4) can be rewritten as

is empty when N ¢ [

n/Ln
w,2
Zoh (Mym) = Y > Z > A (5.30)
N=n/mLy, etraJGDL N :L‘EX Q ueugi::]];"n
with (recall (3.31))
N-1
A= T 2077 Q0,1 + ), S i) (5.31)
=0

5.2.1 Step 1

In this step we average over the disorder w in each column. To that end, we set

fan(M,m;a, B) = Llog Zsh, 1, (M, m) (5.32)
with
n/Ln
Q
Znp,(Mym) = > DD DD D (5.33)
N=n/mln €D, n 265 o veUS I,
where
N1 0% (w) [y - N1
Ay = H eEw[logZLn (Q(Z7Hi+'),:i,$i,ui)} _ H 6U¢Ln1/)Ln(Q(i,HhL-),Ei,mi,ui). (5‘34)
1=0 i=0

Note that the w-dependence has been removed from Zé?m L, (M,m).

To prove that flQ =< fQQ, we need to show that for all € > 0 there exists an n. € N such
that, for n > n. and all €,

E.[log 27 (M,m)] <log Z§., 1, (M,m)+ en. (5.35)
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. . Q
To this end, we rewrite Z,"} (M, m) as

n/Ln

ZeRUADED SENED DU DENNED DRI T N CE D

N=n/mLy, DM M,m M,m,Ln
/ Ouai €D}, v TEXGT o u€UG T

where we note that

A N—-1 GﬂiLn
A1 H etiln |:'¢)Ln (w)(Q(i,Hri-'),Ei,xi,w)—T/’Ln(Q(i,Hi-f-')Ei@i,ui)] ) (5.37)
45

In order to average over w, we apply a concentration of measure inequality. Set

n/Ln
Kn = U U U U {IlogAl —log Ag| > en}, (5.38)
N=n/mln @uu DY, a€X5™ o ueUs ™,

and note that w € Kf implies that Zﬁan(M ,m) < 65"22{3”7 1, (M,m). Consequently, we can

write
E,[log 2 (M,m)] = Ey[log 2 (M,m) 1qc,y] + Eu[log /%% (M,m)13cs)]
< Eu[log 25 (M,m)lic,y] +log Zs}, , (M,m) +en.  (5.39)
We can now use the uniform bound in (3.34) to control the first term in the right-hand side
of (5.39), to obtain
E.[log 27, (M,m)] <log Zs}, 1 (M,m) + en + Cur(er) n Py, (Kn). (5.40)

Therefore the proof of this step will be complete once we show that P, (/C,,) vanishes as n — oo.

Lemma 5.6 There exist C1,C2 > 0 such that, for alle >0, n € N, N ¢ {mLLn""’L%};
Q€ {A, B}"%, O € 5%“]\,, T € Xéfr:?Q and u € UY"™En

etrajaxvn’
P, (| log Ay — log Ag| > en) < 016_0282". (5.41)

Proof. Pick O € 2511_1/1 Ny T E Xé\/[’",l and u € U@M’WL", and consider the subset I' of
n, traj, traj L,

s consisting of those paths of length n that first cross the (2(0,-), 2o, o) column such
that mo = (0, 1) and 7y, 1, = (1,11 4+ b1,0) Ly, then cross the (€(1,-), =1, 21) column such that
Ty Lp+1 = (1+1/Ly, Iy +b10) Ly, and 7y, 1, = (2,112 + b1,1) Ly, and so on. We can apply the
concentration of measure inequality stated in (D.3) to the set I' defined above, with | = n,

n=en,

& =—al{w;, = A} + f1{w; = B}, 1 €N, (5.42)
and with 7'(z,y) indicating in which block step (z,y) lies in. After noting that E,(log A1) =
log Ao, we obtain that there exist Cy,Cs > 0 such that, for alln € N, N € {mLLm ey L—’";},

~ M, M,m,Ly,
Q¢ {A, BYNoxZ, Otraj € D%“N, T € thr:’g and u € L{@trg%n,
P(|log A1 —log A3| > en) < Cy e=C2e’n, (5.43)
[l
It now suffices to remark that
~ M, M,m,L,
[{(N, ©raj, w,u): N € {15} O € D%“N, x € X@tr:';ﬂ,u € u®tr:?,:r,n} (5.44)

grows subexponentially in n to obtain that f{l < f2Q for all Q.
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5.2.2 Step 2

In this step we replace the finite-size free energy ¢, by its limit ¢). To do so we introduce a

third intermediate free energy,

f3l (M, m; 0, B) = B[ log 28, 1 (M, m)],

where
n/Ln
Q —
Z3nr,(M,m) =) > > > A
= ~M M, M,m,L
N TL/an @trajGDLn,N CL’EX@trZE’Q uEZ/l@tr:jL’wZ
with
N-1
As = H Wi Ln(QEITi++), B i ui)
1=0
For all €,
A N-1
22 _ H eUiln [¢Ln(Q(i7Hi+')751'»fivui)—w(ﬂ(iﬂi-f—')ﬁiJmu@')]
Az . ’
=0

(5.45)

(5.46)

(5.47)

(5.48)

and, for all i € {0,..., N — 1}, we have (Q(i,IL; +), Z;, z;,u;) € Vy;", so that Proposition 3.4

can be applied.

5.2.3 Step 3

In this step we want the variational formula (5.7) to appear. Recall (3.53) and define, for

n €N, (M,m) €EIGH, N € {1~ ..., 1=}, Otraj ED%“N andxez‘(g[’m

traij7
and

N
Q 1
pecraj@ (@’ © ) - N Z 1{(@]'_1,@]'):(@:@/)},

Jj=1
and, for u € Ué‘i :f:{,
’ N-1
Q
H (@traj7x7u) - u] 1/}(9]7“])
j=0

In terms of these quantities we can rewrite ngL” (M,m) in (5.46) as

n/Ln
Q ,
Stm= 3 Y Y e
= M M, M,m,L
N=n/mLy @traJEDLn,N xeX@trZ}Q uEZ/{@tr:jL’Iz
For n € N, denote by
Q Q ~M Q M,m Q M,m,Ly,
Nn ) @traj,n € IDLn,NTSB’ Ty € X@Q Q’ Uy € UGQ x$in’

traj,n’ traj,n>n>
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(5.49)

(5.50)

(5.51)

(5.52)

(5.53)



the indices in the summation set of (5.52) that maximize H Q(@traj, x,u). For ease of notation

we put
Q —n\N$—1 Q N2 -1 Q N§2—1
@traJ n = (:?)jzo y Ty = <m?)j:0 y Uy = (u?)j:O ) (5.54)

and

Mm,Ly
cn = {(N, Otraj, 7, u): 75— < N < £ Oraj € DM N,xEX@ o u€ @tr:ﬁm}\ (5.55)

mLn,
Then we can estimate
NS -1

1 Q 1 Lyn n o, n
Elog Z3n.1, (M,m) < Elog Cp + o2 Z% (07, ul). (5.56)
]:

We next note that u — u1)(0,u) is concave for all © € V) (see Lemma C.4). Hence, after
setting

N -1 NQ-1
v =Y Ler—eyuf, dy= ) lien—e}. O €Vy, (5.57)
Jj=0 =0
we can estimate
N2 -1
Z Lign—ey uj ¥(O7, uff) < vg (O, %) for ©@cVy:dd>1. (5.58)
j=0

Next, we recall (5.50) and we set p, = p@Q 25 5O that p,1(0) = d3 /N§! for all © € V-

traj, n’
Since {© € V,;: dg > 1} is a finite subset of V1, we can easily extend © vg/dg from

no—

— — Q_
{© € Vyr: d > 1} to Yy as a continuous function. Moreover, Z;VZ"O ! u} = n/Ly implies

that NS f?;’} vg/dd pn,1(dO) = n/Ly, which, together with (5.56) and (5.58) gives

pmue (0, ue) pn(dO)
+log 23, 1, (M,m) < sup b
™ ueBym Jpm ue pn(dO)

+ o(1), n — 0o, (5.59)

where we use that lim,,_, - % log ¢, = 0. In what follows, we abbreviate the first term in the
right-hand side of the last display by [,,. We want to show that lim sup,,_, . % log ng ,(M,m)

< f(M,m;a,3). To that end, we assume that %log Zg?n’Ln(M, m) converges to some t € R

and we prove that ¢ < f(M,m;a, 3). Since (I,)nen is bounded and Vﬁ is compact, it follows
from the definition of [, that along an appropriate subsequence both [, — I, > t and
Pn — Poo € RZTM as n — oo. Hence, the proof will be complete once we show that

loo < sup V(poo,u), (5.60)
UEBv’m
because the right-hand side in (5.60) is bounded from above by f(M,m;a, ).
Recall (3.18) and, for © € V;; and y € R, define

to if 9 (uth(O,u))(te) <y,
ug "(y) =4 mif 0 (uip(O,u))(m) =y,
z  otherwise, with z such that 9, (u(0,u))(2) >y > 9 (u(0,u))(z2),
(5.61)
where z is unique by strict concavity of u — uy(©,u) (see Lemma C.2).
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Lemma 5.7 (i) For ally € R and (M, m) € EIGH, © ug’m(y) is continuous on (Vyy, dar),
where dyy is defined in (C.7) in Appendiz C.
(i) For all (M, m) € EIGH and © € V,;, y — ué/[’m(y) is continuous on R.

Proof. The proof uses the strict concavity of u — u(0,u) (see Lemma C.2).

(i) The proof is by contradiction. Pick y € R, and pick a sequence (O, )nen in V,; such
that lim,_,e On = Os € V,;. Suppose that ug[nm(y) does not tend to ug ™ (y) as n — oco.

Then, by choosing an appropriate subsequence, we may assume that lim,,_, ug[nm(y) =uj €

[to.,m] with u; < ugoom(y) The case u; > ugoom(y) can be handled similarly.

Pick ug € (ul,ugoom(y)) For n large enough, we have ugnm(y) <wug < ugoom(y) By the

definition of ug[nm(y) in (5.61) and the strict concavity of u — u(©,,,u) we have, for n large
enough,

M,m Mm —u u
O (w (O, 1)) (™ (y)) > O <y)w(@”’]\j§;? gy)) 2O, va) (5.62)
ug,, (Y) —u2

Let n — oo in (5.62) and use the strict concavity once again, to get
. M - M
lim inf 0, (w1 (On, u))(ug, ™ () > 0, (uth(Ooo, v))(ug " (). (5.63)

If ugloom(y) € (te.,,m], then (5.61) implies that the right-hand side of (5.63) is not smaller
than y. Hence (5.63) yields that 9 (u w((%n,u))(ugylm(y)) > y for n large enough, which
implies that ugnm(y) = m by (5.61). However, the latter inequality contradicts the fact
that ué\im(y) < up < ugoom(y) for n large enough. If ug[oom(y) = to.,, then we note that

lim,, o to, = to.,, which again contradicts that tg, < ugylm(y) <ug < ug;om(y) for n large
enough.

(ii) The proof is again by contradiction. Pick © € V,;, and pick an infinite sequence (4, )nen
such that limy, o0 ¥n = Yoo € R and such that ug[m(yn) does not converge to ugl’m (Yso). Then,

by choosing an appropriate subsequence, we may assume that there exists a u; < ugl’m(yoo)
such that lim,, oo ug/[’m(yn) = u1. The case u; > ug’m(yoo) can be treated similarly.

Pick ua,u3 € (u1, ugl’m(yoo)) such that ug < usg. Then, for n large enough, we have
to < ué/[’m(yn) <ug <uz < ug’m(yoo) < m. (5.64)

Combining (5.61) and (5.64) with the strict concavity of u — u(©,u) we get, for n large
enough,

Yn > OF (up(0,u))(ug) > 0, (u(0,u))(u3) > Yoo, (5.65)

which contradicts limy,, o0 ¥n = Yoo- O

We resume the line of proof. Recall that p,1, n € N, charges finitely many © € V]\n}.
Therefore the continuity and the strict concavity of u — u)(0,u) on [te, m)l/]for all © € Vy;
(see Lemma C.4) imply that the supremum in (5.59) is attained at some u, "™ € By;m that
satisfies up"™(0) = uy ™ (1) for © € Vy;. Set ubd™(0) = ug ™ (lo) for © € V}; and note
that (I,)neny may be assumed to be monotone, say, non-decreasing. Then the concavity of
u — wh(©,u) for © € Vy; implies that (uh"™)uen is a non-increasing sequence of functions
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on Vp;. Moreover, V;; is a compact set and, by Lemma 5.7(ii), limp_,o ui"™(©) = u%’”(@)

for © € V;;. Therefore Dini’s theorem implies that lim, . un """ = u™ uniformly on Vi M-
We estimate
In — / ull™(©) ¥(8, u%’m(e))poo(d@)‘
Vi
< / [ (©) (0, ub(©)) = uld ™ (©) (6, ubk™(©))| pu(d0) (5-66)

+| / WM (©) (0, uM™(©)) o () — / WM (©) (0, uM™(©)) po ().
VM v}\l

The second term in the right-hand side of (5.66) tends to zero as n — oo because, by Lemma
5.7(1), © — ubl™(©) is continuous on Vy; and because p, converges in law to pso as n — co.
The first term in the right- hand 51de of (5.66) tends to zero as well, because (0, u) — u(0,u)
is uniformly continuous on V) A (see Lemma C.3) and because we have proved above that
u% " converges to u% uniformly on Vﬂnj. This proves (5.60), and so Step 3 is complete.

5.2.4 Step 4
In this step we prove that

lim sup fgn(M,m;a,ﬁ) > f(M,m;a, B) for P — a.e. Q. (5.67)

n—oo

Note that the proof will be complete once we show that

lim sup fgf?n(M, m,a,B) > V(p,u) for p € Ry, u € By P (5.68)
n—o0
Pick Q € {A, B}NoxZ ) ¢ RQA"} and u € Bym. By the definition of R?’m, there exists a
strictly increasing subsequence (ny)reny € NV such that, for all & € N, there exists an

ng ng
N € ey 5.69
, {ank Ly, } ( )

xMm
k
@traJ ) traj

to p as k — oco. Recall (5.26), and note that

a OF

traj € 5%1ka and a z¥ € such that py = pgk o (see (5.50)) converges in law

= (AL}, b5, b5 1), §=0,...,Ny—1, (5.70)

with AH? e {-M,...,M} and b;? € (0,1] N A~ for j = 0,..., Ny. For ease of notation we
n
define

O = (0,115 + ), =), 23) with I} =3 AL, j=0,...,Np—1, (5.71)
and
Ni—1
v = Nk/ ue pr1(d0) = > uer, (5.72)
eevyy =0
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where we recall that u = (UQ)GEW\? was fixed at the beginning of the section.

Next, we recall that lim,,_,o, L,/n = 0 and that L,, is non-decreasing (see (1.5)). Thus,
L,, is constant on intervals. On those intervals, n/L, takes constant increments. The latter
implies that there exists an n; € N satisfying

0<wv, — Lﬁ%’“ < L% and therefore 0 < wpLz, —ny < 1. (5.73)
Next, for j =0,..., N — 1 we pick bk € (0,1] N+ such that ]bk - bk] < 7, define
=k k ok -k =k .k
: = (Aﬂj,bf,b§+1) @? = (Q(],Hj + -),:é‘?,:cj ), (5.74)
and pick
N .
3 €tgr L7~ such that |[s] — u@§] <2/Lz,. (5.75)

We use (5.72) to write

Np—1 Np—1

Lu, Y sf =1Lz, <vk + ) (sh - u@?)) = Lz, (I +1I). (5.76)
j=0

Jj=0

Next, we note that (5.73) and (5.75) imply that |Lgz, I —ng| < 1 and |Lg, II| < 2Nj. The
latter in turn implies that, by adding or subtracting at most 3 steps per colum, the quantities

s? for j =0,...,Nr — 1 can be chosen in such a way that Z;V"O ! sk = ny/ Lz,
Next, set
ok  _ (=k\Nk—1 - M k _ [ k\Ne—1 M,m, L
Gtraj ( ])]:kO € DLﬁkaNk’ s = (S] )]:kO %:fkj%k’ (577)
and recall (5.46) to get f$}(ng, M) > Ry with
Q(ok .k ok Ni—1 :
Li, HY(OF 2k sF) ik 1!}( ) R¥
Ry = ! = N L = (5.78)
nk Z] =0 8] Rde
Further set I (0. ) pi(dO)
’ R/k v Ue , UO ) Pk
R, = Vu (5.79)

RE™ T Lnuem(d®)
and note that limy_, R;C = V(p,u), since limy_,o pr = p by assumption and O — ug is
continuous on V. We note that R;C can be rewritten in the form

T e
" RL SN g '
J= 3
Now recall that limy_,o, ng = oo. Since Nj > ng/ML,,, it follows that limj_,. Ny = o0
as well. Moreover, Ni < ny/Lz, with limg_,o np = 0o. Therefore (5.72-5.73) allow us to
conclude that Rk =7 /Lz, = RE[L + o(1)].
Next, note that Hjys is compact, and that (0,u) — uy(O,u) is continuous on Hjs and

therefore is uniformly continuous. Consequently, for all € > 0 there exists an 1 > 0 such that,
for all (©,u), (0", u') € My satisfying [© — O'| <75 and |u—u'| <,

lu(O,u) —u' (O, u)| <e. (5.81)

(5.80)
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We recall (5.74), which implies that dM(@ig?, ©;) <2/Ly, forall j € {0,..., N —1}, we choose
k large enough to ensure that 2/Lz;, < n, and we use (5.81), to obtain

Nj—1 - N —1
Jj=0 j=0

with |T| < eNj. Since limg 0o Ry, = V(p, u) and Z;&Jl ugk = v > ny/Lg, (see (5.73)), if
J

V(p,u) # 0, then ‘R;’fl‘ > Cst. ny/Lg,, whereas |T| < eNy, < eny/Ly, for k large enough.

Hence T = o(R¥) and

nu

RE, RE[1+0(1)]
RE, R[4 0(1)]

— V(p,u), k — oo. (5.83)

Finally, if V(p,u) = 0, then R = o(Rf) and T = o(R}), so that Ry, tends to 0. This
completes the proof of Step 4.

5.2.5 Step 5

In this step we prove (5.22), suppressing the (a, 3)-dependence from the notation. For ) €
{A,BYWNoxZ* ' € N, N € {n/mLy,...,n/L,} and r € {—~NM,...,NM}, we recall (5.26)
and define

DY = { O € DY Ty =7, (5.84)

where we recall that IIy = E;VZ_OI AlI;. We set
f3h (M, m,N,r) = Llog Z8, | (N, M,m,7) (5.85)

with

Z{?n,Ln (Nv M,m,r) = Z Z Z As, (586)

~yM,m,r M,m M,m,Lp,
@t,aJEDLn’N IGX@“M”Q ue Oprajm

where Aj is defined in (5.47). We further set f3(-) = Eq(f§(-)).

5.2.6 Concentration of measure

In the first part of this step we prove that for all (M, m,«, ) € EIGH x CONE there exist
c1,c2 > 0 (depending on (M, m, «, 8) only) such that, for allm € N, N € {n/(mL,),...n/L,}
and r € {—NM,...,NM},

c252n

Po(|f5L(M,m) = fsn(M,m)| >€) <cre on (5.87)

_ 0252n

]P’Q(‘fé?n(M,m,N,r) —fgyn(M,m,N,rH > 5) <cie Ln .

We only give the proof of the first inequality. The second inequality is proved in a similar
manner. The proof uses Theorem D.1. Before we start we note that, for all n € N, (M, m) €
EIGH and € € {A4, B}NoxZ, fgf?n(M, m) only depends on

. . o\\1/Ln
Cpen o Chyp, g, with Can:(Q(j,z))i:/_n/Ln. (5.88)
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We apply Theorem D.1 with S = {0,...,n/L,}, with X; = {A,B}{_ﬁ"”’ﬁ} and with
the uniform measure on X; for all i € S. Note that |f§l}l(M, m) — 39721(M, m)| < QC’uf(a)m%
for all 7 € S and all Q1, Q9 satisfying CJQ; = C]Qfl for all j # i. After we set ¢ = 2Cy(a)m we
can apply Theorem D.1 with D = ¢?L,,/n to get (5.87).

Next, we note that the first inequality in (5.87), the Borel-Cantelli lemma and the fact
that limy, oo n/Ly, logn = oo (recall (1.5)) imply that, for all (M, m) € EIGH,

lim fé?n(M, m) — fan(M,m)| =0 for P—a.e. Q. (5.89)

n—oo

Therefore (5.22) will be proved once we show that
liminf f3,,(M,m) = limsup f3,,(M,m). (5.90)
n—o0

n—o0

To that end, we first prove that, for all n € N and all (M, m) € EICH, there exist an N,, €
{n/mLy,...,n/Ly} and an r,, € {—MN,, ..., MN,} such that

lim [ Fan(M,m) — fg,n(M,m,Nn,rn)] —0. (5.91)

n—oo

The proof of (5.91) is done as follows. Pick ¢ > 0, and for Q € {4, B}Yo*Z 5 € N and
(M, m) € EIGH, denote by N and 7S} the maximizers of f:?n(M7 m, N, r). Then

2
F (MmN ) < f5h (M,m) < Llog(2y) + f51 (M, m, NS, ), (5.92)

ni''n L% nir»'n

so that, for n large enough and every €2,

0< f:?n(M, m) — fgn(M,m,Ng,rfz) <e. (5.93)
Forne N, N € {n/mL,,...,n/L,} and r € {—NM,..., NM}, we set
Ap Ny ={Q: (N2, 78) = (N, r)}. (5.94)

Next, denote by N, r, the maximizers of P(A, n,). Note that (5.91) will be proved once we
show that, for all € > 0, |fsn(M,m) — f3n(M,m, Ny, )| < e for n large enough. Further
note that P(A, N, »,) > L2/n? for all n € N. For every Q we can therefore estimate

| fan(M,m) = fan(M,m, Np,7n)| < T+ 114111 (5.95)
with

I = |f3n(M,m) — f3,(M,m)], (5.96)

IT = ’f?f,zn(M)m) - f??n(Ma m, Nn’rn)’7

T = ‘f??n(Mvmv Nn,Tn) - f3,n(M7 m, Nmrn)‘-

Hence, the proof of (5.91) will be complete once we show that, for n large enough, there exists
an )., for which I, 11 and II1 in (5.96) are bounded from above by ¢/3.

To that end, note that, because of (5.87), the probabilities P({I > ¢/3}) and P({I1] >
£/3}) are bounded from above by c¢je=2<""/9Ln while

P({II > e}) < P(AS )<1—(L3/n?), neN. (5.97)

n,Np,Tn

Since lim,,_oo 7/ Ly logn = oo, we have P({I,II,III <&e/3}) > 0 for n large enough. Conse-
quently, the set {I, 11,111 < ¢/3} is non-empty and (5.91) is proven.
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5.2.7 Convergence

It remains to prove (5.90). Assume that there exist two strictly increasing subsequences
(nk)ken and (tx)gen and two limits lo > I3 such that limg_, oo f3.m (M, m) = ly and limg_, o
f3.6. (M, m) = 11. By using (5.91), we have that for every k € N there exist Ny € {ny/mLy,,,
- 7nk/Lnk,} and r;, € {—MNk, cee MNk} such that limy,_, o fgm,c (M, m, Ng, T‘k) = 5. Denote
by

k,Q kQ . kQ AM,r, M,m M,m, Ln
e T Uy ) € DY X XY XU Lo 5.98
( traj,max’ <’max> max) Ly, Nk @fr’?j’max,ﬂ @fr’a%’maxyxfn,gx:nk ( )

the maximizer of H Q(@traj, x,u). We recall that Oy,j, x and u take their values in sets that
grow subexponentially fast in ng, and therefore
. Ln Q/ak,Q Q kN
kli{{olo Tkk EQ [H (@traj,maw w]ngiaw u]ncw,x)] - 12' (599)
Since lg > I;, we can use (5.99) and the fact that limj_, ng /Ly, = 0o to obtain, for k large
enough,
Eo[HY (055 o Thi ubil)] + (8 — a) > £ (1 + 2510). (5.100)

traj,max’ *“max> “max &

(The term 8 — « in the left-hand side of (5.100) is introduced for later convenience only.)
Next, pick kg € N satisfying (5.100), whose value will be specified later. Similarly to what we
did in (5.75) and (5.76), for Q € {A, B}No*XZ and k € N we associate with

ko,Q - ko, 1ko,Q 1ko,Q\Nky—1 - /Mrkg
Otwajanax = (AL 005 0157) ;8 € D, (5.101)
and
ko, _ (k0,2 Nig—1 Mm
aiae = (077); 28 € Xgrow g (5.102)
raj,max’
and
ko2 _ (, K0, Nig—1 uM7m’Lnko 5103
Umax = (uj )jzo € ®k0,Q kg, ( . )

traj,max’xmax Mk

the quantities

=k ko,Q 7k Q 7k Q\Ny —1 _ <My,
Orraj = (AT b5 b1y )55 € DL Ny, (5.104)
and N —1 _ , ,Mm,L
—kQ _ (kS Ngy— ym, Ly,
utt = (uj )j:S € U@,m k.0, (5.105)

trajvxmaxa
(where * will be specified later), so that

7k Q  ke,Q 1 7k Q  ke,Q 1 _k,Q ko,
[boy —bo; | < [bry =075 < g fuy T —ui <

2 N
0,7 H, ~ Ltk’ j m, ¥ _07"'7Nk‘0_1' (5106)

Ny, —1 . . . o
Next, put EI? = Ly, Zj:kg ﬂf’g, which we substitute for * above. The uniform continuity
in Lemma C.3 allows us to claim that, for & large enough and for all €2,

_k,Q =kQ _EkQ ko,Q ko, ko,Q lo—1
‘uj w(@j ) )—u; ¢<®j0 u )‘g% (5.107)

where we recall that, as in (5.71), for all j =0,..., Ny, — 1,
—k,Q . 17ko,Q2 ko, 0 7k Q 7Kk,Q  EkyQ
I (Q(;,H; 1), AT B B ot ) (5.108)

ko, 2 __ : 0,82 koY 1ko, Q2 pko, 2 ko,Q2
o" _<Q(],Hj 1), AL ot pho ok )
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Recall (5.51). An immediate consequence of (5.107) is that

’HQ kQ k0.0 ﬂk,Q) _HQ(GkO,Q PRIPTLIRY: )} < N b=k ll (5.109)

trajs “max > traj,max’ Tmax > Ymax

Hence we can use (5.100), (5.109) and the fact that Ny, < ng,/Ly, . to conclude that, for k
large enough,

traj’ ““max > st

Lol +B271). (5.110)
0

At this stage we add a column at the end of the group of Ny, columns in such a way that
the conditions blf%k 1= bg:]%k and bllc,’ff\szo = 1/L,, are satisfied. We put

=k, Q ko, Tk, Q Tk QN _ (o 7k Q 1
N (AH]\?kO bO,Nk()?bl,NkO) - (07b1,Nk0—1’ ﬁ)’ (5'111)
and we let 652 € DI be th tenation of Oy, 5.104)) and X We let
we let O Li, Ni, e the concatenation of Oy,; (see (5.104)) an EN,, Wele
Tho? ¢ Xi\iglg be the concatenation of mﬁ?gx and 0. We further let
traj’
k,Q
St =38+ |1+ Dy N -1~ i Ly, (5.112)
d we let a5 € Y™ e be th £ 5.105)) and
and we let u™" €Uy, o 5 o 0 e the concatenation of T* (see (5.105)) an

traj
~k,Q k,Q
Uy, =1+ Oy, 1~ T}sk)' (5.113)

Next, we note that the right-most inequality in (5.106), together with the fact that

Ny —1
S dbo® =y, /L, (5.114)

allow us to asset that |55 — Ly, ng, /Lny,| < 2Nk, Therefore the definition of 55t in (5.112)
implies that

=1, L”’“O +mY with [MQ] < 2Ny, + 2L, . (5.115)
ﬂko
Moreover,
kQ ~ ~, k.2 _
H? (O, 3%, 0 > HY (O, 2k, 7h?) + (8 - a), (5.116)

because u];VQ < 2 by definition (see (5.113)) and the free energies per columns are all bounded
from below by (8 — «)/2. Hence, (5.110) and (5.116) give that for all 2 there exist a

k,Q =M,y 1
@traj € DLtk,Nk +1° by Nig = q, (5.117)

~ko, 0 Mm Gk g gy
an ko c X"k,ﬂ and a u € uek Q =ko,Q A}?

traj’ traj » T

such that, for k large enough,

Eq[H(O)2, 709, 300)) > Lo (I + 1), (5.118)
0
Next, we subdivide the disorder €2 into groups of Nj, 4+ 1 consecutive columns that are

successively translated by 7, in the vertical direction, i.e., Q = (£1,Q2,...) with (recall

(3.10))

.o j(Nio+1)—1
Qj = (Q<Z7 (J - 1) Tk + -))Z'J:(jk_ol)(Nk0+1)7 (5119)

52



and we let q,? be the unique integer satisfying

~ ~ —~ 0
S SR B <t <F 5, T (5.120)
where we suppress the (2-dependence of g;. We recall that

/Lty

1 Q .
GRUSOEE] Pt SENED SEND SEEND DR |
_ =M M,m, L
N=ty/mLy, etrajepljytk,N x€ X traJ Q ueue)t::j,zt,ktk
(5.121)
" ~ ~0
set t,? = s L+5s 92 +-+ s, % and concatenate
Gl 8hm gk | ghlu) ¢ pM (5.122)
traj,tot — traj > “traj 77 traj Ltk7Qk(Nk0+1) .
and
~k,Q ~ko,Q1 k0,0 ~ko,
xtot :(wo 17.%'0 27_.. 0 ) EXAICQ Q. (5.123)
traj,tot
and -
~k,Q ~kQ1 ~kQ ~k,Q m,Ly
Uggy = (W@ M) e Usyo ™™ o - (5.124)

traj, tot’xtot "k

LAY ~k,Q
Otrajtot Ltor and U utot such that the latter becomes an element

AS)qk+

It still remains to complete

of Uéi?; Lt‘ik o . - To that end, we recall (5.120), which gives t; — tk, <35

traj, tot’ztot ! k?

(5.115), we have that there exists a ¢ > 0 such that

. Then, using

ty — it < thkL’%:. (5.125)
0

AkQ

Therefore we can complete O ot and U utot with

traJ tot> L

Mm, L
k
Urest € U ~as
®rcst7$rcst 7tk7tk

(5.126)

rest 7Q ’

M
Orest € DLt g2 Trest € X
k2 9k

such that, by (5.125), the number of columns g,? involved in O, satisfies gﬂ < cng,/ Lnko-

Henceforth @frg tot s xffo? and . umt stand for the quantities defined in (5.122) and (5.124), and

concatenated with Opest, Trest and uUrest SO that they become elements of

M,m M,m,L
2 X2y oo " 5.127
Ly, ak(Nig+1)+g3 @fr’;)j,tot,Q’ efr:] ot Bror ot ( )
INX) ke,
respectively. By restricting the summation in (5.45) to @th totr Trop and Uy, we get
Ly Z Q@R ko 5k,
f3 tk(M m kE |: H% traj o jau ' ]) + H(G)restawrestaurest) 9 (5128)

where the term H (Oyest, Trest, Urest) 18 negligible because, by (5.125), (5 — tNI?) /ti vanishes as
k — oo, while all free energies per column are bounded from below by (8 — «)/2. Pick e > 0
and recall (5.115). Choose ko such that 2Ly, /ny, < /2 and note that, for k large enough,

e [Ltk%(l e), Ly 12t ~(1+2)). (5.129)
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By (5.120), we therefore have

telng, 1 telng
VIS |:Ltknk?) T+e» Ltknk?) 17—€:| = [a7 b] (5130)
Recalling (5.128), we obtain
oY & oF% = ke,
f3 tk(M m tkE [ZHQ traf’ ko’ Z ’HQ traf? k(), uk,QJ) ]’
(5.131)

and, consequently,

- @(b —a)(Ng, +1)m25%,  (5.132)

Ln 2QhQ ko2 kO
f3,tk(M,m)_mEQ[H (O N )} i

traJ’

and, by (5.118),

l+;1 o
fapn (M,m) > 24— — (= ) (b - aym?52. (5.133)

After taking e small enough, we may conclude that liminf;_, f3+ (M, m) > l;, which com-
pletes the proof.

5.3 Proof of Proposition 5.3

Pick (M, m) € EIGH and note that, for every n € N, the set Wg‘M is contained in Wy .
Thus, by using Proposition 5.2 we obtain
liminf f{% (M;o,8) > sup liminf fln(M m;a, f3)
n—00 ’ m>M+2 n—o00
= sup f(M,m;a,B) for P—a.e. Q. (5.134)
m>M—+2

Therefore, the proof of Proposition 5.3 will be complete once we show that

lim sup ffn(M, a,f) < sup limsup f; n(M m;a, ) for P—a.e. Q. (5.135)

n—00 m>M-+2 n—o0

We will not prove (5.135) in full detail, but only give the main steps in the proof. The proof
consists in showing that, for m large enough, the pieces of the trajectory in a column that
exeed mL,, steps do not contribute substantially to the free energy.

Recall (5.25-5.30) and use (5.30) with m = oo, i.e.,

n/Ln

zep =Y > > > AL (5.136)

N=lg,  epM M,00 M,00,Ln,
i TEX, ueU,
traj€VL, N TEAe 0 UEHUe | San

With each (N, Oaj, z,u) in (5.136), we associate the trajectories obtained by concatenating

----------

the quantity A; in (5.136) corresponds to the restriction of the partition function to the
trajectories associated with (IV, ©taj, z,u). In order to discriminate between the columns in
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which more than mL,, steps are taken and those in which less are taken, we rewrite A; as
A9 Ay with

A= T Z"©iw), A= [ 2;%(©iw), (5.137)
ZGVu,m leVu,m
with u; = 2;10 ug, ©; = (Q(Z,HZ + ),El,l‘l) and I; = {ﬂZLn, ,/l"ll'+1Ln — 1} for i €
{0,..., N — 1}, with w; = (w;)ier for I C N, where {0,..., N — 1} is partitioned into
Varn UV with Vi ={i€{0,...,N —1}: u; > m}. (5.138)
For all (N, ©traj, z,u), we rewrite ‘N/um in the form of an increasing sequence {i1, ...z} and

we drop the (u, m)-dependence of k for simplicity. We also set u = u;, +- -+ u;_, which is the
total number of steps taken by a trajectory associated with (N, ©yaj, 2, u) in those columns
where more than mL,, steps are taken. Finally, for s € {1,...,k} we partition I;, into

Ji,UlJs, with J;, = {Ui.Ln,..., (G, +M +2)Ly,}, (5.139)
Jio = {(@s, + M +2)Ln+1,... T, 41 Ly — 1},

and we partition {1,...,n} into

JUJ with J=U"_J;., J={1,...,n}\J, (5.140)
so that J contains the label of the steps constituting the pieces of trajectory exeeding (M +2)L,,
steps in those columns where more than mL,, steps are taken.

5.3.1 Step 1

In this step we replace the pieces of trajectories in the columns indexed in f/um by shorter
trajectories of length (M + 2)L,,. To that aim, for every (IV, Oaj, z,u) we set

A= [ 2o M+2) (5.141)
ie‘ﬁ;‘u,m

with ©; = (Q(i,TI; + -),Z;,1). We will show that for all ¢ > 0 and for m large enough, the
event

By, = {w: Ay < Ay for all (N, Otraj, T, u) } (5.142)
satisfies P, (B,) — 1 as n — oo.

Pick, for each s € {1,... ,E}, a trajectory ms in the set We, u; ,L,- By concatenating
them we obtain a trajectory in Wy, satisfying ngy, 1 = kL,. Thus, the total entropy carried
by those pieces of trajectories crossing the columns indexed in {1, ...,iz} is bounded above
by N

. ~
[Teey We., i inl < {7 € War, : mar,1 = kLn}|. (5.143)

Since H/E > m, we can use Lemma A.2 in Appendix A to assert that, for m large enough, the
right-hand side of (5.143) is bounded above by e®".

Moreover, we note that an wlL,-step trajectory satisfying w1 = ELn makes at most
kL, +u excursions in the B solvent because such an excursion requires at least one horizontal
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step or at least L, vertical steps. Therefore, by using the inequalities %Ln < n/m and
u < n/L, we obtain that, for n large enough, the sum of the Hamiltonians associated with

T1,-..,7y) 1s bounded from above, unitormly in (N, ©taj, z,u) and (71, ..., 7}), by
-) is bounded from ab iformly in (IV, Qpraj d b
T UJi 7Q(i5,Hi5+~)
S H (ms) < max{Y e, &: T € U ey, (5.144)

with &, defined in (E.1) in Appendix E and §; = B1y,,—4} — aly,,—p) for i € N. At this

stage we use the definition in (E.3) and note that, for all w € Qfl{ﬁ{(a_ﬂ)/%e, the right-hand
side in (5.144) is smaller than en. Consequently, for m and n large enough we have that, for
all w € Q%/EL’(CV—B)/Z‘FE

Ay <e*" forall (N, Otraj, T, U). (5.145)

Recalling (3.34) and noting that kL, < n/m, we can write

A2 > e~ (M+2)Ln uf(a) > e MJZCuf(O‘) (5146)

)

and therefore, for m large enough, for all n and all (N, Oy, €, u) we have Ay > e,

Finally, use (5.145) and (5.146) to conclude that, for m and n large enough, QZ{E{(O‘_B)/H&
is a subset of B,. Thus, Lemma E.1 ensures that, for m large enough, lim,,_,~ P,(B,) = 1.

5.3.2 Step 2

Let (w;)ien be an i.i.d. sequence of Bernouilli trials, independent of w, 2. For (N, Oyaj, x, u)
we set U = ﬂ—%(M +2). In Step 1 we have removed uL,, steps from the trajectories associated
with (N, Otraj, ©,u) so that they have become trajectories associated with (N, Oraj, z',u). In
this step, we will concatenate the trajectories associated with (IV, Oraj, a:/, u) with an uL,-step
trajectory to recover a trajectory that belongs to M -

For Q € {A,B}No*2 t N e Nand k € Z, let
PL(N, k)( Zlmwﬂ F)= (5.147)

be the proportion of A-blocks on the &' line and between the N*" and the (N + ¢ — 1)th
column of €. Pick n > 0 and j € N, and set

mi1 N

U U U{PANk:) } (5.148)

=0k=—m1N t>nj

By a straightforward application of Cramer’s Theorem for i.i.d. random variables, we have
that > oy Pa(Sy,;) < oo. Therefore, using the Borel-Cantelli Lemma, it follows that for
Pqo-a.e. €2, there exists a j,(€2) € N such that ¢ S, ; as soon as j > j,(2). In what follows,
we consider n = ¢/am and we take n large enough so that n/L, > j./am(£2), and therefore

Q¢ Sa

Pick (N, ©,z,u) and consider one trajectory 7, of length uL,, starting from (NV,IIy +
bn) Ly, staying in the coarsed-grained line at height Ty, crossing the B-blocks in a straight
line and the A-blocks in mL, steps. The number of columns crossed by 7 is denoted by N

Ln’am
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and satisfies N > u/m. If uL, < en/a, then the Hamiltonian associated with 7 is clearly
larger than —en. If uL,, > en/a in turn, then

HEONIN @) > oL, N[1 - PN, Iy) (V)] (5.149)
Since N < n/Ly, [Tly| < myN and N > en/(amL,), we can use the fact that Q ¢ Sn e
to obtain R
PN, Ty)(N) > g. (5.150)
At this point it remains to bound N from above, which is done by noting that
N[mPE(N,IIN)(N) +1— PE(N,IIy)(N)] =0 < £-. (5.151)

Hence, using (5.150) and (5.151), we obtain N < 2n/pmL, and therefore the right-hand side
of (5.149) is bounded from below by —«(2 — p)n/pm, which for m large enough is larger than
—en.

Thus, for n and m large enough and for all (N, O, z,u), we have a trajectory 7 at which
the Hamiltonian is bounded from below by —en that can be concatenated with all trajectories
associated with (N, ©, 2, u) to obtain a trajectory in W™ ;. Consequently, recalling (5.139),
for n and m large enough we have 7

AoAy < e 20D (Mom)  V(N,©,z,u). (5.152)

n,

5.3.3 Step 3

In this step, we average over the microscopic disorders w,w. Use (5.152) to note that, for n
and m large enough and all w € B,,, we have

n/Ln
w, 4en (wJ 7&7)79
Zin,M)se =y 3 X ) T (Mo, (5.153)
N=L Ouas €Dy, 2 X507 o ueUdlln

We use (D.3) to claim that there exists C1,Cy > 0 so that for all n € N, all m € N and all J,

P (|3 10g 257 29 (0, m) — f2,(M,m)| = ¢) < Crem @™ (5.154)

We set also
Liog 2\ 0t m) — f2,(M,m)| < =}, (5.155)

.= () |

(N»@trajvx:u)

recall the definition of ¢, in (5.55) (used with (M, 00)), and use (5.154) and the fact that ¢,
grows subexponentially, to obtain lim,, . Py, 5(D5,) = 0. For all (w,w) satisfying w € B,, and
(w,w) € Dy, we can rewrite (5.153) as

7% (M) < ¢ eMin(Mm)t5en, (5.156)

n7L7L
As a consequence, recalling (3.34), for m large enough we have

loge, 1
ogc n EE<1{Bnan}(nf1(?”(M’ m) + 55n)). (5.157)

Since P(BE U D¢) and (log ¢,)/n vanish when n — oo, it suffices to apply Proposition 5.2 and
to let € — 0 to obtain (5.135). This completes the proof of Proposition 5.3.

(M3 a, B) < P(BS U D) Cug(e) +
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5.4 Proof of Proposition 5.4

Note that, for aE m > M + 2, we have R}y, C Rp p. Moreover, any (U@)eevﬁ € ngr; can
be extended to Vjs so that it belongs to BVM' Thus,

sup f(M,m;a,B8) < sup sup V(p,u). (5.158)

m>M+2 PERp M (u)EBgM

As a consequence, it suffices to show that for all p € R, s and (UG)OGVM € BVM’

V(p,u) < sup sup sup V(p,u). (5.159)
m>M-+2 pERZ?M (“)GBV]C}
If va ue p(dO) = oo, then (5.159) is trivially satisfied since V' (p,u) = —oo. Thus, we can

assume that p(Vy; \ Dy) = 1, where Dy = {© € Vy: xo € {A%, B%}, 29 = 2}. Since
fVM ue p(dO) < oo and since (recall (3.34)) (O, u) is uniformly bounded by Cys(a) on

(0©,u) € V;\}, we have by dominated convergence that for all € > 0 there exists an mo > M +2
such that, for all m > my,

Jym ue(©, ue)p(do)
fv;c; uep(dO)

Vip,u) < - (5.160)

[\SJ[0)

Since p(Va \ Das) = 1 and since Um2M+2vE = Vu \ Dy, we have lim,, o0 p(vﬂn/}) = 1.
Moreover, for all m > myg there exists a p,, € R}y, such that pm = pp + Py, With piy ihe
restriction of p to V]\TZ and p,, charging only those O satisfying z¢ = 1. Since all © € V),
with g = 1 also belong to V]\]\/;[ +2, we can state that p,, only charges V]\]ZH_Q . Therefore

fv;; ’U,@w(@, u@)p(d@) + fVﬁ+2 ’U,@l/J(@, ’U,@)ﬁm(d@)
fV}C} uep(dO) + fw\;fﬁ ue P, (dO)

V(P u) = (5.161)

. . . = . —M+2
Since © — ug is continuous on V), there exists an R > 0 such that ug < R for all © € VM+ .

Therefore we can use (5.160) and (5.161) to obtain, for m > my,

fv;\'; uep(dO)

—5) o wop(d0) T [orres i, (d0) — RCui(a) (1 — p(Vyy))- (5.162)
M Vu m

V(pm,u) = (V(p, u)

The fact that 5,,(Vir 2) = p(Var \ Vyy) for all m > mg impliess that lim,, e 7, (V31 72) = 0.
Consequently, the right-hand side in (5.162) tends to V' (p,u) —&/2 as m — oo. Thus, there
exists a mj > mg such that V(pm,,u) > V(p,u) —e. Finally, we note that there exists a
ma > mq + 1 such that ug < mg for all © ¢ Vﬂl, which allows us to extend (ue)eevlrgl to
Vi such that (“9)9@}(}2 € Bv;}g. It suffices to note that pj,, € R}, C RS, to conclude
that

Vip,u) < f(M,ma; o, B) +e. (5.163)

6 Proof of Theorem 1.1: slope-based variational formula

We are now ready to show how (5.2) can be transformed into (1.17).
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Let Fy; ~and F be the counterparts of By;,, and B for Borel functions instead of continuous
functions, i.e.,

‘FVM = {(ue)GEVM € RVM, ue >te VO € Vy, O — ug Borel} (6.1)
and B -
F ={v=(va,vp,vz) € D xD x[1,00)}, (6.2)
where
D = {l +~ v on [0,00) Lebesgue measurable with v; > 1+1 VI > 0}. (6.3)

The proof of Theorem 1.1 is divided into 4 steps, organized as Sections 6.1-6.4. In Step 1 we
show that the supremum over By; ~in (5.2) may be extended to J5; . i.e.,

N N
sup sup (p, ) = sup sup ) (6.4)
pGRZ,,M (ue)eevM EBV]\/I D(p7 u) pERpJ\/[ (U(—))@evjw EJ:V]\J D(p7 u)
In Step 2 we show that the supremum over B in (1.17) may be extended to F, i.e.,
N(p N(p
sup sup —= ('(_)’ v) = sup Ssup —= (f_)’ U). (6.5)
PERp, M vEB D(p,v) PERp M VEF D(p,v)
In Steps 3 and 4 we use Proposition 5.1 to show that
N —
fla, B;M,p) > sup sup = W), (6.6)
ﬁEﬁpJ\/[ veF (p’ U)
N —
fla,8;M,p) < sup sup = (p,v) (6.7)

PERp, M VEF D(p, v)'

Along the way we will need a few technical facts, which are collected in Appendices C-G.

6.1 Step 1: extension of the variational formula

For ¢ € (0,00), let u(c) = (ue(c))gey,, be the counterpart of the function v(c) introduced in
(2.8-2.10). For © € Vs and ¢ € (0,0), set

te if OF (uv(0,u))(te) <c,
ue(c) = z  otherwise, with z such that 9, (u(0,u))(z) > ¢ > 9} (u(©,u))(2),
(6.8)
where z exists and is finite by Lemma C.7 in Appendix C, and is unique by the strict concavity
of u = uyP(0,u) for © € V) (see Lemma C.4 in Appendix C). The fine properties of
© — ug(c) are given in Lemma B.4 in Appendix B.

For (a, 3) € CONE and p € M;(Vy) such that fVM te p(dO) < oo, set

g(p;a, B) = sup Np, u)

: (6.9)
UE]:VJ\/I D(p7 u)

with the convention that N(p,u)/D(p,u) = —oo when D(p,u) = oco. The equality in (6.4) is
a straightforward consequence of the following lemma.
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Lemma 6.1 For (o, 3) € CONE and p € M1(Vyr) such that g(p;a, B) > 0,

ol ) = el with @ = ulg(pian ). (6.10)

Moreover, u = @ for p-a.e. © € V) for all u € v, satisfying g(p; a, B) = gggzg.

Proof. The following lemma will be needed in the proof.

Lemma 6.2 For (a, 3) € CONE and e > 0 there exists at. > 0 such that, for all p € My (Vi)
and allu € F5;  satisfying D(p,u) € (ts,00),

N(p,u)
D(p,u)

<e. (6.11)

Proof. Pick ¢ > 0. By Lemma C.6, there exists a C. > 0 such that ¢(0,u) < ¢/2 for
© € Vy and u > max{C.,tg}. For R € (0,00), set B~(R) = {© € Vy: up < R} and
BT (R) ={0© € V);: up > R}, and write

N(,O, u) . fB’(Cs) er(Ga ue)p(d@) fB*(CE) ’U,@lb(@, u@)p(d@)
Dlp.w) D) y D) - 612

By the definition of C. and since ug > tg for all © € V;;, we can bound the second term in
the right-hand side of (6.12) by /2 > 0. The first term in the right-hand side of (6.12) in
turn can be bounded from above by C.Cys(a)/D(p,u) (recall (3.34)). Consequently, it suffices
to choose t. = 2C.Cy¢()/e to complete the proof. O

We resume the proof of Lemma 6.1. By assumption, we know that g(p) > 0, which entails
that va top(dO®) < co. Thus, Lemma B.4(iv) tells us that D(p, u(c)) < oo for all ¢ > 0. We

argue by contradiction. Suppose that gg?gg < g(p), and pick u € ‘FVM such that D(p, u) < co.
Write
N(,O, u) - N(p, ﬂ) + [N(,O, u) B N(,O, a)]
= — — (6.13)
D(pvu) D(pau)+[D(pvu)_D(p>u)]
where
N(p,u) = N(pt) = [ ut(®,ue) - 10(®.10) p(d®). (6.14)
Vm

The strict concavity of u — u (0, u) on [tg, 0o) for every © € V), together with the definition
of u in (6.10), allows us to estimate

N(p,u) — N(p, ) < g(p) /v (up — 1i6) p(dO). (6.15)

Consequently, (6.13) becomes

N(p, N(p,u) + g(p)[D(p,u) — D(p, u)]
D(p, D(p,ﬂ)+ [D(p,u) *D(p,ﬂ)] ‘

Define G = z — [N(p,u) + g(p)z]/[D(p, u) + z] on (—D(p, u),00). Note that N(p,n)/D(p,u)
< g(p) implies that G is strictly increasing with lim, ,. G(z) = g(p). Use Lemma 6.2 to

Z; < (6.16)
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assert that N(p,u)/D(p,u) < 1g(p) when D(p,u) >t

Lot But then, for all u satisfying
2
D(p,u) < tgp, (6.16) gives
2
N(p,u) ( _ >
<G|t — D(p,u) ) < g(p). 6.17
Do <0 tn ~ P <o00) (617)
Consequently,
N(p,u) {g(ﬂ)
sup <max{ &=, Gty — D(p,u < g(p), 6.18
2 Dip.u) £.0(tap = Dlpm)) p < 000 (618

which is a contradiction, and so g(p) = N(p,u)/D(p,w).
It remains to prove that if u € J5; satisfies g(p) = N(p,u)/D(p, u), then u = u for p-a.e.

© € V). We proceed again by contradiction, i.e., we suppose that a such u is not equal to
u for p-a.e. © € Vyr. In this case, both inequalities in (6.15) and (6.16) are strict, which

immediately yields that DE ; < g(p). O

6.2 Step 2: extension of the reduced variational formula

Recall (2.8-2.10) and, for (a,3) € CONE and p € M;(Ry UR, U{Z}) such that [;°(1
1) [pa+ pBl(dl) < oo, set

o N(p,v)
( 4 76) UG.I;— D(p, )

Recall (2.8-2.10). The equality in (6.5) is a straightforward consequence of the following
lemma.

(6.19)

Lemma 6.3 For (o, 3) € CONE and p € M;(Ry URy U{Z}) such that h(p; a, ) > 0

N —
hpraB) = 2P0 igh s = (b ). (6.20)
D(p, )
For v € F satisfying h(p; a, B) = gg’zg, v =10 for p-a.e. (k,1) € {A, B} x [0,00) or k =T.
Proof. The proof is similar to that of Lemma 6.1. The counterpart of Lemma 6.2 is

obtained by showing that for («, 5) € CONE and € > 0 there exists a t. > 0 such that, for all
p € Mi(RyURy U{Z} and all v € F satisfying D(p,v) € (te,0),
N(p,v)
D(p,v)

<e. (6.21)

and on the hmlt given in Lemma C.1(ii).

It remains to show that h(p;«, 3) = Di_’_g and that v € F satisfying h(p; a, ) = p’vi
necessarily satisfies v = v for p-a.e. (k,1) € {A, B} x [0,00) or k = Z. The proofs are smnlar
to their counterparts in Lemma 6.1 and require the strict concavity of u — uk(u,l) for [ € R

and of u — u¢z(u), as well as the definition of v in (2.8-2.10). O
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6.3 Step 3: lower bound

The inequality in (6.6) is a straightforward consequence of the following lemma.

Lemma 6.4 For all (o, 8) € CONE, p € Ry m and v = (va,vp,vz) € F there exists p € Ry mr
and u = (“@)eeVM € Fy,, satisfying

(6.22)
Proof. Since p € R, ., there exist p € Ry, and h € € such that p = G, For © € Vyy
and k € {A, B}, set dre = ly0/hke if hi,e > 0 and di e = 0 otherwise. Put

ug = hA,@ VAdao + h&@ UBdse T hI’@ vz, O € VM (6.23)

To prove (6.22), we recall (3.58) and integrate (6.23) against p. Since p = G, it follows that

D(p,v) = / ue p(dO) = D(p,u). (6.24)
VM
Since h € £ we can assert that
(hae,hBe,h1e) (haeva dse: hBO VB dse Mo V) € L(O; ue), © Vi,  (6.25)
which, with the help of (3.45), allows us to write

ue V(0,ue) > hae va,dse F(VAdy e d4,0) (6.26)

+hB,e VB, ds e [F@(UBJB,@, dpe) + ’B_Ta] + hzo vz dz(v7i 02, B).

After integrating (6.26) against p and using that p = G, we obtain

/ ue(0,ue)p(dO) > [/OOOUAJF;(UA’Z,Z) pa(dl) (6.27)

Vm

+/ vgy [5(vp 1) + 252] pp(dl) + pr vz dz(vr; e, B) .
0

Thus, (6.22) is immediate from (6.24) and (6.27). O

6.4 Step 4: upper bound

The proof of (6.7) is a straightforward consequence of the following lemma.

Lemma 6.5 For all (o, 3) € CONE, p € Ry v and u € Bs;,, there exist p € Rpn andv € F

such that -
N(p,u) _ N(p,v)

D(p,uw) = Dipv) (6:28)
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Proof. Since u € By;,, Proposition G.1 in Appendix G allows us to state that there exist
h € € and r € U(h) such that
ue ¥(0,ue) = haoraei(r )+ hperpe [F(r )—1—5 ] (6.29)
e e A©TA® A@,hA@ B,©TB,O Be,hB@

+hzerre ¢z(rre), VO € Vyy,

and
hA’@ rae + hB,@ rBe + hz}@ r7,.0 = U@, VO ¢ VM (6.30)

Define pa n, pB,h, pz,n to be the probability measures on V. given by

dpk.n hio
h (@) = ’ . ke{A B,T). 6.31
dp ©) Iy, Mo p(dO) t J (6:31)
For l e Ry, set
var=Ep,,|rae } hA@ =1, wpi=Ey,[rBe \ hB@ =1], (6.32)
and
vt =By, [rze . (6.33)

The fact that r € U(h) implies that vz > 1 and vx; > 141 for [ € Ry and k € {A, B}. More-
over, the Borel measurability of © +— hy e for k € {A_, B} implies the Lebesgue measurability
of I — vy, for k € {A, B}. Therefore, (va,vp,vz) € F.

By the concavity of a — ak(a,b) and u — pez(p), we obtain that

ha,e

EPB,h |:’f'B (¢ ( (TB 9,[) + BiTa) ;5312 = l} < UB,l [ (?}Bl,l) + 677&],

Eo s [TI,G) ¢I(TI,®)} < vz ¢z(v7).

Epun [TA,G R(rae,l) | 2o —l} <waik(vay,l), (6.34)

Integrate (6.29) against p, to obtain

/V uo ¥(0,u0) p(dO) = [y, hao p(dO) By, [raeF(rae: i22)] (6.35)
M

+ fVI\/[ hI’Q p(d@> EpI,h [TI79 ¢I(TI @)]
+ f5,, o p(dO) By, [rpe (R(rpe, i22) + 25%)].

Set p = G, . In the right-hand side of (6.35) take the conditional expectation with respect to

2‘2’2 nd ,lf ’2 in the first term and the second term, respectively. Then use the inequalities

n (6.34), to obtain

/ wo (0, u6) p(dO) < /0 T vas Fvanl) padl) (6.36)

Vu

+ /OOO vpy [Rvp, 1) + 252 pp(dl) + pr vz ¢z(vr, o, B).
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Similarly, integrate (6.30) against p and take the conditional expectation with respect to 2‘2’2

IB.o .
and 72 to obtain
B,©

/ ue p(dO) = / va, pa(dl) + / vp, pe(dl) + prvz. (6.37)
Vi 0 0

At this point, (6.35) and (6.37) allow us to conclude that N(p,u)/D(p,u) < N(p,v)/D(p,v).
Since v € F, this completes the proof. O

7 Phase diagrams: proof of Theorems 2.1 and 2.5

7.1 Proof of Theorem 2.1

We first state and prove a proposition that compares f, fp and fp,, and deals with the
regularity and the monotonicity of fp. Recall the definition of a* in (2.19).

Proposition 7.1 (i) f(«a,8) = fp(a, B) for (o, ) € CONE: 8 < 0.
(ii) x — fp(x,0) is continuous, convex and non-increasing on [0,00).
(i1i) fp(x,0) > fp, for x € [0,a*) and fp(z,0) = fp, for x € [a*,0).

Proof. (i) Note that for (a, 8) € CONE: 8 < 0 and v > 1 we have ¢Z(v,a, ) = &(v,0),
because the Hamiltonian in (3.6) is always non-positive. Thus, (1.17) and (2.1) imply (i).

(ii) Since (a, B) = f(a, B) is convex on R? (being the pointwise limit of a sequence of convex
functions; see (1.12)) and is everywhere finite, it is also continuous. Therefore (i) implies that
x € [0,00) — fp(z,0) is continous and convex. The monotonicity of z — fp(z,0) can be read
off directly from (2.1).

(iii) It is obvious from (2.1) and (2.13) that fp(z,0) > fp, for every x € [0,00). Recall
(2.19). Since x — fp(z,0) is continuous and non-increasing, it follows that fp(z,0) > fp, for
z € [0,a*) and fp(x,0) = fp, for z € [a*, c0). O

We are now ready to give the proof of Theorem 2.1.

Proof. (a)Pick a > 0 and note that every element of J, can be written in the form (a+3, )
(with 8 > —a/2), so that fp is constant and equal to fp(a,0) on J,. By the convexity of
(a, B) = f(a, B) and by Proposition 7.1(i), we know that go: 8 — f(a+ 3,8) — fp(,0) is
convex and equal to 0 when 8 < 0. Therefore g, is non-decreasing, and we can define

Be(a) =inf{B > 0: f(a+5,8) > fp(a,0)}, (7.1)
so that (a+ 3,8) € D if and only if 8 < B.(«). It remains to check that 8.(«) < oc.

To that aim, pick any p € 7?,1, such that pr > 0 and any v € B such that vz > 1
and D(p,v) < oo, recall (1.18), and note that limg oo N(av + B, 5; p,v) = oo because
limg_,o0 ¢7(vz;00 + B,8) = o0. The last observation is obtained by considering a trajec-
tory in W, 1, that starts at (0,0) ends at (L,0), and in between stays in the A-solvent except
when the microscopic disorder w has 3 consecutive B-monomers, in which case the trajectory
makes an excursion of size 3: one step south, one step east and one step north, inside the
B-solvent. Such a trajectory has energy ScL for some ¢ > 0.

(b) This is a straightforward consequence of the fact that fp(a, 8) = fp(a—£,0) for (o, 8) €
CONE. 0
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7.2 Proof of Theorem 2.5

Proof. (a) We want to show that o* € (0,00). To that aim, we first prove that fp(0,0) >
fp,, which by the continuity of = — fp(z,0) implies that o* > 0. It is easy to see that
pSao(dl) + (1 — p)dpo(dl) € R,, since this corresponds to trajectories travelling along the
x-axis while staying on one side. Thus, (2.1) implies that fp(0,0) > R(u*,0), where u*
is the unique maximizer of u — &(u,0) on [1,00). Moreover, by Lemma B.1(ii), we have
R(u,l) < Rk(u*,0) for every [ € [0,00) and w > 1+ 1. Since d4,0(dl) does not belong to R, it
follows that fp, < fp(0,0), and therefore the continuity of x — fp(x,0) implies that a* > 0.

It remains to show that a® < co. Recall Hypothesis 2. We argue by contradiction. Assume
that fp(n,0) > fp, for all n € N. Then Proposition F.1 tells us that there exists a sequence
(Pn)nen in T, such that

ND(pn; Up; N, 0)

(n,0) = Jo(n,0) = =

> fp, >0, neN, (7.2)

with v, = v(fp(n,0)), where we recall (2.8-2.10). For simplicity, we write fo = fp, until
the end of the proof. Since fp(n,0) > fy for n € N, Lemma B.3(ii) yields v, 4; < 04, for
[ € [0,00),n € N. Note that Lemma B.3 is stated for fixed («, 3) € CONE, which is not the
case here because («, ) = (n,0). However, in the present case (ii) remains true for vy4 since,
by definition, the value taken by va,(c) for I € [0,00) and ¢ € (0,00) does not depend on
(a, B).

We can write

:fooo Vn, AR (vn,a0, 1) — f2l(Pn,A + Pn,z d0)(dl)

fD(n70> - f2 Dp(ﬁmvn)

(7.3)

Jo~ vn,BalR(vn,B s 1) — 5 — folpn,B(dl)
D'D(ﬁna Un)

+

I

and the concavity of v — viE(v,l), together with the fact that v, 4; < U4, for all [ € [0, 00)
and 0, (vi(v,1))(0a,) = fo, implies that

VA1R(0A1, 1) — v a R (U, a1, 1) > f2(Tag — Un,ay)- (7.4)

Since & is uniformly bounded from above and v, g; > 141 for every [ € [0,00), we can claim
that, for n large enough,

Un, B[R (vn,s 1) — 5 — fo] < =3 (1+1), 1€]0,00). (7.5)

Consequently, (7.2) and (7.3-7.5) allow us to write

o0 o0
/ Da1[R(VA1, 1) = fo] (Pn,A+ Pn.zd0)(dl) — Z/ 141 pp,p(dl) > 0 for n large enough, (7.6)
0 0

which clearly contradicts Hypothesis 2 because p, € 7, for n € N. The proof is therefore
complete.

(b-c) By the definition of D, Dy and Ds in (2.4), (2.15) and (2.16), we know that D = D; UDy
and that Dy N Dy = (). Thus, Theorem 2.1(a) implies that (b) and (c¢) will be proven once
we show that J, N Dy = 0 for a € [0,a*) and that J, N Dy = 0 for « € [a*,0). Moreover,
Theorem 2.1(b) tells us that fp is constant and equal to fp(«,0) on each J, with o € [0, 00).
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Consequently it suffices to show that fp(«,0) > fp, for a € [0,a*) and fp(«a,0) = fp, for
a € [a*,00). But this is precisely what Proposition 7.1(iii) states.

(d) Pick a € [0, 00) and assume that Hypothesis 1 holds. Then there exists a po, € Op 0 such
that poz > 0. Set v = v(fp(a,0)) and

Bc(a) = inf {ﬂ > 0: ¢I('DA,O§/B + a, ﬁ) > '%(1_714,070)}7 (77)

and the proof will be complete as soon as we show that f.(a) = Be(c) (recall (2.6)). Note
that, by the convexity of f — ¢z(va0;a + 5,0), and since ¢z(04,0;8 + o, 8) = K(vVa,0,0)

for § < 0, we necessarily have that ¢z(va0;a + 3,8) > £(04,0,0) for all § > Bc(@). From
Propositions 7.1(i) and F.1(2), we have that

F(a,0) = fp(e,0) = gggm (7.8)

bl
Q
1]

=

and
Np(pa,0) = / Va1 R(Va1,1) [Pa,a + Pa,z do](dl) + / vy [7(UB,1) — $] Pa,p(dl). (7.9)
0 0

By the definition of v = v(fp(c,0)) in (2.8-2.10), we have that 0,(v&(v,0))(v4,0) = fp(a,0).
For notational reasons we suppress the dependence on « of fp.

First, assume that ¢7(v4,0;0 + o, ) = K(0a,0,0) (we also suppress the dependence on
(B + «,B)). Then, since v — voz(v) and v — vik(v,0) are both concave and ¢z(v) > &(v,0)
for all v > 1, we have that v — v¢z(v) is differentiable at v4 o and

8v [’U E(U, 0)](17),470) = &, [U (;51(1))](17),470) = fD. (710)

Thus, for any p € R, and v € B, we set © € B such that o = v, except for 97, which takes the

value U4,0. In other words,
(p,v) _ No(p, 17)7+ prlvzdz(vr) — VAa,0R(04,0,0)]
(p,v) Dp(p,v) + prlvr — va)
N?(/i ) + prfp(vz —vayp)
Dp(p, ) + pz(vr — vap)

S| =

(7.11)

Y

where we use (7.10), the concavity of v — véz(v) and the fact that ¢z(v40) = &(v4,0,0) by
assumption. At this stage we recall that, by definition, No(pd) < fp. Hence (7.11) entails

N Dp(p,v)
that 29 < fp. Thus, Be(a) > fe(a).

The other inequality is much easier, because if we consider 3 such that ¢z(v4,0; a4+ 8, 5) >
#(Ua,0,0), then N(pa,?) > Np(pa,?), because pro, > 0. As a consequence, f(a+ 3,8) >

fp(a,0), so that 8 > 5.(«), and therefore S.(a) < Bc(a).

(e) We recall that, for a € [a*,00) we have ¥ = v(fp,) and therefore 14 is constant. In (c)
we proved that B.(a) = B.(a) on [a*, 00) with

Be(e) = inf {8 > 0: ¢z(va0; 8+ a,B) > k(Da0,0)}. (7.12)

The definition of S.(a) in (7.12) can be extended to a € [0,00). Since a* > 0, the proof of
(d) will be complete once we show that o+ B.(c) is concave, continuous and non-decreasing
on (0,00) and that lim,_,o0 fe(a) < o0.
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By using the same argument as the one we used in the proof of Theorem 2.1(a), we can
claim that limg_,o ¢7(V4,0; + B, ) = oo for every a € [0,00). Consequently, Bc(a) € [0, 00)
for every a € [0, 00). Moreover, the convexity of (a, 5) — ¢7(va,0; @, 8) implies the convexity
of (o,8) — ¢z(Va0; a0+ B,5) — R(Va,0,0), which is also non-negative. Therefore, the set
{(a, B): @ € [0,00),0 € [—%,Bc(a)]} is convex, and consequently a — fB.(c) is concave on
[0,00). This concavity yields that o +— ﬁc(a) is continuous on (0, c0), and since it is bounded
from below by 0, also that it is non-decreasing.

It remains to show that lim,_soo Bc(a) < oo. To that aim, we define 50(00) by choosing
a = 00 in (7.12).~ Since gbZN(@A,O;oo,ﬁ) < ¢z(va,0; + B, B) for every a > 0 and 3 € [, 00),
it follows that f.(a) < fB.(oc0) for every @ € (0,00). Therefore it suffices to prove that
56(00) < oo. But this is a consequence of the fact that lim,—o ¢7(04,0;00,3) = oco. This
limit is obtained by using again the same argument as the one we used in the proof of Theorem
2.1(a).

(f) This is a straightforward consequence of the fact that f = fp on D; and fp is a function
of a — f.

(g) This is a direct consequence of the definition of the Dy-phase in (2.16) and the fact that
fp, does not depend on « and 3 (see (2.13)). O

A Uniform convergence of path entropies

In Appendix A.1 we state a basic lemma (Lemma A.1) about uniform convergence of path
entropies in a single column. This lemma is proved with the help of three additional lemmas
(Lemmas A.2-A.4), which are proved in Appendix A.3. The latter ends with an elementary
lemma (Lemma B.1) that allows us to extend path entropies from rational to irrational pa-
rameter values. In Appendix A.2, we extend Lemma A.l to entropies associated with sets of
paths fullfilling certain restrictions on their vertical displacement.

A.1 Basic lemma

We recall the definition of Kz, L € N, in (3.2) and ¥ in (3.3).

Lemma A.1 For every € > 0 there exists an L. € N such that

|k (u,l) — R(u,l)| <e for L > L. and (u,l) € Hf. (A1)

Proof. With the help of Lemma A.2 below we get rid of those (u,l) € H NQ? with u large,
i.e., we prove that limy ,~ <1 (u,l) = 0 uniformly in L € N and (u,l) € Hr. Lemma A.3
in turn deals with the moderate values of u, i.e., u bounded away from infinity and 1 + |I|.
Finally, with Lemma A.4 we take into account the small values of u, i.e., u close to 1+ |I|. To
ease the notation we set, for n > 0 and M > 1,

HL,n,M:{(U,l) EHL: 1+ |l|+n<u< M}, /Hn’MZ{(u,l) EH: 1+ |l|+n<u< M}
(A.2)

Lemma A.2 For every € > 0 there exists an M. > 1 such that

u%log}{WEWuL:wuLJ:L}‘SE VLEN,uEl—i—%:uzMg. (A.3)
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Lemma A.3 For every e >0, n> 0 and M > 1 there exists an L., p»p € N such that
|Rp(u,l) — R(u,l)| <e VL > Leym, (u,l) € Hpmm- (A.4)

Lemma A.4 For every e > 0 there exist . € (0,3) and L. € N such that

|fr(u,l) — Rp(u+mn,l)| <e VL > L., (u,l) e Hp,n € (O,ng)ﬂ%. (A.5)
Note that, after letting L. — oo in Lemma A.4, we get
F(u, ) = R(u+n,0)l <e  V(ul) e HNQ% ne (0,n:)NQ (A.6)

Pick ¢ > 0 and 7. € (0, %) as in Lemma A.4. Note that Lemmas A.2-A.3 yield that,
for L large enough, (A.1) holds on {(u,l) € Hp:u > 1+ |I] + &}, Next, pick L € N,
() € Hp:u <1+l +% and ng, € (%,7:) N E, and write

|kr(u,l) — R(u,l)| <A+ B+C, (A.7)

where
A= kp(u,l)—Rp(u+ng, )|, B=lkr(u+nr,l)—k(u+ng,l)], C=Ic(u+nr,l)—r(u,l).
(A.8)
By (A.6), it follows that C' < e. As mentioned above, the fact that (u + nz,l) € Hr and
uw+ng > |l] + 5 implies that, for L large enough, B < ¢ uniformly in (u,l) € Hp: u <
1+ |I| + 5. Finally, from Lemma A.4 we obtain that A < ¢ for L large enough, uniformly in
(u,l) € Hp: u <1+ |l] + . This completes the proof of Lemma A.1. O

A.2 A generalization of Lemma A.1

In Section 5 we sometimes needed to deal with subsets of trajectories of the following form.
Recall (3.1), pick L € N, (u,l) € Hy and By, B € % such that

B; >0VI>0Al>By, and By — By> 1. (A.9)

Denote by WL(U, l, By, B1) the subset of W (u,l) containing those trajectories that are con-
strained to remain above BgL and below B;L (see Fig. 15), i.e.,

Wr(u,l, By, By) = {m € Wr(u,l): BoL <2 < B1L fori e {1,...,ulL —1}},  (A.10)
and let 1
%L(U,Z,BQ,Bl) = Elog\WL(u,l,Bo,Blﬂ (A.ll)

be the entropy per step carried by the trajectories in WL(’U,,Z,B(), Bj). With Lemma A.5
below we prove that the effect on the entropy of the restriction induced by By and By in the
set W (u,l) vanishes uniformly as L — oo.

Lemma A.5 For every e > 0 there exists an L. € N such that, for L > L., (u,l) € Hy and
By, By € Z/ L satisfying By — By > 1, B; > max{0,1} and By < min{0, !},

|k (u,l, By, B1) — Rp(u,l)| <e. (A.12)

Proof. The key fact is that B; — By > 1. The vertical restrictions By > max{0,[} and
By < min{0,!} gives polynomial corrections in the computation of the entropy, but these
corrections are harmless because (B; — By)L is large. U
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uL steps

BqL

(0,0)

BolL

Figure 15: A trajectory in WL(U, l, By, By).

A.3 Proofs of Lemmas A.2—A .4
A.3.1 Proof of Lemma A.2

The proof relies on the following expression:

var, = {7 € War: mury = L}| = LZH (L N 1> <(“ ;1)L> 2" (A.13)

r
r=1

where r stands for the number of vertical stretches made by the trajectory (a vertical stretch
being a maximal sequence of consecutive vertical steps). Stirling’s formula allows us to assert
that there exists a g: [1,00) — (0, 00) satisfying lim, oo g(u) = 0 such that

L
<uL ) < egWul u>1,LeN (A.14)
Equations (A.13-A.14) complete the proof.

A.3.2 Proof of Lemma A.3

We first note that, since u is bounded from above, it is equivalent to prove (A.4) with %y, and
K, or with G, and G given by

G(u,l) = uk(u,l), Gr(u,l) = ukp(u,l), (u,l) € Hp. (A.15)

Via concatenation of trajectories, it is straightforward to prove that G is Q-concave on HNQ?,
ie.,

G()\(Ul, l1)+(1—)\)(U2, l2)) > )\G(Ul, l1)+(1—)\)G(U2, l2)7 A€ Q[O,l}? (Ul, ll); (UQ, 12) € HHQQ

(A.16)
Therefore G is Lipschitz on every K N"HNQ? with K C H° (the interior of ) compact. Thus,
G can be extended on H° to a function that is Lipschitz on every compact subset in Y.
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Pick n > 0, M > 1, € > 0, and choose L. € N such that 1/L. < e. Since H, n C HO
is compact, there exists a ¢ > 0 (depending on 7, M) such that G is c-Lipschitz on H,, .
Moreover, any point in ‘H,, ys is at distance at most € from the finite lattice Hp, , a7. Lemma 3.1
therefore implies that there exists a ¢. € N satisfying

|Gyr. (u,1) — G(u,l)| < e V(u,l) € Hoo s 4 > G- (A.17)

Let L' = g.L., and pick ¢ € N to be specified later. Then, for L > ¢L" and (u,l) € Hp, um,
there exists an (u',l") € Hp, pa such that [(u,l) — (W, 1) < &, u > o/, |I]| > |I'| and
u—u > |l| = |l'|. We recall (3.3) and write

0<G(u,l) —Gr(u,l) <A+ B+C, (A.18)
with
A=1Gul) -G\, B=|GW,I)-Gp{, 1), C=GL, ") —Gr(ul). (A.19)

Since G is ¢-Lipschitz on H, a7, and since |(u,l) — (@/,1')]oc < €, we have A < ce. By (A.17)
we have that B < e. Therefore only C' remains to be considered. By Euclidean division, we
get that L = sL' + r, where s > g and r € {0,...,L" — 1}. Pick m,mo,...,ms € Wr/(u/,|I')),
and concatenate them to obtain a trajectory in Wy (u/, [I'|). Moreover, note that

ul —u'sl) = (u—u")sL' + ur (A.20)
> ([l = DsL" + (1 + [i])r = (L = sL') + (1L — s|I'| L"),

where we use that L —sL' = r, u—u' > |I| - |[I'| and u > 14 |I|. Thus, (A.20) implies that any
trajectory in Wy (v, |I'|) can be concatenated with an (uL — u'sL’)-step trajectory, starting
at (sL/,s|l'|L’) and ending at (L,|l|L), to obtain a trajectory in Wy (u,|l|). Consequently,

Gr(u,l) > $logrp(u',l') > 275G (1), (A.21)

But s > ¢ and therefore G/ (u/,l') — G (u,l) < %GL/(u/,l’) < %MlogS (recall that log3 is
an upper bound for all entropies per step). Thus, by taking ¢ large enough, we complete the
proof.

A.3.3 Proof of Lemma A.4

Pick L € N, (u,l) € Hp, n € %, and define the map 7": Wr(u,l) — Wr(u+ n,1) as follows.
Pick m € W (u,l), find its first vertical stretch, and extend this stretch by % steps. Then,
find the first vertical stretch in the opposite direction of the stretch just extended, and extend
this stretch by % steps. The result of this map is T'(7) € Wr(u+n,1), and it is easy to verify
that T is an injection, so that |Wp(u,l)| < [Wr(u+ n,1)|.

Next, define a map 7' Wr(u + n,1) — Wr(u,l) as follows. Pick # € Wr(u + n,1) and
remove its first % steps north and its first % steps south. The result is T'(7) € W (u, 1), but
T is not injective. However, we can easily prove that for every € > 0 there exist n. > 0 and
Lc € N such that, for all n < 7. and all L > [, the number of trajectories in W, (u+n, 1) that
are mapped by T to a particular trajectory in 7 € Wr(u,!) is bounded from above by e%,
uniformly in (u,l) € Hy and © € Wy, (u, ).

This completes the proof of Lemmas A.2-A 4.
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B Entropic properties
Recall Lemma 3.1, where (u,1) — &(u,1) is defined on H N Q2.

Lemma B.1 (i) (u,l) — uk(u,l) extends to a continuous and strictly concave function on
H.

(ii) For all u € [1,00), | — K(u,l) is strictly increasing on [—u + 1,0] and strictly decreasing
on [0,u — 1].

(i1i) For alll € R, limy o0 R(u,l) = 0.

() im0 R(u, 1) = 0 uniformly in v > 1+ |I].

(v) For alll € R, u — uk(u,l) is continuous, strictly concave, strictly increasing on [1+|],00)
and limy, o ui(u,l) = oco.

(vi) For alll € R, u — uk(u,l) is analytic on (1 +|l|,00) and

le Ou(uk(u,l))(v) =0, (B.1)
lirf}rl Ou(uf(u,1))(v) = OF (uic(u,1))(1 + |I]) = oo. (B.2)
v—>
Lemma B.2 For all ¢ > 0 there exists R. > 0 such that
Ou(ui(u,l))(v) <e, forle|0,00),v>R.V2+I. (B.3)

Recall the definition of {v(c),c € (0,00)} in (2.8-2.10).

Lemma B.3 (i) For all c € (0,), v(c) € B.

(it) For (k,l) € {A,B} x (0,00), ¢ — vy (c) is strictly decreasing and ¢ — vz(c) is non-
1ncreasing.

(i45) If (cn)nen € (0,00)N satisfies limy, o0 Cn = oo € (0,00), then v(c,) converges pointwise
to v(cso)-

(iv) D(p,v(c)) < oo for all p € Mi(Ry URL U{Z}) satisfying [;°(1+1)(pa + pp)(dl) < 0o
and all ¢ € (0,00).

Recall the definition of {u(c),c € (0,00)} in (6.8).

Lemma B.4 (i) For all ¢ € (0,00), u(c) € By, .

(i4) For all © € V), ¢ ug(c) is non-increasing on (0,00).

(i4) If (cn)nen € (0,00)N satisfies lim, o0 ¢ = oo € (0,00), then u(c,) converges pointwise
to u(Cso).

(iv) D(p,u(c)) < oo for all p € M1(Vr) satisfying fVM te p(dO) < oo and all ¢ € (0,00).

B.1 Proofs of Lemmas B.1-B.4
B.1.1 Proof of Lemma B.1

(i) In the proof of Lemma A.l we have shown that % can be extended to H° in such a way
that (u,l) — uf&(u,l) is continuous and concave on H". Lemma A.4 allows us to extend & to
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the boundary of H, in such a way that continuity and concavity of (u,) — uk(u,l) hold on
all of . To obtain the strict concavity, we recall the formula in (3.4), i.e.,

it ) = { et 20 (B.4)

where (a,b) — ar(a,b), a >1+b,b>0, and p — pi(p), p > 1, are given in [5], Section 2.1,
and are strictly concave. In the case [ # 0, (B.4) provides strict concavity of (u,l) — ui(u,!)
on Ht = {(u,l) € H:1 > 0} and on H~ = {(u,l) € H: 1 < 0}, while in the case [ = 0 it
provides strict concavity on H = {(u,0),u > 1}. We already know that (u,l) — uf(u,l) is
concave on H, which, by the strict concavity on HT, H~ and H, implies strict concavity of
(u,l) — ui(u,l) on H.

(ii) This follows from the strict concavity of | — & (u, () and from the fact that #(u,l) = &(u, —1)
for (u,l) € H.

(iii-iv) These are direct consequences of Lemma A.2.

(v) By (i) we have that v — wuR(u,l) is continuous and strictly concave on [1 + [I|,00).
Therefore, proving that lim, ,. uk(u,l) = oo is sufficient to obtain that u +— wui(u,l) is
strictly increasing. It is proven in [5], Lemma 2.1.2 (iii), that lim, . uk(u) = oo, so that
(B.4) completes the proof for [ = 0. If [ # 0, then we use (B.4) again and the variational
formula in the proof of [5], Lemma 2.1.1, to check that lim, ,~ ak(a,b) = oo for all b > 0.

(vi) To get the analyticity on (1 + |I|,00), we use (B.4) and the analyticity of (a,b) — ar(a,b)
and g +— pi(p) inside their domain of definition (see [5], Section 2.1).
We note that for every [ € R,

upz(u) > uk(u,0) > ui(u,l), uel+|l,o0), (B.5)

where the first inequality is well known and the second inequality comes from Lemma B.1(ii).
Since, by Lemma B.1(v), u — uk(u,l) is concave and increasing on [1 + |I|,00), (C.1) and
(5.154) imply (B.1).

It remains to prove (B.2). To that aim, we recall that an explicit formula is available for
R(u,l), namely,

R(u,l) = w(u/|l]|,1/|1]), forl#0, (B.6)

where k(a,b), a > 1+b, b > 0 is given in [5], Section 2.1 (in the proof of Lemmas 2.1.1-2.1.2).
The latter formula allows us to compute 9, (ui(u,1))(1+1+4¢,0) = G(1+ } + £, }) with

G(a,b) = %log [(aﬂgagé;fggg_i_z)zea,b)} (B.7)
and with
o = sriy (0 + 1) = ((a = 52 + (02 = 1)) ]
fap = sty | — (0= 1)+ ((a= )2 +02 = 1) "2, (B.8)

so that the proof of (B.2) will be complete once we show that for all b > 0 it holds that
lim. ,o+ G(1+0b+¢,b) = co. The latter is achieved by using first (B.8) to check that §1picp =
1L+b +(3- %_H))E +o0(¢) and €14p4cp = 5 +o0(e) as e — 07, and then by substituting these two
expansions into (B.7) at (a,b) = (1+b+¢,b), which implies the result after a straightforward
computation.
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B.1.2 Proof of Lemma B.2

The proof is based on the following lemma.

Lemma B.5
lim 9, [ui(u,1)](2+1,1) = 0. (B.9)

l—00

Proof. We recall (B.6-B.8), and we note that 0, (u&(u,))(241,1) = G(1+ %, }). Thus, the
proof of Lemma B.5 will be complete once we show that lim,_,q+ G(1 4 2b,b) = 0. The latter
is achieved by using (B.7) and (B.8) to compute

_1 (2+b)b
G(1+2b,b) = Llog %) Cue Sy rewy (B.10)

which immediately implies the result. (]

We resume the proof of Lemma B.2. Once Lemma B.5 is proven, we use the concavity of
u — uk(u,l) for I € R to obtain that for € > 0 there exists a [ > 0 such that 9, [uk(u,l)](u,l) <
e forall I: |I| > I, and w > 2+ [. Thus, it remains to show that there exists a R. > 0 such
that O,[uf(u,l)](u,l) < e for [ € [0,l] and u > R.. By contradiction, if we assume that the
latter does not hold, then there exists € > 0 and two sequences (I,)nen € [0, 1:]N and (up)nen
such that u, > 1+ 1, for n € N and lim,,_,c u, = 00 and such that 9,[ui(u,l)](un,l,) > €
for n € N. As a consequence, we can write

UnR(Un, ln) — (L + 1) R(1 4+ 1, 1n) > e(uy — 1 — 1), (B.11)
and, with the help of Lemma B.1(ii), we obtain
UnR(Up, 0) > upk(un,ly) > e(u, —1—1.), forneN, (B.12)

which clearly contradicts Lemma B.1(iii) because lim,_,oc u, = oc.

B.1.3 Proof of Lemma B.3

(i) We must prove that [ — vy ;(c) and [ — vp(c) are continuous on [0,00). We give the
proof for vy, the proof for vp being similar. Let (I,,)n,en be a sequence in [0, 00) such that
limy, 00 In = lo € [0,00). We want to prove that lim, o vay, (c) = va, (c). For simplicity,
we set v, = vay, (c) for n € Nand ve = va,(c). We also set g,,(u) = uk(u,l,) for n € N and
u > 141, and goo(u) = uk(u,ls) for u > 141. By Lemmas B.1(i) and (v), we know that g,
converges pointwise to g as n — 0o, and that g, and g are strictly concave. Consequently,
Ou(gn) converges pointwise to 0y (goo). We argue by contradiction. Suppose that v, does not
converge to vs. Then there exists an n > 0 such that v, > v, + n along a subsequence or
v < Voo — 1 along a subsequence. Suppose for simplicity that v, < v, — 1 for n € N. Then
the strict concavity of g, implies that 0y(gn) (Voo — 1) < Ou(gn)(vn) = ¢, and therefore, letting
n — oo and using the strict concavity of g, we obtain 9y (geo)(Veo) < Ou(goo) (Voo — 1) < c.
This provides the contradiction, because 9y, (¢goo)(vo0) = ¢ by definition. The proof is similar
when we assume that v, > vo, + 7 for n € N.

c)
)

(ii) For (k,1) € {A, B} x [0, 00), this is a straightforward consequence of the definition of v(
in (2.8-2.9), of the strict concavity of u +— uk(u,l) and of the continuity of u +— 0y, (uk(u,!
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for every [ € [0,00) (see Lemma B.1(v-vi)). For ¢+ vz(c) we do not have strict monotonicity
because u — 0, (u¢z(u)) is not proven to be continuous.

(iii) Similarly to what we did in (i), we consider (cp)neny a sequence in (0,00) such that
limy, 00 ¢ = € € (0,00), and we want to show that lim,_,oc vi(cn) = vii(ceo) for k €
{A,B} and | € [0,00) and lim, o v7(cn) = vr(cx). Again we argue by contradiction.
Suppose, for instance, that vz(c,) does not converge to vr(co). Then there exists an 1 > 0
such that vz(c,) < vz(es) — m or vz(cy) > vr(cso) + 1 along a subsequence. Suppose for
simplicity that vz(c,) > vz(coo)+n. Then 9, (upz(u))(vz(css)+n) > Oy (udz(u))(vz(cn)) > cp
for n € N. Let n — oo to obtain ) (upz(u))(vz(cso)) > 0y (udz(w))(vz(Coo) +1) > Coo, which
contradicts the definition of vz(cso) in (2.8-2.10). The proof is similar when we assume that
vz(cn) < vr(cs) —m for n € N.

(iv) This is a consequence of Lemma B.2, which implies that for all ¢ € (0,00) there exists a
lc € [0,00) such that va;(c) < 2+ for all I > I.. Moreover, (2.8-2.9) and the fact that (o, §) €
CONE entail that vg;(c) < vay(c) for I € [0,00), and therefore [;*(1+1)(pa + pp)(dl) < 0o

combined with the finitness of vz(c) imply D(p,v(c)) < co.

B.1.4 Proof of Lemma B.4

(i) The proof is similar to that of Lemma B.3(i), except for the fact that when we consider
O, — O as n — 0o in Vyy, we have (by Lemma C.3) the pointwise convergence of g, (u) =
ut)(On, u) 10 goo(u) = u) (O, u), but we do not have the pointwise convergence of dg,(u) to
0o (u) since g is not a priori differentiable. However, the strict concavity and the pointwise
convergence of g, towards go, gives us

0™ goo(u) > limsup 0~ gp(u) > lin_l)inf 0" gn(u) > 0% goo (u), (B.13)

n— o0
with which we can easily mimick the proof in Lemma B.3(i)

(ii) The proof is similar to that of Lemma B.3(ii), except for the fact that the monotonicity of
¢ — ue(c) is not proven to be strict because u +— 9(u (O, u)) is not proven to be continuous.

(iii) We mimick the proof of Lemma B.3(iii). Let (¢;)nen be a sequence in (0, 00) such that
lim,, o0 ¢ = ¢ € (0,00), and assume that there exists an > 0 such that ug(c,) > ue(coo)+
1 along a subsequence. Then 0, (uy(0,u))(ue(cx) + 1) > 0y (up(O,u))(ue(cn)) > ¢y for
n € N. Let n — oo to obtain 9; (u)(0,u))(ue(cx)) > 0, (up(0,u))(ue(cx) + 1) > Coo,
which contradicts the definition of ug(cso) in (6.8).

(iv) The proof is similar to that of Lemma B.3(iv). The role of Lemma B.2 is taken over by
Lemma C.8

C Properties of free energies

C.1 Free energy along a single linear interface

Also the free energy p — ¢%(u;,3) defined in Proposition 3.2 can be extended from Q N
[1,00) to [1,00), in such a way that u — u¢?(u;a, 3) is concave and continous on [, c0).
By concatenating trajectories, we can indeed check that u + u¢®(u;a, ) is concave on
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QN [1,00). Therefore it is Lipschitz on every compact subset of (1,00) and can be extended
to a concave and continuous function on (1,00). The continuity at g = 1 comes from the fact
that ¢ (1;a, 8) = 0 and lim,,; ¢7 (1) = 0, which is obtained by using Lemma E.1 below.

Lemma C.1 For all (o, ) € CONE:

(i) p > ugt (s o, B) is strictly increasing on [1,00) and lim,, o0 u¢® (15, B) =
(i) limy—so0 ¢ (13 v, B) = 0.

(iii)

Tim 9} (udz(u; a,5))(v) =0, (c.1)
lim 0 (ubz(u; @, B))(v) = O (uz(us o, B)(1) = oo. (c2)

Proof. (i) Clearly, ¢*(u;a, 8) > %(u,0) for p1 > 1. Therefore Lemma B.1(iv) implies that
limy, 00 pdt(u;a, B) = oo. Thus, the concavity of p +— p¢®(u; «, B) is sufficient to obtain
that it is strictly increasing on [1, 00).

(ii) See [6], Lemma 2.4.1(i).

(iii) To prove (C.1), we pick x € {4, B}* such that x(0) = A and x(—1) = B. We recall (3.37)
and consider © = (x,0,0,0,2) € Vyint, 42,0 such that [4(©) = [5(0) = 0. By Proposition
3.5, we have

up(O2,u) > upr(u), wu € [l,00), (C.3)
and (C.3), together with Lemma C.7 and the concavity and monotonicity of u — u¢z(u),
imply (C.1).

It remains to prove (C.2). For all (a, ) € CONE we know that u — wu¢r(u;a,p) is
continuous and strictly concave on [1,00). Therefore we necessarily have

im0 (ubr(w)(v) = 0; (udz(w) (1), ()

Moreover, since (u¢z(u))(1) = (uk(u,0))(1) = 0 and since ¢z(u) > K(u,0) for u > 1, we have
O (ugz(u))(1) > O (uik(u,0))(1) and (B.2) gives 9, (ur(u,0))(1) = oo, which completes the
proof of (C.2). O

Recall Claim 3.3, in which we assumed that pu +— u¢”(u;a, B) is strictly concave on [1,00).
The next lemma states that the convergence of the average quenched free energy gﬁ% to ¢* as
L — oo is uniform on Q N [1, c0).

Lemma C.2 For every («, 3) € CONE and € > 0 there exists an L. € N such that

() — oWl <e  VYpel+F, L>Le (C.5)

Proof. Similarly to what we did for Lemma A.1, the proof can be done by treating separately
the cases p large, moderate and small. We leave the details to the reader. U

C.2 Free energy in a single column

We can extend (©,u) — (0,u) from V%, to Vy; by using the variational formula in (3.45)
and by recalling that & and ¢* have been extended to H and [1,00) in Appendices A.3 and
C.1.
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Pick M € N and recall (3.15). Define a distance dj; on Vs as follows. Pick O1,05 € V),
abbreviate

©1 = (x1,All, bo,1,b1,1, 21), O3 = (x2,Ally, by 2, b1 2, x2), (C.6)
and define
P ,
Ay (©1,02) = Y DL ATL — AT| + [bos — bzl + brg = bral + |1 —aaf (C.7)
JEL

so that dy((©1,u1), (02, uz)) = max{|us — ua|, dps(01,03)} is a distance on V;;" for which
1% ]T/’[m is compact.

Lemmas C.3 and C.4 below are proven in Section C.3.
Lemma C.3 For every (M, m) € EIGH and («, ) € CONE,
(u, ©) = up(O0,u;a, f) (C.8)
is uniformly continuous on V]T/}m endowed with dy;.

Lemma C.4 For every © € Vyy, the function u — up(©,u) is continuous and strictly con-
cave on [tg,0).

Below we list several results that were used in Section 6. The proofs of these result are
given in Section C.3. Proposition C.5 below says that the free energy per column associated
with the Hamiltonian given by (5 — «)/2 times the time spent by the copolymer in the B-
solvent is a good aproximation of (0, u) when u — oo uniformly in © € V. This proof of
this proposition will be given in Section C.3.3.

Proposition C.5 For all (o, ) € CONE and all € > 0 there exists R. > 0 and L. € N such
that

<e O©cVy, u>tgVR., L>L,, (C.9)

6_
w(@,u)—ﬁlog Z eT(“)Ta

WGW@,’LL,L

where T'(m) = Z?jl 1{X(L7r¢71,m) = B} is the time spent by w in solvent B.

Lemmas C.6-C.8 below are consequences of Lemma C.4 and Proposition C.5. The proofs
of Lemmas C.6 and C.8 will be given in Sections C.3.4 and C.3.6. Lemma C.6 shows that
(O, u) is bounded from above uniformly in © € Vj; as u — co. Lemma C.7 identifies the
limit of 9, (u(©,u)) as u — oo for © € V). Lemma C.8 is the counterpart of Lemma C.6
for 0, (uy(©,w)) instead of (O, u).

Lemma C.6 For all (o, ) € CONE and € > 0 there exists a Cz > 0 such that

3 if © €V \ Vaint.s1m, u>teVC:,

_ . = C.10
BTOC +e if ©¢€ Vnint,B,l,Ma u>teVC;, ( )

(O, u) < {
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Lemma C.7 For all (o, 3) € CONE,

0 if ©€Vu\ Vaint,B,1,M,
lim ;) (uy(©,u))(v) = o . — Y C.11
i 9 (0, )(0) { o i 6T 1)
Lemma C.8 For all (a, ) € CONE and € > 0 there exists a V> > 0 such that
€ if ©€Vu\Vumt,1m, v=2teVV,
0, e < — C.12
w (wp(8, w))(v) < { E2te if ©€Vumpim, v>2eVVe. (C12)

C.3 Proof of Lemmas C.3—C.8
C.3.1 Proof of Lemma C.3

Pick (M, m) € EIGH. By the compactness of V}{}m, it suffices to show that (u,©) — w1 (O, u)
is continuous on V;}m. Let (O, un) = (Xn, All,, bon, b1n, upn) be the general term of an
infinite sequence that tends to (0, u) = (x, Al by, b1, u) in (V" dar). We want to show that
limy, 00 U (On, uy) = uth(©,u). By the definition of dys, we have x, = x and AIl,, = AIl
for n large enough. We assume that © € Vi, so that ©,, € Vi, for n large enough as well.
The case © € Vyint can be treated similarly.

Set
R ={(a,h,1) € [0,m] x [0,1] xR: h + |I| < a} (C.13)

and note that R, is a compact set. Let g: R, + [0,00) be defined as g(a, h,l) = ak(}, %)
if h > 0 and g(a,h,l) =0 if h = 0. The continuity of &, stated in Lemma B.1(i), ensures that
g is continuous on {(a, h,l) € Ry, : h > 0}. The continuity at all (a,0,l) € R, is obtained by

that k is bounded on H.

In the same spirit, we may set R}, = {(u, h) € [0,m] x [0,1]: h < wu} and define ¢': R, —
[0,00) as ¢'(u, h) = u¢* (%) for h > 0 and ¢'(u, h) = 0 for h = 0. With the help of Lemma C.1
we obtain the continuity of ¢’ on R}, by mimicking the proof of the continuity of g on R,.

Note that the variational formula in (3.45) can be rewriten as

u(0,u) = sup Q((h), (a),la,lB), (C.14)
(h),(a)eL(la,lB;5u)

with
Q((h), (a),1a,1B) = glaa, ha,la) + glap, hp,1p) +ap 5% + g (a®, h7), (C.15)

and with [4 and [p defined in (3.36). Note that £(l4, Ip; u) is compact, and that (h), (a) —
Q((h),(a),la,lp) is continuous on L(l4, lp; u) because g and ¢’ are continuous on R, and
R;n, respectively. Hence, the supremum in (C.14) is attained.

Pick ¢ > 0, and note that g and ¢’ are uniformly continuous on R,, and R!,, which
are compact sets. Hence there exists an 7. > 0 such that |g(a,h,l) — g(a’,h',l')| < & and
lg'(u,b) — ¢’ (W, V)| < e when (a,h,l),(d,h,l') € Ry, and (u,b), (u/,b') € R, are such that

la —d|,|h— 1|, [l =U|,|u— | and |b—¥| are bounded from above by 7.
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Since limy,—y00 (On, upn) = (O, u) we also have that lim,_,o bon = bo, limp o0 b1, = b1 and
limy, 00 4y, = w. Thus, lim,, o0 {4, = {4 and lim,, o I, = I, and therefore |14, — 14| < 7.,
llBn — IB| < ne and |u, — u| < ne for n > n. large enough.

For n € N, let (hy), (an) € L(Ian, IBn; un) be a maximizer of (C.14) at (0, u, ), and note

that, for n > n., we can choose (hy,), (@) € L(la, Ip; u) such that [@a, —aanl, |[aBn—aBn

)

, |%B,n — hp | and |l~z% — hZ| are bounded above by 7.. Consequently,

|a% - a%|7 ‘ﬁA,n - hA,n

Unw(@na Un) - u¢(97 u) < Q((hn)a (an)7 lA,n, lB,n) - Q((En)v (an)v la, lB) < 3e. (0'16)

We bound u)(0, u) — upt)(Oy, uy,) from above in a similar manner, and this suffices to obtain
the claim.

C.3.2 Proof of lemma C.4

The continuity is a straightforward consequence of Lemma C.3: simply fix © and let m — oo.
To prove the strict concavity, we note that the cases © € Vip pr and © € Vyine, i can be
treated similarly. We will therefore focus on © € Viy; ar-

For [ e R, let
Ny ={(a,h) €]0,00) x [0,1]: a > h+ ||}, ./\/l+ = {(a,h) € Ni: h > 0}, (C.17)

and let g;: N — [0,00) be defined as g;(a,h) = aR(%,%) for h > 0 and g;(a,h) = 0 for
h = 0. For [ # 0, the strict concavity of (u,l) — uk(u,l) on H, stated in Lemma B.1(i),
immediately yields that g; is strictly concave on ./\/l+ and concave on N;. Consequently, for all
(a1,h1) € Nj" and (a2, he) € Nj\N;", g is strictly concave on the segment [(u1, k1), (u2, ha)].

Define also g: Ny = [0,00) as g(a,h) = a¢* (%) for h > 0 and g(a,h) = 0 for h = 0.
The strict concavity of u + u¢®(u) and of u +— uf&(u,0) on [1,00), stated in Claim 3.3 and
in Lemma B.1, immediately yield that g and go are concave on Ny and that, for A > 0,
a — g(a,h) and a — go(a, h) are strictly concave on [h, c0)

Similarly to what we did in (C.14), we can rewrite the variational formula in (3.45) as

uh(0,u) = sup Q((h), (a)) (C.18)

(h),(a)eL(la,lB;u)

with

Q((h), (a)) = gi,(aa, ha) + gip(ap, hp) + ap 55% + §(u — as — ap,1 — ha — hg), (C.19)

and the supremum in (C.18) is attained. In what follows we will restrict the proof to the
case l4,lp > 0 for the following reason. If [ = 0 for k € {A, B}, then the inequality go < g
and the concavity of g ensure that there exists a (h), (a) € L(l4, Ip; uv) maximizing (C.18)
and satisfying hy = ax = 0, which allows to copy the proof below after removing the k-th
coordinate in (h), (a).

Next, we show that if (h),(a) € L(la, Ip; u) realizes the maximum in (C.18), then
(h),(a) & L(la, Ip; u) with

L(lg, lg;u) = La(la, Ip; u) U LB(Ia, Ig; u) UL (La, I; u) (C.20)
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and

La(la, lg: w) ={(h),(a) € L(l4, I;u): ha=0 and aq > la},
Lp(la, Ip; u) = {(h),(a) € L(la, Ip; u): hg =0 and ap > Ip},
L1, 1g; u) = {(h), (a) € L(I4, Ip; u): hy =0 and a; > 0}. (C.21)

Assume that (h), (a) € L(l4, lg; u), and that hy > 0 or k¥ > 0. For instance, (h),(a) €
L1(14, Ip; u) and hy > 0. Then, by Lemma B.1(iv), Q strictly increases when a4 is replaced
by aa+a” and a” by 0. This contradicts the fact that (h), () is a maximizer. Next, if (h), (a) €
L(la, lp; u) and hy = hT = 0, then hp = 1, and the first case is (h), (a) € La(la, IB; u),
while the second case is (h), (a) € L(14, I; u). In the second case, as before, we replace a4
by a4 +a’ and a by 0, which does not change @ but yields that a4 > 4 and therefore brings
us back to the first case. In this first case, we are left with an expression of the form

QU(h), (@) = gip (an, 1) + ap 252 (C.22)

with hq = h? =0 and a4 > l4. Thus, if we can show that there exists an x € (0, 1) such that

giy(aa, )+ giz(ap, 1 —x) > giz(ap, 1), (C.23)

then we can claim that (h),(a) is not a maximizer of (C.18) and the proof for (h),(a) ¢
L(l4, Ip; u) will be complete.

To that end, we recall (3.4), which allows us to rewrite the left-hand side in (C.23) as
)+a3ﬁ(?—g,%) +ap 55~ (C.24)

gia(aa,x) + gy (ap, 1 —x) = aa w(F4, &

We recall [5], Lemma 2.1.1, which claims that & is defined on DOM = {(a,b): a > 1+b,b > 0},
is analytic on the interior of DOM and is continuous on DOM. Moreover, in the proof of this
lemma, an expression for 0y x(a,b) is provided, which is valid on the interior of DOM. From
this expression we can easily check that if a > 1, then limy_,g 9y k(a,b) = oo. Therefore, by
the continuity of k on (aa/l4,0) with a4/la > 1 we can assert that the derivative with respect
to x of the left-hand side in (C.24) at # = 0 is infinite, and therefore there exists an x > 0
such that (C.23) is satisfied.

It remains to prove the strict concavity of u — w)(0, u) with © € Vip ar. Pick ug > ug >
te, and let (h1), (a1) € L(la, lp; u1) and (ha), (a2) € L(la, Ip; uz) be maximizers of (C.18)
for uy and wus, respectively. We can write

(al)v (hl) - (aA 1, (IB 1, al)) (hA 1, hB 1, hl)
(a2)7(h2) = (CLA 270’B 27a2))(hA2)hB 27h2) (025)

Thus, (““LT“Q),(@) € L(la, Ip; WTW) and, with the help of the concavity of g;,, 91,9

proven above, we can write
iz (0, M) > Q(U592), (B5h2)) > §(ur (0, ur) + up (O, up)). (C.26)

At this stage, we assume that the right-most inequality in (C.26) is an equality and show that
this leads to a contradiction, after which Lemma C.4 will be proven.
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We have proven above that (a1), (h1) ¢ L(l4, I; u1) and (az), (ho) & L(14, lp; ug). Thus,
we can use (C.19) and the strict concavity of g;,, g, on N, :,/\/;}; and the concavity of g on
Ny to conclude that necessarily

(aa1,hat) = (aa2,ha2) and (ap;1,hp1) = (aB2,hp2). (C.27)

As a consequence, we recall that u; > us and we can write

u%:ul —aA1 —ap2 > Uy —aA2 — GB2 :u%ZO, (C.28)
and therefore, since (a1), (h1) ¢ L£Z(l4, I; u1), it follows that hT > 0 such that (recall (C.27))

hf=1—ha1—hp1=1—has—hps=h3>0. (C.29)
Hence we can use the strict concavity of a — g(a, h{) to conclude that u% = u% , which clearly
contradicts (C.28).
C.3.3 Proof of Proposition C.5

The proof is performed with the help of Lemma E.1 stated in section E. For this reason we
use some notations introduced in Lemma E.1.

We pick v, > 0 (which will be specified later), and we let K € N be the integer in
Lemma E.1 associated with «,8,1,7. For © € Vy, u > tg and 71 € Weo .1, we let Ny
be the number of excursions of 7 in solvent B in columns of type ©. We further let also
(Ir) = (Iz(1),...,Iz(Ny)) be the sequence of consecutive intervals in {1,...,uL} on which 7
makes these N excursions in B, so that (I;) € &, n, and T'(7) = vaz”l |1 (7)].

Pick © € Vj, u > to and partition We 1, into two parts:

Vu@L+'y ={reWeoyr: T(r)>~yulL} and Vu I =

={reWeur: T(r) <~uL}. (C.30)
There exists a ¢ > 0, depending on «, 8 only, such that
|HD* (m) — T(m)E52| < eI (r) < cyul, meVop.. (C.31)

Since any excursion in solvent B requires at least 1 horizontal steps or L vertical steps, we
have that Ny < u+ L for m € We 4, ,- Since u + L < uL/K as soon as u, L > 2K it follows
that

(1) e UV RAT € s TU) > yul}, L>2R, u>teV2R, ne Vo, (C32)

and therefore w € QZZIA( implies that |Hg’w(7r) - T(ﬂ')ﬁ%‘ﬂ < nuL for 7 € Vu@L+7 Conse-

quently, for w € Qvff(, we have
uls,

|HP# () = T(m)252| < uL(n+ey), © € Var, u>2KVte, L>2K, m€ We,r. (C.33)

Rewrite

V(0 u) = [ log Y eH?’“w)\szﬁ]+p((ngﬁ)0> A, (C.34)

TI'EW@ u,L
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where A is an error term given by

A=E[Ylog Y IO|Q )] ~E[Llog Y MW@ ] (C35)

TEWS u,L TEWo,u,L

By (3.34), we obtain that |A| < 2Cy;.

To conclude, we set n = ¢/3, v = ¢/3c. By Lemma E.1, there exists an L. € N such that,
for u > 2K Vtg and L > L., we have ]P)((ngl?)c) < ¢/6 Cy. Thus, we can use (C.33) and

(C.34) to complete the proof of Proposition C.5.

C.3.4 Proof of Lemma C.6

Pick £ > 0. By applying Proposition C.5 with /2, we see that there exists an R, /5 > 0 such
that

T(mlse | . S
¥(O, u)<hILnsup log Y W2 45 ©eVy, u>teVR.p. (C.36)

WGW@’U’L

We first consider the case © € Vs \ Viint, 1.0 Since (o, 3) € CONE, we can use (C.36) to
obtain

»(O,u) <lim sup u>teV R (C.37)
L—

Thus, (C.37) and Lemma A.2 imply that there exists a C: > R /5 such that (0, u) < & when
u>teoVC.and © € V) \Vnim’B’l,M. The case © € Vnint, B, 1, M can be treated similarly
after noticing that T'(m) = uL for 7 € We .1, and © € Vyint 51

C.3.5 Proof of Lemma C.7

The proof is a straightforward consequence of the strict concavity of u + u) (0, u) for © € Vyy,
Proposition C.5 and Lemma A.2.

C.3.6 Proof of Lemma C.8

Pick € > 0. The proof will be complete once we show the following two properties:

(1) There exists a T > 0 such that

O (i (O, u)) (2to) < € if © €V \ Vaint,B1,m: te > Tk, (C.38)
u (Y U ©) = B%a +¢e if B¢ Vnint,B,l,M: to > 1. ’
(2) For all T > 0 there exists a V. 7 > 0 such that
5 o € if ©€Vy\Vampim:te<T, v>teVV.r,
_ < 4
u (up (6, u))(v) < ﬁ_ +e if ©€Vim,im:te <T, v>teVV.r.
(C.39)
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We prove (C.39) for the case © € Vs \Vnint,B,LM (the case © € Vying, B,1,m can be treated
similarly). To that aim, we assume that there exists a sequence (0, )nen in Vas \ Vaint.B.1,M
such that tg, < T for n € N and a sequence (up)nen such that u, > te, for n € N,
lim,,— o0 Up, = 00 and

0, (u(On,u))(uy,) >, mneN. (C.40)
By concavity of u — u)(0,,u) for n € N (see Lemma C.4), we have
UnY(Op, up) — te, V(On, te,) > ¢ (u, —te,), neN. (C.41)

Therefore, the uniform bound on free energies in (3.34) and the inequality tg, < T allow us

to rewrite (C.41) as
T(C, €
Y(Op,up) > € — M, neN, (C.42)
Un
which contradicts Lemma C.6 because lim,,_yoo Uy, = 00.
It remains to prove (C.38). This is done in a similar manner for the case © € Vs \
Vnint, B1,M (the case © € Vyine B,1,m can again be treated similarly), by assuming that there

exists a sequence (O, )nen in Vas \ Vaint, 51,0 such that lim, . te, = 0o and

0, (up(On,u))(2te,) >, neN. (C.43)
Thus, similarly as in (C.41-C.42), the concavity of u +— u1)(0,,u) and (C.43) give
Op,t
¢(@n, 2t@n) > % + ¢(2®"), n € N. (044)

At this point we use Proposition C.5 to assert that there exist R, > 0 and L. € N such that,
for n satisfying tg, > R. and L > L., we have

B—a
(O, te,) > ﬁlog Z ARG £, (C.45)

WEW@)’t@n L

B-a
¥(On, 2te,) < 555 log S TS

m€Wen, 2tg,, L

L)

By using (C.44-C.45), we obtain that, for tg, > R. and L > L.,

B—a B—a
T(m) 552 T(m) 552
ztelnL log Z fM7 > Qt@InL log Z R 5 (C.46)
T€Wen 2tg, L Te€We tg, L
uses some key ingredients that are provided which we can rewrite as
sia T 1081 We, 26, 1| + 215 min{T (), m € We, 216, L} (C.47)

2 ‘hfﬂ@;na[/ min{T(ﬂ'), m™e W®”’t9n’L} + %

Since ©,, € Vs \ant,B,l,M, there exist m1 € Weo,, 1o, .1 and ma € We,, 2t 1 such that

T(my) = 1(©n) = min{T(7), ™ € We,, te..L} (C.48)
T(m2) = I1B(©n) = min{T(7), ™ € We, 210, ,L}-

Thus, for te, > R. and L > L., the inequality in (C.47) becomes
m log |W®n,2t@n,L| > %, (C.49)

which obviously contradicts Lemma A.2.
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D Concentration of measure

Let S be a finite set and let (Xj,.A;, 1i)ies be a family of probability spaces. Consider the
product space X = [[;csXi endowed with the product o-field A = ®;es.A; and with the
product probability measure p = ®;cst;-

Theorem D.1 (Talagrand [9]) Let f: X — R be integrable with respect to (A, u) and, for
i €8, let d; > 0 be such that |f(x) — f(y)| < d; when z,y € X differ in the i-th coordinate
only. Let D=3, s d?. Then, for all € > 0,

2

m {:c €X: ’f(x) - /fdu‘ > s} < 2795, (D.1)

The following corollary of Theorem D.1 was used several times in the paper. Let («, ) €
CONE and let (&;);en be an i.i.d. sequence of Bernouilli trials taking the values —« and § with
probability 3 each. Let l € N, T: {(z,y) € Z*> x Z?: |[x —y| = 1} = {0,1} and T C W) (recall
(1.1)). Let F}: [~a,a]' — R be such that

Fi(xq,...,x) = log Z iz @i T((mim1m)) (D.2)
mell

For all 7,y € [~a, a]' that differ in one coordinate only we have |Fj(z)—Fj(y)| < 2. Therefore
we can use Theorem D.1 with S = {1,...,1}, X; = [~a,a] and p; = $(6_o +6p) for alli € S,
and D = 40?1, to obtain that there exist C7,Cy > 0 such that, for every [ € N, I' € W, and
T: {(z,y) € Z®> x Z2: |x — y| = 1} — {0,1},

Can?

P(|E(£la . 7£m) _E(F’l(glv . 7£m))| > 77) g Cle_ !

(D.3)

E Large deviation estimate

Let (&)ien be an i.i.d. sequence of Bernouilli trials taking values § and —«a with probability

% each. For N < n € N, denote by &, n the set of all ordered sequences of N disjoint and

non-empty intervals included in {1,...,n}, i.e.,
Enn ={Ij)1i<jen C{1,...,n}: [; = {minJj,... max [;} V1 < j < N,
maxl; <minlj V1<j<N-land [; #0V1<j< N} (E.1)

For (I) e &N, let T'(I) = Zjvzl |1;| be the cumulative length of the intervals making up (I).

Pick v > 0 and K € N, and denote by EJK the set of those (I) in Uj<n<(n/K) En,n that have
a cumulative length larger than yn, i.e.,

Elx = UNEA) € Ean: T) > An). (E.2)
Next, for n > 0 set
N
Ok = D> &< (BT (E:3)



Lemma E.1 For all (o, 3) € CONE, v > 0 and 1 > 0 there exists an K €N such that, for
all K > K,

3 Y51 ¢\
Jim P((Q, %)) = 0. (E.4)
Proof. An application of Cramér’s theorem for i.i.d. random variables gives that there

exists a ¢, > 0 such that, for every (I) € SAT:K,

N
Pg(ZZ& > (’B_Ta —+ 17) T([)> < e—ch(I) < e—cnvn, (E5)

j=liel;
where we use that T'(I) > yn for every (I) € 577 - Therefore
Pe((Q)K)) < 1€ gele, (E.6)
and it remains to bound \fj’g x| as

n/K n/K

é?gK = Z {() €&un:T) = yn}| < Z (;\J (E.7)

N=1 N=1
where we use that choosing (I) € &, y amounts to choosing in {1,...,n} the end points of
the N disjoint intervals. Thus, the right-hand side of (E.7) is at most (n/K) (2n7K)’ which

for K large enough is o(e“M™) as n — oc. O

F On the maximizers of the slope-based variational formula

In this appendix we prove that the supremum of the variational formula in (1.17) is attained at
some p € R,y and for a unique v € B. For ease of notation we suppress the M, p-dependence

of f(a, B; M, p).
Recall (6.19) and for p € (0,1) and (a, 3) € CONE, let O, 10,5 be the subset of R s
containing those p that maximize the variational formula in (1.17), i.e.,

b5 0 B) = sup Y20
fle, B) = h(p; o, B) = U 5 5,0) for p € Op rt,a.5- (F.1)
Recall (2.8-2.10) and set
5 = v(f (0, B). (F2)

Theorem F.1 For allp € (0,1) and («, 3) € CONE the following hold:

(1) The set Op prop s non-empty.

(2) For all p € Op prap and all v € B satisfying f(a, B) = N(p,v)/D(p,v), v =10 for p-a.e.
(k,1) e {A,B} x [0,00) ork =1T.

Proof. The following proposition will be proven in Section F.1 below and tells us that the
maximum of the old variational formula in (2.15) is attained for some p € R, . Recall the
definition of g(p; c, B) for p € R, s in (6.9).

84



Theorem F.2 For (a,3) € CONE, there exists a p € Rpar such that f(a, 5) = g(p; o, B).

We give the proof of Theorem F.1 subject to Theorem F.2. To that aim, we pick (a, 8) €
CONE and note that, by Theorem F.2, there exists a p € R, ar such that f(«, 8) = g(p; a, ).
In what follows, we suppress the («a, §)-dependence of g(p; a, ).

Since f(a, B) = g(p), (3.60) ensures that g(p) > 0, and by applying Lemma 6.1 we obtain

that
N(p,u(f(, B)))
D(p,u(f(a,B)))

Apply Lemma 6.5, which ensures that there exist a p € 7_2p and a v € F such that
N(p
D(p, (f( ﬁ))) D(p, )
Then h(p) > 0, and we use Lemma 6.3, which tells us that
N(pv) _ N(p,u(h(p)
D(p,v) = D(p,v(h(p)))
Now (F.3-F.5) and the variational formula in (1.17) are sufficient to complete the proof of (1).
The proof of (2) is a straightforward consequence of Lemma 6.1. O

fla,B) = (F.3)

(F.5)

F.1 Proof of Theorem F.2

We give the proof of Theorem F.2 subject to the following lemma, which will be proven in
Section F.1.1 below.

Lemma F.3 For allt >0 and u € BV]M there exists an mo € N such that, for all p € R, m
and v € By, = satisfying v < u and N(p,v)/D(p,v) > t, there exists a p € R;”?V[ such that
N(5,0)/D(pv) > N(p,v)/D(p,v).

Let (pn)nen in Rp ar be such that n +— g(p,; o, ) is increasing with lim, o g(pn; @, B) =
f(a, B). Obviously we can choose (pn)nen such that g(pn; o, 5) > f(a,5)/2 for all n € N.
Thus, with the help of Lemma 6.1, we obtain

N(pn, u(g(pn)))
96ui ) = 5o utglon)) "€ (F6)

Apply Lemma F.3 to see that there exists an mg € N such that for all n € N there exists an
Pn € R M such that

N(pn, u(g(pn))) o N(pn,ulg(pn)))

D(pn. u(g(pn))) = Dlpn-ulg(pn)’ (F.7)
A straightforward consequence of (F.7) is that
N(pw,ulg(pn))) _ (.
Jim TSI = f(0.) ()

Moreover, p, € My (Vy;") for all n > ng, and since V" is compact we have that j,, converges
weakly to po € Rpm})\/[ along a subsequence. Lemma B.4 implies that n — u(g(p,)) is non-

. . . . . 35Mo . . .
increasing and converges pointwise to u(f(a, 3)) as n — oo. Since V,,° is compact, Dini’s
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Theorem tells us that the convergence of u(g(py)) to u(f(a, 8)) is uniform on V,;°. Therefore,
using the uniform continuity of (u, ©) — u(0,u) (see Lemma C.3), we obtain

¥(©
N(poo, u(f (e, B)))
D(poo, u(f(, 8)))’

fla, B) = (F.9)

which completes the proof of Theorem F.2.

F.1.1 Proof of Lemma F.3

First, we state and prove Claim F.4 below, which will be needed to prove Lemma F.3. Pick
m > M + 2, and note that for © = (x, All, by, b1, ) € Vi \ V1 we necessarily have zg = 2.
Define T,,,: Vr — Vj\m/f as

o) if © € Vy,

©) { O = (x, All by, b1,1) if © = (x, Al bo, b1,2) € Vs \ Vyy, (F.10)

Claim F.4 For allp€ Ry and m € N:m > M +2, p o T, € Rym

Proof. First note that T),,: Vs — Vﬁ is continuous with respect to the djs-distance. Next,
pick p € Ry a. By the definition of Ry as, there exists a strictly increasing sequence (Nj)ren
and (II )]EN()? (b;?)jeNo, (:U;?)jeNO such that p = limy_,o piv, (2, TIF, B% 2%). The continuity of
T 1mpl1eb that
po Tl = lim py, (Q,11F, 0%, 2F) o T2, (F.11)
k—o00

and we can easily check that
pn, (Q,TTF 8 2F) o Tt = py (Q,T1F, b, 2F), (F.12)

where for j, k € Ny we define

h ahif (Q(, ), AIIE ok b 3R) € Vi, (F13)
J7 ) 1 otherwise. ’
Consequently, p o Tt € Ry, ur. O

We resume the proof of Lemma F.3. Pick t > 0, p € Ry m, u € BVM and v € BVM
satisfying v < w and N(p,v)/D(p,v) > t. Pick m € N: m > M + 2, whose value will be
specified later, and set p,, = p o T,,!, which belongs to Rp,m by Claim F.4. Write

A+tB

_ /
D(pm.v) D / G'(t)dt with G(t) = o1 iD (F.14)
with
A= [ vey(0,ve)p(d®)  B= / g ¥(0,vg) — vet(©,ve) p(dO)  (F.15)
127 Vaur\Vu
C= ve p(dO) D= vg — ve p(dO). (F.16)
Vi Vu\Viy
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Note that the sign of the derivative G’(t) is constant and equal to the sign of

4 A Y Vx o~
B—=D= A%\ _ 5 i | .
C YV \Viy e [C’ ( v@) P(0,ve) + v zp(@,v@) p(dO) (F.17)

Therefore Lemma F.3 will be proven once we check that for m large enough the right-hand
side of (F.17) is strictly positive, uniformly in v < w. To that aim, we recall Lemma C.6,
which tells us that (0, ve) < t/2 for every © € Vy;\ V}, provided m is chosen large enough
(because vg > tg > m), and we recall (3.34), which tells us that w((:),vé) < Cyt(a) for
© €V \ Vyy. We further note that

vg < max{ue: ORS V%H} < oo forevery © € Vyy, (F.18)

which, together with the fact that % = N(p,v)/D(p,v) >t > 0 and vg > te > m for
© € Vi \ V), ensures that for m large enough the right-hand side of (F.17) is strictly
positive, uniformly in v < u. This completes the proof of Lemma F.3.

G Uniqueness of the maximizers of the variational formula

In this appendix we first prove, with the help of Lemma G.2, that for © € Vs and u > tg the
variational formula in Proposition 3.5 has unique maximizers. This uniqueness implies that,
for a given column type and a given time spent in the column, the copolymer has a unique
way to move through the column. We next use this uniqueness to show, with the help of
Proposition G.2, that for u € By; = the maximizers of (3.45) are Borel functions of © € V.

Recall (3.57) and pick h € €. Set

Uh) = {(rae,ro,m7.0)ocy,, € (10,00)*): rpe > 1+ fﬁ% VEk e {A B} VO €V,
rre > 1Yk e {A B} VO € Vy,
© 1o Borel Vk € {A, B, I}}, (G.1)

ko

where we recall that 7
k,©

= 0 by convention when Iy g = hy e = 0.
Proposition G.1 For allu € By;  there exist h € € and r € U(h) such that, for all © € Vu,

ue Y(0,ue) = haeraek(rae, }lf%;) (G.2)
+ hperpe [F(rse ;lg%) + 289 + hrerre ¢zlrre),
and
haerae +hperse+hrerre =ue. (G.3)
Proof. Forl e R, let
Ni={(a,h) € [0,00) x [0,1]: a > h+ [I|}, N ={(a,h) € Ni: h > 0}, (G.4)

let g;: Nj — [0,00) be defined as g;(a, h) = a i (4, %) for h > 0 and g;(a,h) = 0 for h =0, and
let g: No — [0,00) be defined as g(a,h) = a¢z(%) for h > 0 and g(a,h) = 0 for h = 0. We
can rewrite (3.45) as

up(©, s, B) = sup  fu,,((R), (a)] (G.5)
(h),(@)€L(®:u)
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with
Frads[(h),(@)] = g (aa, ha) + gy (as, hp) + ap 5% + §(az, hr). (G-6)

Lemma G.2 shows that, subject to some additional conditions, the maximizer in the right-
hand side of (G.5) is unique. This allows us to prove the continuity of this maximizer as a
function of © on each subset of a finite partition of Vs, which implies the Borel measurability
of this maximizer and completes the proof of Proposition G.1.

Lemma G.2 For all © € V) and u > te there exists a unique (h), (a) € L(O;u) satisfying:

(1) wip(©,u; o, B) = fi,15((h), (@)].

(i1) hy, > 0 if ar, > 0 for k € {A,B,Z}.

(iii) ax = hi, = 0 if [, = 0 for © € Vine. i and k € {A, B}.
() ay, = hi =0 Zf[k =0 for © € Vnint,k,Q,M and k € {A, B}.

Proof. We prove existence and uniqueness.

Existence. The existence of a (h1), (a1) € £(O;u) satisfying (i) is ensured by the continuity
of fi,.1, and the compactness of £(©;u). Assume that © € Vine ar, la = 0 and (h1,4,a1,4) #
(0,0). Then

go(ar,a,hia) + glarz, hiz) < glaia, hia) + glar,z, haz) (G.7)
} hy ath _
S 2g(a1,A-2Hl1,1’ 1,A'2f' 1,1') = g(aLA + al,I; hl,A + hLl—)7

where we use the inequality g9 < g and the concavity of g. Thus, by setting (ha), (a2) =
(0,h1,B,h1,4 + h17),(0,a1,B,a1,4 + a1.7), we obtain that (ha), (a2) € L(O;u), satisfies (iii)
and

flA,lB((hQ)v (aQ)) > flA,lB((hl)v (al))v (GS)

which implies that (hg), (a2) also satisfies (i). The case © € Vint ar, g = 0 and the case
O e Vninka,M, l,. =0, k € {A, B}, can be treated similarly, to conclude that there exist
(h), (a) € L(O;u) satisfying (i), (ili-iv). We will show that (ii) follows from these as well. The
proof will be given for the case © € Vint, m and l4,lp > 0, since (iii) already indicates that
hig =ap =0if ly =0 for k € {A, B} and © € Viyy pr. The case © € Vyine mr can be treated
similarly.

In the proof of Lemma C.4 we showed that (h), (a) € £(©, u) maximizing (G.5) necessarily
satisfies hy > 0 if ap > [, for k € {A, B} and hz > 0 if az > 0. Thus, we only need to exclude
the cases hy = 0 and ap = I, > 0 for k € {A, B}. We will therefore assume that hp = 0
and ag = lpg, and prove that this leads to a contradiction. The case hy = 0 and ag = l4
is easier to deal with. We finally assume that az > hz > 0 (the case ar = hz being easier).
We pick ¢ > 1 and x > 0 small enough to ensure that az — cx > hz — x > 0, and we set
(h)z, (a)z = (ha,z,hz — x), (aa,lp + cx,ar — cx). The proof will be complete once we show
that for  small enough the quantity

fiats(W)es (@)2) = fratn (), (@) = g1 (lp + cx.0) = Vot (55%) - (G9)

is strictly positive with V,, = g(az, hz) — glaz — cx, hz — ).

At this stage, we note that u — p¢z(u) is concave on [1,00), and therefore is Lipshitz on
any interval [r,¢] with r > 1. Since az/hz > 0, there exists a C' > 0, depending on (az, hz)
only, such that V,, < Cx for x small enough. Therefore (G.9) becomes

flA,lB((h)m (a)df) - flA,lB((h)7 (CL)) > dig (lB + C:L’,JZ) - (C +c B%a) T (GlO)
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for x small enough. By the concavity of g;,, and since g;,(Ip + cz,0) = 0, we can write
gl + cx,x) > 20201, (lp + cx,x) for x > 0. By the definition of g;,, and with (3.4), we
obtain that

azng(lB—i-Cx,:L’) = (1+%)82R(1+%,%). (G.11)
We now recall [5], Lemma 2.1.1, which claims that & is defined on DOM = {(a,b): a > 1+b,b >
0} and is analytic on the interior of DOM. Moreover, in the proof of this lemma, an expression
for Oy k(a, b) is provided that is valid on the interior of DOM. From this expression, and since
¢ > 1, we can check that limg o 026(1 + ¢s, s) = oo, which suffices to conclude that the right-
hand side of (G.9) is strictly positive for x small enough. This completes the proof of the
existence in Lemma G.2.

Uniqueness. The uniqueness of (h), (a) is a straightforward consequence of the strict concav-
ity of g;, and g;, when l4 # 0 and Ip # 0 and of the concavity of gy and g. We will not write
out the proof in detail, because it requires us to distinguish between the cases © € Vim, M and
© € Vint M, between I, = 0 and I, # 0, k € {4, B}, and also between zg = 1 and zg = 2.
The latter distinctions are tedious, but no technical diffulties arise. ]

We resume the proof of Proposition G.1. We pick u € By; , and for each © € VY we apply

Lemma G.2 at ©,ug, to obtain a (h)e, (@d)e € L(O;ue) satisfying (i-iv). We set (h): © €
Vi — he and (a): © € Vy; — ae, and we recall (3.57). If we can show that © — (h)e
is Borel, then it follows that (h) € &, because (ii) and the fact that (h)e, (@)e € L(O;ue)
for © € V), ensure that the other conditions required to belong to £ are fulfilled by (h).
Moreover, if we can we show that © — (a)g is Borel, then the proof of Proposition G.1 will

be complete, because we can set

(F4(©),75(0),72(0)) = (gggg;, e, hf;gg;) 0 €V, (G.12)

with the convention 7(©) = 1 when ax(0) = hp(©) = 0 for k € {A, B,T}, after which

(7) € U(h) and (h), (7) satisfy (G.2) and (G.3).
To complete the proof it remains to show that © — (h)e, (@)e is Borel. Recall the partition

Vur = Vine,mr U (U p)e(1,23 {4, B} Vint kM) » (G.13)

and partition these five subsets in the right-hand side of (G.13) into smaller subsets depending
on the values taken by 4 and [g. For Vim’ M, this gives

vint,M :{@ S th,M: lA,lB > 0} U {@ S th’M: lA > O,ZB = 0} (G.14)
U{@ S Vint,Mi ly=0,lg > 0} U {@ € Vint,M: la=I1lp= 0},

and on each of these subsets the fact that (h)e,(a@)e are the unique elements in £(O;ug)
satisfying (i-iv) implies that © — (h)e, (@)e are continuous and therefore Borel. Since each
subsets in the right-hand side of (G.14) belongs to the Borel o-field generated by dj; (recall
(C.7)), we can conclude that © + (h)e, (@)e are Borel on Vy;. This completes the proof of

Proposition G.1. O
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