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ISSN 1389-2355

1



Phase diagram for a copolymer in a micro-emulsion

F. den Hollander 1
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Abstract

In this paper we study a model describing a copolymer in a micro-emulsion. The
copolymer consists of a random concatenation of hydrophobic and hydrophilic monomers,
the micro-emulsion consists of large blocks of oil and water arranged in a percolation-type
fashion. The interaction Hamiltonian assigns energy −α to hydrophobic monomers in oil
and energy −β to hydrophilic monomers in water, where α, β are parameters that without
loss of generality are taken to lie in the cone {(α, β) ∈ R2 : α ≥ |β|}. Depending on
the values of these parameters, the copolymer either stays close to the oil-water interface
(localization) or wanders off into the oil and/or the water (delocalization). We derive two
variational formulas for the quenched free energy per monomer, one that is “column-based”
and one that is “slope-based”. Using these variational formulas we identify the phase
diagram in the (α, β)-cone. There are two regimes: supercritical (the oil blocks percolate)
and subcritical (the oil blocks do not percolate). The supercritical and the subcritical
phase diagram each have two localized phases and two delocalized phases, separated by
four critical curves meeting at a quadruple critical point. The different phases correspond
to the different ways in which the copolymer can move through the micro-emulsion.
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0 Outline

In Section 1, we introduce the model and present a variational formula for the quenched free
energy per monomer, which we refer to as the slope-based variational formula, involving the
fractions of time the copolymer moves at a given slope in the interior of the two solvents and
the fraction of time it moves along the interfaces between the two solvents. This variational
formula is the corner stone of our analysis. In Section 2, we identify the phase diagram. There
are two regimes: supercritical (the oil blocks percolate) and subcritical (the oil blocks do not
percolate). We obtain the general structure of the phase diagram, and state a number of
properties that exhibit the fine structure of the phase diagram as well. The latter come in the
form of theorems, hypotheses and conjectures.

In Section 3, we give a precise definition of the various ingredients that are necessary
to state the slope-based variational formula, including various auxiliary quantities that are
needed for its proof. Among these is the quenched free energy per monomer of the copolymer
crossing a block column of a given type, whose existence and variational characterization are
given in Section 4. In Section 5, we derive an auxiliary variational formula for the quenched
free energy per monomer, which we refer to as the column-based variational formula, involving
both the free energy per monomer and the fraction of time spent inside single columns of a
given type, summed over the possible types. In Section 6, we use the column-based variational
formula to prove the slope-based variational formula. In Section 7 we use the slope-based
variational formula to prove our results for the phase diagram.

Appendices A–G collect several technical results that are needed along the way.

For more background on random polymers with disorder we refer the reader to the mono-
graphs by Giacomin [2] and den Hollander [4], and to the overview paper by Caravenna, den
Hollander and Pétrélis [1].

1 Model and slope-based variational formula

In Section 1.1 we define the model, In Section 1.2 we state the slope-based variational formula.

1.1 Model

To build our model, we distinguish between three scales: (1) the microscopic scale associated
with the size of the monomers in the copolymer (= 1, by convention); (2) the mesoscopic scale
associated with the size of the droplets in the micro-emulsion (Ln � 1); (3) the macroscopic
scale associated with the size of the copolymer (n� Ln).

Copolymer configurations. Pick n ∈ N and let Wn be the set of n-step directed self-
avoiding paths starting at the origin and being allowed to move upwards, downwards and to
the right, i.e.,

Wn =
{
π = (πi)

n
i=0 ∈ (N0 × Z)n+1 : π0 = (0, 1),

πi+1 − πi ∈ {(1, 0), (0, 1), (0,−1)} ∀ 0 ≤ i < n, πi 6= πj ∀ 0 ≤ i < j ≤ n
}
. (1.1)

The copolymer is associated with the path π. The i-th monomer is associated with the bond
(πi−1, πi). The starting point π0 is chosen to be (0, 1) for convenience.
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Figure 1: Microscopic disorder ω in the copolymer. Dashed bonds represent monomers of
type A (hydrophobic), drawn bonds represent monomers of type B (hydrophilic).

Microscopic disorder in the copolymer. Each monomer is randomly labelled A (hy-
drophobic) or B (hydrophilic), with probability 1

2 each, independently for different monomers.
The resulting labelling is denoted by

ω = {ωi : i ∈ N} ∈ {A,B}N (1.2)

and represents the randomness of the copolymer, i.e., ωi = A and ωi = B mean that the i-th
monomer is of type A, respectively, of type B (see Fig. 1). We denote by Pω the law of the
microscopic disorder.

L 

L 

n

n

Figure 2: Mesoscopic disorder Ω in the micro-emulsion. Light shaded blocks represent droplets
of type A (oil), dark shaded blocks represent droplets of type B (water). Drawn is also the
copolymer, but without an indication of the microscopic disorder ω that is attached to it.

Mesoscopic disorder in the micro-emulsion. Fix p ∈ (0, 1) and Ln ∈ N. Partition
(0,∞)× R into square blocks of size Ln:

(0,∞)× R =
⋃

x∈N0×Z
ΛLn(x), ΛLn(x) = xLn + (0, Ln]2. (1.3)

Each block is randomly labelled A (oil) or B (water), with probability p, respectively, 1− p,
independently for different blocks. The resulting labelling is denoted by

Ω = {Ω(x) : x ∈ N0 × Z} ∈ {A,B}N0×Z (1.4)

and represents the randomness of the micro-emulsion, i.e., Ω(x) = A and Ω(x) = B mean that
the x-th block is of type A, respectively, of type B (see Fig. 2). The law of the mesoscopic
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disorder is denoted by PΩ and is independent of Pω. The size of the blocks Ln is assumed to
be non-decreasing and to satisfy

lim
n→∞

Ln =∞ and lim
n→∞

log n

n
Ln = 0, (1.5)

i.e., the blocks are large compared to the monomer size but small compared to the copolymer
size. For convenience we assume that if an A-block and a B-block are next to each other,
then the interface belongs to the A-block.

Path restriction. We bound the vertical displacement on the block scale in each column
of blocks by M ∈ N. The value of M will be arbitrary but fixed. In other words, instead of
considering the full set of trajectories Wn, we consider only trajectories that exit a column
through a block at most M above or M below the block where the column was entered (see
Fig. 3). Formally, we partition (0,∞)× R into columns of blocks of width Ln, i.e.,

(0,∞)× R = ∪j∈N0Cj,Ln , Cj,Ln = ∪k∈ZΛLn(j, k), (1.6)

where Cj,Ln is the j-th column. For each π ∈ Wn, we let τj be the time at which π leaves the
(j − 1)-th column and enters the j-th column, i.e.,

τj = sup{i ∈ N0 : πi ∈ Cj−1,n} = inf{i ∈ N0 : πi ∈ Cj,n} − 1, j = 1, . . . , Nπ − 1, (1.7)

where Nπ indicates how many columns have been visited by π. Finally, we let v−1(π) = 0
and, for j ∈ {0, . . . , Nπ − 1}, we let vj(π) ∈ Z be such that the block containing the last step
of the copolymer in Cj,n is labelled by (j, vj(π)), i.e., (πτj+1−1, πτj+1) ∈ ΛLN (j, vj(π)). Thus,
we restrict Wn to the subset Wn,M defined as

Wn,M =
{
π ∈ Wn : |vj(π)− vj−1(π)| ≤M ∀ j ∈ {0, . . . , Nπ − 1}

}
. (1.8)

entrance

zone ofblock of
exit

Ln

Ln

Figure 3: Example of a trajectory π ∈ Wn,M with M = 2 crossing the column C0,Ln with
v0(π) = 2.

In Remark 1.2 below we discuss how the mesoscopic vertical restriction can be relaxed by
letting M →∞.
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Hamiltonian and free energy. Given ω,Ω,M and n, with each path π ∈ Wn,M we associate
an energy given by the Hamiltonian

Hω,Ω
n,Ln

(π;α, β) =
n∑
i=1

(
α 1
{
ωi = ΩLn

(πi−1,πi)
= A

}
+ β 1

{
ωi = ΩLn

(πi−1,πi)
= B

})
, (1.9)

where ΩLn
(πi−1,πi)

denotes the label of the block the step (πi−1, πi) lies in. What this Hamiltonian

does is count the number of AA-matches and BB-matches and assign them energy α and β,
respectively, where α, β ∈ R. (Note that the interaction is assigned to bonds rather than
to sites, and that we do not follow the convention of putting a minus sign in front of the
Hamiltonian.) Similarly to what was done in our earlier papers [5], [6], [7], [8], without loss
of generality we may restrict the interaction parameters to the cone

CONE = {(α, β) ∈ R2 : α ≥ |β|}. (1.10)

For n ∈ N and M ∈ N, the free energy per monomer is defined as

fω,Ωn (α, β;M) = 1
n logZω,Ωn,Ln

(α, β;M) with Zω,Ωn,Ln
(α, β;M) =

∑
π∈Wn,M

eH
ω,Ω
n,Ln

(π;α,β), (1.11)

and in the limit as n→∞ the free energy per monomer is given by

f(α, β;M,p) = lim
n→∞

fω,Ωn,Ln
(α, β;M), (1.12)

provided this limit exists ω,Ω-a.s.

Henceforth, we subtract the term α
∑n

i=1 1{ωi = A} from the Hamiltonian, which by the
law of large numbers ω-a.s. is α

2n(1 + o(1)) as n → ∞ and corresponds to a shift of −α
2 in

the free energy. The latter transformation allows us to lighten the notation, starting with the
Hamiltonian in (1.9), which becomes

Hω,Ω
n,Ln

(π;α, β) =

n∑
i=1

(
β 1 {ωi = B} − α 1 {ωi = A}

)
1
{

ΩLn
(πi−1,πi)

= B
}
. (1.13)

1.2 The slope-based variational formula for the quenched free energy per
step

Theorem 1.1 below gives a variational formula for the free energy per step in (1.12). This
variational formula, which is the corner stone of our paper, involves the fractions of time the
copolymer moves at a given slope through the interior of solvents A and B and the fraction
of time it moves along AB-interfaces. This variational formula will be crucial to identify the
phase diagram, i.e., to identify the typical behavior of the copolymer in the micro-emulsion as
a function of the parameters α, β, p. Of particular interest is the distinction between localized
phases, where the copolymer stays close to the AB-interfaces, and delocalized phases, where
it wanders off into the solvents A and/or B. We will see that there are several such phases.

To state Theorem 1.1 we need to introduce some further notation. With each l ∈ R+ =
[0,∞) we associate two numbers vA,l, vB,l ∈ [1+l,∞) indicating how many steps per horizontal
step the copolymer takes when traveling at slope l in solvents A and B, respectively. We
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further let vI ∈ [1,∞) denote the number of steps per horizontal step the copolymer takes
when traveling along AB-interfaces. These numbers are gathered into the set

B̄ = {v = (vA, vB, vI) ∈ C × C × [1,∞)} (1.14)

with
C =

{
l 7→ ul on R+ : continuous with ul ≥ 1 + l ∀ l ∈ R+

}
. (1.15)

Let κ̃(u, l) be the entropy per step carried by trajectories moving at slope l with the
constraint that the total number of steps divided by the total number of horizontal steps is
equal to u ∈ [1 + l,∞) (for more details, see Section 3.1). Let φI(u; α, β) be the free energy
per step when the copolymer moves along an AB-interface, with the constraint that the total
number of steps divided by the total number of horizontal steps is equal to u ∈ [1,∞) (for
more details, see Section 3.2). Let ρ̄ = (ρA, ρB, ρI) ∈ M1(R+ ∪ R+ ∪ {I}), where ρ̄A(dl)
and ρ̄B(dl) denote the fractions of horizontal steps at which the copolymer travels through
solvents A and B at a slope that lies between l and l + dl, and ρI denotes the fraction of
horizontal steps at which the copolymer travels along AB-interfaces. The possible ρ̄ form a
set

R̄p,M ⊂M1

(
R+ ∪ R+ ∪ {I}

)
(1.16)

that depends on p and M (for more details, see Section 3.4). With these ingredients we can
now state our slope-based variational formula.

Theorem 1.1 [slope-based variational formula] For every (α, β) ∈ CONE, M ∈ N and
p ∈ (0, 1) the free energy in (1.12) exists for P-a.e. (ω,Ω) and in L1(P), and is given by

f(α, β;M,p) = sup
ρ̄∈R̄p,M

sup
v ∈ B̄

N̄(ρ̄, v)

D̄(ρ̄, v)
, (1.17)

where

N̄(ρ̄, v) =

∫ ∞
0

vA,l κ̃(vA,l, l) ρ̄A(dl) +

∫ ∞
0

vB,l
[
κ̃(vB,l, l) + β−α

2

]
ρ̄B(dl) + vI φI(vI ;α, β) ρ̄I ,

D̄(ρ̄, v) =

∫ ∞
0

vA,l ρ̄A(dl) +

∫ ∞
0

vB,l ρ̄B(dl) + vI ρ̄I , (1.18)

with the convention that N̄(ρ̄, v)/D̄(ρ̄, v) = −∞ when D̄(ρ̄, v) =∞.

Remark 1.2 We are unable to prove the existence of the quenched free energy per step
f(α, β; p) of the free model, i.e., the model with no restriction on the mesoscopic vertical
displacement. By monotonicity,

f(α, β;∞, p) = lim
M→∞

f(α, β;M,p) = sup
M∈N

f(α, β;M,p) (1.19)

exists for all α, β and p. Taking the supremum over M ∈ N on both sides of (1.17), we obtain
a variational formula for f(α, β;∞, p), namely,

f(α, β;∞, p) = sup
ρ̄∈R̄p,∞

sup
v ∈ B̄

N̄(ρ̄, v)

D̄(ρ̄, v)
(1.20)

6



with R̄p,∞ = ∪M∈NR̄p,M . Clearly, we have f(α, β; p) ≥ f(α, β;∞, p), and we expect that
equality holds. Indeed, if the inequality would be strict, then the free energy per step of the
free model would be controlled by trajectories whose mesoscopic vertical displacements are
unbounded. The energetic gain the copolymer may obtain from a large vertical displacement
in a given column comes from the fact that it may reach a height where the mesoscopic disorder
is more favorable. However, the energetic penalty associated with such a displacement is large
as well (see Lemma C.6 in Appendix C). Therefore we do not expect such trajectories to be
optimal, in which case f(α, β; p) is indeed given by the same variational formula as in (1.20).

1.3 Discussion

The variational formula in (1.17-1.18) is tractable, to the extent that the κ̃-function is known
explicitly, the φI-function has been studied in depth in the literature (and much is known
about it), while the set B̄ is simple. The key difficulty of (1.17–1.18) resides in the set R̄p,M ,
whose structure is not easy to control. However, it turns out that we need to know relatively
little about this set in order to identify the phase diagram.

In Appendix F we will show that the supremum in (1.17) is attained at some (not necessar-
ily unique) ρ̄ ∈ R̄p,M and some unique v ∈ B̄. Each maximizer corresponds to the copolymer
having a specific way to configure itself optimally within the micro-emulsion.

Column-based variational formula. The slope-based variational formula in Theorem 1.1
will be obtained by combining two auxiliary variational formulas. Both formulas involve the
free energy per step ψ(Θ, uΘ;α, β) when the copolymer crosses a block column of a given type
Θ, taking values in a type space VM , for a given uΘ ∈ R+ that indicates how many steps on
scale Ln the copolymer makes in this column type. A precise definition of this free energy per
block column will be given in Section 3.3.2.

The first auxiliary variational formula is stated in Section 3 (Proposition 3.5) and gives
an expression for ψ(Θ, uΘ;α, β) that involves the entropy κ̃(·, l) of the copolymer moving
at a given slope l and the quenched free energy per monomer φI of the copolymer near a
single linear interface. Consequently, the free energy of our model with a random geometry is
directly linked to the free energy of a model with a non-random geometry. This will be crucial
for our analysis of the phase diagram in Section 2. The microscopic disorder manifests itself
only through the free energy of the linear interface model.

The second auxiliary variational formula is stated in Section 5 (Proposition 5.1). It is re-
ferred to as the column-based variational formula, and provides an expression for f(α, β;M,p)
by using the block-column free energies ψ(Θ, uΘ;α, β) for Θ ∈ VM and by weighting each col-
umn type with the frequency ρ(dΘ) at which it is visited by the copolymer. The numerator
is the total free energy, the denominator is the total number of monomers (both on the meso-
scopic scale). The variational formula optimizes over (uΘ)Θ∈VM ∈ BVM and ρ ∈ Rp,M . The
reason why these two suprema appear in (1.17) is that, as a consequence of assumption (1.5),
the mesoscopic scale carries no entropy : all the entropy comes from the microscopic scale,
through the free energy per monomer in single columns.

Removal of the corner restriction. In our earlier papers [5], [6], [7], [8], we allowed the
configurations of the copolymer to be given by the subset ofWn consisting of those paths that
enter pairs of blocks through a common corner, exit them at one of the two corners diagonally
opposite and in between stay confined to the two blocks that are seen upon entering. The
latter is an unphysical restriction that was adopted to simplify the model. In these papers we
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derived a variational formula for the free energy per step that had a simpler structure. We
analyzed this variational formula as a function of α, β, p and found that there are two regimes,
supercritical and subcritical, depending on whether the oil blocks percolate or not along the
coarse-grained self-avoiding path. In the supercritical regime the phase diagram turned out
to have two phases, in the subcritical regime it turned out to have four phases, meeting at
two tricritical points.

In Section 2 we show how the variational formula in Theorem 1.1 can be used to identify
the phase diagram. It turns out that there are two types of phases: localized phases (where
the copolymer spends a positive fraction of its time near the AB-interfaces) and delocalized
phases (where it spends a zero fraction near the AB-interfaces). Which of these phases occurs
depends on the parameters α, β, p. It is energetically favorable for the copolymer to stay close
to the AB-interfaces, where it has the possibility of placing more than half of its monomers
in their preferred solvent (by switching sides when necessary), but this comes with a loss of
entropy. The competition between energy and entropy is controlled by the energy parameters
α, β (determining the reward of switching sides) and by the density parameter p (determining
the density of the AB-interfaces). It turns out that the phase diagram is different in the
supercritical and the subcritical regimes, where the A-blocks percolate, respectively, do not
percolate. The phase diagram is richer than for the model with the corner restriction.

Figure 4: Picture of a directed polymer with bulk disorder. The different shades of black,
grey and white represent different values of the disorder.

Comparison with the directed polymer with bulk disorder. A model of a polymer
with disorder that has been studied intensively in the literature is the directed polymer with
bulk disorder. Here, the set of paths is

Wn =
{
π = (i, πi)

n
i=0 ∈ (N0 × Zd)n+1 : π0 = 0, ‖πi+1 − πi‖ = 1 ∀ 0 ≤ i < n

}
, (1.21)

where ‖ · ‖ is the Euclidean norm on Zd, and the Hamiltonian is

Hω
n (π) = λ

n∑
i=1

ω(i, πi), (1.22)

where λ > 0 is a parameter and ω = {ω(i, x) : i ∈ N, x ∈ Zd} is a field of i.i.d. R-valued
random variables with zero mean, unit variance and finite moment generating function, where
N is time and Zd is space (see Fig. 4). This model can be viewed as a version of a copolymer
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in a micro-emulsion where the droplets are of the same size as the monomers. For this model
no variational formula is known for the free energy, and the analysis relies on the application
of martingale techniques (for details, see e.g. den Hollander [4], Chapter 12).

In our model (which is restricted to d = 1 and has self-avoiding paths that may move north,
south and east instead of north-east and south-east), the droplets are much larger than the
monomers. This causes a self-averaging of the microscopic disorder, both when the copolymer
moves inside one of the solvents and when it moves near an interface. Moreover, since the
copolymer is much larger than the droplets, also self-averaging of the mesoscopic disorder
occurs. This is why the free energy can be expressed in terms of a variational formula, as in
Theorem 1.1. This variational formula acts as a jumpboard for a detailed analysis of the phase
diagram. Such a detailed analysis is lacking for the directed polymer with bulk disorder.

The directed polymer in random environment has two phases: a weak disorder phase
(where the quenched and the annealed free energy are asymptotically comparable) and a
strong disorder phase (where the quenched free energy is asymptotically smaller than the
annealed free energy). The strong disorder phase occurs in dimension d = 1, 2 for all λ > 0
and in dimension d ≥ 3 for λ > λc, with λc ∈ [0,∞] a critical value that depends on d and
on the law of the disorder. It is predicted that in the strong disorder phase the copolymer
moves within a narrow corridor that carries sites with high energy (recall our convention of
not putting a minus sign in front of the Hamiltonian), resulting in superdiffusive behavior in
the spatial direction. We expect a similar behavior to occur in the localized phases of our
model, where the polymer targets the AB-interfaces. It would be interesting to find out how
far the coarsed-grained path in our model travels vertically as a function of n.

2 Phase diagram

In Section 2.1 we identify the general structure of the phase diagram. The results in this
section are valid for the free energy f(α, β;M,p) with M ∈ N∪{∞}, i.e., for the model where
the mesoscopic vertical displacement is ≤ M and for the limiting model obtained by letting
M →∞ (recall (1.20)), which we believe to coincide with the free model (recall Remark 1.2).
In particular, we show that there is a localized phase L in which AB-localization occurs, and
a delocalized phase D in which no AB-localization occurs. In Section 2.2, we focus on the
free energy f(α, β;M,p) with M ∈ N of the restricted model and obtain various results for
the fine structure of the phase diagram, both for the supercritical regime p > pc and for the
subcritical regime p < pc, where pc denotes the critical threshold for directed bond percolation
in the positive quandrant of Z2. This fine structure comes in the form of theorems, hypotheses
and conjectures, which we discuss in Section 2.3. The reason why in Section 2.2 we do not
consider the limiting case M = ∞ is that, contrary to what we find in Appendix F for the
variational formula in (1.17), the supremum of the variational formula in (1.20) is not a priori
attained at some ρ̄ ∈ R̄p,∞. This makes the content of the hypotheses harder to understand
and harder to exploit.

2.1 General structure

Throughout this section, M ∈ N∪{∞}, but we suppress the M -dependence from the notation.
To state the general structure of the phase diagram, we need to define a reduced version of
the free energy, called the delocalized free energy fD, obtained by taking into account those
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trajectories that, when moving along an AB-interface, are delocalized in the A-solvent. The
latter amounts to replacing the linear interface free energy φI(vI ;α, β) in (1.17) by the entropic
constant lower bound κ̃(vI , 0). Thus, we define

fD(α, β; p) = sup
ρ̄∈R̄p

sup
v∈ B̄

N̄D(ρ̄, v)

D̄D(ρ̄, v)
(2.1)

with

N̄D(ρ̄, v) =

∫ ∞
0

vA,l κ̃(vA,l, l) [ρ̄A + ρ̄I δ0](dl) +

∫ ∞
0

vB,l
[
κ̃(vB,l, l) + β−α

2

]
ρ̄B(dl), (2.2)

D̄D(ρ̄, v) =

∫ ∞
0

vA,l [ρ̄A + ρ̄I δ0](dl) +

∫ ∞
0

vB,l ρ̄B(dl), (2.3)

provided D̄D(ρ̄, v) <∞. Note that fD(α, β; p) depends on (α, β) through α− β only.

We partition the CONE into the two phases D and L defined by

L = {(α, β) ∈ CONE : f(α, β; p) > fD(α, β; p)},
D = {(α, β) ∈ CONE : f(α, β; p) = fD(α, β; p)}.

(2.4)

The localized phase L corresponds to large values of β, for which the energetic reward to
spend some time travelling along AB-interfaces exceeds the entropic penalty to do so. The
delocalized phase D, on the other hand, corresponds to small values of β, for which the
energetic reward does not exceed the entropic penalty.

For α ≥ 0, let Jα be the halfline in CONE defined by

Jα = {(α+ β, β) : β ∈ [−α
2 ,∞)}. (2.5)

Theorem 2.1 (a) For every α ∈ (0,∞) there exists a βc(α) ∈ (0,∞) such that

L ∩ Jα = {(α+ β, β) : β ∈ (βc(α),∞)},
D ∩ Jα =

{
(α+ β, β) : β ∈ [−α

2 , βc(α)]
}
.

(2.6)

(b) Inside phase D the free energy f is a function of α− β only, i.e., f is constant on Jα ∩D
for all α ∈ (0,∞).

2.2 Fine structure

Throughout this section M ∈ N, but once again we suppress the M -dependence from the
notation. This section is organized as follows. In Section 2.2.1, we consider the supercritical
regime p > pc, and state a theorem. Subject to two hypotheses, we show that the delocalized
phase D (recall (2.4)) splits into two subphases D = D1 ∪ D2. We give a characterization
of the critical curve α 7→ βc(α) (recall (2.6)) in terms of the single linear free energy and
state some properties of this curve. Subsequently, we formulate a conjecture stating that the
localized phase L also splits into two subphases L = L1∪L2, which are saturated, respectively,
non-saturated. In Section 2.2.2, we consider the subcritical regime p < pc, and state several
conjectures concerning the splitting of the localized phase L and of the delocalized phase D.

For p ∈ (0, 1) and (α, β) ∈ CONE, let Op,α,β denote the subset of R̄p containing those ρ̄
that maximize the variational formula in (1.17), i.e.,

Op,α,β =

{
ρ̄ ∈ R̄p : f(α, β; p) = sup

v∈B̄

N̄(ρ̄, v)

D̄(ρ̄, v)

}
. (2.7)
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For c ∈ (0,∞), define v(c) = (vA(c), vB(c), vI(c)) ∈ B̄ as

vA,l(c) = χ−1
l (c), l ∈ [0,∞), (2.8)

vB,l(c) = χ−1
l

(
c+ α−β

2

)
, l ∈ [0,∞), (2.9)

vI(c) = z, ∂−u (uφI(u))(z) ≥ c ≥ ∂+
u (uφI(u))(z), (2.10)

where
χl(v) =

(
∂u(u κ̃(u, l)

)
(v) (2.11)

and χ−1
l denotes the inverse function. Lemma B.1(v-vi) ensures that v 7→ χl(v) is one-to-one

between (1 + l,∞) and (0,∞). The existence and uniqueness of z in (2.10) follow from the
strict concavity of u 7→ uφI(u) (see Lemma3.3) and Lemma C.1 (see (C.1-C.2)). We will
prove in Proposition 7.1 that the maximizer v ∈ B̄ of (1.17) necessarily belongs to the familly
{v(c) : c ∈ (0,∞)}.

2.2.1 Supercritical regime

Figure 5: Qualitative picture of the phase diagram in the supercritical regime p > pc.

D2D1

L1

L2

α

β

α∗

βc(α)

β̃c(α)

Let Tp be the subset of R̄p containing those ρ̄ that have a strictly positive B-component
and are relevant for the variational formula in (1.17), i.e.,

Tp =

{
ρ̄ ∈ R̄p : ρ̄B([0,∞)) > 0,

∫ ∞
0

(1 + l) [ρ̄A + ρ̄B](dl) <∞
}
. (2.12)

Note that Tp does not depend on (α, β).

Splitting of the D-phase. We partition D into two phases: D = D1 ∪ D2. To that end
we introduce the delocalized A-saturated free energy, denoted by fD2(p), which is obtained by
restricting the supremum in (2.1) to those ρ̄ ∈ R̄p that do not charge B. Such ρ̄, which we

11



call A-saturated, exist because p > pc, allowing for trajectories that do not visit B-blocks.
Thus, fD2(p) is defined as

fD2(p) = sup
ρ̄∈R̄p

ρ̄B([0,∞))=0

sup
v∈ B̄

N̄D2(ρ̄, v)

D̄D(ρ̄, v)
(2.13)

with

N̄D2(ρ̄, v) =

∫ ∞
0

vA,l κ̃(vA,l, l) [ρ̄A + ρ̄I δ0](dl), (2.14)

provided DD(ρ̄, v) <∞. Note that fD2(p) is a constant that does not depend on (α, β).

With the help of this definition, we can split the D-phase defined in (2.4) into two parts:

• The D1-phase corresponds to small values of β and small to moderate values of α. In
this phase there is no AB-localization and no A-saturation. For the variational formula
in (1.17) this corresponds to the restriction where the AB-localization term disappears
while the A-block term and the B-block term contribute, i.e.,

D1 =
{

(α, β) ∈ CONE : f(α, β; p) = fD(α, β; p) > fD2(p)
}
. (2.15)

• The D2-phase corresponds to small values of β and large values of α. In this phase there
is no AB-localization but A-saturation occurs. For the variational formula in (1.17)
this corresponds to the restriction where the AB-localization term disappears and the
B-block term as well, i.e.,

D2 =
{

(α, β) ∈ CONE : f(α, β; p) = fD2(p)}. (2.16)

To state our main result for the delocalized part of the phase diagram we need two hy-
potheses:

Hypothesis 1 For all p > pc and all α ∈ (0,∞) there exists a ρ̄ ∈ Op,α,0 such that ρ̄I > 0.

Hypothesis 2 For all p > pc,

sup
ρ̄∈Tp

∫∞
0 g(l) [ρ̄A + ρ̄I δ0](dl)∫∞

0 (1 + l) ρ̄B(dl)
<∞, (2.17)

where
g(l) = v̄A,l

[
κ̃(v̄A,l, l)− fD2

]
(2.18)

and v̄ = v(fD2) as defined in (2.8–2.10).

Hypothesis 1 will allow us to derive an expression for βc(α) in (2.6). Hypothesis 2 will allow
us to show that D1 and D2 are non-empty.

Remark 2.4 The function g has the following properties: (1) g(0) > 0; (2) g is strictly
decreasing on [0,∞); (3) liml→∞ g(l) = −∞. Property (2) follows from Lemma B.1(ii) and
the fact that u 7→ uκ̃(u, l) is concave (see Lemma B.1(i)). Property (3) follows from fD2 > 0,
Lemma B.1(iv) and the fact that v̄A,l ≥ 1+l for l ∈ [0,∞). Property (1) follows from property
(2) because

∫∞
0 g(l)[ρ̂A + ρ̂Iδ0](dl) = 0 for all ρ̂ maximizing (2.13).
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Let
α∗ = sup{α ≥ 0: fD(α, 0; p) > fD2(p)}. (2.19)

Theorem 2.5 (a) If Hypothesis 2 holds, then α∗ ∈ (0,∞).
(b) For every α ∈ [0, α∗),

Jα ∩ D1 = Jα ∩ D = {(α+ β, β) : β ∈ [−α
2 , βc(α)]. (2.20)

(c) For every α ∈ [α∗,∞),

Jα ∩ D2 = Jα ∩ D = {(α+ β, β) : β ∈ [−α
2 , βc(α)]}. (2.21)

(d) If Hypothesis 1 holds, then for every α ∈ [0,∞)

βc(α) = inf
{
β > 0: φI(v̄A,0;α+ β, β) > κ̃(v̄A,0, 0)

}
with v̄ = v(fD(α, 0; p)). (2.22)

(e) α 7→ βc(α) is concave, continuous, non-decreasing and bounded from above on [α∗,∞).
(f) Inside phase D1 the free energy f is a function of α−β only, i.e., f is constant on Jα∩D1

for all α ∈ [0, α∗].
(g) Inside phase D2 the free energy f is constant.

Splitting of the L-phase. We partition L into two phases: L = L1 ∪ L2. To that end we
introduce the localized A-saturated free energy, denoted by fL2 , which is obtained by restricting
the supremum in (1.17) to those ρ̄ ∈ R̄p that do not charge B, i.e.,

fL2(α, β; p) = sup
ρ̄∈R̄p

ρ̄B([0,∞))=0

sup
v∈ B̄

N̄(ρ̄, v)

D̄(ρ̄, v)
, (2.23)

provided D(ρ̄, v) <∞.

With the help of this definition, we can split the L-phase defined in (2.4) into two parts:

• The L1-phase corresponds to small to moderate values of α and large values of β. In
this phase AB-localization occurs, but A-saturation does not, so that the free energy is
given by the variational formula in (1.17) without restrictions, i.e.,

L1 =
{

(α, β) ∈ CONE : f(α, β; p) > max{fD(α, β; p), fL2(α, β; p)}
}
. (2.24)

• The L2-phase corresponds to large values of α and β. In this phase both AB-localization
and A-saturation occur. For the variational formula in (1.17) this corresponds to the
restriction where the contribution of B-blocks disappears, i.e.,

L2 =
{

(α, β) ∈ CONE : f(α, β; p) = fL2(α, β; p) > fD(α, β; p)
}
. (2.25)

Conjecture 2.6 (a) For every α ∈ (0, α∗] there exists a β̃c(α) ∈ (βc(α),∞) such that

L1 ∩ Jα = {(α+ β, β) : β ∈ (βc(α), β̃c(α)]},
L2 ∩ Jα =

{
(α+ β, β) : β ∈ [β̃c(α),∞)

}
.

(2.26)

(b) For every α ∈ (α∗,∞), the set L1 ∩ Jα = ∅.
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Figure 6: Qualitative picture of the phase diagram in the subcritical regime p < pc.
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2.2.2 Subcritical regime

Splitting of the D-phase. Let

K = inf
ρ̄∈R̄p

ρB([0,∞)). (2.27)

Note that K > 0 because pc < pc. We again partition D into two phases: D = D1 ∪ D2. To
that end we introduce the delocalized maximally A-saturated free energy, denoted by fD2(p),
which is obtained by restricting the supremum in (2.1) to those ρ̄ ∈ R̄p achieving K. Thus,
fD2(p) is defined as

fD2(p) = sup
ρ̄∈R̄p

ρ̄B([0,∞))=K

sup
v∈ B̄

N̄D(ρ̄, v)

D̄D(ρ̄, v)
, (2.28)

provided DD(ρ̄, v) < ∞. Note that, contrary to what we had in the supercritical regime,
fD2(p) depends on (α, β).

With the help of this definition, we can split the D-phase defined in (2.4) into two parts:

• The D1-phase corresponds to small values of β and small to moderate values of α. In
this phase there is no AB-localization and no maximal A-saturation. For the variational
formula in (1.17) this corresponds to the restriction where the AB-localization term
disappears while the A-block term and the B-block term contribute, i.e.,

D1 =
{

(α, β) ∈ CONE : f(α, β; p) = fD(α, β; p) > fD2(p)
}
. (2.29)

• The D2-phase corresponds to small values of β and large values of α. In this phase there
is no AB-localization and maximal A-saturation. For the variational formula in (1.17)
this corresponds to the restriction where the AB-localization term disappears and the
B-block term is minimal, i.e.,

D2 =
{

(α, β) ∈ CONE : f(α, β; p) = fD2(p)}. (2.30)
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Let
ᾱ∗ = inf

{
α ≥ 0: ∃ ρB([0,∞)) = K ∀ ρ ∈ Op,α′,0 ∀α′ ≥ α

}
. (2.31)

Conjecture 2.7 (a) ᾱ∗ ∈ (0,∞).
(b) Theorems 2.5(b,c,d,f) hold with α∗ replaced by ᾱ∗.
(c) Theorem 2.5(g) does not hold.

Splitting of the L-phase. We again partition L into two phases: L = L1 ∪ L2. To that
end we introduce the localized maximally A-saturated free energy, denoted by fL2 , which
is obtained by restricting the supremum in (1.17) to those ρ̄ ∈ R̄p achieving K. Thus,
fL2(α, β; p) is defined as

fL2(α, β; p) = sup
ρ̄∈R̄p

ρ̄B([0,∞))=K

sup
v∈ B̄

N̄(ρ̄, v)

D̄(ρ̄, v)
, (2.32)

provided D(ρ̄, v) <∞.

With the help of this definition, we can split the L-phase defined in (2.4) into two parts:

• The L1-phase corresponds to small to moderate values of α and large values of β. In
this phase AB-localization occurs, but maximal A-saturation does not, so that the free
energy is given by the variational formula in (1.17) without restrictions, i.e.,

L1 =
{

(α, β) ∈ CONE : f(α, β; p) > max{fD(α, β; p), fL2(α, β; p)}
}
. (2.33)

• The L2-phase corresponds to large values of α and β. In this phase both AB-localization
and maximal A-saturation occur. For the variational formula in (1.17) this corresponds
to the restriction where the contribution of B-blocks is minimal, i.e.,

L2 =
{

(α, β) ∈ CONE : f(α, β; p) = fL2(α, β; p) > fD(α, β; p)
}
. (2.34)

Conjecture 2.8 Conjecture 2.6 holds with ᾱ∗ instead of α∗.

2.3 Proof of the hypotheses

Hypothesis 1 can be understood as follows. At (α, 0) ∈ CONE, the BB-interaction is vanishes
while the AA-interaction does not, and we have seen earlier that there is no localization of
the copolymer along AB-interfaces when β = 0. Consequently, when the copolymer moves at
a non-zero slope l ∈ R \ {0} it necessarily reduces the time it spends in the B-solvent. To be
more specific, let ρ̄ ∈ Rp,M be a maximizer of the variational formula in (1.17), and assume
that the copolymer moves in the emulsion by following the strategy of displacement associated
with ρ̄. Consider the situation in which the copolymer moves upwards for awhile at slope l > 0
and over a horizontal distance h > 0, and subsequently changes direction to move downward
at slope l′ < 0 and over a horizontal distance h′ > 0. This change of vertical direction is
necessary to pass over a B-block, otherwise it would be entropically more advantageous to
move at slope (hl + h′l′)/(h + h′) over an horizontal distance h + h′ (by the concavity of
κ̃ in Lemma B.1(i)). Next, we observe (see Fig. 7) that when the copolymer passes over a
B-block, the best strategy in terms of entropy is to follow the AB-interface (consisting of this
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B-block and the A-solvent above it) without being localized, i.e., the copolymer performs a
long excursion into the A-solvent but the two ends of this excursion are located on the AB-
interface. This long excursion is counted in ρ̄I . Consequently, Hypothesis 1 (ρ̄I > 0) will be
satisfied if we can show that the copolymer necessarily spends a strictly positive fraction of
its time performing such changes of vertical direction. But, by the ergodicity of ω and Ω, this
has to be the case.

Figure 7: Entropic optimization when the copolymer passes over a B-block.

The statement of Hypothesis 2 is technical, but can be rephrased in a simpler way. Recall
Remark 2.4 and note that there is an l0 ∈ (0,∞) such that g > 0 on [0, l0) and g < 0 on (l0,∞).
Assume by contradiction that Hypothesis 2 fails and that the ratio in (2.17) is unbounded.
Then, by spending an arbitrarily small amount of time in the B-solvent, the copolymer can
improve the best saturated strategies by moving some of the mass of ρ̄A(l0,∞) to ρ̄A(0, l0),
and that the entropic gain of this transformation is arbitrarily larger than the time spent in
the B-solvent. In other words, failure of Hypothesis 2 means that spending an arbitrarily
small fraction of time in the B-solvent allows the copolymer to travel flatter when it is in the
A-solvent during a fraction of the time that is arbitrarily larger than the fraction of the time
it spends in the B-solvent. This means that, instead of going around some large cluster of the
B-solvent, the copolymer simply crosses it straight to travel flatter. However, the fact that
large subcritical clusters scale as round balls contradicts this scenario, because it means that
the time needed to go around the cluster is of the same order as the time required to cross
the cluster, which makes the unboundedness of the ratio in (2.17) impossible.

3 Key ingredients

In Section 3.1, we define the entropy per step κ̃(u, l) carried by trajectories moving at slope
l ∈ R+ with the constraint that the total number of steps divided by the total number of
horizontal steps is equal to u ∈ [1 + l,∞) (Proposition 3.1 below). In Section 3.2, we define
the free energy per step φI(µ) of a copolymer in the vicinity of an AB-interface with the
constraint that the total number of steps divided by the total number of horizontal steps is
equal to µ ∈ [1,∞) (Proposition 3.2 below). In Section 3.3, we combine the definitions in
Sections 3.1–3.2 to obtain a variational formula for the free energy per step in single columns
of different types (Proposition 3.5 below). In Section 3.4 we define the set of probability
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laws introduced in (1.16), which is a key ingredient of the slope-based variational formula
in Theorem 1.1. Finally, in Section 3.5, we prove that the quenched free energy per step
f(α, β; p) is strictly positive on CONE.

3.1 Path entropies at given slope

Path entropies. We define the entropy of a path crossing a single column. To that aim, we
set

H = {(u, l) ∈ [0,∞)× R : u ≥ 1 + |l|},
HL =

{
(u, l) ∈ H : l ∈ Z

L , u ∈ 1 + |l|+ 2N
L

}
, L ∈ N, (3.1)

and note that H ∩ Q2 = ∪L∈NHL. For (u, l) ∈ H, we denote by WL(u, l) the set containing
those paths π = (0,−1) + π̃ with π̃ ∈ WuL (recall (1.1)) for which πuL = (L, lL) (see Fig. 8).
The entropy per step associated with the paths in WL(u, l) is given by

κ̃L(u, l) = 1
uL log |WL(u, l)|. (3.2)

u.L steps

l.L

L

(0,0)

Figure 8: A trajectory in WL(u, l).

The following propositions will be proven in Appendix A.

Proposition 3.1 For all (u, l) ∈ H ∩Q2 there exists a κ̃(u, l) ∈ [0, log 3] such that

lim
L→∞

(u,l)∈HL

κ̃L(u, l) = sup
L∈N

(u,l)∈HL

κ̃L(u, l) = κ̃(u, l). (3.3)

An explicit formula is available for κ̃(u, l), namely,

κ̃(u, l) =

{
κ(u/|l|, 1/|l|), l 6= 0,
κ̂(u), l = 0,

(3.4)

where κ(a, b), a ≥ 1 + b, b ≥ 0, and κ̂(µ), µ ≥ 1, are given in [5], Section 2.1, in terms
of elementary variational formulas involving entropies (see [5], proof of Lemmas 2.1.1–2.1.2).
The two formulas in (3.4) allow us to extend (u, l) 7→ κ̃(u, l) to a continuous and strictly
concave function on H (see Lemma B.1 ).
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3.2 Free energy for a linear interface

Free energy along a single linear interface. To analyze the free energy per monomer in
a single column we need to first analyze the free energy per monomer when the path moves in
the vicinity of an AB-interface. To that end we consider a single linear interface I separating
a solvent B in the lower halfplane from a solvent A in the upper halfplane (the latter is
assumed to include the interface itself).

For L ∈ N and µ ∈ 1 + 2N
L , let WIL(µ) = WL(µ, 0) denote the set of µL-step directed

self-avoiding paths starting at (0, 0) and ending at (L, 0). Recall (1.2) and define

φω,IL (µ) =
1

µL
logZω,IL,µ and φIL(µ) = E[φω,IL (µ)], (3.5)

with
Zω,IL,µ =

∑
π∈WIL(µ)

exp
[
Hω,I
L (π)

]
,

Hω,I
L (π) =

µL∑
i=1

(
β 1{ωi = B} − α 1{ωi = A}

)
1{(πi−1, πi) < 0},

(3.6)

where (πi−1, πi) < 0 means that the i-th step lies in the lower halfplane, strictly below the
interface (see Fig. 9).

Proposition 3.2 ([5], Section 2.2.2)
For all (α, β) ∈ CONE and µ ∈ Q ∩ [1,∞) there exists a φI(µ) = φI(µ;α, β) ∈ R such that

lim
L→∞
µ∈1+ 2N

L

φω,IL (µ) = φI(µ) for P-a.e. ω and in L1(P). (3.7)

It is easy to check (via concatenation of trajectories) that µ 7→ µφI(µ;α, β) is concave.
For technical reasons we need to assume that it is strictly concave, a property we believe to
be true but are unable to verify:

Lemma 3.3 For all (α, β) ∈ CONE the function µ 7→ µφI(µ;α, β) is strictly concave on
[1,∞).

Solvent A

Solvent B Interface

µL steps

L

Figure 9: Copolymer near a single linear interface.

Proof. To show that strict concavity holds we argue by contradiction. Suppose that there
is an interval [µ1, µ2] on which µ 7→ µφI(µ;α, β) is linear. Then φI(µ) > κ̃(µ, 0) for all
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µ ∈ [µ1, µ2] except in at most two points (because µ 7→ µκ̃(µ, 0) is strictly concave by Lemma
B.1(i)). Therefore we may assume that φI((µ1 + µ2)/2) > κ̃((µ1 + µ2)/2, 0), and with the
assumed linearity we get

lim
L→∞

1

2L
log
(
Zω,IL,µ1

Z
θµ1L(ω),I
L,µ2

)
− 1

2L
logZω,I2L,(µ1+µ2)/2 = 0, (3.8)

where θ is the left-shift acting on sequences of letters. Write Pω,I2L,(µ1+µ2)/2 to denote the Gibbs

measure on WI2L((µ1 + µ2)/2) associated with the Hamiltonian Hω,I
2L (π) defined as in (3.6).

A consequence of (3.8) is that

Pω,I2L,(µ1+µ2)/2(πµ1L = (L, 0)) (3.9)

does not decay exponentially as L → ∞. However, the fact that φI((µ1 + µ2)/2) > κ̃((µ1 +
µ2)/2, 0) implies that the copolymer is localized under Pω,I2L,(µ1+µ2)/2, and therefore the ex-

cursions away from the origin are exponentially tight. Under the event {πµ1L = (L, 0)} we
necessarily have that the excursions constituting the first L horizontal steps of the path have
a total length of µ1L. But µ1 < (µ1 +µ2)/2 means that the ratio of the total number of steps
and the number of horizontal steps is small for the excursions constituting the first µ1L steps
of the path. But ω is ergodic, and therefore the average of the ratio over the trajectory is
necessarily (µ1 + µ2)/2. �

3.3 Free energy in a single column and variational formulas

In this section, we prove the convergence of the free energy per step in a single column
(Proposition 3.4) and derive a variational formula for this free energy with the help of Propo-
sitions 3.1–3.2. The variational formula takes different forms (Propositions 3.5), depending
on whether there is or is not an AB-interface between the heights where the copolymer enters
and exits the column, and in the latter case whether an AB-interface is reached or not.

In what follows we need to consider the randomness in a single column. To that aim, we
recall (1.6), we pick L ∈ N and once Ω is chosen, we can record the randomness of Cj,L as

Ω(j, · ) = {Ω(j,l) : l ∈ Z}. (3.10)

We will also need to consider the randomness of the j-th column seen by a trajectory that
enters Cj,L through the block Λj,k with k 6= 0 instead of k = 0. In this case, the randomness
of Cj,L is recorded as

Ω(j,k+ · ) = {Ω(j,k+l) : l ∈ Z}. (3.11)

Pick L ∈ N, χ ∈ {A,B}Z and consider C0,L endowed with the disorder χ, i.e., Ω(0, ·) = χ.
Let (ni)i∈Z ∈ ZZ be the successive heights of the AB-interfaces in C0,L divided by L, i.e.,

· · · < n−1 < n0 ≤ 0 < n1 < n2 < . . . . (3.12)

and the j-th interface of C0,L is Ij = {0, . . . , L}×{njL} (see Fig. 10). Next, for r ∈ N0 we set

kr,χ = 0 if n1 > r and kr,χ = max{i ≥ 1: ni ≤ r} otherwise, (3.13)

while for r ∈ −N we set

kr,χ = 0 if n0 ≤ r and kr,χ = min{i ≤ 0: ni ≥ r + 1} − 1 otherwise. (3.14)

Thus, |kr,χ| is the number of AB-interfaces between heigths 1 and rL in C0,L.
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Figure 10: Example of a column with disorder χ = (. . . , χ(−3), χ(−2), χ(−1), χ(0), χ(1), χ(2),
. . . ) = (. . . , B,A,B,B,B,A, , . . . ). In this example, for instance, k−2,χ = −1 and k1,χ = 0.

3.3.1 Free energy in a single column

Column crossing characteristics. Pick L,M ∈ N, and consider the first column C0,L. The
type of C0,L is determined by Θ = (χ,Ξ, x), where χ = (χj)j∈Z encodes the type of each block
in C0,L, i.e., χj = Ω(0,j) for j ∈ Z, and (Ξ, x) indicates which trajectories π are taken into
account. In the latter, Ξ is given by (∆Π, b0, b1) such that the vertical increment in C0,L on
the block scale is ∆Π and satisfies |∆Π| ≤ M , i.e., π enters C0,L at (0, b0L) and exits C0,L

at (L, (∆Π + b1)L). As in (3.13) and (3.14), we set kΘ = k∆Π,χ and we let Vint be the set
containing those Θ satisfying kΘ 6= 0. Thus, Θ ∈ Vint means that the trajectories crossing
C0,L from (0, b0L) to (L, (∆Π + b1)L) necessarily hit an AB-interface, and in this case we set
x = 1. If, on the other hand, Θ ∈ Vnint = V \Vint, then we have kΘ = 0 and we set x = 1 when
the set of trajectories crossing C0,L from (0, b0L) to (L, (∆Π + b1)L) is restricted to those that
do not reach an AB-interface before exiting C0,L, while we set x = 2 when it is restricted to
those trajectories that reach at least one AB-interface before exiting C0,L. To fix the possible
values taken by Θ = (χ,Ξ, x) in a column of width L, we put VL,M = Vint,L,M ∪Vnint,L,M with

Vint,L,M =
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z×
{

1
L ,

2
L , . . . , 1

}2 × {1} :

|∆Π| ≤M, k∆Π,χ 6= 0
}
,

Vnint,L,M =
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z×
{

1
L ,

2
L , . . . , 1

}2 × {1, 2} :

|∆Π| ≤M, k∆Π,χ = 0
}
.

(3.15)

Thus, the set of all possible values of Θ is VM = ∪L≥1VL,M , which we partition into VM =
Vint,M ∪ Vnint,M (see Fig. 11) with

Vint,M = ∪L∈N Vint,L,M

=
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z× (Q(0,1])
2 × {1} : |∆Π| ≤M, k∆Π,χ 6= 0

}
,

Vnint,M = ∪L∈N Vnint,L,M

=
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z× (Q(0,1])
2 × {1, 2} : |∆Π| ≤M, k∆Π,χ = 0

}
,

(3.16)
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where, for all I ⊂ R, we set QI = I∩Q. We define the closure of VM as VM = V int,M ∪Vnint,M

with

V int,M =
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z× [0, 1]2 × {1} : |∆Π| ≤M, k∆Π,χ 6= 0
}
,

Vnint,M =
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z× [0, 1]2 × {1, 2} : |∆Π| ≤M, k∆Π,χ = 0
}
.

(3.17)
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Figure 11: Labelling of coarse-grained paths and columns. On the left the type of the column
is in Vint,M , on the right it is in Vnint,M (with M ≥ 6).

Time spent in columns. We pick L,M ∈ N, Θ = (χ,∆Π, b0, b1, x) ∈ VL,M and we specify
the total number of steps that a trajectory crossing the column C0,L of type Θ is allowed to
make. For Θ = (χ,∆Π, b0, b1, 1), set

tΘ = 1 + sign(∆Π) (∆Π + b1 − b0) 1{∆Π 6=0} + |b1 − b0| 1{∆Π=0}, (3.18)

so that a trajectory π crossing a column of width L from (0, b0L) to (L, (∆Π + b1)L) makes
a total of uL steps with u ∈ tΘ + 2N

L . For Θ = (χ,∆Π, b0, b1, 2) in turn, recall (3.12) and let

tΘ = 1 + min{2n1 − b0 − b1 −∆Π, 2|n0|+ b0 + b1 + ∆Π}, (3.19)

so that a trajectory π crossing a column of width L and type Θ ∈ Vnint,L,M from (0, b0L) to
(L, (∆Π + b1)L) and reaching an AB-interface makes a total of uL steps with u ∈ tΘ + 2N

L .

At this stage, we can fully determine the set WΘ,u,L consisting of the uL-step trajectories
π that are considered in a column of width L and type Θ. To that end, for Θ ∈ Vint,L,M we
map the trajectories π ∈ WL(u,∆Π+ b1− b0) onto C0,L such that π enters C0,L at (0, b0L) and
exits C0,L at (L, (∆Π + b1)L) (see Fig. 12), and for Θ ∈ Vnint,L,M we remove, dependencing on
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L

L

uL steps

∆ ∏

Figure 12: Example of a uL-step path inside a column of type (χ,∆Π, b0, b1, 1) ∈ Vint,L with
disorder χ = (. . . , χ(0), χ(1), χ(2), . . . ) = (. . . , A,B,A, . . . ), vertical displacement ∆Π = 2,
entrance height b0 and exit height b1.

b
0

L

b1 L

L L

L

uL steps

Figure 13: Two examples of a uL-step path inside a column of type (χ,∆Π, b0, b1, 1) ∈
Vnint,L (left picture) and (χ,∆Π, b0, b1, 2) ∈ Vnint,L (right picture) with disorder χ =
(. . . , χ(0), χ(1), χ(2), χ(3), χ(4), . . . ) = (. . . , B,B,B,B,A, . . . ), vertical displacement ∆Π = 2,
entrance height b0 and exit height b1.
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x ∈ {1, 2}, those trajectories that reach or do not reach an AB-interface in the column (see
Fig. 13). Thus, for Θ ∈ Vint,L,M and u ∈ tΘ + 2N

L , we let

WΘ,u,L =
{
π = (0, b0L) + π̃ : π̃ ∈ WL(u,∆Π + b1 − b0)

}
, (3.20)

and, for Θ ∈ Vnint,L,M and u ∈ tΘ + 2N
L ,

WΘ,u,L =
{
π ∈ (0, b0L) +WL(u,∆Π + b1 − b0) : π reaches no AB-interface

}
if xΘ = 1,

WΘ,u,L =
{
π ∈ (0, b0L) +WL(u,∆Π + b1 − b0) : π reaches an AB-interface

}
if xΘ = 2,

(3.21)

with xΘ the last coordinate of Θ ∈ VM . Next, we set

V∗L,M =
{

(Θ, u) ∈ VL,M × [0,∞) : u ∈ tΘ + 2N
L

}
,

V∗M =
{

(Θ, u) ∈ VM ×Q[1,∞) : u ≥ tΘ
}
,

V∗M =
{

(Θ, u) ∈ VM × [1,∞) : u ≥ tΘ
}
, (3.22)

which we partition into V∗int,L,M ∪ V∗nint,L,M , V∗int,M ∪ V∗nint,M and V∗int,M ∪ V
∗
nint,M . Note that

for every (Θ, u) ∈ V∗M there are infinitely many L ∈ N such that (Θ, u) ∈ V∗L,M , because
(Θ, u) ∈ V∗qL,M for all q ∈ N as soon as (Θ, u) ∈ V∗L,M .

Restriction on the number of steps per column. In what follows, we set

EIGH = {(M,m) ∈ N× N : m ≥M + 2}, (3.23)

and, for (M,m) ∈ EIGH, we consider the situation where the number of steps uL made by a
trajectory π in a column of width L ∈ N is bounded by mL. Thus, we restrict the set VL,M
to the subset V mL,M containing only those types of columns Θ that can be crossed in less than
mL steps, i.e.,

V mL,M = {Θ ∈ VL,M : tΘ ≤ m}. (3.24)

Note that the latter restriction only conconcerns those Θ satisfying xΘ = 2. When xΘ = 1 a
quick look at (3.18) suffices to state that tΘ ≤ M + 2 ≤ m. Thus, we set V mL,M = V mint,L,M ∪
V mnint,L,M with V mint,L,M = Vint,L,M and with

V mnint,L,M =
{

Θ ∈ {A,B}Z × Z×
{

1
L ,

2
L , . . . , 1

}2 × {1, 2} :

|∆Π| ≤M, kΘ = 0 and tΘ ≤ m
}
. (3.25)

The sets V mM = V mint,M ∪ V mnint,M and V mM = V mint,M ∪ V
m
nint,M are obtained by mimicking (3.16–

3.17). In the same spirit, we restrict V∗L,M to

V∗,mL,M = {(Θ, u) ∈ V∗L,M : Θ ∈ V mL,M , u ≤ m} (3.26)

and V∗L,M = V∗int,L,M ∪ V∗nint,L,M with

V∗,mint,L,M =
{

(Θ, u) ∈ V mint,L,M × [1,m] : u ∈ tΘ + 2N
L

}
,

V∗mnint,L,M =
{

(Θ, u) ∈ V mnint,L,M × [1,m] : u ∈ tΘ + 2N
L

}
.

(3.27)
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We set also V∗,mM = V∗,mint,M ∪V
∗,m
nint,M with V∗,mint,M = ∪L∈NV∗,mint,L,M and V∗,mnint,M = ∪L∈NV∗,mnint,L,M ,

and rewrite these as

V∗,mint,M =
{

(Θ, u) ∈ V mint,M ×Q[1,m] : u ≥ tΘ
}
,

V∗,mnint,M =
{

(Θ, u) ∈ V mnint,M ×Q[1,m] : u ≥ tΘ
}
. (3.28)

We further set V ∗M = V ∗,mint,M ∪ V
∗,m
nint,M with

V ∗,mint,M =
{

(Θ, u) ∈ V mint,M × [1,m] : u ≥ tΘ
}
,

V ∗,mnint,M =
{

(Θ, u) ∈ V mnint,M × [1,m] : u ≥ tΘ
}
.

(3.29)

Existence and uniform convergence of free energy per column. Recall (3.20), (3.21)
and, for L ∈ N, ω ∈ {A,B}N and (Θ, u) ∈ V ∗L,M , we associate with each π ∈ WΘ,u,L the
energy

Hω,χ
uL,L(π) =

uL∑
i=1

(
β 1 {ωi = B} − α 1 {ωi = A}

)
1
{
χL(πi−1,πi)

= B
}
, (3.30)

where χL(πi−1,πi)
indicates the label of the block containing (πi−1, πi) in a column with disorder

χ of width L. (Recall that the disorder in the block is part of the type of the block.) The
latter allows us to define the quenched free energy per monomer in a column of type Θ and
size L as

ψωL(Θ, u) =
1

uL
logZωL(Θ, u) with ZωL(Θ, u) =

∑
π∈WΘ,u,L

eH
ω,χ
uL,L(π). (3.31)

Abbreviate ψL(Θ, u) = E[ψωL(Θ, u)], and note that for M ∈ N, m ≥M + 2 and (Θ, u) ∈ V ∗,mL,M

all π ∈ WΘ,u,L necessarily remain in the blocks ΛL(0, i) with i ∈ {−m + 1, . . . ,m − 1}.
Consequently, the dependence on χ of ψωL(Θ, u) is restricted to those coordinates of χ indexed
by {−m+ 1, . . . ,m− 1}. The following proposition will be proven in Section 4.

Proposition 3.4 For every M ∈ N and (Θ, u) ∈ V∗M there exists a ψ(Θ, u) ∈ R such that

lim
L→∞

(Θ,u)∈V∗
L,M

ψωL(Θ, u) = ψ(Θ, u) = ψ(Θ, u;α, β) ω − a.s. (3.32)

Moreover, for every (M,m) ∈ EIGH the convergence is uniform in (Θ, u) ∈ V∗,mM .

Uniform bound on the free energies. Pick (α, β) ∈ CONE, n ∈ N, ω ∈ {A,B}N, Ω ∈
{A,B}N0×Z, and let W̄n be any non-empty subset ofWn (recall (1.1)). Note that the quenched
free energies per monomer introduced until now are all of the form

ψn = 1
n log

∑
π∈W̄n

eHn(π), (3.33)

where Hn(π) may depend on ω and Ω and satisfies −αn ≤ Hn(π) ≤ αn for all π ∈ W̄n (recall
that |β| ≤ α in CONE). Since 1 ≤ |W̄n| ≤ |Wn| ≤ 3n, we have

|ψn| ≤ log 3 + α =def Cuf(α). (3.34)

The uniformity of this bound in n, ω and Ω allows us to average over ω and/or Ω or to let
n→∞.
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3.3.2 Variational formulas for the free energy in a single column

We next show how the free energies per column can be expressed in terms of a variational
formula involving the path entropy and the single interface free energy defined in Sections 3.1
and 3.2. Throughout this section M ∈ N is fixed.

For Θ ∈ VM we need to specify lA,Θ and lB,Θ, the minimal vertical distances the copolymer
must cross in blocks of type A and B, respectively, when crossing a column of type Θ.

Vertical distance to be crossed in columns of class int. Pick Θ ∈ V int,M and put

l1 = 1{∆Π>0}(n1 − b0) + 1{∆Π<0}(b0 − n0),

lj = 1{∆Π>0}(nj − nj−1) + 1{∆Π<0}(n−j+2 − n−j+1) for j ∈ {2, . . . , |kΘ|},
l|kΘ|+1 = 1{∆Π>0}(∆Π + b1 − nkΘ

) + 1{∆Π<0}(nkΘ+1 −∆Π− b1), (3.35)

i.e., l1 is the vertical distance between the entrance point and the first interface, li is the
vertical distance between the i-th interface and the (i + 1)-th interface, and l|kΘ|+1 is the
vertical distance between the last interface and the exit point.

Recall that Θ = (χ,∆Π, b0, b1, x), and let lA,Θ and lB,Θ correspond to the minimal vertical
distance the copolymer must cross in blocks of type A and B, respectively, in a column with
disorder χ when going from (0, b0) to (1,∆Π + b1), i.e.,

lA,Θ = 1{∆Π>0}

|kΘ|+1∑
j=1

lj1{χ(nj−1)=A} + 1{∆Π<0}

|kΘ|+1∑
j=1

lj1{χ(n−j+1)=A},

lB,Θ = 1{∆Π>0}

|kΘ|+1∑
j=1

lj1{χ(nj−1)=B} + 1{∆Π<0}

|kΘ|+1∑
j=1

lj1{χ(n−j+1)=B}. (3.36)

Vertical distance to be crossed in columns of class nint. Depending on χ and ∆Π, we
further partition Vnint,M into four parts

Vnint,A,1,M ∪ Vnint,A,2,M ∪ Vnint,B,1,M ∪ Vnint,B,2,M , (3.37)

where Vnint,A,x,M and Vnint,B,x,M contain those columns with label x for which all the blocks
between the entrance and the exit block are of type A and B, respectively. Pick Θ ∈ Vnint,M .
In this case, there is no AB-interface between b0 and ∆Π + b1, which means that ∆Π < n1 if
∆Π ≥ 0 and ∆Π ≥ n0 if ∆Π < 0 (n0 and n1 being defined in (3.12)).

For Θ ∈ Vnint,A,1,M we have lB,Θ = 0, whereas lA,Θ is the vertical distance between the
entrance point (0, b0) and the exit point (1,∆Π + b1), i.e.,

lA,Θ = 1{∆Π≥0}(∆Π− b0 + b1) + 1{∆Π<0}(|∆Π|+ b0 − b1) + 1{∆Π=0}|b1 − b0|, (3.38)

and similarly for Θ ∈ Vnint,B,1,M we have obviously lA,Θ = 0 and

lB,Θ = 1{∆Π≥0}(∆Π− b0 + b1) + 1{∆Π<0}(|∆Π|+ b0 − b1) + 1{∆Π=0}|b1 − b0|. (3.39)

For Θ ∈ Vnint,A,2,M , in turn, we have lB,Θ = 0 and lA,Θ is the minimal vertical distance a
trajectory has to cross in a column with disorder χ, starting from (0, b0), to reach the closest
AB-interface before exiting at (1,∆Π + b1), i.e.,

lA,Θ = 1{∆Π≥0}(∆Π− b0 + b1) + 1{∆Π<0}(|∆Π|+ b0 − b1) + 1{∆Π=0}|b1 − b0|, (3.40)
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and similarly for Θ ∈ Vnint,B,2,M we have lA,Θ = 0 and

lB,Θ = 1{∆Π≥0}(∆Π− b0 + b1) + 1{∆Π<0}(|∆Π|+ b0 − b1) + 1{∆Π=0}|b1 − b0|. (3.41)

Variational formula for the free energy in a column. We abbreviate (h) = (hA, hB, hI)
and (a) = (aA, aB, aI). Note that the quantity hx indicates the fraction of horizontal steps
made by the copolymer in solvent x for x ∈ {A,B} and along AB-interfaces for x = I.
Similarly, ax indicates the total number of steps made by the copolymer in solvent x for
x ∈ {A,B} and along AB-interfaces for x = I. For (lA, lB) ∈ [0,∞)2 and u ≥ lA + lB + 1, we
put

L(lA, lB;u) =
{

(h), (a) ∈ [0, 1]3 × [0,∞)3 : hA + hB + hI = 1, aA + aB + aI = u

aA ≥ hA + lA, aB ≥ hB + lB, aI ≥ hI
}
. (3.42)

For lA ∈ [0,∞) and u ≥ 1 + lA, we set

Lnint,A,2(lA;u) =
{

(h), (a) ∈ L(lA, 0;u) : hB = aB = 0
}
,

Lnint,A,1(lA;u) =
{

(h), (a) ∈ L(lA, 0;u) : hB = aB = hI = aI = 0
}
,

(3.43)

and, for lB ∈ [0,∞) and u ≥ 1 + lB, we set

Lnint,B,2(lB;u) =
{

(h), (a) ∈ L(0, lB;u) : hA = aA = 0
}
,

Lnint,B,1(lB;u) =
{

(h), (a) ∈ L(0, lB;u) : hA = aA = hI = aI = 0
}
.

(3.44)

The following proposition will be proved in Section 4. The free energy per step in a single
column is given by the following variational formula.

Proposition 3.5 For all Θ ∈ VM and u ≥ tΘ,

ψ(Θ, u;α, β) = sup
(h),(a)∈L(Θ;u)

aA κ̃
(
aA
hA
, lAhA

)
+ aB

[
κ̃
(
aB
hB
, lBhB

)
+ β−α

2

]
+ aI φI(

aI
hI

)

u
, (3.45)

with

LΘ,u = L(lA, lB;u) if Θ ∈ V int,M ,

LΘ,u = Lnint,k,x(lk;u) if Θ ∈ Vnint,k,x,M , k ∈ {A,B} and x ∈ {1, 2}. (3.46)

The importance of Proposition 3.5 lies in the fact that it expresses the free energy in a
single column in terms of the path entropy in a single column κ̃ and the free energy along a
single linear interface φI , which were defined in Sections 3.1–3.2 and are well understood.

3.4 Mesoscopic percolation frequencies

In Section 3.4.1, we associate with each path π ∈ WL a coarse-grained path that records the
mesoscopic displacement of π in each column. In Section 3.4.2, we define a set of proba-
bility laws providing the frequencies with which each type of column can be crossed by the
copolymer. This set will be used in Section 5 to state and prove the column-based variational
formula. Finally, in Section 3.4.3, we introduce a set of probability laws providing the fractions
of horizontal steps that the copolymer can make when travelling inside each solvent with a
given slope or along an AB interface. This latter subset appears in the slope-based variational
formula.
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3.4.1 Coarse-grained paths

For x ∈ N0×Z and n ∈ N, let cx,n denote the center of the block ΛLn(x) defined in (1.3), i.e.,

cx,n = xLn + (1
2 ,

1
2)Ln, (3.47)

and abbreviate
(N0 × Z)n = {cx,n : x ∈ N0 × Z}. (3.48)

Let Ŵ be the set of coarse-grained paths on (N0×Z)n that start at c0,n, are self-avoiding and
are allowed to jump up, down and to the right between neighboring sites of (N0 × Z)n, i.e.,

the increments of Π̂ = (Π̂j)j∈N0 ∈ Ŵ are (0, Ln), (0,−Ln) and (Ln, 0). (These paths are the

coarse-grained counterparts of the paths π introduced in (1.1).) For l ∈ N ∪ {∞}, let Ŵl be
the set of l-step coarse-grained paths.

Recall, for π ∈ Wn, the definitions of Nπ and (vj(π))j≤Nπ−1 given below (1.7). With π

we associate a coarse-grained path Π̂ ∈ ŴNπ that describes how π moves with respect to
the blocks. The construction of Π̂ is done as follows: Π̂0 = c(0,0), Π̂ moves vertically until it
reaches c(0,v0), moves one step to the right to c(1,v0), moves vertically until it reaches c(1,v1),

moves one step to the right to c(2,v1), and so on. The vertical increment of Π̂ in the j-th

column is ∆Π̂j = (vj − vj−1)Ln (see Figs. 11–13).

Figure 14: Example of a coarse-grained path.

To characterize a path π, we will often use the sequence of vertical increments of its
associated coarse-grained path Π̂, modified in such a way that it does not depend on Ln
anymore. To that end, with every π ∈ Wn we associate Π = (Πk)

Nπ−1
k=0 such that Π0 = 0 and,

Πk =
k−1∑
j=0

∆Πj with ∆Πj =
1

Ln
∆Π̂j , j = 0, . . . , Nπ − 1. (3.49)

Pick M ∈ N and note that π ∈ Wn,M if and only if |∆Πj | ≤M for all j ∈ {0, . . . , Nπ − 1}.

3.4.2 Percolation frequencies along coarse-grained paths.

Given M ∈ N, we denote by M1(VM ) the set of probability measures on VM . Pick Ω ∈
{A,B}N0×Z, Π ∈ ZN0 such that Π0 = 0 and |∆Πi| ≤ M for all i ≥ 0 and b = (bj)j∈N0 ∈
(Q(0,1])

N0 . Set Θtraj = (Ξj)j∈N0 with

Ξj =
(
∆Πj , bj , bj+1

)
, j ∈ N0, (3.50)
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let
XΠ,Ω =

{
x ∈ {1, 2}N0 : (Ω(i,Πi + ·),Ξi, xi) ∈ VM ∀ i ∈ N0

}
, (3.51)

and for x ∈ XΠ,Ω set

Θj =
(
Ω(j,Πj + ·),∆Πj , bj , bj+1, xj

)
, j ∈ N0. (3.52)

With the help of (3.52), we can define the empirical distribution

ρN (Ω,Π, b, x)(Θ) =
1

N

N−1∑
j=0

1{Θj=Θ}, N ∈ N, Θ ∈ VM , (3.53)

Definition 3.6 For Ω ∈ {A,B}N0×Z and M ∈ N, let

RΩ
M,N =

{
ρN (Ω,Π, b, x) with b = (bj)j∈N0 ∈ (Q(0,1])

N0 ,

Π = (Πj)j∈N0 ∈ {0} × ZN : |∆Πj | ≤M ∀ j ∈ N0,

x = (xj)j∈N0 ∈ {1, 2}N0 :
(
Ω(j,Πj + ·),∆Πj , bj , bj+1, xj

)
∈ VM

} (3.54)

and
RΩ
M = closure

(
∩N ′∈N ∪N≥N ′ RΩ

M,N

)
, (3.55)

both of which are subsets of M1(VM ).

Proposition 3.7 For every p ∈ (0, 1) and M ∈ N there exists a closed set Rp,M (M1(VM )
such that

RΩ
M = Rp,M for P-a.e. Ω. (3.56)

Proof. Note that, for every Ω ∈ {A,B}N0×Z, the set RΩ
M does not change when finitely

many variables in Ω are changed. Therefore RΩ
M is measurable with respect to the tail σ-

algebra of Ω. Since Ω is an i.i.d. random field, the claim follows from Kolmogorov’s zero-one
law. Because of the constraint on the vertical displacement, Rp,M does not coincide with
M1(VM ). �

Each probability measure ρ ∈ Rp,M is associated with a strategy of displacement of the
copolymer on the mesoscopic scale. As mentioned above, the growth rate of the square blocks
in (1.5) ensures that no entropy is carried by the mesoscopic displacement, and this justifies
the optimization over Rp,M in the column-based variational formula.

3.4.3 Fractions of horizontal steps per slope

In this section, we introduce R̄p,M as the counterpart of Rp,M for the slope-based variational
formula. To that aim, we define

E =
{

(hA,Θ, hB,Θ, hI,Θ)Θ∈VM ∈ ([0, 1]3)VM : hA,Θ + hB,Θ + hI,Θ = 1 ∀Θ, (3.57)

Θ 7→ hk,Θ Borel ∀ k ∈ {A,B, I},
hk,Θ > 0 if lk,Θ > 0 ∀ k ∈ {A,B},
hk,Θ = 1 if Θ ∈ Vnint,k,1,M ,

hI,Θ + hk,Θ = 1 if Θ ∈ Vnint,k,2,M

}
.
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With each ρ ∈ Rp,M and h ∈ E associate Gρ,h ∈M1

(
R+ ∪ R+ ∪ {I}

)
, defined by

Gρ,h,A(dl) =

∫
V̄M

hA,Θ 1
{
lA,Θ
hA,Θ

∈ dl
}
ρ(dΘ), (3.58)

Gρ,h,B(dl) =

∫
V̄M

hB,Θ 1
{
lB,Θ
hB,Θ

∈ dl
}
ρ(dΘ),

Gρ,h,I =

∫
V̄M

hI,Θ ρ(dΘ),

where lk,Θ/hk,Θ = 0 by convention if hk,Θ = 0 for Θ ∈ VM and k ∈ {A,B}. The set R̄p,M in
(1.17) is defined as

R̄p,M = Closure
{
ρ̄ ∈M1

(
R+ ∪ R+ ∪ {I}

)
: ∃ ρ ∈ Rp,M , h ∈ E : ρ̄ = Gρ,h

}
, (3.59)

For ρ̄ ∈ R̄p,M , let ρ̄A, ρ̄B and ρ̄I denote the restriction of ρ̄ to R+, R+ and {I}, respectively, as
in (1.18). The measures ρ̄A(dl), ρ̄B(dl) represent the fraction of horizontal steps made by the
copolymer when it moves at slope l in solvent A, respectively, B. The number ρ̄I represents
the fraction of horizontal steps made by the copolymer when it moves along the AB-interface.

3.5 Positivity of the free energy

It is easy to prove that for all p ∈ (0, 1), M ∈ N and (α, β) ∈ CONE the two variational formulas
(the slope-based variational formula stated in (1.17) and the column-based variational formula
stated in (5.2) below and proved in Section 5) are strictly positive, i.e.,

f(α, β;M,p) > 0. (3.60)

To prove that the variational formula in (1.17) is strictly positive, we define ρ̄hor ∈
M1

(
R+ ∪ R+ ∪ {I}

)
as

ρ̄hor = p2δA,0(dl) + (1− p)2δB,0(dl) + 2p(1− p)δI . (3.61)

When moving along the x-axis, the pairs of blocks appearing above and below the x-axis have
density p2 for type AA, density (1− p)2 for type BB, and density 2p(1− p) for types AB and
BA. Consequently, ρ̄hor belongs to R̄p and (1.17) implies that, for any choice of vA, vB ≥ 1,
the variational formula in (1.17) is at least

[p2 + 2p(1− p)] vA κ̃(vA, 0) + (1− p)2 vB [κ̃(vB, 0) + β−α
2 ]

[p2 + 2p(1− p)] vA + (1− p)2 vB
. (3.62)

Thus, it suffices to pick vB = 1, to recall that limu→∞ uκ̃(u, 0) =∞ (Lemma B.1(iv)), and to
choose vA large enough so that (3.62) becomes strictly positive.

To prove that the variational formula in (5.2) is strictly positive, we can argue similarly,
taking both sequences (Πi)i∈N0 and (bi)i∈N0 constant and equal to 0.

4 Proof of Propositions 3.4–3.5

In this section we prove Propositions 3.4 and 3.5, which were stated in Sections 3.3.1 and
3.3.2 and contain the precise definition of the key ingredients of the variational formula in
Theorem 5.1. In Section 5 we will use these propositions to prove Theorem 5.1.
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In Section 4.1 we associate with each trajectory π in a column a sequence recording the
indices of the AB-interfaces successively visited by π. The latter allows us to state a key
proposition, Proposition 4.1 below, from which Propositions 3.4 and 3.5 are straightforward
consequences. In Section 4.2 we give an outline of the proof of Proposition 4.1, in Sections 4.3–
4.5 we provide the details.

4.1 Column crossing characteristic

4.1.1 The order of the visits to the interfaces

Pick (M,m) ∈ EIGH. To prove Propositions 3.4 and 3.5, instead of considering (Θ, u) ∈ V∗,mM ,
we will restrict to (Θ, u) ∈ V∗,mint,M . Our proof can be easily extended to (Θ, u) ∈ V∗,mnint,M .

Pick (Θ, u) ∈ V∗,mint,M , recall (3.12) and set JΘ,u = {N ↓Θ,u, . . . ,N
↑
Θ,u}, with

N ↑Θ,u = max{i ≥ 1: ni ≤ u} and N ↑Θ,u = 0 if n1 > u. (4.1)

N ↓Θ,u = min{i ≤ 0: |ni| ≤ u} and N ↓Θ,u = 1 if |n0| > u.

Next pick L ∈ N so that (Θ, u) ∈ V∗int,L,M and recall that for j ∈ JΘ,u the j-th interface of the
Θ-column is Ij = {0, . . . , L} × {njL}. Note also that π ∈ WΘ,u,L makes uL steps inside the

column and therefore can not reach the AB-interfaces labelled outside {N ↓Θ,u, . . . ,N
↑
Θ,u}.

First, we associate with each trajectory π ∈ WΘ,u,L the sequence J(π) that records the
indices of the interfaces that are successively visited by π. Next, we pick π ∈ WΘ,u,L, and
define τ1, J1 as

τ1 = inf{i ∈ N : ∃j ∈ JΘ,u : πi ∈ Ij}, πτ1 ∈ IJ1 , (4.2)

so that J1 = 0 (respectively, J1 = 1) if the first interface reached by π is I0 (respectively, I1).
For i ∈ N \ {1}, we define τi, Ji as

τi = inf
{
t > τi−1 : ∃j ∈ JΘ,u \ {Ji−1}, πi ∈ Ij

}
, πτi ∈ IJi , (4.3)

so that the increments of J(π) are restricted to −1 or 1. The length of J(π) is denoted by
m(π) and corresponds to the number of jumps made by π between neighboring interfaces

before time uL, i.e., J(π) = (Ji)
m(π)
i=1 with

m(π) = max{i ∈ N : τi ≤ uL}. (4.4)

Note that (Θ, u) ∈ V∗,mint,M necessarily implies kΘ ≤ m(π) ≤ u ≤ m. Set

Sr = {j = (ji)
r
i=1 ∈ ZN : j1 ∈ {0, 1}, ji+1 − ji ∈ {−1, 1} ∀ 1 ≤ i ≤ r − 1}, r ∈ N, (4.5)

and, for Θ ∈ V, r ∈ {1, . . . ,m} and j ∈ Sr, define

l1 = 1{j1=1}(n1 − b0) + 1{j1=0}(b0 − n0),

li = |nji − nji−1 | for i ∈ {2, . . . , r},
lr+1 = 1{jr=kΘ+1}(nkΘ+1 −∆Π− b1) + 1{jr=kΘ}(∆Π + b1 − nkΘ

), (4.6)

so that (li)i∈{1,...,r+1} depends on Θ and j. Set

AΘ,j = {i ∈ {1, . . . , r + 1} : A between Iji−1 and Iji}, (4.7)

BΘ,j = {i ∈ {1, . . . , r + 1} : B between Iji−1 and Iji},
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and set lΘ,j = (lA,Θ,j , lB,Θ,j) with

lA,Θ,j =
∑

i∈AΘ,j
li, lB,Θ,j =

∑
i∈BΘ,j

li. (4.8)

For L ∈ N and (Θ, u) ∈ V∗,mint,L,M , we denote by SΘ,u,L the set {J(π), π ∈ WΘ,u,L}. It is not
difficult to see that a sequence j ∈ Sr belongs to SΘ,u,L if and only if it satisfies the two
following conditions. First, jr ∈ {kΘ, kΘ + 1}, since jr is the index of the interface last visited
before the Θ-column is exited. Second, u ≥ 1 + lA,Θ,j + lB,Θ,j because the number of steps
taken by a trajectory π ∈ WΘ,u,L satisfying J(π) = j must be large enough to ensures that all
interfaces Ijs , s ∈ {1, . . . , r}, can be visited by π before time uL. Consequently, SΘ,u,L does
not depend on L and can be written as SΘ,u = ∪mr=1SΘ,u,r, where

SΘ,u,r = {j ∈ Sr : jr ∈ {kΘ, kΘ + 1}, u ≥ 1 + lA,Θ,j + lB,Θ,j}. (4.9)

Thus, we partition WΘ,u,L according to the value taken by J(π), i.e.,

WΘ,u,L =

m⋃
r=1

⋃
j∈SΘ,u,r

WΘ,u,L,j , (4.10)

where WΘ,u,L,j contains those trajectories π ∈ WΘ,u,L for which J(π) = j.

Next, for j ∈ SΘ,u, we define (recall (3.30))

ψωL(Θ, u, j) =
1

uL
logZωL(Θ, u, j), ψL(Θ, u, j) = E

[
ψωL(Θ, u, j)

]
, (4.11)

with
ZωL(Θ, u, j) =

∑
π∈WΘ,u,L,j

eH
ω,χ
uL,L(π). (4.12)

For each L ∈ N satisfying (Θ, u) ∈ V∗,mint,L,M and each j ∈ SΘ,u, the quantity lA,Θ,jL (respec-
tively, lB,Θ,jL) corresponds to the minimal vertical distance a trajectory π ∈ WΘ,u,L,j has to
cross in solvent A (respectively, B).

4.1.2 Key proposition

For simplicity we give the proof for the case (Θ, u) ∈ V∗,mint,M . The extension to (Θ, u) ∈ V∗,mnint,M

is straightforward.

Recalling (3.45) and (4.8), we define the free energy associated with Θ, u, j as

ψ(Θ, u, j) = ψint(u, lΘ,j) (4.13)

= sup
(h),(u)∈L(lΘ,j ;u)

uA κ̃
(
uA
hA
,
lA,Θ,j
hA

)
+ uB

[
κ̃
(
uB
hB
,
lB,Θ,j
hB

)
+ β−α

2

]
+ uI φ(u

I

hI
)

u
.

Proposition 4.1 below states that limL→∞ ψL(Θ, u, j) = ψ(Θ, u, j) uniformly in (Θ, u) ∈ V∗,mint,M

and j ∈ SΘ,u.

Proposition 4.1 For every M,m ∈ N such that m ≥M + 2 and every ε > 0 there exists an
Lε ∈ N such that∣∣ψL(Θ, u, j)− ψ(Θ, u, j)

∣∣ ≤ ε ∀ (Θ, u) ∈ V∗,mint,L,M , j ∈ SΘ,u, L ≥ Lε. (4.14)
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Proof of Propositions 3.4 and 3.5 subject to Proposition 4.1. Pick ε > 0, L ∈ N and
(Θ, u) ∈ V∗,mint,L,M . Recall (3.36) and note that lA(Θ)L and lB(Θ)L are the minimal vertical
distances the trajectories of WΘ,u,L have to cross in blocks of type A, respectively, B. For
simplicity, in what follows the Θ-dependence of lA and lB will be suppressed. In other words,
lA and lB are the two coordinates of lΘ,f (recall (4.8)) with f = (1, 2, . . . , |kΘ|) when ∆Π ≥ 0
and f = (0,−1, . . . ,−|kΘ|+ 1) when ∆Π < 0, so (3.45) and (4.13) imply

ψint(u, lA, lB) = ψ(Θ, u, f). (4.15)

Hence Propositions 3.4 and 3.5 will be proven once we show that limL→∞ ψL(Θ, u) = ψ(Θ, u, f)
uniformly in (Θ, u) ∈ V∗,mint,L,M . Moreover, a look at (4.13), (4.15) and (3.45) allows us to assert
that for every j ∈ SΘ,u we have ψ(Θ, u, j) ≤ ψ(Θ, u, f). The latter is a consequence of the
fact that l 7→ κ̃(u, l) decreases on [0, u− 1] (see Lemma B.1(ii) in Appendix A) and that

lA = lA,Θ,f = min{lA,Θ,j : j ∈ SΘ,u},
lB = lB,Θ,f = min{lB,Θ,j : j ∈ SΘ,u}. (4.16)

By applying Proposition 4.1 we have, for L ≥ Lε,

ψL(Θ, u, j) ≤ ψ(Θ, u, f) + ε ∀ (Θ, u) ∈ V∗,mint,L,M , ∀ j ∈ SΘ,u,

ψL(Θ, u, f) ≥ ψ(Θ, u, f)− ε ∀ (Θ, u) ∈ V∗,mint,L,M . (4.17)

The second inequality in (4.17) allows us to write, for L ≥ Lε,

ψ(Θ, u, f)− ε ≤ ψL(Θ, u, f) ≤ ψL(Θ, u) ∀ (Θ, u) ∈ V∗,mint,L,M . (4.18)

To obtain the upper bound we introduce

AL,ε =
{
ω : |ψωL(Θ, u, j)− ψL(Θ, u, j)| ≤ ε ∀ (Θ, u) ∈ V∗,mint,L,M , ∀ j ∈ SΘ,u

}
, (4.19)

so that

ψL(Θ, u) ≤ E
[
1AcL,ε ψ

ω
L(Θ, u)

]
+ E

[
1AL,ε ψ

ω
L(Θ, u)

]
(4.20)

≤ Cuf(α)P(AcL,ε) + 1
uLE

[
1AL,ε log

∑
j∈SΘ,u

euL(ψL(Θ,u,j)+ε)
]
,

where we use (3.34) to bound the first term in the right-hand side, and the definition of AL,ε
to bound the second term. Next, with the help of the first inequality in (4.17) we can rewrite
(4.20) for L ≥ Lε and (Θ, u) ∈ V∗,mint,L,M in the form

ψL(Θ, u) ≤ Cuf(α)P(AcL,ε) + 1
uL log | ∪mr=1 Sr|+ ψ(Θ, u, f) + 2ε. (4.21)

At this stage we want to prove that limL→∞ P(AcL,ε) = 0. To that end, we use the concen-
tration of measure property in (D.3) in Appendix D with l = uL, Γ = WΘ,u,L,j , η = εuL,
ξi = −α1{ωi = A}+ β1{ωi = B} for all i ∈ N and T (x, y) = 1{χLn(x,y) = B}. We then obtain

that there exist C1, C2 > 0 such that, for all L ∈ N, (Θ, u) ∈ V∗,mint,L,M and j ∈ SΘ,u,

P
(
|ψωL(Θ, u, j)− ψL(Θ, u, j)| > ε

)
≤ C1 e

−C2 ε2 uL. (4.22)
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The latter inequality, combined with the fact that |V∗,mint,L,M | grows polynomialy in L, allows
us to assert that limL→∞ P(AcL,ε) = 0. Next, we note that | ∪mr=1 Sr| <∞, so that for Lε large
enough we obtain from (4.21) that, for L ≥ Lε,

ψL(Θ, u) ≤ ψ(Θ, u, f) + 3ε ∀ (Θ, u) ∈ V∗,mint,L,M . (4.23)

Now (4.18) and (4.23) are sufficient to complete the proof of Propositions 3.4–3.5 in the case
(Θ, u) ∈ V∗,mint,M . As mentioned earlier, the proof for the case (Θ, u) ∈ V∗,mnint,M is entirely similar.

�

4.2 Structure of the proof of Proposition 4.1

Intermediate column free energies. Let

Gm
M =

{
(L,Θ, u, j) : (Θ, u) ∈ V∗,mint,L,M , j ∈ SΘ,u

}
, (4.24)

and define the following order relation.

Definition 4.2 For g, g̃ : Gm
M 7→ R, write g ≺ g̃ when for every ε > 0 there exists an Lε ∈ N

such that
g(L,Θ, u, j) ≤ g̃(L,Θ, u, j) + ε ∀ (L,Θ, u, j) ∈ Gm

M : L ≥ Lε. (4.25)

Recall (4.11) and (4.13), set

ψ1(L,Θ, u, j) = ψL(Θ, u, j), ψ4(L,Θ, u, j) = ψ(Θ, u, j), (4.26)

and note that the proof of Proposition 4.1 will be complete once we show that ψ1 ≺ ψ4 and
ψ4 ≺ ψ1. In what follows, we will focus on ψ1 ≺ ψ4. Each step of the proof can be adapted
to obtain ψ4 ≺ ψ1 without additional difficulty.

In the proof we need to define two intermediate free energies ψ2 and ψ3, in addition to ψ1

and ψ4 above. Our proof is divided into 3 steps, organized in Sections 4.3–4.5, and consists
of showing that ψ1 ≺ ψ2 ≺ ψ3 ≺ ψ4.

Additional notation. Before stating Step 1, we need some further notation. First, we
partition WΘ,u,L,j according to the total number of steps and the number of horizontal steps
made by a trajectory along and in between AB-interfaces. To that end, we assume that
j ∈ SΘ,u,r with r ∈ {1, . . . ,m}, we recall (4.6) and we let

DΘ,L,j =
{

(di, ti)
r+1
i=1 : di ∈ N and ti ∈ di + liL+ 2N0 ∀ 1 ≤ i ≤ r + 1

}
,

DIr =
{

(dIi , t
I
i )ri=1 : dIi ∈ N and tIi ∈ dIi + 2N0 ∀ 1 ≤ i ≤ r

}
, (4.27)

where di, ti denote the number of horizontal steps and the total number of steps made by
the trajectory between the (i − 1)-th and i-th interfaces, and dIi , t

I
i denote the number of

horizontal steps and the total number of steps made by the trajectory along the i-th interface.
For (d, t) ∈ DΘ,L,j , (dI , tI) ∈ DIr and 1 ≤ i ≤ r, we set T0 = 0 and

Vi =

i∑
j=1

tj +

i−1∑
j=1

tIj , i = 1, . . . , r,

Ti =

i∑
j=1

tj +

i∑
j=1

tIj , i = 1, . . . , r, (4.28)
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so that Vi, respectively, Ti indicates the number of steps made by the trajectory when reaching,
respectively, leaving the i-th interface.

Next, we let θ : RN 7→ RN be the left-shift acting on infinite sequences of real numbers
and, for u ∈ N and ω ∈ {A,B}N, we put

Hω
u (B) =

u∑
i=1

[
β 1{ωi=B} − α 1{ωi=A}

]
. (4.29)

Finally, we recall that
ψ1(L,Θ, u, j) = 1

uL E[logZω1 (L,Θ, u, j)], (4.30)

where the partition function defined in (3.31) has been renamed Z1 and can be written in the
form

Zω1 (L,Θ, u, j) =
∑

(d,t)∈DΘ,L,j

∑
(dI ,tI)∈DIr

A1B1C1, (4.31)

where (recall (4.7) and (3.5))

A1 =
∏

i∈AΘ,j

e
ti κ̃di

(
ti
di
,
liL
di

) ∏
i∈BΘ,j

e
ti κ̃di

(
ti
di
,
liL
di

)
eH

θ
Ti−1 (w)
ti

(B), (4.32)

B1 =
r∏
i=1

e
tIi φ

θVi (w)

dI
i

( tIi
dIi

)
,

C1 = 1{∑r+1
i=1 di+

∑r
i=1 d

I
i =L

} 1{∑r+1
i=1 ti+

∑r
i=1 t

I
i =uL

}.
It is important to note that a simplification has been made in the term A1 in (4.32). Indeed,
this term is not κ̃di(·, ·) defined in (3.2), since the latter does not take into account the vertical
restrictions on the path when it moves from one interface to the next. However, the fact that
two neighboring AB-interfaces are necessarily separated by a distance at least L allows us
to apply Lemma A.5 in Appendix A.2, which ensures that these vertical restrictions can be
removed at the cost of a negligible error.

To show that ψ1 ≺ ψ2 ≺ ψ3 ≺ ψ4, we fix (M,m) ∈ EIGH and ε > 0, and we show that
there exists an Lε ∈ Ns such that ψk(L,Θ, u, j) ≤ ψk+1(L,Θ, u, j) + ε for all (L,Θ, u, j) ∈ Gm

M

and L ≥ Lε. The latter will complete the proof of Proposition 4.1.

4.3 Step 1

In this step, we remove the ω-dependence from Z ω
1 (L,Θ, u, j). To that aim, we put

ψ2(L,Θ, u, j) =
1

uL
logZ2(L,Θ, u, j) (4.33)

with
Z2(L,Θ, u, j) =

∑
(d,t)∈DΘ,L,j

∑
(dI ,tI)∈DIr

A2 B2 C2, (4.34)
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where

A2 =
∏

i∈AΘ,j

e
ti κ̃di

(
ti
di
,
liL
di

) ∏
i∈BΘ,j

e
ti κ̃di

(
ti
di
,
liL
di

)
e
β−α

2 ti , (4.35)

B2 =

r∏
i=1

e
tIi φdI

i

(
tIi
dIi

)
,

C2 = C1.

Next, for n ∈ N we define

Aε,n =
{
∃ 0 ≤ t, s ≤ n : t ≥ εn,

∣∣Hθs(ω)
t (B)− β−α

2 t
∣∣ > εt

}
,

Bε,n =
{
∃ 0 ≤ t, d, s ≤ n : t ∈ d+ 2N0, t ≥ εn,

∣∣φθs(w)
d ( td)− φd( td)

∣∣ > ε
}
. (4.36)

By applying Cramér’s theorem for i.i.d. random variables (see e.g. den Hollander [3], Chapter
1), we obtain that there exist C1(ε), C2(ε) > 0 such that

P
(∣∣Hθs(w)

t (B)− β−α
2 t
∣∣ > εt

)
≤ C1(ε) e−C2(ε)t, t, s ∈ N. (4.37)

By using the concentration of measure property in (D.3) in Appendix D with l = t, Γ =WId ( td),
T (x, y) = 1{(x, y) < 0}, η = εt and ξi = −α1{ωi = A} + β1{ωi = B} for all i ∈ N, we find
that there exist C1, C2 > 0 such that

P
(∣∣φθs(w)

d ( td)− φd( td)
∣∣ > ε

∣∣) ≤ C1 e
−C2 ε2t, t, d, s ∈ N, t ∈ d+ 2N0. (4.38)

With the help of (3.34) and (4.30) we may write, for (L,Θ, u, j) ∈ Gm
M ,

ψ1(L,Θ, u, j) ≤ Cuf(α)P
(
Aε,mL ∪ Bε,mL

)
+ 1

uL E
[
1{Acε,mL∩B

c
ε,mL} logZω1 (L,Θ, u, j)

]
. (4.39)

With the help of (4.37) and (4.38), we get that P(Aε,mL)→ 0 and P(Bε,mL)→ 0 as L→∞.
Moreover, from ((4.31)-(4.36)) it follows that, for (L,Θ, u, j) ∈ Gm

M and ω ∈ Acε,mL ∩ Bcε,ML,

Zω1 (L,Θ, u, j) ≤ Z2(L,Θ, u, j) eεuL. (4.40)

The latter completes the proof of ψ1 ≺ ψ2.

4.4 Step 2

In this step, we concatenate the pieces of trajectories that travel in A-blocks, respectively,
B-blocks, respectively, along the AB-interfaces and replace the finite-size entropies and free
energies by their infinite-size counterparts. Recall the definition of lA,Θ,j and lB,Θ,j in (4.8)
and define, for (L,Θ, u, j) ∈ Gm

M , the sets

JΘ,L,j =
{(
aA, hA, aB, hB

)
∈ N4 : aA ∈ lA,Θ,jL+ hA + 2N0, aB ∈ lB,Θ,jL+ hB + 2N0

}
,

(4.41)

J I =
{(
aI , hI

)
∈ N2 : aI ∈ hI + 2N0

}
,
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and put ψ3(L,Θ, u, j) = 1
uL logZ3(L,Θ, u, j) with

Z3(L,Θ, u, j) =
∑

(a,h)∈JΘ,L,j

∑
(aI ,hI)∈J I

A3B3C3, (4.42)

where

A3 = e
aA κ̃

(
aA
hA

,
lA,Θ,jL
hA

)
e
aB κ̃

(
aB
hB

,
lB,Θ,jL
hB

)
e
β−α

2 aB ,

B3 = e
aI φ
(
aI

hI

)
,

C3 = 1{aA+aB+aI=uL} 1{hA+hB+hI=L}. (4.43)

In order to establish a link between ψ2 and ψ3 we define, for (a, h) ∈ JΘ,L,j and (aI , hI) ∈ J I ,

P(a,h) =
{

(t, d) ∈ DΘ,L,j :
∑

i∈AΘ,j
(ti, di) = (aA, hA),

∑
i∈BΘ,j

(ti, di) = (aB, hB)
}
,

Q(aI ,hI) =
{

(tI , dI) ∈ DIr :
∑r

i=1(tIi , d
I
i ) = (aI , hI)

}
. (4.44)

Then we can rewrite Z2 as

Z2(L,Θ, u, j) =
∑

(a,h)∈JΘ,L,j

∑
(aI ,hI)∈J I

C3

∑
(t,d)∈P(a,h)

∑
(tI ,dI)∈Q

(aI ,hI)

A2B2. (4.45)

To prove that ψ2 ≺ ψ3, we need the following lemma.

Lemma 4.3 For every η > 0 there exists an Lη ∈ N such that, for every (L,Θ, u, j) ∈ Gm
M

with L ≥ Lη and every (d, t) ∈ DΘ,L,j and (dI , tI) ∈ DIr satisfying
∑r+1

i=1 di +
∑r

i=1 d
I
i = L

and
∑r+1

i=1 ti +
∑r

i=1 t
I
i = uL,

ti κ̃
(
ti
di
, liLdi

)
− ηuL ≤ ti κ̃di

(
ti
di
, liLdi

)
≤ ti κ̃

(
ti
di
, liLdi

)
+ ηuL i = 1, . . . , r + 1, (4.46)

tIi φ(
tIi
dIi

)− ηuL ≤ tIi φdIi (
tIi
dIi

) ≤ tIi φ(
tIi
dIi

) + ηuL i = 1, . . . , r.

Proof. By using Lemmas A.1 and C.2 in Appendix A, we have that there exists a L̃η ∈ N
such that, for L ≥ L̃η, (u, l) ∈ HL and µ ∈ 1 + 2N

L ,

|κ̃L(u, l)− κ̃(u, l)| ≤ η, |φIL(µ)− φI(µ)| ≤ η. (4.47)

Moreover, Lemmas 3.1, B.1(ii–iii), C.1(ii) and C.2 ensure that there exists a vη > 1 such that,
for L ≥ 1, (u, l) ∈ HL with u ≥ vη and µ ∈ 1 + 2N

L with µ ≥ vη,

0 ≤ κ̃L(u, l) ≤ η, 0 ≤ φL(µ) ≤ η. (4.48)

Note that the two inequalities in (4.48) remain valid when L = ∞. Next, we set rη =
η/(2vηCuf) and Lη = L̃η/rη, and we consider L ≥ Lη. Because of the left-hand side of (4.47),
the two inequalities in the first line of (4.46) hold when di ≥ rηL ≥ L̃η. We deal with the
case di ≤ rηL by considering first the case ti ≤ ηuL/2Cuf, which is easy because κ̃di and κ̃
are uniformly bounded by Cuf (see (3.34)). The case ti ≥ ηuL/2Cuf gives ti/di ≥ uvη ≥ vη,
which by the left-hand side of (4.48) completes the proof of the first line in (4.46). The same
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observations applied to tIi , d
I
i combined with the right-hand side of (4.47) and (4.48) provide

the two inequalities in the second line in (4.46). �

To prove that ψ2 ≺ ψ3, we apply Lemma 4.3 with η = ε/(2m + 1) and we use (4.35) to
obtain, for L ≥ Lε/(2m+1), (d, t) ∈ DΘ,L,j and (dI , tI) ∈ DIr ,

A2 ≤
∏

i∈AΘ,j

e
ti κ̃
(
ti
di
,
liL
di

)
+

εuL
2m+1

∏
i∈BΘ,j

e
ti κ̃
(
ti
di
,
liL
di

)
+ti

β−α
2 +

εuL
2m+1 , (4.49)

B2 ≤
r∏
i=1

e
tIi φ

(
tIi
dIi

)
+

εuL
2m+1 .

Next, we pick (a, h) ∈ JΘ,L,j , (aI , hI) ∈ J I , (t, d) ∈ P(a,h) and (tI , dI) ∈ Q(aI ,hI), and we

use the concavity of (a, b) 7→ aκ̃(a, b) and µ 7→ φI(µ) (see Lemma B.1 in Appendix A and
Lemma C.1 in Appendix C) to rewrite (4.49) as

A2 ≤ e
aA κ̃
(
aA
hA

,
lA,Θ,jL
hA

)
+aB κ̃

(
aB
hB

,
lB,Θ,jL
hB

)
+
β−α

2 aB+
ε(r+1)uL

2m+1 = A3 e
ε(r+1)uL

2m+1 , (4.50)

B2 ≤ ea
I φI
(
aI

hI

)
+
εruL
2m+1 = B3 e

εruL
2m+1 .

Moreover, r, which is the number of AB interfaces crossed by the trajectories in WΘ,u,j,L, is
at most m (see (4.10)), so that (4.50) allows us to rewrite (4.45) as

Z2(L,Θ, u, j) ≤ eεuL
∑

(a,h)∈JΘ,L,j

∑
(aI ,hI)∈J I

C3 |P(a,h)| |Q(aI ,hI)|A3B3. (4.51)

Finally, it turns out that |P(a,h)| ≤ (uL)8r and |Q(aI ,hI)| ≤ (uL)8r. Therefore, since r ≤ m,
(4.42) and (4.51) allow us to write, for (L,Θ, u, j) ∈ Gm

M and L ≥ Lε/2m+1,

Z2(L,Θ, u, j) ≤ (mL)16mZ3(L,Θ, u, j). (4.52)

The latter is sufficient to conclude that ψ2 ≺ ψ3.

4.5 Step 3

For every (L,Θ, u, j) ∈ Gm
M we have, by the definition of L(lA,Θ,j , lB,Θ,j ;u) in (3.42), that

(a, h) ∈ JΘ,L,j and (aI , hI) ∈ J I satisfying aA + aB + aI = uL and hA + hB + hI = L also
satisfy ((

aA
L ,

aB
L ,

aI

L

)
,
(
hA
L ,

hB
L ,

hI

L

))
∈ L(lA,Θ,j , lB,Θ,j ;u). (4.53)

Hence, (4.53) and the definition of ψI in (3.45) ensure that, for this choice of (a, h) and
(aI , hI),

A3B3 ≤ euLψI(u, lA,Θ,j , lB,Θ,j). (4.54)

Because of C3, the summation in (4.42) is restricted to those (a, h) ∈ JΘ,L,j and (aI , hI) ∈ J I
for which aA, aB, a

I ≤ uL and hA, hB, h
I ≤ L. Hence, the summation is restricted to a set of

cardinality at most (uL)3L3. Consequently, for all (L,Θ, u, j) ∈ Gm
M we have

Z3(L,Θ, u, j) =
∑

(a,h)∈JΘ,L,j

∑
(aI ,hI)∈J I

A4B4C4 ≤ (mL)3L3 euLψI(u, lA,Θ,j , lB,Θ,j). (4.55)

The latter implies that ψ3 ≺ ψ4 since ψ4 = ψI(u, lA,Θ,j , lB,Θ,j) by definition (recall (4.13)
and (4.26)).
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5 Column-based variational formula

To derive the slope-based variational formula that is the cornerstone of our analysis, we state
and prove in this section an auxiliary variational formula for the quenched free energy per step
that involves the fraction of the time spent by the copolymer in each type of block columns and
the free energy per step of the copolymer in a given block column. This auxiliary variational
formula will be used in Section 6 in combination with Proposition 3.5 to complete the proof
of the slope-based variational formula.

With each Θ ∈ VM we associate a quantity uΘ ∈ [tΘ,∞) indicating how many steps on
scale Ln the copolymer makes in columns of type Θ, where tΘ is the minimal number of steps
required to cross a column of type Θ. These numbers are gathered into the set

BVM =
{

(uΘ)Θ∈VM ∈ RVM : uΘ ≥ tΘ ∀Θ ∈ VM , Θ 7→ uΘ continuous
}
, (5.1)

where the continuity in Θ is with respect to the distance dM defined in (C.7) in Appendix C.2.
We recall Proposition 3.5, which identifies the free energy per step ψ(Θ, uΘ;α, β) associated
with the copolymer when crossing a column of type Θ in uΘ steps, and we recall that the set
Rp,M introduced in Section 3.4.2 gathers the frequencies with which different types of columns
can be visited by the copolymer.

Proposition 5.1 (column-based variational formula) For every (α, β) ∈ CONE, M ∈ N and
p ∈ (0, 1) the free energy in (1.12) exists for P-a.e. (ω,Ω) and in L1(P), and is given by

f(α, β; M,p) = sup
ρ∈Rp,M

sup
(uΘ)Θ∈VM

∈BVM

N(ρ, u)

D(ρ, u)
, (5.2)

where

N(ρ, u) =

∫
VM

uΘ ψ(Θ, uΘ;α, β) ρ(dΘ),

D(ρ, u) =

∫
VM

uΘ ρ(dΘ), (5.3)

with the convention that N(ρ, u)/D(ρ, u) = −∞ when D(ρ, u) =∞.

The present section is technically involved because it goes through a sequence of approxi-
mation steps in which the self-averaging of the free energy with respect to ω and Ω in the limit
as n → ∞ is proven, and the various ingredients of the variational formula in Theorem 5.1
that were constructed in Section 3 are put together.

In Section 5.1 we introduce additional notation and state Propositions 5.2, 5.3 and 5.14
from which Theorem 5.1 is a straightforward consequence. Proposition 5.2, which deals with
(M,m) ∈ EIGH, is proven in Section 5.2 and the details of the proof are worked out in
Sections 5.2.1–5.2.5, organized into 5 Steps that link intermediate free energies. We pass to
the limit m → ∞ with Propositions 5.3 and 5.4 which are proven in Section 5.3 and 5.4,
respectively.
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5.1 Proof of Theorem 5.1

5.1.1 Additional notation

Pick (M,m) ∈ EIGH and recall that Ω and ω are independent, i.e., P = Pω × PΩ. For
Ω ∈ {A,B}N0×Z, ω ∈ {A,B}N, n ∈ N and (α, β) ∈ CONE, define

fω,Ω1,n (M,m;α, β) = 1
n logZ ω,Ω

1,n,Ln
(M,m) with Z ω,Ω

1,n,Ln
(M,m) =

∑
π∈Wm

n,M,

eH
ω,Ω
n,Ln

(π), (5.4)

where W m
n,M contains those paths in Wn,M that, in each column, make at most mLn steps.

We also restrict the set Rp,M in (3.6) to those limiting empirical measures whose support is
included in V mM , i.e., those measures charging the types of column that can be crossed in less
than mLn steps only. To that aim we recall (3.54) and define, for Ω ∈ {A,B}N0×Z and N ∈ N,

RΩ,m
M,N =

{
ρN (Ω,Π, b, x) with b = (bj)j∈N0 ∈ (Q(0,1])

N0 ,

Π = (Πj)j∈N0 ∈ {0} × ZN : |∆Πj | ≤M ∀ j ∈ N0,

x = (xj)j∈N0 ∈ {1, 2}N0 :
(
Ω(j,Πj + ·),∆Πj , bj , bj+1, xj

)
∈ VmM

} (5.5)

which is a subset of RΩ
M,N and allows us to define

RΩ,m
M = closure

(
∩N ′∈N ∪N≥N ′ RΩ,m

M,N

)
, (5.6)

which, for P-a.e. Ω is equal to Rmp,M ( Rp,M .

At this stage, we further define,

f(M,m;α, β) = sup
ρ∈Rm

p,M

sup
(uΘ)Θ∈VmM

∈BVmM

V (ρ, u), (5.7)

where

V (ρ, u) =

∫
VmM

uΘ ψ(Θ, uΘ;α, β) ρ(dΘ)∫
VmM

uΘ ρ(dΘ)
, (5.8)

where (recall (3.25))

BVmM =
{

(uΘ)Θ∈VmM
∈ RV

m
M : Θ 7→ uΘ ∈ C0

(
V mM ,R

)
, tΘ ≤ uΘ ≤ m ∀Θ ∈ V mM

}
, (5.9)

and where V mM is endowed with the distance dM defined in (C.7) in Appendix C.2.

Let W∗,mn,M ⊂ W m
n,M be the subset consisting of those paths whose endpoint lies at the

boundary between two columns of blocks, i.e., satisfies πn,1 ∈ NLn. Recall (5.4), and define

Z∗,ω,Ωn,Ln
(M) and f∗,ω,Ω1,n (M,m;α, β) as the counterparts of Zω,Ωn,Ln

(M,m) and fω,Ω1,n (M,m;α, β)

when W m
n,M is replaced by W∗,mn,M . Then there exists a constant c > 0, depending on α and β

only, such that

Zω,Ω1,n,Ln
(M,m)e−cLn ≤ Z∗,ω,Ω1,n,Ln

(M,m) ≤ Zω,Ω1,n,Ln
(M,m),

n ∈ N, ω ∈ {A,B}N, Ω ∈ {A,B}N0×Z.
(5.10)

The left-hand side of the latter inequality is obtained by changing the last Ln steps of each
trajectory in W m

n,M to make sure that the endpoint falls in LnN. The energetic and entropic
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cost of this change are obviously O(Ln). By assumption, limn→∞ Ln/n = 0, which together
with (5.10) implies that the limits of fω,Ω1,n (M,m;α, β) and f∗,ω,Ω1,n (M,m;α, β) as n → ∞ are
the same. In the sequel we will therefore restrict the summation in the partition function to
W∗,mn,M and drop the ∗ from the notations.

Finally, let

fΩ
1,n(M,m;α, β) = Eω

[
fω,Ω1,n (M,m;α, β)

]
,

f1,n(M,m;α, β) = Eω,Ω
[
fω,Ω1,n (M,m;α, β)

]
,

(5.11)

and recall (1.11) to set fΩ
n (M ;α, β) = Eω[fω,Ωn (M ;α, β)].

5.1.2 Key Propositions

Theorem 5.1 is a consequence of Propositions 5.2, 5.3 and 5.4 stated below and proven in
Sections 5.2.1–5.2.5, Sections 5.3.1–5.3.3 and Section 5.4, respectively.

Proposition 5.2 For all (M,m) ∈ EIGH,

lim
n→∞

fΩ
1,n(M,m;α, β) = f(M,m;α, β) for P− a.e.Ω. (5.12)

Proposition 5.3 For all M ∈ N,

lim
n→∞

fΩ
1,n(M ;α, β) = sup

m≥M+2
f(M,m;α, β) for P− a.e.Ω. (5.13)

Proposition 5.4 For all M ∈ N,

sup
m≥M+2

f(M,m;α, β) = sup
ρ∈Rp,M

sup
(uΘ)Θ∈VM

∈BVM

V (ρ, u), (5.14)

where, in the righthand side of (5.14), we recognize the variational formula of Theorem 5.1
and with BVM defined in (3.15).

Proof of Theorem 5.1 subject to Propositions 5.2, 5.3 and 5.4. The proof of Theo-
rem 5.1 will be complete once we show that for all (M,m) ∈ EIGH

lim
n→∞

|fω,Ωn (M,m;α, β)− fΩ
n (M,m;α, β)| = 0 for P− a.e. (ω,Ω). (5.15)

To that aim, we note that for all n ∈ N the Ω-dependence of fω,Ωn (M,m;α, β) is restricted to{
Ωx : x ∈ Gn

}
with Gn = {0, . . . , n

Ln
} × {− n

Ln
, . . . , n

Ln
}. Thus, for n ∈ N and ε > 0 we set

Aε,n = {|fω,Ωn (M ;α, β)− fΩ
n (M ;α, β)| > ε)}, (5.16)

and by independence of ω and Ω we can write

Pω,Ω(Aε,n)=
∑

Υ∈{A,B}Gn Pω,Ω(Aε,n ∩ {ΩGn = Υ})

=
∑

Υ∈{A,B}Gn Pω(|fω,Υn (M ;α, β)− fΥ
n (M ;α, β)| > ε) PΩ({ΩGn = Υ}). (5.17)

At this stage, for each n ∈ N we can apply the concentration inequality (D.3) in Appendix D
with Γ =W m

n,M , l = n, η = εn,

ξi = −α 1{ωi = A}+ β 1{ωi = B}, i ∈ N, (5.18)
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and with T (x, y) indicating in which block step (x, y) lies in. Therefore, there exist C1, C2 > 0
such that for all n ∈ N and all Υ ∈ {A,B}Gn we have

Pω(|fω,Υn (M ;α, β)− fΥ
n (M ;α, β)| > ε) ≤ C1e

−C2ε2n, (5.19)

which, together with (5.17) yields Pω,Ω(Aε,n) ≤ C1e
−C2ε2n for all n ∈ N. By using the Borel-

Cantelli Lemma, we obtain (5.15). �

5.2 Proof of Proposition 5.2

Pick (M,m) ∈ EIGH and (α, β) ∈ CONE. In Steps 1–2 in Sections 5.2.1–5.2.2 we introduce an
intermediate free energy fΩ

3,n(M,m;α, β) and show that

lim
n→∞

|fΩ
1,n(M,m;α, β)− fΩ

3,n(M,m;α, β)| = 0 ∀Ω ∈ {A,B}N0×Z. (5.20)

Next, in Steps 3–4 in Sections 5.2.3–5.2.4 we show that

lim sup
n→∞

fΩ
3,n(M,m;α, β) = f(M,m;α, β) for P− a.e. Ω, (5.21)

while in Step 5 in Section 5.2.5 we prove that

lim inf
n→∞

fΩ
3,n(M,m;α, β) = lim sup

n→∞
fΩ

3,n(M,m;α, β) for P− a.e. Ω. (5.22)

Combing (5.20–5.22) we get

lim inf
n→∞

fΩ
1,n(M,m;α, β) = lim sup

n→∞
fΩ

1,n(M,m;α, β) = f(M,m;α, β) for P− a.e. Ω, (5.23)

which completes the proof of Proposition 5.2.

In the proof we need the following order relation.

Definition 5.5 For g, g̃ : N3 × CONE 7→ R, write g ≺ g̃ if for all (M,m) ∈ EIGH, (α, β) ∈
CONE and ε > 0 there exists an nε ∈ N such that

g(n,M,m;α, β) ≤ g̃(n,M,m;α, β) + ε ∀n ≥ nε. (5.24)

The proof of (5.20) will be complete once we show that fΩ
1 ≺ fΩ

3 and fΩ
3 ≺ fΩ

1 for all
Ω ∈ {A,B}N0×Z. We will focus on fΩ

1 ≺ fΩ
3 , since the proof of the latter can be easily

adapted to obtain fΩ
3 ≺ fΩ

1 . To prove fΩ
1 ≺ fΩ

3 we introduce another intermediate free energy
fΩ

2 , and we show that fΩ
1 ≺ fΩ

2 and fΩ
2 ≺ fΩ

3 .

For L ∈ N, let

DML =
{

Ξ = (∆Π, b0, b1) ∈ {−M, . . . ,M} × { 1
L ,

2
L , . . . , 1}

2
}
. (5.25)

For L,N ∈ N, let

D̃ML,N =
{

Θtraj = (Ξi)i∈{0,...,N−1} ∈ (DML )N : b0,0 = 1
L , b0,i = b1,i−1 ∀ 1 ≤ i ≤ N − 1

}
, (5.26)
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and with each Θtraj ∈ D̃ML,N associate the sequence (Πi)
N
i=0 defined by Π0 = 0 and Πi =∑i−1

j=0 ∆Πj for 1 ≤ i ≤ N . Next, for Ω ∈ {A,B}N0×Z and Θtraj ∈ D̃ML,N , set

XM,m
Θtraj,Ω

=
{
x ∈ {1, 2}{0,...,N−1} : (Ω(i,Πi + ·),Ξi, xi) ∈ VmM ∀ 0 ≤ i ≤ N − 1

}
, (5.27)

and, for x ∈ XM,m
Θtraj,Ω

, set

Θi = (Ω(i,Πi + ·),Ξi, xi) for i ∈ {0, . . . , N − 1} (5.28)

and

U M,m,L
Θtraj,x,n

=
{
u = (ui)i∈{0,...,N−1} ∈ [1,m]N : ui ∈ tΘi + 2N

L ∀ 0 ≤ i ≤ N − 1,
N−1∑
i=0

ui = n
L

}
.

(5.29)
Note that U M,m,L

Θtraj,x,n
is empty when N /∈

[
n
mL ,

n
L

]
.

For π ∈ W m
n,M , we let Nπ be the number of columns crossed by π after n steps. We

denote by (u0(π), . . . , uNπ−1(π)) the time spent by π in each column divided by Ln, and we
set ũ0(π) = 0 and ũj(π) =

∑j−1
k=0 uk(π) for 1 ≤ j ≤ Nπ. With these notations, the partition

function in (5.4) can be rewritten as

Z ω,Ω
1,n,Ln

(M,m) =

n/Ln∑
N=n/mLn

∑
Θtraj∈D̃MLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,x,n

A1, (5.30)

with (recall (3.31))

A1 =
N−1∏
i=0

Z
θũiLn (ω)
Ln

(Ω(i,Πi + ·),Ξi, xi, ui). (5.31)

5.2.1 Step 1

In this step we average over the disorder ω in each column. To that end, we set

fΩ
2,n(M,m;α, β) = 1

n logZΩ
2,n,Ln(M,m) (5.32)

with

ZΩ
2,n,Ln(M,m) =

n/Ln∑
N=n/mLn

∑
Θtraj∈D̃MLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,x,n

A2, (5.33)

where

A2 =

N−1∏
i=0

eEω
[

logZ
θũi (ω)
Ln

(Ω(i,Πi+·),Ξi,xi,ui)
]

=

N−1∏
i=0

euiLnψLn (Ω(i,Πi+·),Ξi,xi,ui). (5.34)

Note that the ω-dependence has been removed from ZΩ
2,n,Ln

(M,m).

To prove that fΩ
1 ≺ fΩ

2 , we need to show that for all ε > 0 there exists an nε ∈ N such
that, for n ≥ nε and all Ω,

Eω
[

logZ ω,Ω
1,n,Ln

(M,m)
]
≤ logZΩ

2,n,Ln(M,m) + εn. (5.35)
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To this end, we rewrite Z ω,Ω
1,n,Ln

(M,m) as

Z ω,Ω
1,n,Ln

(M,m) =

n/Ln∑
N=n/mLn

∑
Θtraj∈D̃MLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,x,n

A2
A1

A2
, (5.36)

where we note that

A1

A2
=

N−1∏
i=0

euiLn
[
ψ
θũiLn (ω)
Ln

(Ω(i,Πi+·),Ξi,xi,ui)−ψLn (Ω(i,Πi+·),Ξi,xi,ui)
]
. (5.37)

In order to average over ω, we apply a concentration of measure inequality. Set

Kn =

n/Ln⋃
N=n/mLn

⋃
Θtraj∈D̃MLn,N

⋃
x∈XM,mΘtraj,Ω

⋃
u∈UM,m,LnΘtraj,x,n

{
| logA1 − logA2| ≥ εn

}
, (5.38)

and note that ω ∈ Kcn implies that Z ω,Ω
1,n,Ln

(M,m) ≤ eεnZΩ
2,n,Ln

(M,m). Consequently, we can
write

Eω
[

logZ ω,Ω
1,n,Ln

(M,m)
]

= Eω
[

logZ ω,Ω
1,n,Ln

(M,m) 1{Kn}
]

+ Eω
[

logZ ω,Ω
1,n,Ln

(M,m) 1{Kcn}
]

≤ Eω
[

logZ ω,Ω
1,n,Ln

(M,m) 1{Kn}
]

+ logZ Ω
2,n,Ln(M,m) + εn. (5.39)

We can now use the uniform bound in (3.34) to control the first term in the right-hand side
of (5.39), to obtain

Eω
[

logZ ω,Ω
1,n,Ln

(M,m)
]
≤ logZ Ω

2,n,Ln(M,m) + εn+ Cuf(α)nPω(Kn). (5.40)

Therefore the proof of this step will be complete once we show that Pω(Kn) vanishes as n→∞.

Lemma 5.6 There exist C1, C2 > 0 such that, for all ε > 0, n ∈ N, N ∈
{

n
mLn

, . . . , n
Ln

}
,

Ω ∈ {A,B}N0×Z, Θtraj ∈ D̃MLn,N , x ∈ XM,m
Θtraj,Ω

and u ∈ U M,m,Ln
Θtraj,x,n

,

Pω(| logA1 − logA2| ≥ εn) ≤ C1e
−C2ε2n. (5.41)

Proof. Pick Θtraj ∈ D̃MLn,N , x ∈ XM,m
Θtraj,Ω

and u ∈ U M,m,Ln
Θtraj,x,n

, and consider the subset Γ of

W m
n,M consisting of those paths of length n that first cross the (Ω(0, ·),Ξ0, x0) column such

that π0 = (0, 1) and πũ1Ln = (1,Π1 + b1,0)Ln, then cross the (Ω(1, ·),Ξ1, x1) column such that
πũ1Ln+1 = (1 + 1/Ln,Π1 + b1,0)Ln and πũ2Ln = (2,Π2 + b1,1)Ln, and so on. We can apply the
concentration of measure inequality stated in (D.3) to the set Γ defined above, with l = n,
η = εn,

ξi = −α 1{ωi = A}+ β 1{ωi = B}, i ∈ N, (5.42)

and with T (x, y) indicating in which block step (x, y) lies in. After noting that Eω(logA1) =
logA2, we obtain that there exist C1, C2 > 0 such that, for all n ∈ N, N ∈

{
n

mLn
, . . . , n

Ln

}
,

Ω ∈ {A,B}N0×Z, Θtraj ∈ D̃MLn,N , x ∈ XM,m
Θtraj,Ω

and u ∈ U M,m,Ln
Θtraj,x,n

,

P
(
| logA1 − logA2| ≥ ε n

)
≤ C1 e

−C2 ε3 n. (5.43)

�

It now suffices to remark that∣∣{(N,Θtraj, x, u) : N ∈ { n
mLn

, . . . , n
Ln
},Θtraj ∈ D̃MLn,N , x ∈ X

M,m
Θtraj,Ω

, u ∈ U M,m,Ln
Θtraj,x,n

}
∣∣ (5.44)

grows subexponentially in n to obtain that fΩ
1 ≺ fΩ

2 for all Ω.
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5.2.2 Step 2

In this step we replace the finite-size free energy ψLn by its limit ψ. To do so we introduce a
third intermediate free energy,

fΩ
3,n(M,m;α, β) = E

[
1
n logZΩ

3,n,Ln(M,m)
]
, (5.45)

where

ZΩ
3,n,Ln(M,m) =

n/Ln∑
N=n/mLn

∑
Θtraj∈D̃MLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,x,n

A3 (5.46)

with

A3 =
N−1∏
i=0

euiLnψ(Ω(i,Πi+·),Ξi,xi,ui). (5.47)

For all Ω,

A2

A3
=

N−1∏
i=0

euiLn
[
ψLn (Ω(i,Πi+·),Ξi,xi,ui)−ψ(Ω(i,Πi+·),Ξi,xi,ui)

]
, (5.48)

and, for all i ∈ {0, . . . , N − 1}, we have (Ω(i,Πi + ·),Ξi, xi, ui) ∈ V∗,mM , so that Proposition 3.4
can be applied.

5.2.3 Step 3

In this step we want the variational formula (5.7) to appear. Recall (3.53) and define, for
n ∈ N, (M,m) ∈ EIGH, N ∈ { n

mLn
, . . . , n

Ln
}, Θtraj ∈ D̃MLn,N and x ∈ XM,m

Θtraj,Ω
,

Θj = (Ω(j,Πj + ·),Ξj , xj), j = 0, . . . , N − 1, (5.49)

and

ρΩ
Θtraj,x

(
Θ,Θ

′)
=

1

N

N∑
j=1

1{
(Θj−1,Θj)=(Θ,Θ′ )

}, (5.50)

and, for u ∈ U M,m,Ln
Θtraj,x,n

,

HΩ(Θtraj, x, u) =
N−1∑
j=0

uj ψ(Θj , uj). (5.51)

In terms of these quantities we can rewrite ZΩ
3,n,Ln

(M,m) in (5.46) as

ZΩ
3,n,Ln(M,m) =

n/Ln∑
N=n/mLn

∑
Θtraj∈D̃MLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,x,n

eLnH
Ω(Θtraj,x,u). (5.52)

For n ∈ N, denote by

NΩ
n , ΘΩ

traj,n ∈ D̃MLn,NΩ
n
, xΩ

n ∈ X
M,m

ΘΩ
traj,n,Ω

, uΩ
n ∈ U

M,m,Ln
ΘΩ

traj,n,x
Ω
n ,n
, (5.53)
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the indices in the summation set of (5.52) that maximize HΩ(Θtraj, x, u). For ease of notation
we put

ΘΩ
traj,n = (Ξnj )

NΩ
n−1

j=0 , xΩ
n = (xnj )

NΩ
n−1

j=0 , uΩ
n = (unj )

NΩ
n−1

j=0 , (5.54)

and

cn =
∣∣{(N,Θtraj, x, u) : n

mLn
≤ N ≤ n

Ln
, Θtraj ∈ D̃MLn,N , x ∈ X

M,m
Θtraj,Ω

, u ∈ U M,m,Ln
Θtraj,x,n

}
∣∣. (5.55)

Then we can estimate

1

n
logZΩ

3,n,Ln(M,m) ≤ 1

n
log cn + Ln

n

NΩ
n−1∑
j=0

unj ψ(Θn
j , u

n
j ). (5.56)

We next note that u 7→ uψ(Θ, u) is concave for all Θ ∈ VM (see Lemma C.4). Hence, after
setting

vnΘ =

NΩ
n−1∑
j=0

1{Θnj =Θ} u
n
j , dnΘ =

NΩ
n−1∑
j=0

1{Θnj =Θ}, Θ ∈ V mM , (5.57)

we can estimate

NΩ
n−1∑
j=0

1{Θnj =Θ} u
n
j ψ(Θn

j , u
n
j ) ≤ vnΘ ψ

(
Θ,

vnΘ
dnΘ

)
for Θ ∈ V mM : dnΘ ≥ 1. (5.58)

Next, we recall (5.50) and we set ρn = ρΩ
ΘΩ

traj,n,x
Ω
n

, so that ρn,1(Θ) = dnΘ/N
Ω
n for all Θ ∈ V mM .

Since {Θ ∈ V mM : dnΘ ≥ 1} is a finite subset of V mM , we can easily extend Θ 7→ vnΘ/d
n
Θ from

{Θ ∈ VM : dnΘ ≥ 1} to V mM as a continuous function. Moreover,
∑NΩ

n−1
j=0 unj = n/Ln implies

that NΩ
n

∫
VmM

vnΘ/d
n
Θ ρn,1(dΘ) = n/Ln, which, together with (5.56) and (5.58) gives

1
n logZΩ

3,n,Ln(M,m) ≤ sup
u∈BVmM

∫
VmM

uΘ ψ(Θ, uΘ) ρn(dΘ)∫
VmM

uΘ ρn(dΘ)
+ o(1), n→∞, (5.59)

where we use that limn→∞
1
n log cn = 0. In what follows, we abbreviate the first term in the

right-hand side of the last display by ln. We want to show that lim supn→∞
1
n logZΩ

3,n,Ln
(M,m)

≤ f(M,m;α, β). To that end, we assume that 1
n logZΩ

3,n,Ln
(M,m) converges to some t ∈ R

and we prove that t ≤ f(M,m;α, β). Since (ln)n∈N is bounded and V mM is compact, it follows
from the definition of ln that along an appropriate subsequence both ln → l∞ ≥ t and
ρn → ρ∞ ∈ Rm

p,M as n→∞. Hence, the proof will be complete once we show that

l∞ ≤ sup
u∈BVmM

V (ρ∞, u), (5.60)

because the right-hand side in (5.60) is bounded from above by f(M,m;α, β).

Recall (3.18) and, for Θ ∈ V mM and y ∈ R, define

uM,m
Θ (y) =


tΘ if ∂+

u (uψ(Θ, u))(tΘ) ≤ y,
m if ∂−u (uψ(Θ, u))(m) ≥ y,
z otherwise, with z such that ∂−u (uψ(Θ, u))(z) ≥ y ≥ ∂+

u (uψ(Θ, u))(z),
(5.61)

where z is unique by strict concavity of u→ uψ(Θ, u) (see Lemma C.2).
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Lemma 5.7 (i) For all y ∈ R and (M,m) ∈ EIGH, Θ 7→ uM,m
Θ (y) is continuous on (V mM , dM ),

where dM is defined in (C.7) in Appendix C.
(ii) For all (M,m) ∈ EIGH and Θ ∈ V mM , y 7→ uM,m

Θ (y) is continuous on R.

Proof. The proof uses the strict concavity of u→ uψ(Θ, u) (see Lemma C.2).

(i) The proof is by contradiction. Pick y ∈ R, and pick a sequence (Θn)n∈N in V mM such
that limn→∞Θn = Θ∞ ∈ V

m
M . Suppose that uM,m

Θn
(y) does not tend to uM,m

Θ∞
(y) as n → ∞.

Then, by choosing an appropriate subsequence, we may assume that limn→∞ u
M,m
Θn

(y) = u1 ∈
[tΘ∞ ,m] with u1 < uM,m

Θ∞
(y). The case u1 > uM,m

Θ∞
(y) can be handled similarly.

Pick u2 ∈ (u1, u
M,m
Θ∞

(y)). For n large enough, we have uM,m
Θn

(y) < u2 < uM,m
Θ∞

(y). By the

definition of uM,m
Θn

(y) in (5.61) and the strict concavity of u 7→ uψ(Θn, u) we have, for n large
enough,

∂+
u (uψ(Θn, u))(uM,m

Θn
(y)) >

uM,m
Θ∞

(y)ψ(Θn, u
M,m
Θ∞

(y))− u2ψ(Θn, u2)

uM,m
Θ∞

(y)− u2

. (5.62)

Let n→∞ in (5.62) and use the strict concavity once again, to get

lim inf
n→∞

∂+
u (uψ(Θn, u))(uM,m

Θn
(y)) > ∂−u (uψ(Θ∞, u))(uM,m

Θ∞
(y)). (5.63)

If uM,m
Θ∞

(y) ∈ (tΘ∞ ,m], then (5.61) implies that the right-hand side of (5.63) is not smaller

than y. Hence (5.63) yields that ∂+
u (uψ(Θn, u))(uM,m

Θn
(y)) > y for n large enough, which

implies that uM,m
Θn

(y) = m by (5.61). However, the latter inequality contradicts the fact

that uM,m
Θn

(y) < u2 < uM,m
Θ∞

(y) for n large enough. If uM,m
Θ∞

(y) = tΘ∞ , then we note that

limn→∞ tΘn = tΘ∞ , which again contradicts that tΘn ≤ uM,m
Θn

(y) < u2 < uM,m
Θ∞

(y) for n large
enough.

(ii) The proof is again by contradiction. Pick Θ ∈ V mM , and pick an infinite sequence (yn)n∈N
such that limn→∞ yn = y∞ ∈ R and such that uM,m

Θ (yn) does not converge to uM,m
Θ (y∞). Then,

by choosing an appropriate subsequence, we may assume that there exists a u1 < uM,m
Θ (y∞)

such that limn→∞ u
M,m
Θ (yn) = u1. The case u1 > uM,m

Θ (y∞) can be treated similarly.

Pick u2, u3 ∈ (u1, u
M,m
Θ (y∞)) such that u2 < u3. Then, for n large enough, we have

tΘ ≤ uM,m
Θ (yn) < u2 < u3 < uM,m

Θ (y∞) ≤ m. (5.64)

Combining (5.61) and (5.64) with the strict concavity of u 7→ uψ(Θ, u) we get, for n large
enough,

yn > ∂+
u (uψ(Θ, u))(u2) > ∂−u (uψ(Θ, u))(u3) > y∞, (5.65)

which contradicts limn→∞ yn = y∞. �

We resume the line of proof. Recall that ρn,1, n ∈ N, charges finitely many Θ ∈ V mM .
Therefore the continuity and the strict concavity of u 7→ uψ(Θ, u) on [tΘ,m] for all Θ ∈ V mM
(see Lemma C.4) imply that the supremum in (5.59) is attained at some uM,m

n ∈ BVmM that

satisfies uM,m
n (Θ) = uM,m

Θ (ln) for Θ ∈ V mM . Set uM,m
∞ (Θ) = uM,m

Θ (l∞) for Θ ∈ V mM and note
that (ln)n∈N may be assumed to be monotone, say, non-decreasing. Then the concavity of
u 7→ uψ(Θ, u) for Θ ∈ V mM implies that (uM,m

n )n∈N is a non-increasing sequence of functions
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on V mM . Moreover, V mM is a compact set and, by Lemma 5.7(ii), limn→∞ u
M,m
n (Θ) = uM,m

∞ (Θ)
for Θ ∈ V mM . Therefore Dini’s theorem implies that limn→∞ u

M,m
n = uM,m

∞ uniformly on V mM .
We estimate∣∣∣∣∣ln −

∫
VmM

uM,m
∞ (Θ)ψ(Θ, uM,m

∞ (Θ))ρ∞(dΘ)

∣∣∣∣∣
≤
∫
VmM

∣∣∣uM,m
n (Θ)ψ(Θ, uM,m

n (Θ))− uM,m
∞ (Θ)ψ(Θ, uM,m

∞ (Θ))
∣∣∣ ρn(dΘ) (5.66)

+
∣∣∣ ∫
VmM

uM,m
∞ (Θ)ψ(Θ, uM,m

∞ (Θ)) ρn(dΘ)−
∫
VmM

uM,m
∞ (Θ)ψ(Θ, uM,m

∞ (Θ)) ρ∞(dΘ)
∣∣∣.

The second term in the right-hand side of (5.66) tends to zero as n→∞ because, by Lemma
5.7(i), Θ 7→ uM,m

∞ (Θ) is continuous on V mM and because ρn converges in law to ρ∞ as n→∞.
The first term in the right-hand side of (5.66) tends to zero as well, because (Θ, u) 7→ uψ(Θ, u)
is uniformly continuous on V ∗,mM (see Lemma C.3) and because we have proved above that
uM,m
n converges to uM,m

∞ uniformly on V mM . This proves (5.60), and so Step 3 is complete.

5.2.4 Step 4

In this step we prove that

lim sup
n→∞

fΩ
3,n(M,m;α, β) ≥ f(M,m;α, β) for P− a.e. Ω. (5.67)

Note that the proof will be complete once we show that

lim sup
n→∞

fΩ
3,n(M,m,α, β) ≥ V (ρ, u) for ρ ∈ Rmp,M , u ∈ BVmM . (5.68)

Pick Ω ∈ {A,B}N0×Z, ρ ∈ RΩ,m
p,M and u ∈ BVmM . By the definition of RΩ,m

p,M , there exists a

strictly increasing subsequence (nk)k∈N ∈ NN such that, for all k ∈ N, there exists an

Nk ∈
{

nk
mLnk

, . . . ,
nk
Lnk

}
, (5.69)

a Θk
traj ∈ D̃MLnk ,Nk and a xk ∈ XM,m

Θktraj,Ω
such that ρk =def ρΩ

Θktraj,x
k (see (5.50)) converges in law

to ρ as k →∞. Recall (5.26), and note that

Ξkj =
(
∆Πk

j , b
k
j , b

k
j+1

)
, j = 0, . . . , Nk − 1, (5.70)

with ∆Πk
j ∈ {−M, . . . ,M} and bkj ∈ (0, 1] ∩ N

Lnk
for j = 0, . . . , Nk. For ease of notation we

define

Θk
j =

(
Ω(j,Πk

j + ·),Ξkj , xkj
)

with Πk
j =

j−1∑
i=0

∆Πk
i , j = 0, . . . , Nk − 1, (5.71)

and

vk = Nk

∫
Θ∈VmM

uΘ ρk,1(dΘ) =

Nk−1∑
j=0

uΘkj
, (5.72)
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where we recall that u = (uΘ)Θ∈VmM
was fixed at the beginning of the section.

Next, we recall that limn→∞ Ln/n = 0 and that Ln is non-decreasing (see (1.5)). Thus,
Ln is constant on intervals. On those intervals, n/Ln takes constant increments. The latter
implies that there exists an ñk ∈ N satisfying

0 ≤ vk − ñk
Lñk
≤ 1

Lñk
and therefore 0 ≤ vkLñk − ñk ≤ 1. (5.73)

Next, for j = 0, . . . , Nk − 1 we pick bkj ∈ (0, 1] ∩ N
Lñk

such that |bkj − bkj | ≤
1

Lñk
, define

Ξkj =
(
∆Πk

j , b
k
j , b

k
j+1

)
, Θk

j =
(
Ω(j,Πk

j + ·),Ξkj , x
k
j

)
, (5.74)

and pick

skj ∈ tΘkj
+

2N
Lñk

such that |skj − uΘkj
| ≤ 2/Lñk . (5.75)

We use (5.72) to write

Lñk

Nk−1∑
j=0

skj = Lñk

(
vk +

Nk−1∑
j=0

(skj − uΘkj
)

)
= Lñk(I + II). (5.76)

Next, we note that (5.73) and (5.75) imply that |LñkI − ñk| ≤ 1 and |LñkII| ≤ 2Nk. The
latter in turn implies that, by adding or subtracting at most 3 steps per colum, the quantities
skj for j = 0, . . . , Nk − 1 can be chosen in such a way that

∑Nk−1
j=0 skj = ñk/Lñk .

Next, set

Θk
traj = (Ξkj )

Nk−1
j=0 ∈ D̃MLñk ,Nk , sk = (skj )

Nk−1
j=0 ∈ UM,m,Lñk

Θktraj, x
k,ñk

, (5.77)

and recall (5.46) to get fΩ
3 (ñk,M) ≥ Rk with

Rk =
Lñk H

Ω
(

Θk
traj, x

k, sk
)

ñk
=

∑Nk−1
j=0 skj ψ

(
Θk
j , s

k
j

)
∑Nk−1

j=0 skj
=
Rknu

Rkde

. (5.78)

Further set

R
′
k =

R
′k
nu

R
′k
de

=

∫
VmM

uΘ ψ(Θ, uΘ)ρk(dΘ)∫
VmM

uΘ ρk(dΘ)
, (5.79)

and note that limk→∞R
′
k = V (ρ, u), since limk→∞ ρk = ρ by assumption and Θ 7→ uΘ is

continuous on V mM . We note that R
′
k can be rewritten in the form

R
′
k =

R
′k
nu

R
′k
de

=

∑Nk−1
j=0 uΘkj

ψ
(
Θk
j , uΘkj

)
∑Nk−1

j=0 uΘkj

. (5.80)

Now recall that limk→∞ nk = ∞. Since Nk ≥ nk/MLnk , it follows that limk→∞Nk = ∞
as well. Moreover, Nk ≤ ñk/Lñk with limk→∞ ñk = ∞. Therefore (5.72–5.73) allow us to
conclude that Rkde = ñk/Lñk = R

′k
de[1 + o(1)].

Next, note that HM is compact, and that (Θ, u) 7→ uψ(Θ, u) is continuous on HM and
therefore is uniformly continuous. Consequently, for all ε > 0 there exists an η > 0 such that,
for all (Θ, u), (Θ

′
, u
′
) ∈ HM satisfying |Θ−Θ

′ | ≤ η and |u− u′ | ≤ η,

|uψ(Θ, u)− u′ψ(Θ
′
, u
′
)| ≤ ε. (5.81)
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We recall (5.74), which implies that dM (Θk
j ,Θj) ≤ 2/Lñk for all j ∈ {0, . . . , Nk−1}, we choose

k large enough to ensure that 2/Lñk ≤ η, and we use (5.81), to obtain

Rknu =

Nk−1∑
j=0

skj ψ
(

Θk
j , s

k
j

)
=

Nk−1∑
j=0

uΘkj
ψ
(
Θk
j , uΘkj

)
+ T = R

′k
nu + T, (5.82)

with |T | ≤ εNk. Since limk→∞R
′
k = V (ρ, u) and

∑Nk−1
j=0 uΘkj

= vk ≥ ñk/Lñk (see (5.73)), if

V (ρ, u) 6= 0, then
∣∣R′knu

∣∣ ≥ Cst. ñk/Lñk , whereas |T | ≤ εNk ≤ εñk/Lñk for k large enough.

Hence T = o(R
′k
nu) and

Rknu

Rkde

=
R
′k
nu [1 + o(1)]

R
′k
de [1 + o(1)]

→ V (ρ, u), k →∞. (5.83)

Finally, if V (ρ, u) = 0, then R
′k
nu = o(R

′k
de) and T = o(R

′k
de), so that Rk tends to 0. This

completes the proof of Step 4.

5.2.5 Step 5

In this step we prove (5.22), suppressing the (α, β)-dependence from the notation. For Ω ∈
{A,B}N0×Z2

, n ∈ N, N ∈ {n/mLn, . . . , n/Ln} and r ∈ {−NM, . . . , NM}, we recall (5.26)
and define

D̃M,m,r
L,N =

{
Θtraj ∈ D̃M,m

L,N : ΠN = r
}
, (5.84)

where we recall that ΠN =
∑N−1

j=0 ∆Πj . We set

fΩ
3,n(M,m,N, r) = 1

n logZΩ
3,n,Ln(N,M,m, r) (5.85)

with
ZΩ

3,n,Ln(N,M,m, r) =
∑

Θtraj∈D̃M,m,rLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,n

A3, (5.86)

where A3 is defined in (5.47). We further set f3(·) = EΩ

(
fΩ

3 (·)
)
.

5.2.6 Concentration of measure

In the first part of this step we prove that for all (M,m,α, β) ∈ EIGH × CONE there exist
c1, c2 > 0 (depending on (M,m,α, β) only) such that, for all n ∈ N, N ∈ {n/(mLn), . . . n/Ln}
and r ∈ {−NM, . . . , NM},

PΩ

(∣∣fΩ
3,n(M,m)− f3,n(M,m)

∣∣ > ε
)
≤ c1 e

− c2ε
2n

Ln , (5.87)

PΩ

(∣∣fΩ
3,n(M,m,N, r)− f3,n(M,m,N, r)

∣∣ > ε
)
≤ c1 e

− c2ε
2n

Ln .

We only give the proof of the first inequality. The second inequality is proved in a similar
manner. The proof uses Theorem D.1. Before we start we note that, for all n ∈ N, (M,m) ∈
EIGH and Ω ∈ {A,B}N0×Z, fΩ

3,n(M,m) only depends on

CΩ
0,Ln , . . . , C

Ω
n/Ln,Ln

with CΩ
j,Ln = (Ω(j, i))

n/Ln
i=−n/Ln . (5.88)
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We apply Theorem D.1 with S = {0, . . . , n/Ln}, with Xi = {A,B}{−
n
Ln

,..., n
Ln
} and with µi

the uniform measure on Xi for all i ∈ S. Note that |fΩ1
3,n(M,m)− fΩ2

3,n(M,m)| ≤ 2Cuf(α)mLn
n

for all i ∈ S and all Ω1,Ω2 satisfying CΩ1
j,n = CΩ2

j,n for all j 6= i. After we set c = 2Cuf(α)m we

can apply Theorem D.1 with D = c2Ln/n to get (5.87).

Next, we note that the first inequality in (5.87), the Borel-Cantelli lemma and the fact
that limn→∞ n/Ln log n =∞ (recall (1.5)) imply that, for all (M,m) ∈ EIGH,

lim
n→∞

[
fΩ

3,n(M,m)− f3,n(M,m)
]

= 0 for P− a.e. Ω. (5.89)

Therefore (5.22) will be proved once we show that

lim inf
n→∞

f3,n(M,m) = lim sup
n→∞

f3,n(M,m). (5.90)

To that end, we first prove that, for all n ∈ N and all (M,m) ∈ EIGH, there exist an Nn ∈
{n/mLn, . . . , n/Ln} and an rn ∈ {−MNn, . . . ,MNn} such that

lim
n→∞

[
f3,n(M,m)− f3,n(M,m,Nn, rn)

]
= 0. (5.91)

The proof of (5.91) is done as follows. Pick ε > 0, and for Ω ∈ {A,B}N0×Z, n ∈ N and
(M,m) ∈ EIGH, denote by NΩ

n and rΩ
n the maximizers of fΩ

3,n(M,m,N, r). Then

fΩ
3,n

(
M,m,NΩ

n , r
Ω
n

)
≤ fΩ

3,n(M,m) ≤ 1
n log( n

2

L2
n

) + fΩ
3,n

(
M,m,NΩ

n , r
Ω
n

)
, (5.92)

so that, for n large enough and every Ω,

0 ≤ fΩ
3,n(M,m)− fΩ

3,n

(
M,m,NΩ

n , r
Ω
n

)
≤ ε. (5.93)

For n ∈ N, N ∈ {n/mLn, . . . , n/Ln} and r ∈ {−NM, . . . , NM}, we set

An,N,r = {Ω: (NΩ
n , r

Ω
n ) = (N, r)}. (5.94)

Next, denote by Nn, rn the maximizers of P(An,N,r). Note that (5.91) will be proved once we
show that, for all ε > 0, |f3,n(M,m) − f3,n(M,m,Nn, rn)| ≤ ε for n large enough. Further
note that P(An,Nn,rn) ≥ L2

n/n
2 for all n ∈ N. For every Ω we can therefore estimate

|f3,n(M,m)− f3,n(M,m,Nn, rn)| ≤ I + II + III (5.95)

with

I = |f3,n(M,m)− fΩ
3,n(M,m)|, (5.96)

II = |fΩ
3,n(M,m)− fΩ

3,n(M,m,Nn, rn)|,
III = |fΩ

3,n(M,m,Nn, rn)− f3,n(M,m,Nn, rn)|.

Hence, the proof of (5.91) will be complete once we show that, for n large enough, there exists
an Ωε,n for which I, II and III in (5.96) are bounded from above by ε/3.

To that end, note that, because of (5.87), the probabilities P({I > ε/3}) and P({III >
ε/3}) are bounded from above by c1e

−c2ε2n/9Ln , while

P({II > ε}) ≤ P(Acn,Nn,rn) ≤ 1− (L2
n/n

2), n ∈ N. (5.97)

Since limn→∞ n/Ln log n =∞, we have P({I, II, III ≤ ε/3}) > 0 for n large enough. Conse-
quently, the set {I, II, III ≤ ε/3} is non-empty and (5.91) is proven.
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5.2.7 Convergence

It remains to prove (5.90). Assume that there exist two strictly increasing subsequences
(nk)k∈N and (tk)k∈N and two limits l2 > l1 such that limk→∞ f3,nk(M,m) = l2 and limk→∞
f3,tk(M,m) = l1. By using (5.91), we have that for every k ∈ N there exist Nk ∈ {nk/mLnk ,
. . . , nk/Lnk} and rk ∈ {−MNk, . . . ,MNk} such that limk→∞ f3,nk(M,m,Nk, rk) = l2. Denote
by

(Θk,Ω
traj,max, x

k,Ω
max, u

k,Ω
max) ∈ D̃M,rk

Lnk ,Nk
×XM,m

Θk,Ωtraj,max,Ω
× U M,m,Ln

Θk,Ωtraj,max,x
k,Ω
max,nk

(5.98)

the maximizer of HΩ(Θtraj, x, u). We recall that Θtraj, x and u take their values in sets that
grow subexponentially fast in nk, and therefore

lim
k→∞

Lnk
nk

EΩ

[
HΩ(Θk,Ω

traj,max, x
k,Ω
max, u

k,Ω
max)

]
= l2. (5.99)

Since l2 > l1, we can use (5.99) and the fact that limk→∞ nk/Lnk =∞ to obtain, for k large
enough,

EΩ

[
HΩ(Θk,Ω

traj,max, x
k,Ω
max, u

k,Ω
max)

]
+ (β − α) ≥ nk

Lnk

(
l1 + l2−l1

2

)
. (5.100)

(The term β − α in the left-hand side of (5.100) is introduced for later convenience only.)
Next, pick k0 ∈ N satisfying (5.100), whose value will be specified later. Similarly to what we
did in (5.75) and (5.76), for Ω ∈ {A,B}N0×Z and k ∈ N we associate with

Θk0,Ω
traj,max =

(
∆Πk0,Ω

j , bk0,Ω
0,j , b

k0,Ω
1,j

)Nk0
−1

j=0
∈ D̃M,rk0

Lnk0
,Nk0

(5.101)

and
xk0,Ω

max =
(
xk0,Ω
j

)Nk0
−1

j=0
∈ XM,m

Θ
k0,Ω
traj,max,Ω

(5.102)

and

uk0,Ω
max =

(
uk0,Ω
j

)Nk0
−1

j=0
∈ U

M,m,Lnk0

Θ
k0,Ω
traj,max,x

k0,Ω
max ,nk0

(5.103)

the quantities

Θ
k,Ω
traj =

(
∆Πk0,Ω

j , b
k,Ω
0,j , b

k,Ω
1,j

)Nk0
−1

j=0
∈ D̃M,rk0

Ltk ,Nk0
(5.104)

and
u k,Ω =

(
u k,Ωj

)Nk0
−1

j=0
∈ UM,m,Ltk

Θ
k,Ω
traj ,x

k0,Ω
max ,∗

(5.105)

(where ∗ will be specified later), so that∣∣b k,Ω0,j −b
k0,Ω
0,j

∣∣ ≤ 1
Ltk

,
∣∣b k,Ω1,j −b

k0,Ω
1,j

∣∣ ≤ 1
Ltk

,
∣∣u k,Ωj −uk0,Ω

j

∣∣ ≤ 2
Ltk

, j = 0, . . . , Nk0−1. (5.106)

Next, put sΩ
k = Ltk

∑Nk0
−1

j=0 u k,Ωj , which we substitute for ∗ above. The uniform continuity
in Lemma C.3 allows us to claim that, for k large enough and for all Ω,∣∣∣u k,Ωj ψ

(
Θ
k,Ω
j , u k,Ωj

)
− uk0,Ω

j ψ
(

Θk0,Ω
j , uk0,Ω

j

)∣∣∣ ≤ l2−l1
4 , (5.107)

where we recall that, as in (5.71), for all j = 0, . . . , Nk0 − 1,

Θ
k,Ω
j =

(
Ω
(
j,Πk0,Ω

j + ·
)
, ∆Πk0,Ω

j , b
k,Ω
0,j , b

k,Ω
1,j , x

k0,Ω
j

)
, (5.108)

Θk0,Ω
j =

(
Ω
(
j,Πk0,Ω

j + ·
)
, ∆Πk0,Ω

j , bk0,Ω
0,j , b

k0,Ω
1,j , x

k0,Ω
j

)
.
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Recall (5.51). An immediate consequence of (5.107) is that∣∣HΩ(Θ
k,Ω
traj , x

k0,Ω
max , u

k,Ω)−HΩ(Θk0,Ω
traj,max, x

k0,Ω
max , u

k0,Ω
max )

∣∣ ≤ Nk0
l2−l1

4 . (5.109)

Hence we can use (5.100), (5.109) and the fact that Nk0 ≤ nk0/Lnk0
, to conclude that, for k

large enough,

EΩ

[
HΩ(Θ

k,Ω
traj , x

k0,Ω
max , u

k,Ω)
]

+ (β − α) ≥ nk0
Lnk0

(
l1 + l2−l1

4

)
. (5.110)

At this stage we add a column at the end of the group of Nk0 columns in such a way that

the conditions b̂k,Ω1,Nk0
−1 = b̂k,Ω0,Nk0

and b̂k,Ω1,Nk0
= 1/Ltk are satisfied. We put

Ξ̂k,ΩNk0
=
(
∆Πk0,Ω

Nk0
, b̂k,Ω0,Nk0

, b̂k,Ω1,Nk0

)
=
(
0, b̂k,Ω1,Nk0

−1,
1
Ltk

)
, (5.111)

and we let Θ̂k,Ω
traj ∈ D̃

M, rk0
Ltk , Nk0

+1 be the concatenation of Θ
k,Ω
traj (see (5.104)) and Ξ̂k,ΩNk0

. We let

x̂k0,Ω ∈ XM,m

Θ̂k,Ωtraj,Ω
be the concatenation of xk0,Ω

max and 0. We further let

ŝΩ
k = sΩ

k +
[
1 + bk,Ω1,Nk0

−1 −
1
Ltk

]
Ltk , (5.112)

and we let ûk,Ω ∈ UM,m,Ltk
Θ̂k, Ω

traj , x̂
k0,Ω, ŝΩ

k

be the concatenation of u k,Ω (see (5.105)) and

ûk,ΩNk0
= 1 + (bk,Ω1,Nk0

−1 −
1
Ltk

). (5.113)

Next, we note that the right-most inequality in (5.106), together with the fact that

Nk0
−1∑

j=0

uk0,Ω
j = nk0/Lnk0

, (5.114)

allow us to asset that |sΩ
k − Ltknk0/Lnk0

| ≤ 2Nk0 . Therefore the definition of ŝΩ
k in (5.112)

implies that

ŝΩ
k = Ltk

nk0

Lnk0

+ m̂Ω
k with |m̂Ω

k | ≤ 2Nk0 + 2Ltk . (5.115)

Moreover,

HΩ
(
Θ̂k,Ω

traj, x̂
k0,Ω, ûk,Ω

)
≥ HΩ

(
Θ
k,Ω
traj , x

k0,Ω
max , u

k,Ω
)

+ (β − α), (5.116)

because ûk,ΩNk0
≤ 2 by definition (see (5.113)) and the free energies per columns are all bounded

from below by (β − α)/2. Hence, (5.110) and (5.116) give that for all Ω there exist a

Θ̂k,Ω
traj ∈ D̃

M, rk0
Ltk , Nk0

+1 : b1,Nk0
= 1

Ltk
, (5.117)

an x̂k0,Ω ∈ XM,m

Θ̂k,Ωtraj,Ω
and a ûk,Ω ∈ UM,m,Ltk

Θ̂k,Ωtraj , x̂
k0,Ω, ŝΩ

k

such that, for k large enough,

EΩ

[
H(Θ̂k,Ω

traj, x̂
k0,Ω, ûk,Ω)

]
≥ nk0

Lnk0

(
l1 + l2−l1

4 ). (5.118)

Next, we subdivide the disorder Ω into groups of Nk0 + 1 consecutive columns that are
successively translated by rk0 in the vertical direction, i.e., Ω = (Ω1,Ω2, . . . ) with (recall
(3.10))

Ωj =
(
Ω(i, (j − 1) rk0 + ·)

) j(Nk0
+1)−1

i=(j−1)(Nk0
+1), (5.119)
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and we let qΩ
k be the unique integer satisfying

ŝΩ1
k + ŝΩ2

k + · · ·+ ŝ
Ωqk
k ≤ tk < ŝΩ1

k + · · ·+ ŝ
Ωqk+1

k , (5.120)

where we suppress the Ω-dependence of qk. We recall that

fΩ
3,tk

(M,m) = E

[
1

tk
log

tk/Ltk∑
N=tk/mLtk

∑
Θtraj∈D̃MLtk ,N

∑
x∈XM,mΘtraj,Ω

∑
u∈U

M,m,Ltk
Θtraj, x, tk

eLtk H
Ω(Θtraj,x,u)

]
,

(5.121)

set t̃Ω
k = ŝΩ1

k + ŝΩ2
k + · · ·+ ŝ

Ωqk
k , and concatenate

Θ̂k,Ω
traj,tot =

(
Θ̂k,Ω1

traj , Θ̂
k,Ω2

traj , . . . , Θ̂
k,Ωqk
traj

)
∈ D̃M,

Ltk , qk(Nk0
+1), (5.122)

and
x̂k,Ωtot =

(
x̂k0,Ω1 , x̂k0,Ω2 , . . . , x̂k0,Ωqk

)
∈ XM,m

Θ̂k,Ωtraj,totΩ
. (5.123)

and
ûk,Ωtot =

(
ûk,Ω1 , ûk,Ω2 , . . . , ûk,Ωqk

)
∈ UM,m,Ltk

Θ̂k,Ωtraj,tot,x̂
k,Ω
tot ,t̃

Ω
k

. (5.124)

It still remains to complete Θ̂k,Ω
traj,tot, x̂

k,Ω
tot and ûk,Ωtot such that the latter becomes an element

of UM,m,Ltk
Θ̂k,Ωtraj,tot,x̂

k,Ω
tot ,tk

. To that end, we recall (5.120), which gives tk − t̃Ω
k ≤ ŝ

Ωqk+1

k . Then, using

(5.115), we have that there exists a c > 0 such that

tk − t̃Ω
k ≤ cLtk

nk0
Lnk0

. (5.125)

Therefore we can complete Θ̂k,Ω
traj,tot, x̂

k,Ω
tot and ûk,Ωtot with

Θrest ∈ DMLtk , gΩ
k
, xrest ∈ XM,m

Θrest,Ω
, urest ∈ U

M,m,Ltk
Θrest,xrest,tk−t̃Ω

k

, (5.126)

such that, by (5.125), the number of columns gΩ
k involved in Θrest satisfies gΩ

k ≤ cnk0/Lnk0
.

Henceforth Θ̂k,Ω
traj,tot, x̂

k,Ω
tot and ûk,Ωtot stand for the quantities defined in (5.122) and (5.124), and

concatenated with Θrest, xrest and urest so that they become elements of

DM
Ltk , qk(Nk0

+1)+gΩ
k
, XM,m

Θ̂k,Ωtraj,tot,Ω
, UM,m,Ltk

Θ̂k,Ωtraj,tot,x̂
k,Ω
tot ,tk

, (5.127)

respectively. By restricting the summation in (5.45) to Θ̂k,Ω
traj,tot, x̂

k,Ω
tot and ûk,Ωtot , we get

f3,tk(M,m) ≥ Ltk
tk

EΩ

[ qk∑
j=1

HΩj (Θ̂
k,Ωj
traj , x̂

k0,Ωj , ûk,Ωj ) +H(Θrest, xrest, urest)

]
, (5.128)

where the term H(Θrest, xrest, urest) is negligible because, by (5.125), (tk − t̃Ω
k )/tk vanishes as

k →∞, while all free energies per column are bounded from below by (β − α)/2. Pick ε > 0
and recall (5.115). Choose k0 such that 2Lnk0

/nk0 ≤ ε/2 and note that, for k large enough,

ŝΩ
k ∈

[
Ltk

nk0
Lnk0

(1− ε), Ltk
nk0
Lnk0

(1 + ε)
]
. (5.129)
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By (5.120), we therefore have

qk ∈
[ tkLnk0
Ltknk0

1
1+ε ,

tkLnk0
Ltknk0

1
1−ε

]
= [a, b]. (5.130)

Recalling (5.128), we obtain

f3,tk(M,m) ≥ Ltk
tk

EΩ

[ a∑
j=1

HΩj (Θ̂
k,Ωj
traj , x̂

k0,Ωj , ûk,Ωj )−
b∑

j=a

∣∣∣HΩj (Θ̂
k,Ωj
traj , x̂

k0,Ωj , ûk,Ωj )
∣∣∣],
(5.131)

and, consequently,

f3,tk(M,m) ≥
Lnk0

nk0
(1+ε) EΩ

[
HΩ(Θ̂k,Ω

traj, x̂
k0,Ω, ûk,Ω)

]
− Ltk

tk
(b− a)(Nk0 + 1)mβ−α

2 , (5.132)

and, by (5.118),

f3,tk(M,m) ≥ l1+
l2−l1

4
1+ε − ( 1

1−ε −
1

1+ε)(b− a)mβ−α
2 . (5.133)

After taking ε small enough, we may conclude that lim infk→∞ f3,tk(M,m) > l1, which com-
pletes the proof.

5.3 Proof of Proposition 5.3

Pick (M,m) ∈ EIGH and note that, for every n ∈ N, the set W m
n,M is contained in Wn,M .

Thus, by using Proposition 5.2 we obtain

lim inf
n→∞

fΩ
1,n(M ;α, β) ≥ sup

m≥M+2
lim inf
n→∞

fΩ
1,n(M,m;α, β)

= sup
m≥M+2

f(M,m;α, β) for P− a.e.Ω. (5.134)

Therefore, the proof of Proposition 5.3 will be complete once we show that

lim sup
n→∞

fΩ
1,n(M ;α, β) ≤ sup

m≥M+2
lim sup
n→∞

fΩ
1,n(M,m;α, β) for P− a.e.Ω. (5.135)

We will not prove (5.135) in full detail, but only give the main steps in the proof. The proof
consists in showing that, for m large enough, the pieces of the trajectory in a column that
exeed mLn steps do not contribute substantially to the free energy.

Recall (5.25–5.30) and use (5.30) with m =∞, i.e.,

Zω,Ωn,Ln
(M) =

n/Ln∑
N=1

∑
Θtraj∈D̃MLn,N

∑
x∈XM,∞Θtraj,Ω

∑
u∈UM,∞,LnΘtraj,x,n

A1. (5.136)

With each (N,Θtraj, x, u) in (5.136), we associate the trajectories obtained by concatenating
N shorter trajectories (πi)i∈{0,...,N−1} chosen in (WΘi,ui,Ln)i∈{0,...,N−1}, respectively. Thus,
the quantity A1 in (5.136) corresponds to the restriction of the partition function to the
trajectories associated with (N,Θtraj, x, u). In order to discriminate between the columns in
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which more than mLn steps are taken and those in which less are taken, we rewrite A1 as
A2Ã2 with

A2 =
∏

i∈Vu,m

Z
ωIi
Ln

(Θi, ui), Ã2 =
∏

i∈Ṽu,m

Z
ωIi
Ln

(Θi, ui), (5.137)

with ũi =
∑i−1

k=0 uk, Θi = (Ω(i,Πi + ·),Ξi, xi) and Ii = {ũiLn, . . . , ũi+1Ln − 1} for i ∈
{0, . . . , N − 1}, with ωI = (ωi)i∈I for I ⊂ N, where {0, . . . , N − 1} is partitioned into

Ṽu,m ∪ Vu,m with Ṽu,m = {i ∈ {0, . . . , N − 1} : ui > m}. (5.138)

For all (N,Θtraj, x, u), we rewrite Ṽu,m in the form of an increasing sequence {i1, . . . , ik̃} and

we drop the (u,m)-dependence of k̃ for simplicity. We also set ũ = ui1 + · · ·+ui
k̃
, which is the

total number of steps taken by a trajectory associated with (N,Θtraj, x, u) in those columns

where more than mLn steps are taken. Finally, for s ∈ {1, . . . , k̃} we partition Iis into

Jis ∪ J̃is with Jis = {ũisLn, . . . , (ũis +M + 2)Ln}, (5.139)

J̃is = {(ũis +M + 2)Ln + 1, . . . , ũis+1Ln − 1},

and we partition {1, . . . , n} into

J ∪ J̃ with J̃ = ∪k̃s=1J̃is , J = {1, . . . , n} \ J̃ , (5.140)

so that J̃ contains the label of the steps constituting the pieces of trajectory exeeding (M+2)Ln
steps in those columns where more than mLn steps are taken.

5.3.1 Step 1

In this step we replace the pieces of trajectories in the columns indexed in Ṽu,m by shorter
trajectories of length (M + 2)Ln. To that aim, for every (N,Θtraj, x, u) we set

Â2 =
∏

i∈Ṽu,m

Z
ωJi
Ln

(Θ
′
i,M + 2) (5.141)

with Θ
′
i = (Ω(i,Πi + ·),Ξi, 1). We will show that for all ε > 0 and for m large enough, the

event
Bn = {ω : Ã2 ≤ Â2 e

3εn for all (N,Θtraj, x, u)} (5.142)

satisfies Pω(Bn)→ 1 as n→∞.

Pick, for each s ∈ {1, . . . , k̃}, a trajectory πs in the set WΘis ,uis ,Ln . By concatenating

them we obtain a trajectory inWũLn satisfying πũLn,1 = k̃Ln. Thus, the total entropy carried
by those pieces of trajectories crossing the columns indexed in {i1, . . . , ik̃} is bounded above
by ∏k̃

s=1 |WΘis ,uis ,Ln | ≤
∣∣{π ∈ WũLn : πũLn,1 = k̃Ln}

∣∣. (5.143)

Since ũ/k̃ ≥ m, we can use Lemma A.2 in Appendix A to assert that, for m large enough, the
right-hand side of (5.143) is bounded above by eεn.

Moreover, we note that an ũLn-step trajectory satisfying πũLn,1 = k̃Ln makes at most

k̃Ln+ ũ excursions in the B solvent because such an excursion requires at least one horizontal
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step or at least Ln vertical steps. Therefore, by using the inequalities k̃Ln ≤ n/m and
ũ ≤ n/Ln we obtain that, for n large enough, the sum of the Hamiltonians associated with
(π1, . . . , πk̃) is bounded from above, uniformly in (N,Θtraj, x, u) and (π1, . . . , πk̃), by

∑k̃
s=1H

ωIis
,Ω(is,Πis+·)

uisLn,Ln
(πs) ≤ max{

∑
i∈I ξi : I ∈ ∪

2n/m
r=1 En,r}, (5.144)

with En,r defined in (E.1) in Appendix E and ξi = β1{ωi=A} − α1{ωi=B} for i ∈ N. At this

stage we use the definition in (E.3) and note that, for all ω ∈ Qε/β,(α−β)/2+ε
n,m , the right-hand

side in (5.144) is smaller than εn. Consequently, for m and n large enough we have that, for

all ω ∈ Qε/β,(α−β)/2+ε
n,m ,

Ã2 ≤ e2εn for all (N,Θtraj, x, u). (5.145)

Recalling (3.34) and noting that k̃Ln ≤ n/m, we can write

Â2 ≥ e−k̃(M+2)LnCuf(α) ≥ e−n
M+2
m Cuf(α), (5.146)

and therefore, for m large enough, for all n and all (N,Θtraj, x, u) we have Â2 ≥ e−εn.

Finally, use (5.145) and (5.146) to conclude that, for m and n large enough, Qε/β,(α−β)/2+ε
n,m

is a subset of Bn. Thus, Lemma E.1 ensures that, for m large enough, limn→∞ Pω(Bn) = 1.

5.3.2 Step 2

Let (w̃i)i∈N be an i.i.d. sequence of Bernouilli trials, independent of ω,Ω. For (N,Θtraj, x, u)

we set û = ũ− k̃(M+2). In Step 1 we have removed ûLn steps from the trajectories associated
with (N,Θtraj, x, u) so that they have become trajectories associated with (N,Θtraj, x

′
, u). In

this step, we will concatenate the trajectories associated with (N,Θtraj, x
′
, u) with an ûLn-step

trajectory to recover a trajectory that belongs to W m
n,M .

For Ω ∈ {A,B}N0×Z, t,N ∈ N and k ∈ Z, let

PΩ
A (N, k)(t) =

1

t

t−1∑
j=0

1{Ω(N+j,k)=A} (5.147)

be the proportion of A-blocks on the kth line and between the N th and the (N + t − 1)th

column of Ω. Pick η > 0 and j ∈ N, and set

Sη,j =

j⋃
N=0

m1N⋃
k=−m1N

⋃
t≥ηj

{
PΩ
A (N, k)(t) ≤ p

2

}
. (5.148)

By a straightforward application of Cramer’s Theorem for i.i.d. random variables, we have
that

∑
j∈N PΩ(Sη,j) < ∞. Therefore, using the Borel-Cantelli Lemma, it follows that for

PΩ-a.e. Ω, there exists a jη(Ω) ∈ N such that Ω /∈ Sη,j as soon as j ≥ jη(Ω). In what follows,
we consider η = ε/αm and we take n large enough so that n/Ln ≥ jε/αm(Ω), and therefore
Ω /∈ S n

Ln
, ε
αm

.

Pick (N,Θ, x, u) and consider one trajectory π̂, of length ûLn, starting from (N,ΠN +
bN )Ln, staying in the coarsed-grained line at height ΠN , crossing the B-blocks in a straight
line and the A-blocks in mLn steps. The number of columns crossed by π̂ is denoted by N̂
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and satisfies N̂ ≥ û/m. If ûLn ≤ εn/α, then the Hamiltonian associated with π̂ is clearly
larger than −εn. If ûLn ≥ εn/α in turn, then

H
w̃,Ω(N+·,ΠN )
ûLn,Ln

(π̂) ≥ −αLnN̂
[
1− PΩ

A (N,ΠN )(N̂)
]
. (5.149)

Since N ≤ n/Ln, |ΠN | ≤ m1N and N̂ ≥ εn/(αmLn), we can use the fact that Ω /∈ S n
Ln

, ε
αm

to obtain
PΩ
A (N,ΠN )(N̂) ≥ p

2
. (5.150)

At this point it remains to bound N̂ from above, which is done by noting that

N̂
[
mPΩ

A (N,ΠN )(N̂) + 1− PΩ
A (N,ΠN )(N̂)

]
= û ≤ n

Ln
. (5.151)

Hence, using (5.150) and (5.151), we obtain N̂ ≤ 2n/pmLn and therefore the right-hand side
of (5.149) is bounded from below by −α(2− p)n/pm, which for m large enough is larger than
−εn.

Thus, for n and m large enough and for all (N,Θ, x, u), we have a trajectory π̂ at which
the Hamiltonian is bounded from below by −εn that can be concatenated with all trajectories
associated with (N,Θ, x′, u) to obtain a trajectory in W m

n,M . Consequently, recalling (5.139),
for n and m large enough we have

A2Â2 ≤ eεnZ(ωJ , ω̃),Ω
n,Ln

(M,m) ∀ (N,Θ, x, u). (5.152)

5.3.3 Step 3

In this step, we average over the microscopic disorders ω, ω̃. Use (5.152) to note that, for n
and m large enough and all ω ∈ Bn, we have

Zω,Ωn,Ln
(M) ≤ e4εn

n/Ln∑
N=1

∑
Θtraj∈D̃MLn,N

∑
x∈XM,∞Θtraj,Ω

∑
u∈UM,∞,LnΘtraj,x,n

Z
(ωJ , ω̃),Ω
n,Ln

(M,m). (5.153)

We use (D.3) to claim that there exists C1, C2 > 0 so that for all n ∈ N, all m ∈ N and all J ,

Pω,ω̃
(∣∣∣ 1

n logZ
(ωJ , ω̃),Ω
n,Ln

(M,m)− fΩ
1,n(M,m)

∣∣∣ ≥ ε) ≤ C1e
−C2ε2n. (5.154)

We set also

Dn =
⋂

(N,Θtraj,x,u)

{∣∣∣ 1
n logZ

(ωJ , ω̃),Ω
n,Ln

(M,m)− fΩ
1,n(M,m)

∣∣∣ ≤ ε}, (5.155)

recall the definition of cn in (5.55) (used with (M,∞)), and use (5.154) and the fact that cn
grows subexponentially, to obtain limn→∞ Pω,ω̃(Dc

n) = 0. For all (ω, ω̃) satisfying ω ∈ Bn and
(ω, ω̃) ∈ Dn, we can rewrite (5.153) as

Zω,Ωn,Ln
(M) ≤ cn enf

Ω
1,n(M,m)+5εn. (5.156)

As a consequence, recalling (3.34), for m large enough we have

fΩ
n (M ;α, β) ≤ P(Bc

n ∪Dc
n)Cuf(α) +

log cn
n

+
1

n
E
(

1{Bn∪Dn}
(
nfΩ

1,n(M,m) + 5εn
))
. (5.157)

Since P(Bc
n ∪Dc

n) and (log cn)/n vanish when n→∞, it suffices to apply Proposition 5.2 and
to let ε→ 0 to obtain (5.135). This completes the proof of Proposition 5.3.
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5.4 Proof of Proposition 5.4

Note that, for all m ≥ M + 2, we have Rmp,M ⊂ Rp,M . Moreover, any (uΘ)Θ∈VmM
∈ BVmM can

be extended to VM so that it belongs to BVM . Thus,

sup
m≥M+2

f(M,m;α, β) ≤ sup
ρ∈Rp,M

sup
(u)∈BVM

V (ρ, u). (5.158)

As a consequence, it suffices to show that for all ρ ∈ Rp,M and (uΘ)Θ∈VM ∈ BVM ,

V (ρ, u) ≤ sup
m≥M+2

sup
ρ∈Rmp,M

sup
(u)∈BVmM

V (ρ, u). (5.159)

If
∫
VM uΘ ρ(dΘ) = ∞, then (5.159) is trivially satisfied since V (ρ, u) = −∞. Thus, we can

assume that ρ(VM \ DM ) = 1, where DM = {Θ ∈ VM : χΘ ∈ {AZ, BZ}, xΘ = 2}. Since∫
VM uΘ ρ(dΘ) < ∞ and since (recall (3.34)) ψ(Θ, u) is uniformly bounded by Cuf(α) on

(Θ, u) ∈ V ∗M , we have by dominated convergence that for all ε > 0 there exists an m0 ≥M+2
such that, for all m ≥ m0,

V (ρ, u) ≤

∫
VmM

uΘψ(Θ, uΘ)ρ(dΘ)∫
VmM

uΘρ(dΘ)
+ ε

2 . (5.160)

Since ρ(VM \ DM ) = 1 and since ∪m≥M+2V
m
M = VM \ DM , we have limm→∞ ρ(V mM ) = 1.

Moreover, for all m ≥ m0 there exists a ρ̂m ∈ Rmp,M such that ρ̂m = ρm + ρm, with ρm the

restriction of ρ to V mM and ρm charging only those Θ satisfying xΘ = 1. Since all Θ ∈ VM
with xΘ = 1 also belong to VM+2

M , we can state that ρm only charges VM+2
M . Therefore

V (ρ̂m, u) =

∫
VmM

uΘψ(Θ, uΘ)ρ(dΘ) +
∫
VM+2
M

uΘψ(Θ, uΘ)ρm(dΘ)∫
VmM

uΘρ(dΘ) +
∫
VM+2
M

uΘρm(dΘ)
. (5.161)

Since Θ 7→ uΘ is continuous on VM , there exists an R > 0 such that uΘ ≤ R for all Θ ∈ VM+2
M .

Therefore we can use (5.160) and (5.161) to obtain, for m ≥ m0,

V (ρ̂m, u) ≥ (V (ρ, u)− ε
2)

∫
VmM

uΘρ(dΘ)∫
VmM

uΘρ(dΘ) +
∫
VM+2
M

uΘρm(dΘ)
−RCuf(α) (1− ρ(V mM )). (5.162)

The fact that ρm(VM+2
M ) = ρ(VM \V

m
M ) for all m ≥ m0 impliess that limm→∞ ρm(VM+2

M ) = 0.
Consequently, the right-hand side in (5.162) tends to V (ρ, u) − ε/2 as m → ∞. Thus, there
exists a m1 ≥ m0 such that V (ρ̂m1 , u) ≥ V (ρ, u) − ε. Finally, we note that there exists a
m2 ≥ m1 + 1 such that uΘ ≤ m2 for all Θ ∈ V m1

M , which allows us to extend (uΘ)Θ∈Vm1
M

to

V m2

M such that (uΘ)Θ∈Vm2
M
∈ BVm2

M
. It suffices to note that ρ̂m1 ∈ R

m1
p,M ⊂ R

m2
p,M to conclude

that
V (ρ, u) ≤ f(M,m2; α, β) + ε. (5.163)

6 Proof of Theorem 1.1: slope-based variational formula

We are now ready to show how (5.2) can be transformed into (1.17).
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Let FVM and F̄ be the counterparts of BVM and B̄ for Borel functions instead of continuous
functions, i.e.,

FVM =
{

(uΘ)Θ∈VM ∈ RVM : uΘ ≥ tΘ ∀Θ ∈ VM , Θ 7→ uΘ Borel
}

(6.1)

and
F̄ = {v = (vA, vB, vI) ∈ D̄ × D̄ × [1,∞)}, (6.2)

where
D̄ = {l 7→ vl on [0,∞) Lebesgue measurable with vl ≥ 1 + l ∀ l ≥ 0} . (6.3)

The proof of Theorem 1.1 is divided into 4 steps, organized as Sections 6.1–6.4. In Step 1 we
show that the supremum over BVM in (5.2) may be extended to FVM , i.e.,

sup
ρ∈Rp,M

sup
(uΘ)Θ∈VM

∈BVM

N(ρ, u)

D(ρ, u)
= sup

ρ∈Rp,M
sup

(uΘ)Θ∈VM
∈FVM

N(ρ, u)

D(ρ, u)
. (6.4)

In Step 2 we show that the supremum over B̄ in (1.17) may be extended to F̄ , i.e.,

sup
ρ̄∈R̄p,M

sup
v∈ B̄

N̄(ρ̄, v)

D̄(ρ̄, v)
= sup

ρ̄∈R̄p,M
sup
v∈F̄

N̄(ρ̄, v)

D̄(ρ̄, v)
. (6.5)

In Steps 3 and 4 we use Proposition 5.1 to show that

f(α, β;M,p) ≥ sup
ρ̄∈R̄p,M

sup
v∈F̄

N̄(ρ̄, v)

D̄(ρ̄, v)
, (6.6)

f(α, β;M,p) ≤ sup
ρ̄∈R̄p,M

sup
v∈F̄

N̄(ρ̄, v)

D̄(ρ̄, v)
. (6.7)

Along the way we will need a few technical facts, which are collected in Appendices C–G.

6.1 Step 1: extension of the variational formula

For c ∈ (0,∞), let u(c) = (uΘ(c))Θ∈VM be the counterpart of the function v(c) introduced in

(2.8-2.10). For Θ ∈ VM and c ∈ (0,∞), set

uΘ(c) =

{
tΘ if ∂+

u (uψ(Θ, u))(tΘ) ≤ c,
z otherwise, with z such that ∂−u (uψ(Θ, u))(z) ≥ c ≥ ∂+

u (uψ(Θ, u))(z),

(6.8)
where z exists and is finite by Lemma C.7 in Appendix C, and is unique by the strict concavity
of u → uψ(Θ, u) for Θ ∈ VM (see Lemma C.4 in Appendix C). The fine properties of
Θ 7→ uΘ(c) are given in Lemma B.4 in Appendix B.

For (α, β) ∈ CONE and ρ ∈M1(VM ) such that
∫
VM tΘ ρ(dΘ) <∞, set

g(ρ;α, β) = sup
u∈FVM

N(ρ, u)

D(ρ, u)
, (6.9)

with the convention that N(ρ, u)/D(ρ, u) = −∞ when D(ρ, u) =∞. The equality in (6.4) is
a straightforward consequence of the following lemma.

59



Lemma 6.1 For (α, β) ∈ CONE and ρ ∈M1(VM ) such that g(ρ;α, β) > 0,

g(ρ;α, β) =
N(ρ, ū)

D(ρ, ū)
with ū = u(g(ρ;α, β)). (6.10)

Moreover, u = ū for ρ-a.e. Θ ∈ VM for all u ∈ FVM satisfying g(ρ;α, β) = N(ρ,u)
D(ρ,u) .

Proof. The following lemma will be needed in the proof.

Lemma 6.2 For (α, β) ∈ CONE and ε > 0 there exists a tε > 0 such that, for all ρ ∈M1(VM )
and all u ∈ FVM satisfying D(ρ, u) ∈ (tε,∞),

N(ρ, u)

D(ρ, u)
≤ ε. (6.11)

Proof. Pick ε > 0. By Lemma C.6, there exists a Cε > 0 such that ψ(Θ, u) ≤ ε/2 for
Θ ∈ VM and u ≥ max{Cε, tΘ}. For R ∈ (0,∞), set B−(R) = {Θ ∈ VM : uΘ ≤ R} and
B+(R) = {Θ ∈ VM : uΘ > R}, and write

N(ρ, u)

D(ρ, u)
=

∫
B−(Cε)

uΘψ(Θ, uΘ)ρ(dΘ)

D(ρ, u)
+

∫
B+(Cε)

uΘψ(Θ, uΘ)ρ(dΘ)

D(ρ, u)
. (6.12)

By the definition of Cε and since uΘ ≥ tΘ for all Θ ∈ VM , we can bound the second term in
the right-hand side of (6.12) by ε/2 > 0. The first term in the right-hand side of (6.12) in
turn can be bounded from above by CεCuf(α)/D(ρ, u) (recall (3.34)). Consequently, it suffices
to choose tε = 2CεCuf(α)/ε to complete the proof. �

We resume the proof of Lemma 6.1. By assumption, we know that g(ρ) > 0, which entails
that

∫
VM tΘρ(dΘ) <∞. Thus, Lemma B.4(iv) tells us that D(ρ, u(c)) <∞ for all c > 0. We

argue by contradiction. Suppose that N(ρ,ū)
D(ρ,ū) < g(ρ), and pick u ∈ FVM such that D(ρ, u) <∞.

Write
N(ρ, u)

D(ρ, u)
=
N(ρ, ū) + [N(ρ, u)−N(ρ, ū)]

D(ρ, ū) + [D(ρ, u)−D(ρ, ū)]
, (6.13)

where

N(ρ, u)−N(ρ, ū) =

∫
VM

uΘψ(Θ, uΘ)− ūΘψ(Θ, ūΘ) ρ(dΘ). (6.14)

The strict concavity of u 7→ uψ(Θ, u) on [tΘ,∞) for every Θ ∈ VM , together with the definition
of ū in (6.10), allows us to estimate

N(ρ, u)−N(ρ, ū) ≤ g(ρ)

∫
VM

(uΘ − ūΘ) ρ(dΘ). (6.15)

Consequently, (6.13) becomes

N(ρ, u)

D(ρ, u)
≤ N(ρ, ū) + g(ρ)[D̄(ρ, u)− D̄(ρ, ū)]

D(ρ, ū) + [D(ρ, u)−D(ρ, ū)]
. (6.16)

Define G = x 7→ [N(ρ, ū) + g(ρ̄)x]/[D(ρ, ū) + x] on (−D(ρ, ū),∞). Note that N(ρ, ū)/D(ρ, ū)
< g(ρ) implies that G is strictly increasing with limx→∞G(x) = g(ρ). Use Lemma 6.2 to
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assert that N(ρ, u)/D(ρ, u) ≤ 1
2g(ρ) when D(ρ, u) ≥ t1

2g(ρ)
. But then, for all u satisfying

D(ρ, u) ≤ t g(ρ)
2

, (6.16) gives

N(ρ, u)

D(ρ, u)
≤ G

(
tg(ρ)

2

−D(ρ, ū)

)
< g(ρ). (6.17)

Consequently,

sup
u∈FVM

N(ρ, u)

D(ρ, u)
≤ max

{
g(ρ)

2 , G
(
t g(ρ)

2

−D(ρ, ū)
)}

< g(ρ), (6.18)

which is a contradiction, and so g(ρ) = N(ρ, ū)/D(ρ, ū).

It remains to prove that if u ∈ FVM satisfies g(ρ) = N(ρ, u)/D(ρ, u), then u = ū for ρ-a.e.

Θ ∈ VM . We proceed again by contradiction, i.e., we suppose that a such u is not equal to
ū for ρ-a.e. Θ ∈ VM . In this case, both inequalities in (6.15) and (6.16) are strict, which

immediately yields that N(ρ,u)
D(ρ,u) < g(ρ). �

6.2 Step 2: extension of the reduced variational formula

Recall (2.8–2.10) and, for (α, β) ∈ CONE and ρ̄ ∈ M1

(
R+ ∪ R+ ∪ {I}

)
such that

∫∞
0 (1 +

l) [ρ̄A + ρ̄B](dl) <∞, set

h(ρ̄;α, β) = sup
v∈F̄

N̄(ρ̄, v)

D̄(ρ̄, v)
. (6.19)

Recall (2.8-2.10). The equality in (6.5) is a straightforward consequence of the following
lemma.

Lemma 6.3 For (α, β) ∈ CONE and ρ̄ ∈M1

(
R+ ∪ R+ ∪ {I}

)
such that h(ρ̄; α, β) > 0,

h(ρ̄;α, β) =
N̄(ρ̄, v̄)

D̄(ρ̄, v̄)
, with v̄ = v(h(ρ̄;α, β)). (6.20)

For v ∈ F̄ satisfying h(ρ̄;α, β) = N̄(ρ̄,v)
D̄(ρ̄,v)

, v = v̄ for ρ̄-a.e. (k, l) ∈ {A,B} × [0,∞) or k = I.

Proof. The proof is similar to that of Lemma 6.1. The counterpart of Lemma 6.2 is
obtained by showing that for (α, β) ∈ CONE and ε > 0 there exists a tε > 0 such that, for all
ρ̄ ∈M1

(
R+ ∪ R+ ∪ {I} and all v ∈ F̄ satisfying D̄(ρ̄, v) ∈ (tε,∞),

N̄(ρ̄, v)

D̄(ρ̄, v)
≤ ε. (6.21)

The proof of (6.20) is similar to the proof of Lemma 6.2 and relies mainly on Lemmas B.1(ii–iii)
and on the limit given in Lemma C.1(ii).

It remains to show that h(ρ̄;α, β) = N̄(ρ̄,v̄)
D̄(ρ̄,v̄)

and that v ∈ F̄ satisfying h(ρ̄;α, β) = N̄(ρ̄,v)
D̄(ρ̄,v)

necessarily satisfies v = v̄ for ρ̄-a.e. (k, l) ∈ {A,B} × [0,∞) or k = I. The proofs are similar
to their counterparts in Lemma 6.1 and require the strict concavity of u 7→ uκ̃(u, l) for l ∈ R
and of u 7→ uφI(u), as well as the definition of v̄ in (2.8–2.10). �
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6.3 Step 3: lower bound

The inequality in (6.6) is a straightforward consequence of the following lemma.

Lemma 6.4 For all (α, β) ∈ CONE, ρ̄ ∈ R̄p,M and v = (vA, vB, vI) ∈ F̄ there exists ρ ∈ Rp,M
and u = (uΘ)Θ∈VM ∈ FVM satisfying

N(ρ̄, v)

D(ρ̄, v)
≤ N(ρ, u)

D(ρ, u)
. (6.22)

Proof. Since ρ̄ ∈ R̄p,M , there exist ρ ∈ Rp,M and h ∈ E such that ρ̄ = Gρ,h. For Θ ∈ VM
and k ∈ {A,B}, set dk,Θ = lk,Θ/hk,Θ if hk,Θ > 0 and dk,Θ = 0 otherwise. Put

uΘ = hA,Θ vA,dA,Θ + hB,Θ vB, dA,Θ + hI,Θ vI , Θ ∈ VM . (6.23)

To prove (6.22), we recall (3.58) and integrate (6.23) against ρ. Since ρ̄ = Gρ,h, it follows that

D(ρ̄, v) =

∫
VM

uΘ ρ(dΘ) = D(ρ, u). (6.24)

Since h ∈ E we can assert that

(hA,Θ, hB,Θ, hI,Θ), (hA,Θ vA, dA,Θ , hB,Θ vB, dB,Θ , hI,Θ vI) ∈ L(Θ; uΘ), Θ ∈ VM , (6.25)

which, with the help of (3.45), allows us to write

uΘ Ψ(Θ, uΘ) ≥ hA,Θ vA, dA,Θ κ̃(vA, dA,Θ , dA,Θ) (6.26)

+hB,Θ vB, dB,Θ

[
κ̃(vB, dB,Θ , dB,Θ) + β−α

2

]
+ hI,Θ vI φI(vI ;α, β).

After integrating (6.26) against ρ and using that ρ̄ = Gρ,u, we obtain∫
VM

uΘψ(Θ, uΘ)ρ(dΘ) ≥
[ ∫ ∞

0
vA,l κ(vA,l, l) ρA(dl) (6.27)

+

∫ ∞
0

vB,l
[
κ(vB,l, l) + β−α

2

]
ρB(dl) + ρI vI φI(vI ;α, β)

]
.

Thus, (6.22) is immediate from (6.24) and (6.27). �

6.4 Step 4: upper bound

The proof of (6.7) is a straightforward consequence of the following lemma.

Lemma 6.5 For all (α, β) ∈ CONE, ρ ∈ Rp,M and u ∈ BVM , there exist ρ̄ ∈ R̄p,M and v ∈ F̄
such that

N(ρ, u)

D(ρ, u)
≤ N(ρ̄, v)

D(ρ̄, v)
. (6.28)
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Proof. Since u ∈ BVM , Proposition G.1 in Appendix G allows us to state that there exist
h ∈ E and r ∈ U(h) such that

uΘ ψ(Θ, uΘ) = hA,Θ rA,Θ κ̃
(
rA,Θ,

lA,Θ
hA,Θ

)
+ hB,Θ rB,Θ

[
κ̃
(
rB,Θ,

lB,Θ
hB,Θ

)
+ β−α

2

]
(6.29)

+ hI,Θ rI,Θ φI(rI,Θ), ∀Θ ∈ VM ,

and
hA,Θ rA,Θ + hB,Θ rB,Θ + hI,Θ rI,Θ = uΘ, ∀Θ ∈ VM . (6.30)

Define ρA,h, ρB,h, ρI,h to be the probability measures on VM given by

dρk,h
dρ

(Θ) =
hk,Θ∫

VM hk,Θ ρ(dΘ)
, k ∈ {A,B, I}. (6.31)

For l ∈ R+, set

vA,l = EρA,h
[
rA,Θ

∣∣ lA,Θ
hA,Θ

= l
]
, vB,l = EρB,h

[
rB,Θ

∣∣ lB,Θ
hB,Θ

= l
]
, (6.32)

and
vI = EρI,h

[
rI,Θ

]
. (6.33)

The fact that r ∈ U(h) implies that vI ≥ 1 and vk,l ≥ 1 + l for l ∈ R+ and k ∈ {A,B}. More-
over, the Borel measurability of Θ 7→ hk,Θ for k ∈ {A,B} implies the Lebesgue measurability
of l 7→ vk,l for k ∈ {A,B}. Therefore, (vA, vB, vI) ∈ F̄ .

By the concavity of a 7→ aκ̃(a, b) and µ 7→ µφI(µ), we obtain that

EρA,h

[
rA,Θ κ̃(rA,Θ, l)

∣∣ lA,Θ
hA,Θ

= l
]
≤ vA,l κ̃(vA,l, l), (6.34)

EρB,h

[
rB,Θ

(
κ̃(rB,Θ, l) + β−α

2

) ∣∣ lB,Θ
hB,Θ

= l
]
≤ vB,l

[
κ̃(vB,l, l) + β−α

2

]
,

EρI,h

[
rI,Θ φI(rI,Θ)

]
≤ vI φI(vI).

Integrate (6.29) against ρ, to obtain∫
VM

uΘ ψ(Θ, uΘ) ρ(dΘ) =
∫
VM hA,Θ ρ(dΘ) EρA,h

[
rA,Θ κ̃

(
rA,Θ,

lA,Θ
hA,Θ

)]
(6.35)

+
∫
VM hI,Θ ρ(dΘ) EρI,h

[
rI,Θ φI(rI,Θ)

]
+
∫
VM hB,Θ ρ(dΘ) EρB,h

[
rB,Θ

(
κ̃
(
rB,Θ,

lB,Θ
hB,Θ

)
+ β−α

2

)]
.

Set ρ̄ = Gρ,h. In the right-hand side of (6.35) take the conditional expectation with respect to
lA,Θ
hA,Θ

and
lB,Θ
hB,Θ

in the first term and the second term, respectively. Then use the inequalities

in (6.34), to obtain∫
VM

uΘ ψ(Θ, uΘ) ρ(dΘ) ≤
∫ ∞

0
vA,l κ̃(vA,l, l) ρ̄A(dl) (6.36)

+

∫ ∞
0

vB,l
[
κ̃(vB,l, l) + β−α

2

]
ρ̄B(dl) + ρ̄I vI φI(vI , α, β).
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Similarly, integrate (6.30) against ρ and take the conditional expectation with respect to
lA,Θ
hA,Θ

and
lB,Θ
hB,Θ

, to obtain∫
VM

uΘ ρ(dΘ) =

∫ ∞
0

vA,l ρ̄A(dl) +

∫ ∞
0

vB,l ρ̄B(dl) + ρ̄I vI . (6.37)

At this point, (6.35) and (6.37) allow us to conclude that N(ρ, u)/D(ρ, u) ≤ N(ρ̄, v)/D(ρ̄, v).
Since v ∈ F̄ , this completes the proof. �

7 Phase diagrams: proof of Theorems 2.1 and 2.5

7.1 Proof of Theorem 2.1

We first state and prove a proposition that compares f , fD and fD2 , and deals with the
regularity and the monotonicity of fD. Recall the definition of α∗ in (2.19).

Proposition 7.1 (i) f(α, β) = fD(α, β) for (α, β) ∈ CONE : β ≤ 0.
(ii) x 7→ fD(x, 0) is continuous, convex and non-increasing on [0,∞).
(iii) fD(x, 0) > fD2 for x ∈ [0, α∗) and fD(x, 0) = fD2 for x ∈ [α∗,∞).

Proof. (i) Note that for (α, β) ∈ CONE : β ≤ 0 and v ≥ 1 we have φI(v, α, β) = κ̃(v, 0),
because the Hamiltonian in (3.6) is always non-positive. Thus, (1.17) and (2.1) imply (i).

(ii) Since (α, β) 7→ f(α, β) is convex on R2 (being the pointwise limit of a sequence of convex
functions; see (1.12)) and is everywhere finite, it is also continuous. Therefore (i) implies that
x ∈ [0,∞) 7→ fD(x, 0) is continous and convex. The monotonicity of x 7→ fD(x, 0) can be read
off directly from (2.1).

(iii) It is obvious from (2.1) and (2.13) that fD(x, 0) ≥ fD2 for every x ∈ [0,∞). Recall
(2.19). Since x 7→ fD(x, 0) is continuous and non-increasing, it follows that fD(x, 0) > fD2 for
x ∈ [0, α∗) and fD(x, 0) = fD2 for x ∈ [α∗,∞). �

We are now ready to give the proof of Theorem 2.1.

Proof. (a) Pick α ≥ 0 and note that every element of Jα can be written in the form (α+β, β)
(with β ≥ −α/2), so that fD is constant and equal to fD(α, 0) on Jα. By the convexity of
(α, β) 7→ f(α, β) and by Proposition 7.1(i), we know that gα : β 7→ f(α + β, β) − fD(α, 0) is
convex and equal to 0 when β ≤ 0. Therefore gα is non-decreasing, and we can define

βc(α) = inf{β ≥ 0: f(α+ β, β) > fD(α, 0)}, (7.1)

so that (α+ β, β) ∈ D if and only if β ≤ βc(α). It remains to check that βc(α) <∞.

To that aim, pick any ρ̄ ∈ R̄p such that ρ̄I > 0 and any v ∈ B̄ such that vI > 1
and D̄(ρ̄, v) < ∞, recall (1.18), and note that limβ→∞ N̄(α + β, β; ρ̄, v) = ∞ because
limβ→∞ φI(vI ;α + β, β) = ∞. The last observation is obtained by considering a trajec-
tory in WvIL that starts at (0, 0) ends at (L, 0), and in between stays in the A-solvent except
when the microscopic disorder ω has 3 consecutive B-monomers, in which case the trajectory
makes an excursion of size 3: one step south, one step east and one step north, inside the
B-solvent. Such a trajectory has energy βcL for some c > 0.

(b) This is a straightforward consequence of the fact that fD(α, β) = fD(α−β, 0) for (α, β) ∈
CONE. �
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7.2 Proof of Theorem 2.5

Proof. (a) We want to show that α∗ ∈ (0,∞). To that aim, we first prove that fD(0, 0) >
fD2 , which by the continuity of x 7→ fD(x, 0) implies that α∗ > 0. It is easy to see that
pδA,0(dl) + (1 − p)δB,0(dl) ∈ R̄p, since this corresponds to trajectories travelling along the
x-axis while staying on one side. Thus, (2.1) implies that fD(0, 0) ≥ κ̃(u∗, 0), where u∗

is the unique maximizer of u 7→ κ̃(u, 0) on [1,∞). Moreover, by Lemma B.1(ii), we have
κ̃(u, l) ≤ κ̃(u∗, 0) for every l ∈ [0,∞) and u ≥ 1 + l. Since δA,0(dl) does not belong to Rp, it
follows that fD2 < fD(0, 0), and therefore the continuity of x 7→ fD(x, 0) implies that α∗ > 0.

It remains to show that α∗ <∞. Recall Hypothesis 2. We argue by contradiction. Assume
that fD(n, 0) > fD2 for all n ∈ N. Then Proposition F.1 tells us that there exists a sequence
(ρ̄n)n∈N in Tp such that

f(n, 0) = fD(n, 0) =
N̄D(ρ̄n, vn; n, 0)

D̄D(ρ̄n, vn)
> fD2 > 0, n ∈ N, (7.2)

with vn = v(fD(n, 0)), where we recall (2.8–2.10). For simplicity, we write f2 = fD2 until
the end of the proof. Since fD(n, 0) > f2 for n ∈ N, Lemma B.3(ii) yields vn,A,l ≤ v̄A,l for
l ∈ [0,∞), n ∈ N. Note that Lemma B.3 is stated for fixed (α, β) ∈ CONE, which is not the
case here because (α, β) = (n, 0). However, in the present case (ii) remains true for vA since,
by definition, the value taken by vA,l(c) for l ∈ [0,∞) and c ∈ (0,∞) does not depend on
(α, β).

We can write

fD(n, 0)− f2 =

∫∞
0 vn,A,l[κ̃(vn,A,l, l)− f2](ρ̄n,A + ρ̄n,I δ0)(dl)

DD(ρ̄n, vn)
(7.3)

+

∫∞
0 vn,B,l[κ̃(vn,B,l, l)− n

2 − f2]ρ̄n,B(dl)

DD(ρ̄n, vn)
,

and the concavity of v 7→ vκ̃(v, l), together with the fact that vn,A,l ≤ v̄A,l for all l ∈ [0,∞)
and ∂v(vκ̃(v, l))(v̄A,l) = f2, implies that

v̄A,lκ̃(v̄A,l, l)− vn,A,lκ̃(vn,A,l, l) ≥ f2(v̄A,l − vn,A,l). (7.4)

Since κ̃ is uniformly bounded from above and vn,B,l ≥ 1 + l for every l ∈ [0,∞), we can claim
that, for n large enough,

vn,B,l[κ̃(vn,B,l, l)− n
2 − f2] ≤ −n

4 (1 + l), l ∈ [0,∞). (7.5)

Consequently, (7.2) and (7.3–7.5) allow us to write∫ ∞
0

v̄A,l[κ̃(v̄A,l, l)−f2](ρ̄n,A+ ρ̄n,Iδ0)(dl)− n
4

∫ ∞
0

1+ l ρ̄n,B(dl) > 0 for n large enough, (7.6)

which clearly contradicts Hypothesis 2 because ρ̄n ∈ Tp for n ∈ N. The proof is therefore
complete.

(b-c) By the definition of D, D1 and D2 in (2.4), (2.15) and (2.16), we know that D = D1∪D2

and that D1 ∩ D2 = ∅. Thus, Theorem 2.1(a) implies that (b) and (c) will be proven once
we show that Jα ∩ D2 = ∅ for α ∈ [0, α∗) and that Jα ∩ D1 = ∅ for α ∈ [α∗,∞). Moreover,
Theorem 2.1(b) tells us that fD is constant and equal to fD(α, 0) on each Jα with α ∈ [0,∞).
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Consequently it suffices to show that fD(α, 0) > fD2 for α ∈ [0, α∗) and fD(α, 0) = fD2 for
α ∈ [α∗,∞). But this is precisely what Proposition 7.1(iii) states.

(d) Pick α ∈ [0,∞) and assume that Hypothesis 1 holds. Then there exists a ρ̄α ∈ Op,α,0 such
that ρ̄α,I > 0. Set v̄ = v(fD(α, 0)) and

β̃c(α) = inf
{
β > 0: φI(v̄A,0;β + α, β) > κ̃(v̄A,0, 0)

}
, (7.7)

and the proof will be complete as soon as we show that β̃c(α) = βc(α) (recall (2.6)). Note
that, by the convexity of β → φI(v̄A,0;α + β, β), and since φI(v̄A,0;β + α, β) = κ̃(v̄A,0, 0)
for β ≤ 0, we necessarily have that φI(v̄A,0;α + β, β) > κ̃(v̄A,0, 0) for all β > β̃c(α). From
Propositions 7.1(i) and F.1(2), we have that

f(α, 0) = fD(α, 0) = N̄D(ρ̄α,v̄)
D̄D(ρ̄α,v̄)

, (7.8)

and

N̄D(ρ̄α, v̄) =

∫ ∞
0

v̄A,l κ̃(v̄A,l, l) [ρ̄α,A + ρ̄α,I δ0](dl) +

∫ ∞
0

v̄B,l
[
κ̃(v̄B,l, l)− α

2

]
ρ̄α,B(dl). (7.9)

By the definition of v̄ = v(fD(α, 0)) in (2.8-2.10), we have that ∂v(v κ̃(v, 0))(v̄A,0) = fD(α, 0).
For notational reasons we suppress the dependence on α of fD.

First, assume that φI(v̄A,0;β + α, β) = κ̃(v̄A,0, 0) (we also suppress the dependence on
(β + α, β)). Then, since v → vφI(v) and v → vκ̃(v, 0) are both concave and φI(v) ≥ κ̃(v, 0)
for all v ≥ 1, we have that v → vφI(v) is differentiable at v̄A,0 and

∂v[v κ̃(v, 0)](v̄A,0) = ∂v[v φI(v)](v̄A,0) = fD. (7.10)

Thus, for any ρ̄ ∈ R̄p and v ∈ B̄, we set ṽ ∈ B̄ such that ṽ ≡ v, except for ṽI , which takes the
value v̄A,0. In other words,

N̄(ρ̄, v)

D̄(ρ̄, v)
=
N̄D(ρ̄, ṽ) + ρ̄I [vIφI(vI)− v̄A,0κ̃(v̄A,0, 0)]

D̄D(ρ̄, ṽ) + ρ̄I [vI − v̄A,0]

≤
N̄D(ρ̄, ṽ) + ρ̄IfD(vI − v̄A,0)

D̄D(ρ̄, ṽ) + ρ̄I(vI − v̄A,0)
,

(7.11)

where we use (7.10), the concavity of v → vφI(v) and the fact that φI(v̄A,0) = κ̃(v̄A,0, 0) by

assumption. At this stage we recall that, by definition, N̄D(ρ̄,ṽ)
D̄D(ρ̄,ṽ)

≤ fD. Hence (7.11) entails

that N(ρ̄,v)
D(ρ̄,v) ≤ fD. Thus, βc(α) ≥ β̃c(α).

The other inequality is much easier, because if we consider β such that φI(v̄A,0;α+β, β) >
κ̃(v̄A,0, 0), then N̄(ρ̄α, v̄) > N̄D(ρ̄α, v̄), because ρ̄I,α > 0. As a consequence, f(α + β, β) >
fD(α, 0), so that β > βc(α), and therefore βc(α) ≤ β̃c(α).

(e) We recall that, for α ∈ [α∗,∞) we have v̄ = v(fD2) and therefore v̄A,0 is constant. In (c)
we proved that βc(α) = β̃c(α) on [α∗,∞) with

β̃c(α) = inf
{
β > 0: φI(v̄A,0;β + α, β) > κ̃(v̄A,0, 0)

}
. (7.12)

The definition of β̃c(α) in (7.12) can be extended to α ∈ [0,∞). Since α∗ > 0, the proof of
(d) will be complete once we show that α 7→ β̃c(α) is concave, continuous and non-decreasing
on (0,∞) and that limα→∞ β̃c(α) <∞.
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By using the same argument as the one we used in the proof of Theorem 2.1(a), we can
claim that limβ→∞ φI(v̄A,0;α+ β, β) =∞ for every α ∈ [0,∞). Consequently, β̃c(α) ∈ [0,∞)
for every α ∈ [0,∞). Moreover, the convexity of (α, β) 7→ φI(v̄A,0;α, β) implies the convexity
of (α, β) 7→ φI(v̄A,0;α + β, β) − κ̃(v̄A,0, 0), which is also non-negative. Therefore, the set
{(α, β) : α ∈ [0,∞), β ∈ [−α

2 , β̃c(α)]} is convex, and consequently α 7→ β̃c(α) is concave on

[0,∞). This concavity yields that α 7→ β̃c(α) is continuous on (0,∞), and since it is bounded
from below by 0, also that it is non-decreasing.

It remains to show that limα→∞ β̃c(α) < ∞. To that aim, we define β̃c(∞) by choosing
α =∞ in (7.12). Since φI(v̄A,0;∞, β) ≤ φI(v̄A,0;α+ β, β) for every α ≥ 0 and β ∈ [−α

2 ,∞),

it follows that β̃c(α) ≤ β̃c(∞) for every α ∈ (0,∞). Therefore it suffices to prove that
β̃c(∞) < ∞. But this is a consequence of the fact that limα→∞ φI(v̄A,0;∞, β) = ∞. This
limit is obtained by using again the same argument as the one we used in the proof of Theorem
2.1(a).

(f) This is a straightforward consequence of the fact that f = fD on D1 and fD is a function
of α− β.

(g) This is a direct consequence of the definition of the D2-phase in (2.16) and the fact that
fD2 does not depend on α and β (see (2.13)). �

A Uniform convergence of path entropies

In Appendix A.1 we state a basic lemma (Lemma A.1) about uniform convergence of path
entropies in a single column. This lemma is proved with the help of three additional lemmas
(Lemmas A.2–A.4), which are proved in Appendix A.3. The latter ends with an elementary
lemma (Lemma B.1) that allows us to extend path entropies from rational to irrational pa-
rameter values. In Appendix A.2, we extend Lemma A.1 to entropies associated with sets of
paths fullfilling certain restrictions on their vertical displacement.

A.1 Basic lemma

We recall the definition of κ̃L, L ∈ N, in (3.2) and κ̃ in (3.3).

Lemma A.1 For every ε > 0 there exists an Lε ∈ N such that

|κ̃L(u, l)− κ̃(u, l)| ≤ ε for L ≥ Lε and (u, l) ∈ HL. (A.1)

Proof. With the help of Lemma A.2 below we get rid of those (u, l) ∈ H∩Q2 with u large,
i.e., we prove that limu→∞ κL(u, l) = 0 uniformly in L ∈ N and (u, l) ∈ HL. Lemma A.3
in turn deals with the moderate values of u, i.e., u bounded away from infinity and 1 + |l|.
Finally, with Lemma A.4 we take into account the small values of u, i.e., u close to 1 + |l|. To
ease the notation we set, for η ≥ 0 and M > 1,

HL,η,M = {(u, l) ∈ HL : 1 + |l|+ η ≤ u ≤M}, Hη,M = {(u, l) ∈ H : 1 + |l|+ η ≤ u ≤M}.
(A.2)

Lemma A.2 For every ε > 0 there exists an Mε > 1 such that

1
uL log

∣∣{π ∈ WuL : πuL,1 = L}
∣∣ ≤ ε ∀L ∈ N, u ∈ 1 + N

L : u ≥Mε. (A.3)
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Lemma A.3 For every ε > 0, η > 0 and M > 1 there exists an Lε,η,M ∈ N such that

|κ̃L(u, l)− κ̃(u, l)| ≤ ε ∀L ≥ Lε,η,M , (u, l) ∈ HL,η,M . (A.4)

Lemma A.4 For every ε > 0 there exist ηε ∈ (0, 1
2) and Lε ∈ N such that

|κ̃L(u, l)− κ̃L(u+ η, l)| ≤ ε ∀L ≥ Lε, (u, l) ∈ HL, η ∈ (0, ηε) ∩ 2N
L . (A.5)

Note that, after letting L→∞ in Lemma A.4, we get

|κ̃(u, l)− κ̃(u+ η, l)| ≤ ε ∀ (u, l) ∈ H ∩Q2, η ∈ (0, ηε) ∩Q. (A.6)

Pick ε > 0 and ηε ∈ (0, 1
2) as in Lemma A.4. Note that Lemmas A.2–A.3 yield that,

for L large enough, (A.1) holds on {(u, l) ∈ HL : u ≥ 1 + |l| + ηε
2 }. Next, pick L ∈ N,

(u, l) ∈ HL : u ≤ 1 + |l|+ ηε
2 and ηL ∈ (ηε2 , ηε) ∩

2N
L , and write

|κ̃L(u, l)− κ̃(u, l)| ≤ A+B + C, (A.7)

where

A = |κ̃L(u, l)− κ̃L(u+ηL, l)|, B = |κ̃L(u+ηL, l)− κ̃(u+ηL, l)|, C = |κ̃(u+ηL, l)− κ̃(u, l)|.
(A.8)

By (A.6), it follows that C ≤ ε. As mentioned above, the fact that (u + ηL, l) ∈ HL and
u + ηL ≥ |l| + ηε

2 implies that, for L large enough, B ≤ ε uniformly in (u, l) ∈ HL : u ≤
1 + |l|+ ηε

2 . Finally, from Lemma A.4 we obtain that A ≤ ε for L large enough, uniformly in
(u, l) ∈ HL : u ≤ 1 + |l|+ ηε

2 . This completes the proof of Lemma A.1. �

A.2 A generalization of Lemma A.1

In Section 5 we sometimes needed to deal with subsets of trajectories of the following form.
Recall (3.1), pick L ∈ N, (u, l) ∈ HL and B0, B1 ∈ Z

L such that

B1 ≥ 0 ∨ l ≥ 0 ∧ l ≥ B0 and B1 −B0 ≥ 1. (A.9)

Denote by W̃L(u, l, B0, B1) the subset of WL(u, l) containing those trajectories that are con-
strained to remain above B0L and below B1L (see Fig. 15), i.e.,

W̃L(u, l, B0, B1) =
{
π ∈ WL(u, l) : B0L < πi,2 < B1L for i ∈ {1, . . . , uL− 1}

}
, (A.10)

and let

κ̃L(u, l, B0, B1) =
1

uL
log |W̃L(u, l, B0, B1)| (A.11)

be the entropy per step carried by the trajectories in W̃L(u, l, B0, B1). With Lemma A.5
below we prove that the effect on the entropy of the restriction induced by B0 and B1 in the
set W̃L(u, l) vanishes uniformly as L→∞.

Lemma A.5 For every ε > 0 there exists an Lε ∈ N such that, for L ≥ Lε, (u, l) ∈ HL and
B0, B1 ∈ Z/L satisfying B1 −B0 ≥ 1, B1 ≥ max{0, l} and B0 ≤ min{0, l},

|κ̃L(u, l, B0, B1)− κ̃L(u, l)| ≤ ε. (A.12)

Proof. The key fact is that B1 − B0 ≥ 1. The vertical restrictions B1 ≥ max{0, l} and
B0 ≤ min{0, l} gives polynomial corrections in the computation of the entropy, but these
corrections are harmless because (B1 −B0)L is large. �
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Figure 15: A trajectory in W̃L(u, l, B0, B1).

A.3 Proofs of Lemmas A.2–A.4

A.3.1 Proof of Lemma A.2

The proof relies on the following expression:

vu,L =
∣∣{π ∈ WuL : πuL,1 = L}

∣∣ =
L+1∑
r=1

(
L+ 1

r

)(
(u− 1)L

r

)
2r, (A.13)

where r stands for the number of vertical stretches made by the trajectory (a vertical stretch
being a maximal sequence of consecutive vertical steps). Stirling’s formula allows us to assert
that there exists a g : [1,∞)→ (0,∞) satisfying limu→∞ g(u) = 0 such that(

uL

L

)
≤ eg(u)uL, u ≥ 1, L ∈ N. (A.14)

Equations (A.13–A.14) complete the proof.

A.3.2 Proof of Lemma A.3

We first note that, since u is bounded from above, it is equivalent to prove (A.4) with κ̃L and
κ̃, or with GL and G given by

G(u, l) = uκ̃(u, l), GL(u, l) = uκ̃L(u, l), (u, l) ∈ HL. (A.15)

Via concatenation of trajectories, it is straightforward to prove that G is Q-concave on H∩Q2,
i.e.,

G(λ(u1, l1)+(1−λ)(u2, l2)) ≥ λG(u1, l1)+(1−λ)G(u2, l2), λ ∈ Q[0,1], (u1, l1), (u2, l2) ∈ H∩Q2.
(A.16)

Therefore G is Lipschitz on every K∩H∩Q2 with K ⊂ H0 (the interior of H) compact. Thus,
G can be extended on H0 to a function that is Lipschitz on every compact subset in H0.
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Pick η > 0, M > 1, ε > 0, and choose Lε ∈ N such that 1/Lε ≤ ε. Since Hη,M ⊂ H0

is compact, there exists a c > 0 (depending on η,M) such that G is c-Lipschitz on Hη,M .
Moreover, any point inHη,M is at distance at most ε from the finite latticeHLε,η,M . Lemma 3.1
therefore implies that there exists a qε ∈ N satisfying

|GqLε(u, l)−G(u, l)| ≤ ε ∀ (u, l) ∈ HLε,η,M , q ≥ qε. (A.17)

Let L′ = qεLε, and pick q ∈ N to be specified later. Then, for L ≥ qL′ and (u, l) ∈ HL,η,M ,
there exists an (u′, l′) ∈ HLε,η,M such that |(u, l) − (u′, l′)|∞ ≤ ε, u > u′, |l| ≥ |l′| and
u− u′ ≥ |l| − |l′|. We recall (3.3) and write

0 ≤ G(u, l)−GL(u, l) ≤ A+B + C, (A.18)

with

A = |G(u, l)−G(u′, l′)|, B = |G(u′, l′)−GL′(u′, l′)|, C = GL′(u
′, l′)−GL(u, l). (A.19)

Since G is c-Lipschitz on Hη,M , and since |(u, l) − (u′, l′)|∞ ≤ ε, we have A ≤ cε. By (A.17)
we have that B ≤ ε. Therefore only C remains to be considered. By Euclidean division, we
get that L = sL′ + r, where s ≥ q and r ∈ {0, . . . , L′ − 1}. Pick π1, π2, . . . , πs ∈ WL′(u

′, |l′|),
and concatenate them to obtain a trajectory in WsL′(u

′, |l′|). Moreover, note that

uL− u′sL′ = (u− u′)sL′ + ur (A.20)

≥ (|l| − |l′|)sL′ + (1 + |l|)r = (L− sL′) + (|l|L− s|l′|L′),

where we use that L−sL′ = r, u−u′ ≥ |l|− |l′| and u ≥ 1+ |l|. Thus, (A.20) implies that any
trajectory in WL′(u

′, |l′|) can be concatenated with an (uL − u′sL′)-step trajectory, starting
at (sL′, s|l′|L′) and ending at (L, |l|L), to obtain a trajectory in WL(u, |l|). Consequently,

GL(u, l) ≥ s
L log κL′(u

′, l′) ≥ s
s+1GL′(u

′, l′). (A.21)

But s ≥ q and therefore GL′(u
′, l′) − GL(u, l) ≤ 1

qGL′(u
′, l′) ≤ 1

qM log 3 (recall that log 3 is
an upper bound for all entropies per step). Thus, by taking q large enough, we complete the
proof.

A.3.3 Proof of Lemma A.4

Pick L ∈ N, (u, l) ∈ HL, η ∈ 2N
L , and define the map T : WL(u, l) 7→ WL(u + η, l) as follows.

Pick π ∈ WL(u, l), find its first vertical stretch, and extend this stretch by ηL
2 steps. Then,

find the first vertical stretch in the opposite direction of the stretch just extended, and extend
this stretch by ηL

2 steps. The result of this map is T (π) ∈ WL(u+η, l), and it is easy to verify
that T is an injection, so that |WL(u, l)| ≤ |WL(u+ η, l)|.

Next, define a map T̃ : WL(u + η, l) 7→ WL(u, l) as follows. Pick π ∈ WL(u + η, l) and
remove its first ηL

2 steps north and its first ηL
2 steps south. The result is T̃ (π) ∈ WL(u, l), but

T̃ is not injective. However, we can easily prove that for every ε > 0 there exist ηε > 0 and
Lε ∈ N such that, for all η < ηε and all L ≥ lε, the number of trajectories in WL(u+ η, l) that
are mapped by T̃ to a particular trajectory in π ∈ WL(u, l) is bounded from above by eεL,
uniformly in (u, l) ∈ HL and π ∈ WL, (u, l).

This completes the proof of Lemmas A.2–A.4.
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B Entropic properties

Recall Lemma 3.1, where (u, l) 7→ κ̃(u, l) is defined on H ∩Q2.

Lemma B.1 (i) (u, l) 7→ uκ̃(u, l) extends to a continuous and strictly concave function on
H.
(ii) For all u ∈ [1,∞), l 7→ κ̃(u, l) is strictly increasing on [−u+ 1, 0] and strictly decreasing
on [0, u− 1].
(iii) For all l ∈ R, limu→∞ κ̃(u, l) = 0.
(iv) lim|l|→∞ κ̃(u, l) = 0 uniformly in u ≥ 1 + |l|.
(v) For all l ∈ R, u 7→ uκ̃(u, l) is continuous, strictly concave, strictly increasing on [1+ |l|,∞)
and limu→∞ uκ̃(u, l) =∞.
(vi) For all l ∈ R, u 7→ uκ̃(u, l) is analytic on (1 + |l|,∞) and

lim
v→∞

∂u(uκ̃(u, l))(v) = 0, (B.1)

lim
v→1+l

∂u(uκ̃(u, l))(v) = ∂+
u (uκ̃(u, l))(1 + |l|) =∞. (B.2)

Lemma B.2 For all ε > 0 there exists Rε > 0 such that

∂u(uκ̃(u, l))(v) ≤ ε, for l ∈ [0,∞), v ≥ Rε ∨ 2 + l. (B.3)

Recall the definition of {v(c), c ∈ (0,∞)} in (2.8-2.10).

Lemma B.3 (i) For all c ∈ (0,∞), v(c) ∈ B̄.
(ii) For (k, l) ∈ {A,B} × (0,∞), c 7→ vk,l(c) is strictly decreasing and c 7→ vI(c) is non-
increasing.
(iii) If (cn)n∈N ∈ (0,∞)N satisfies limn→∞ cn = c∞ ∈ (0,∞), then v(cn) converges pointwise
to v(c∞).
(iv) D(ρ̄, v(c)) < ∞ for all ρ̄ ∈ M1(R+ ∪ R+ ∪ {I}) satisfying

∫∞
0 (1 + l)(ρ̄A + ρ̄B)(dl) < ∞

and all c ∈ (0,∞).

Recall the definition of {u(c), c ∈ (0,∞)} in (6.8).

Lemma B.4 (i) For all c ∈ (0,∞), u(c) ∈ BVM .

(ii) For all Θ ∈ VM , c 7→ uΘ(c) is non-increasing on (0,∞).
(iii) If (cn)n∈N ∈ (0,∞)N satisfies limn→∞ cn = c∞ ∈ (0,∞), then u(cn) converges pointwise
to u(c∞).
(iv) D(ρ, u(c)) <∞ for all ρ ∈M1(VM ) satisfying

∫
VM tΘ ρ(dΘ) <∞ and all c ∈ (0,∞).

B.1 Proofs of Lemmas B.1–B.4

B.1.1 Proof of Lemma B.1

(i) In the proof of Lemma A.1 we have shown that κ̃ can be extended to H0 in such a way
that (u, l) 7→ uκ̃(u, l) is continuous and concave on H0. Lemma A.4 allows us to extend κ̃ to
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the boundary of H, in such a way that continuity and concavity of (u, l) 7→ uκ̃(u, l) hold on
all of H. To obtain the strict concavity, we recall the formula in (3.4), i.e.,

uκ̃(u, l) =

{
uκ(u/|l|, 1/|l|), l 6= 0,
uκ̂(u), l = 0,

(B.4)

where (a, b) 7→ aκ(a, b), a ≥ 1 + b, b ≥ 0, and µ 7→ µκ̂(µ), µ ≥ 1, are given in [5], Section 2.1,
and are strictly concave. In the case l 6= 0, (B.4) provides strict concavity of (u, l) 7→ uκ̃(u, l)
on H+ = {(u, l) ∈ H : l > 0} and on H− = {(u, l) ∈ H : l < 0}, while in the case l = 0 it
provides strict concavity on H = {(u, 0), u ≥ 1}. We already know that (u, l) 7→ uκ̃(u, l) is
concave on H, which, by the strict concavity on H+, H− and H, implies strict concavity of
(u, l) 7→ uκ̃(u, l) on H.

(ii) This follows from the strict concavity of l 7→ κ̃(u, l) and from the fact that κ̃(u, l) = κ̃(u,−l)
for (u, l) ∈ H.

(iii-iv) These are direct consequences of Lemma A.2.

(v) By (i) we have that u 7→ uκ̃(u, l) is continuous and strictly concave on [1 + |l|,∞).
Therefore, proving that limu→∞ uκ̃(u, l) = ∞ is sufficient to obtain that u 7→ uκ̃(u, l) is
strictly increasing. It is proven in [5], Lemma 2.1.2 (iii), that limµ→∞ uκ̂(u) = ∞, so that
(B.4) completes the proof for l = 0. If l 6= 0, then we use (B.4) again and the variational
formula in the proof of [5], Lemma 2.1.1, to check that lima→∞ aκ(a, b) =∞ for all b > 0.

(vi) To get the analyticity on (1 + |l|,∞), we use (B.4) and the analyticity of (a, b) 7→ aκ(a, b)
and µ 7→ µκ̂(µ) inside their domain of definition (see [5], Section 2.1).

We note that for every l ∈ R,

uφI(u) ≥ uκ̃(u, 0) ≥ uκ̃(u, l), u ∈ [1 + |l|,∞), (B.5)

where the first inequality is well known and the second inequality comes from Lemma B.1(ii).
Since, by Lemma B.1(v), u 7→ uκ̃(u, l) is concave and increasing on [1 + |l|,∞), (C.1) and
(5.154) imply (B.1).

It remains to prove (B.2). To that aim, we recall that an explicit formula is available for
κ̃(u, l), namely,

κ̃(u, l) = κ(u/|l|, 1/|l|), for l 6= 0, (B.6)

where κ(a, b), a ≥ 1 + b, b ≥ 0 is given in [5], Section 2.1 (in the proof of Lemmas 2.1.1–2.1.2).
The latter formula allows us to compute ∂u(uκ̃(u, l))(1 + l + ε, l) = G

(
1 + 1

l + ε
l ,

1
l

)
with

G(a, b) = 1
2 log

[
(a+1−b)(a−1−b)

(a+1−b−2δa,b)(a−1−b−2εa,b)

]
(B.7)

and with

δa,b = b
2(1+b)

[
(a+ 1)−

(
(a− b)2 + (b2 − 1)

)1/2]
εa,b = b

2(1−b)

[
− (a− 1) +

(
(a− b)2 + b2 − 1

)1/2]
, (B.8)

so that the proof of (B.2) will be complete once we show that for all b > 0 it holds that
limε→0+ G(1+b+ε, b) =∞. The latter is achieved by using first (B.8) to check that δ1+b+ε,b =
b

1+b +
(

1
2 −

1
1+b

)
ε+o(ε) and ε1+b+ε,b = ε

2 +o(ε) as ε→ 0+, and then by substituting these two
expansions into (B.7) at (a, b) = (1 + b+ ε, b), which implies the result after a straightforward
computation.
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B.1.2 Proof of Lemma B.2

The proof is based on the following lemma.

Lemma B.5
lim
l→∞

∂u
[
uκ̃(u, l)

]
(2 + l, l) = 0. (B.9)

Proof. We recall (B.6–B.8), and we note that ∂u(uκ̃(u, l))(2 + l, l) = G
(
1 + 2

l ,
1
l

)
. Thus, the

proof of Lemma B.5 will be complete once we show that limb→0+ G(1 + 2b, b) = 0. The latter
is achieved by using (B.7) and (B.8) to compute

G(1 + 2b, b) = 1
2 log

[
(2+b)b[

2+b
(

1− 2
1+b

+o(b)
)]

(b+o(b))

]
(B.10)

which immediately implies the result. �

We resume the proof of Lemma B.2. Once Lemma B.5 is proven, we use the concavity of
u 7→ uκ̃(u, l) for l ∈ R to obtain that for ε > 0 there exists a lε > 0 such that ∂u[uκ̃(u, l)](u, l) ≤
ε for all l : |l| ≥ lε and u ≥ 2 + l. Thus, it remains to show that there exists a Rε > 0 such
that ∂u[uκ̃(u, l)](u, l) ≤ ε for l ∈ [0, lε] and u ≥ Rε. By contradiction, if we assume that the
latter does not hold, then there exists ε > 0 and two sequences (ln)n∈N ∈ [0, lε]

N and (un)n∈N
such that un ≥ 1 + ln for n ∈ N and limn→∞ un = ∞ and such that ∂u[uκ̃(u, l)](un, ln) ≥ ε
for n ∈ N. As a consequence, we can write

unκ̃(un, ln)− (1 + ln)κ̃(1 + ln, ln) ≥ ε(un − 1− ln), (B.11)

and, with the help of Lemma B.1(ii), we obtain

unκ̃(un, 0) ≥ unκ̃(un, ln) ≥ ε(un − 1− lε), for n ∈ N, (B.12)

which clearly contradicts Lemma B.1(iii) because limn→∞ un =∞.

B.1.3 Proof of Lemma B.3

(i) We must prove that l 7→ vA,l(c) and l 7→ vB,l(c) are continuous on [0,∞). We give the
proof for vA, the proof for vB being similar. Let (ln)n∈N be a sequence in [0,∞) such that
limn→∞ ln = l∞ ∈ [0,∞). We want to prove that limn→∞ vA,ln(c) = vA,l∞(c). For simplicity,
we set vn = vA,ln(c) for n ∈ N and v∞ = vA,l∞(c). We also set gn(u) = uκ̃(u, ln) for n ∈ N and
u ≥ 1+ ln and g∞(u) = uκ̃(u, l∞) for u ≥ 1+ l∞. By Lemmas B.1(i) and (v), we know that gn
converges pointwise to g∞ as n→∞, and that gn and g∞ are strictly concave. Consequently,
∂u(gn) converges pointwise to ∂u(g∞). We argue by contradiction. Suppose that vn does not
converge to v∞. Then there exists an η > 0 such that vn ≥ v∞ + η along a subsequence or
vn ≤ v∞ − η along a subsequence. Suppose for simplicity that vn ≤ v∞ − η for n ∈ N. Then
the strict concavity of gn implies that ∂u(gn)(v∞− η) ≤ ∂u(gn)(vn) = c, and therefore, letting
n → ∞ and using the strict concavity of g∞, we obtain ∂u(g∞)(v∞) < ∂u(g∞)(v∞ − η) ≤ c.
This provides the contradiction, because ∂u(g∞)(v∞) = c by definition. The proof is similar
when we assume that vn ≥ v∞ + η for n ∈ N.

(ii) For (k, l) ∈ {A,B}× [0,∞), this is a straightforward consequence of the definition of v(c)
in (2.8-2.9), of the strict concavity of u 7→ uκ̃(u, l) and of the continuity of u 7→ ∂u(uκ̃(u, l))
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for every l ∈ [0,∞) (see Lemma B.1(v-vi)). For c 7→ vI(c) we do not have strict monotonicity
because u 7→ ∂u(uφI(u)) is not proven to be continuous.

(iii) Similarly to what we did in (i), we consider (cn)n∈N a sequence in (0,∞) such that
limn→∞ cn = c∞ ∈ (0,∞), and we want to show that limn→∞ vk,l(cn) = vk,l(c∞) for k ∈
{A,B} and l ∈ [0,∞) and limn→∞ vI(cn) = vI(c∞). Again we argue by contradiction.
Suppose, for instance, that vI(cn) does not converge to vI(c∞). Then there exists an η > 0
such that vI(cn) ≤ vI(c∞) − η or vI(cn) ≥ vI(c∞) + η along a subsequence. Suppose for
simplicity that vI(cn) ≥ vI(c∞)+η. Then ∂−u (uφI(u))(vI(c∞)+η) ≥ ∂−u (uφI(u))(vI(cn)) ≥ cn
for n ∈ N. Let n→∞ to obtain ∂+

u (uφI(u))(vI(c∞)) > ∂−u (uφI(u))(vI(c∞) +η) ≥ c∞, which
contradicts the definition of vI(c∞) in (2.8-2.10). The proof is similar when we assume that
vI(cn) ≤ vI(c∞)− η for n ∈ N.

(iv) This is a consequence of Lemma B.2, which implies that for all c ∈ (0,∞) there exists a
lc ∈ [0,∞) such that vA,l(c) ≤ 2+ l for all l ≥ lc. Moreover, (2.8-2.9) and the fact that (α, β) ∈
CONE entail that vB,l(c) ≤ vA,l(c) for l ∈ [0,∞), and therefore

∫∞
0 (1 + l)(ρ̄A + ρ̄B)(dl) < ∞

combined with the finitness of vI(c) imply D̄(ρ̄, v(c)) <∞.

B.1.4 Proof of Lemma B.4

(i) The proof is similar to that of Lemma B.3(i), except for the fact that when we consider
Θn → Θ∞ as n→∞ in VM , we have (by Lemma C.3) the pointwise convergence of gn(u) =
uψ(Θn, u) to g∞(u) = uψ(Θ∞, u), but we do not have the pointwise convergence of ∂gn(u) to
∂g∞(u) since g∞ is not a priori differentiable. However, the strict concavity and the pointwise
convergence of gn towards g∞ gives us

∂−g∞(u) ≥ lim sup
n→∞

∂−gn(u) ≥ lim inf
n→∞

∂+gn(u) ≥ ∂+g∞(u), (B.13)

with which we can easily mimick the proof in Lemma B.3(i)

(ii) The proof is similar to that of Lemma B.3(ii), except for the fact that the monotonicity of
c 7→ uΘ(c) is not proven to be strict because u 7→ ∂(uψ(Θ, u)) is not proven to be continuous.

(iii) We mimick the proof of Lemma B.3(iii). Let (cn)n∈N be a sequence in (0,∞) such that
limn→∞ cn = c∞ ∈ (0,∞), and assume that there exists an η > 0 such that uΘ(cn) ≥ uΘ(c∞)+
η along a subsequence. Then ∂−u (uψ(Θ, u))(uΘ(c∞) + η) ≥ ∂−u (uψ(Θ, u))(uΘ(cn)) ≥ cn for
n ∈ N. Let n → ∞ to obtain ∂+

u (uψ(Θ, u))(uΘ(c∞)) > ∂−u (uψ(Θ, u))(uΘ(c∞) + η) ≥ c∞,
which contradicts the definition of uΘ(c∞) in (6.8).

(iv) The proof is similar to that of Lemma B.3(iv). The role of Lemma B.2 is taken over by
Lemma C.8

C Properties of free energies

C.1 Free energy along a single linear interface

Also the free energy µ 7→ φI(µ;α, β) defined in Proposition 3.2 can be extended from Q ∩
[1,∞) to [1,∞), in such a way that µ 7→ µφI(µ;α, β) is concave and continous on [1,∞).
By concatenating trajectories, we can indeed check that µ 7→ µφI(µ;α, β) is concave on
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Q ∩ [1,∞). Therefore it is Lipschitz on every compact subset of (1,∞) and can be extended
to a concave and continuous function on (1,∞). The continuity at µ = 1 comes from the fact
that φI(1;α, β) = 0 and limµ↓1 φ

I(µ) = 0, which is obtained by using Lemma E.1 below.

Lemma C.1 For all (α, β) ∈ CONE:
(i) µ 7→ µφI(µ;α, β) is strictly increasing on [1,∞) and limµ→∞ µφ

I(µ;α, β) =∞.
(ii) limµ→∞ φ

I(µ;α, β) = 0.
(iii)

lim
v→∞

∂−u (uφI(u; α, β))(v) = 0, (C.1)

lim
v→1

∂+
u (uφI(u; α, β))(v) = ∂+

u (uφI(u; α, β))(1) =∞. (C.2)

Proof. (i) Clearly, φI(µ;α, β) ≥ κ̃(µ, 0) for µ ≥ 1. Therefore Lemma B.1(iv) implies that
limµ→∞ µφ

I(µ;α, β) = ∞. Thus, the concavity of µ 7→ µφI(µ;α, β) is sufficient to obtain
that it is strictly increasing on [1,∞).
(ii) See [6], Lemma 2.4.1(i).
(iii) To prove (C.1), we pick χ ∈ {A,B}Z such that χ(0) = A and χ(−1) = B. We recall (3.37)
and consider Θ = (χ, 0, 0, 0, 2) ∈ V̄nint,A,2,M such that lA(Θ) = lB(Θ) = 0. By Proposition
3.5, we have

uψ(Θ2, u) ≥ uφI(u), u ∈ [1,∞), (C.3)

and (C.3), together with Lemma C.7 and the concavity and monotonicity of u 7→ uφI(u),
imply (C.1).

It remains to prove (C.2). For all (α, β) ∈ CONE we know that u 7→ uφI(u;α, β) is
continuous and strictly concave on [1,∞). Therefore we necessarily have

lim
v→1+

∂+
u (uφI(u))(v) = ∂+

u (uφI(u))(1). (C.4)

Moreover, since (uφI(u))(1) = (uκ̃(u, 0))(1) = 0 and since φI(u) ≥ κ̃(u, 0) for u ≥ 1, we have
∂+
u (uφI(u))(1) ≥ ∂+

u (uκ̃(u, 0))(1) and (B.2) gives ∂+
u (uκ̃(u, 0))(1) = ∞, which completes the

proof of (C.2). �

Recall Claim 3.3, in which we assumed that µ 7→ µφI(µ;α, β) is strictly concave on [1,∞).
The next lemma states that the convergence of the average quenched free energy φIL to φI as
L→∞ is uniform on Q ∩ [1,∞).

Lemma C.2 For every (α, β) ∈ CONE and ε > 0 there exists an Lε ∈ N such that

|φL(µ)− φ(µ)| ≤ ε ∀µ ∈ 1 + 2N
L , L ≥ Lε. (C.5)

Proof. Similarly to what we did for Lemma A.1, the proof can be done by treating separately
the cases µ large, moderate and small. We leave the details to the reader. �

C.2 Free energy in a single column

We can extend (Θ, u) 7→ ψ(Θ, u) from V∗M to V∗M by using the variational formula in (3.45)
and by recalling that κ̃ and φI have been extended to H and [1,∞) in Appendices A.3 and
C.1.
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Pick M ∈ N and recall (3.15). Define a distance dM on VM as follows. Pick Θ1,Θ2 ∈ VM ,
abbreviate

Θ1 = (χ1,∆Π1, b0,1, b1,1, x1), Θ2 = (χ2,∆Π2, b0,2, b1,2, x2), (C.6)

and define

dM (Θ1,Θ2) =
∑
j∈Z

1{χ1(j) 6=χ2(j)}

2|j|
+ |∆Π1 −∆Π2|+ |b0,1 − b0,2|+ |b1,1 − b1,2|+ |x1 − x2| (C.7)

so that d̃M ((Θ1, u1), (Θ2, u2)) = max{|u1 − u2|, dM (Θ1,Θ2)} is a distance on V ∗,mM for which
V ∗,mM is compact.

Lemmas C.3 and C.4 below are proven in Section C.3.

Lemma C.3 For every (M,m) ∈ EIGH and (α, β) ∈ CONE,

(u,Θ) 7→ uψ(Θ, u;α, β) (C.8)

is uniformly continuous on V ∗,mM endowed with d̃M .

Lemma C.4 For every Θ ∈ VM , the function u 7→ uψ(Θ, u) is continuous and strictly con-
cave on [tΘ,∞).

Below we list several results that were used in Section 6. The proofs of these result are
given in Section C.3. Proposition C.5 below says that the free energy per column associated
with the Hamiltonian given by (β − α)/2 times the time spent by the copolymer in the B-
solvent is a good aproximation of ψ(Θ, u) when u →∞ uniformly in Θ ∈ VM . This proof of
this proposition will be given in Section C.3.3.

Proposition C.5 For all (α, β) ∈ CONE and all ε > 0 there exists Rε > 0 and Lε ∈ N such
that ∣∣∣ψ(Θ, u)− 1

uL log
∑

π∈WΘ,u,L

eT (π)
β−α

2

∣∣∣ ≤ ε, Θ ∈ VM , u ≥ tΘ ∨Rε, L ≥ Lε, (C.9)

where T (π) =
∑uL

i=1 1{χL(πi−1,πi)
= B} is the time spent by π in solvent B.

Lemmas C.6–C.8 below are consequences of Lemma C.4 and Proposition C.5. The proofs
of Lemmas C.6 and C.8 will be given in Sections C.3.4 and C.3.6. Lemma C.6 shows that
ψ(Θ, u) is bounded from above uniformly in Θ ∈ VM as u → ∞. Lemma C.7 identifies the
limit of ∂−u (uψ(Θ, u)) as u → ∞ for Θ ∈ VM . Lemma C.8 is the counterpart of Lemma C.6
for ∂−u (uψ(Θ, u)) instead of ψ(Θ, u).

Lemma C.6 For all (α, β) ∈ CONE and ε > 0 there exists a Cε > 0 such that

ψ(Θ, u) ≤

{
ε if Θ ∈ VM \ Vnint,B,1,M , u ≥ tΘ ∨ Cε,
β−α

2 + ε if Θ ∈ Vnint,B,1,M , u ≥ tΘ ∨ Cε,
(C.10)
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Lemma C.7 For all (α, β) ∈ CONE,

lim
v→∞

∂+
u (uψ(Θ, u))(v) =

{
0 if Θ ∈ VM \ Vnint,B,1,M ,
β−α

2 if Θ ∈ Vnint,B,1,M .
(C.11)

Lemma C.8 For all (α, β) ∈ CONE and ε > 0 there exists a Vε > 0 such that

∂−u (uψ(Θ, u))(v) ≤

{
ε if Θ ∈ VM \ Vnint,B,1,M , v ≥ 2tΘ ∨ Vε,
β−α

2 + ε if Θ ∈ Vnint,B,1,M , v ≥ 2tΘ ∨ Vε.
(C.12)

C.3 Proof of Lemmas C.3–C.8

C.3.1 Proof of Lemma C.3

Pick (M,m) ∈ EIGH. By the compactness of V ∗,mM , it suffices to show that (u,Θ) 7→ uψ(Θ, u)
is continuous on V ∗,mM . Let (Θn, un) = (χn,∆Πn, b0,n, b1,n, un) be the general term of an

infinite sequence that tends to (Θ, u) = (χ,∆Π, b0, b1, u) in (V ∗,mM , d̃M ). We want to show that
limn→∞ unψ(Θn, un) = uψ(Θ, u). By the definition of d̃M , we have χn = χ and ∆Πn = ∆Π
for n large enough. We assume that Θ ∈ Vint, so that Θn ∈ Vint for n large enough as well.
The case Θ ∈ Vnint can be treated similarly.

Set
Rm = {(a, h, l) ∈ [0,m]× [0, 1]× R : h+ |l| ≤ a} (C.13)

and note that Rm is a compact set. Let g : Rm 7→ [0,∞) be defined as g(a, h, l) = a κ̃( ah ,
l
h)

if h > 0 and g(a, h, l) = 0 if h = 0. The continuity of κ̃, stated in Lemma B.1(i), ensures that
g is continuous on {(a, h, l) ∈ Rm : h > 0}. The continuity at all (a, 0, l) ∈ Rm is obtained by
recalling that limu→∞ κ̃(u, l) = 0 uniformly in l ∈ [−u+ 1, u− 1] (see Lemma B.1(ii-iii)) and
that κ̃ is bounded on H.

In the same spirit, we may set R′m = {(u, h) ∈ [0,m]× [0, 1] : h ≤ u} and define g′ : R′m 7→
[0,∞) as g′(u, h) = uφI(uh) for h > 0 and g′(u, h) = 0 for h = 0. With the help of Lemma C.1
we obtain the continuity of g′ on R′m by mimicking the proof of the continuity of g on Rm.

Note that the variational formula in (3.45) can be rewriten as

uψ(Θ, u) = sup
(h),(a)∈L(lA, lB ;u)

Q((h), (a), lA, lB), (C.14)

with

Q((h), (a), lA, lB) = g(aA, hA, lA) + g(aB, hB, lB) + aB
β−α

2 + g
′
(aI , hI), (C.15)

and with lA and lB defined in (3.36). Note that L(lA, lB; u) is compact, and that (h), (a) 7→
Q((h), (a), lA, lB) is continuous on L(lA, lB; u) because g and g′ are continuous on Rm and
R′m, respectively. Hence, the supremum in (C.14) is attained.

Pick ε > 0, and note that g and g′ are uniformly continuous on Rm and R′m, which
are compact sets. Hence there exists an ηε > 0 such that |g(a, h, l) − g(a′, h′, l′)| ≤ ε and
|g′(u, b) − g′(u′, b′)| ≤ ε when (a, h, l), (a′, h′, l′) ∈ Rm and (u, b), (u′, b′) ∈ R′m are such that
|a− a′|, |h− h′|, |l − l′|, |u− u′| and |b− b′| are bounded from above by ηε.
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Since limn→∞(Θn, un) = (Θ, u) we also have that limn→∞ b0,n = b0, limn→∞ b1,n = b1 and
limn→∞ un = u. Thus, limn→∞ lA,n = lA and limn→∞ lB,n = lB, and therefore |lA,n− lA| ≤ ηε,
|lB,n − lB| ≤ ηε and |un − u| ≤ ηε for n ≥ nε large enough.

For n ∈ N, let (hn), (an) ∈ L(lA,n, lB,n; un) be a maximizer of (C.14) at (Θn, un), and note

that, for n ≥ nε, we can choose (h̃n), (ãn) ∈ L(lA, lB; u) such that |ãA,n−aA,n|, |ãB,n−aB,n|,
|ãIn − aIn|, |h̃A,n − hA,n|, |h̃B,n − hB,n| and |h̃In − hIn| are bounded above by ηε. Consequently,

unψ(Θn, un)− uψ(Θ, u) ≤ Q((hn), (an), lA,n, lB,n)−Q((h̃n), (ãn), lA, lB) ≤ 3ε. (C.16)

We bound uψ(Θ, u)−unψ(Θn, un) from above in a similar manner, and this suffices to obtain
the claim.

C.3.2 Proof of lemma C.4

The continuity is a straightforward consequence of Lemma C.3: simply fix Θ and let m→∞.
To prove the strict concavity, we note that the cases Θ ∈ Vint,M and Θ ∈ Vnint,M can be
treated similarly. We will therefore focus on Θ ∈ Vint,M .

For l ∈ R, let

Nl = {(a, h) ∈ [0,∞)× [0, 1] : a ≥ h+ |l|}, N+
l = {(a, h) ∈ Nl : h > 0}, (C.17)

and let gl : Nl 7→ [0,∞) be defined as gl(a, h) = a κ̃( ah ,
l
h) for h > 0 and gl(a, h) = 0 for

h = 0. For l 6= 0, the strict concavity of (u, l) 7→ uκ̃(u, l) on H, stated in Lemma B.1(i),
immediately yields that gl is strictly concave on N+

l and concave on Nl. Consequently, for all
(a1, h1) ∈ N+

l and (a2, h2) ∈ Nl \N+
l , gl is strictly concave on the segment [(u1, h1), (u2, h2)].

Define also g̃ : N0 7→ [0,∞) as g̃(a, h) = aφI( ah) for h > 0 and g̃(a, h) = 0 for h = 0.
The strict concavity of u 7→ uφI(u) and of u 7→ uκ̃(u, 0) on [1,∞), stated in Claim 3.3 and
in Lemma B.1, immediately yield that g̃ and g0 are concave on N0 and that, for h > 0,
a 7→ g̃(a, h) and a 7→ g0(a, h) are strictly concave on [h,∞)

Similarly to what we did in (C.14), we can rewrite the variational formula in (3.45) as

uψ(Θ, u) = sup
(h),(a)∈L(lA, lB ;u)

Q̃((h), (a)) (C.18)

with

Q̃((h), (a)) = glA(aA, hA) + glB (aB, hB) + aB
β−α

2 + g̃(u− aA − aB, 1− hA − hB), (C.19)

and the supremum in (C.18) is attained. In what follows we will restrict the proof to the
case lA, lB > 0 for the following reason. If lk = 0 for k ∈ {A,B}, then the inequality g0 ≤ g̃
and the concavity of g̃ ensure that there exists a (h), (a) ∈ L(lA, lB; u) maximizing (C.18)
and satisfying hk = ak = 0, which allows to copy the proof below after removing the k-th
coordinate in (h), (a).

Next, we show that if (h), (a) ∈ L(lA, lB; u) realizes the maximum in (C.18), then
(h), (a) /∈ L̃(lA, lB; u) with

L̃(lA, lB; u) = L̃A(lA, lB; u) ∪ L̃B(lA, lB; u) ∪ L̃ I(lA, lB; u) (C.20)
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and

L̃A(lA, lB; u) = {(h), (a) ∈ L(lA, lB; u) : hA = 0 and aA > lA},

L̃B(lA, lB; u) = {(h), (a) ∈ L(lA, lB; u) : hB = 0 and aB > lB},

L̃ I(lA, lB; u) = {(h), (a) ∈ L(lA, lB; u) : hI = 0 and aI > 0}. (C.21)

Assume that (h), (a) ∈ L̃(lA, lB; u), and that hA > 0 or hI > 0. For instance, (h), (a) ∈
L̃I(lA, lB; u) and hA > 0. Then, by Lemma B.1(iv), Q̃ strictly increases when aA is replaced
by aA+aI and aI by 0. This contradicts the fact that (h), (a) is a maximizer. Next, if (h), (a) ∈
L̃(lA, lB; u) and hA = hI = 0, then hB = 1, and the first case is (h), (a) ∈ L̃A(lA, lB; u),
while the second case is (h), (a) ∈ L̃I(lA, lB; u). In the second case, as before, we replace aA
by aA+aI and aI by 0, which does not change Q̃ but yields that aA > lA and therefore brings
us back to the first case. In this first case, we are left with an expression of the form

Q((h), (a)) = glB (aB, 1) + aB
β−α

2 (C.22)

with hA = hI = 0 and aA > lA. Thus, if we can show that there exists an x ∈ (0, 1) such that

glA(aA, x) + glB (aB, 1− x) > glB (aB, 1), (C.23)

then we can claim that (h), (a) is not a maximizer of (C.18) and the proof for (h), (a) /∈
L̃(lA, lB; u) will be complete.

To that end, we recall (3.4), which allows us to rewrite the left-hand side in (C.23) as

glA(aA, x) + glB (aB, 1− x) = aA κ
(
aA
lA
, xlA

)
+ aB κ

(
aB
lB
, 1−x
lB

)
+ aB

β−α
2 . (C.24)

We recall [5], Lemma 2.1.1, which claims that κ is defined on DOM = {(a, b) : a ≥ 1+b, b ≥ 0},
is analytic on the interior of DOM and is continuous on DOM. Moreover, in the proof of this
lemma, an expression for ∂b κ(a, b) is provided, which is valid on the interior of DOM. From
this expression we can easily check that if a > 1, then limb→0 ∂b κ(a, b) = ∞. Therefore, by
the continuity of κ on (aA/lA, 0) with aA/lA > 1 we can assert that the derivative with respect
to x of the left-hand side in (C.24) at x = 0 is infinite, and therefore there exists an x > 0
such that (C.23) is satisfied.

It remains to prove the strict concavity of u 7→ uψ(Θ, u) with Θ ∈ Vint,M . Pick u1 > u2 ≥
tΘ, and let (h1), (a1) ∈ L(lA, lB; u1) and (h2), (a2) ∈ L(lA, lB; u2) be maximizers of (C.18)
for u1 and u2, respectively. We can write

(a1), (h1) =
(
aA,1, aB,1, a

I
1 ), (hA,1, hB,1, h

I
1

)
,

(a2), (h2) =
(
aA,2, aB,2, a

I
2 ), (hA,2, hB,2, h

I
2

)
. (C.25)

Thus, (a1+a2
2 ), (h1+h2

2 ) ∈ L(lA, lB; u1+u2
2 ) and, with the help of the concavity of glA , glB , g̃

proven above, we can write

u1+u2
2 ψ(Θ, u1+u2

2 ) ≥ Q̃((a1+a2
2 ), (h1+h2

2 )) ≥ 1
2

(
u1 ψ(Θ, u1) + u2 ψ(Θ, u2)

)
. (C.26)

At this stage, we assume that the right-most inequality in (C.26) is an equality and show that
this leads to a contradiction, after which Lemma C.4 will be proven.
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We have proven above that (a1), (h1) /∈ L̃(lA, lB; u1) and (a2), (h2) /∈ L̃(lA, lB; u2). Thus,
we can use (C.19) and the strict concavity of glA , glB on N+

lA
,N+

lB
and the concavity of g̃ on

N0 to conclude that necessarily

(aA,1, hA,1) = (aA,2, hA,2) and (aB,1, hB,1) = (aB,2, hB,2). (C.27)

As a consequence, we recall that u1 > u2 and we can write

uI1 = u1 − aA,1 − aB,2 > u2 − aA,2 − aB,2 = uI2 ≥ 0, (C.28)

and therefore, since (a1), (h1) /∈ L̃I(lA, lB; u1), it follows that hI1 > 0 such that (recall (C.27))

hI1 = 1− hA,1 − hB,1 = 1− hA,2 − hB,2 = hI2 > 0. (C.29)

Hence we can use the strict concavity of a 7→ g̃(a, hI1 ) to conclude that uI1 = uI2 , which clearly
contradicts (C.28).

C.3.3 Proof of Proposition C.5

The proof is performed with the help of Lemma E.1 stated in section E. For this reason we
use some notations introduced in Lemma E.1.

We pick γ, η > 0 (which will be specified later), and we let K̂ ∈ N be the integer in
Lemma E.1 associated with α, β, η, γ. For Θ ∈ VM , u ≥ tΘ and π ∈ WΘ,u,L, we let Nπ

be the number of excursions of π in solvent B in columns of type Θ. We further let also
(Iπ) = (Iπ(1), . . . , Iπ(Nπ)) be the sequence of consecutive intervals in {1, . . . , uL} on which π
makes these Nπ excursions in B, so that (Iπ) ∈ EuL,Nπ and T (π) =

∑Nπ
i=1 |Iπ(i)|.

Pick Θ ∈ VM , u ≥ tΘ and partition WΘ,u,L into two parts:

V Θ,+
u,L,γ = {π ∈ WΘ,u,L : T (π) ≥ γuL} and V Θ,−

u,L,γ = {π ∈ WΘ,u,L : T (π) ≤ γuL}. (C.30)

There exists a c > 0, depending on α, β only, such that∣∣HΘ,ω
L (π)− T (π)β−α2

∣∣ ≤ cT (π) ≤ cγuL, π ∈ V Θ,−
u,L,γ . (C.31)

Since any excursion in solvent B requires at least 1 horizontal steps or L vertical steps, we
have that Nπ ≤ u+ L for π ∈ WΘ,u,L. Since u+ L ≤ uL/K̂ as soon as u, L ≥ 2K̂, it follows
that

I(π) ∈ ∪uL/K̂N=1 {I ∈ EuL,N : T (I) ≥ γuL}, L ≥ 2K̂, u ≥ tΘ ∨ 2K̂, π ∈ V Θ,+
u,L,γ , (C.32)

and therefore ω ∈ Qγ,η
uL,K̂

implies that |HΘ,ω
L (π) − T (π)β−α2 | ≤ ηuL for π ∈ V Θ,+

u,L,γ . Conse-

quently, for ω ∈ Qγ,η
uL,K̂

, we have

∣∣HΘ,ω
L (π)−T (π)β−α2

∣∣ ≤ uL(η+ cγ), Θ ∈ VM , u ≥ 2K̂ ∨ tΘ, L ≥ 2K̂, π ∈ WΘ,u,L. (C.33)

Rewrite

ψL(Θ, u) = E
[

1
uL log

∑
π∈WΘ,u,L

eH
Θ,ω
L (π)

∣∣Qγ,η
uL,K̂

]
+ P

((
Qγ,η
uL,K̂

)c)
∆, (C.34)
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where ∆ is an error term given by

∆ = E
[

1
uL log

∑
π∈WΘ,u,L

eH
Θ,ω
L (π)

∣∣(Qγ,η
uL,K̂

)c]− E
[

1
uL log

∑
π∈WΘ,u,L

eH
Θ,ω
L (π)

∣∣Qγ,η
uL,K̂

]
. (C.35)

By (3.34), we obtain that |∆| ≤ 2Cuf.

To conclude, we set η = ε/3, γ = ε/3c. By Lemma E.1, there exists an Lε ∈ N such that,
for u ≥ 2K̂ ∨ tΘ and L ≥ Lε, we have P

((
Qγ,η
uL,K̂

)c) ≤ ε/6Cuf. Thus, we can use (C.33) and

(C.34) to complete the proof of Proposition C.5.

C.3.4 Proof of Lemma C.6

Pick ε > 0. By applying Proposition C.5 with ε/2, we see that there exists an Rε/2 > 0 such
that

ψ(Θ, u) ≤ lim sup
L→∞

1
uL log

∑
π∈WΘ,u,L

eT (π)
β−α

2 + ε
2 , Θ ∈ VM , u ≥ tΘ ∨Rε/2. (C.36)

We first consider the case Θ ∈ VM \ Vnint,B,1,M . Since (α, β) ∈ CONE, we can use (C.36) to
obtain

ψ(Θ, u) ≤ lim sup
L→∞

1
uL log |WΘ,u,L|+ ε

2 , u ≥ tΘ ∨Rε/2. (C.37)

Thus, (C.37) and Lemma A.2 imply that there exists a Cε ≥ Rε/2 such that ψ(Θ, u) ≤ ε when

u ≥ tΘ ∨ Cε and Θ ∈ VM \ Vnint,B,1,M . The case Θ ∈ Vnint, B, 1,M can be treated similarly
after noticing that T (π) = uL for π ∈ WΘ,u,L and Θ ∈ Vnint,B,1,M .

C.3.5 Proof of Lemma C.7

The proof is a straightforward consequence of the strict concavity of u 7→ uψ(Θ, u) for Θ ∈ VM ,
Proposition C.5 and Lemma A.2.

C.3.6 Proof of Lemma C.8

Pick ε > 0. The proof will be complete once we show the following two properties:

(1) There exists a Tε > 0 such that

∂−u (uψ(Θ, u))(2tΘ) ≤

{
ε if Θ ∈ VM \ Vnint,B,1,M : tΘ ≥ Tε,
β−α

2 + ε if Θ ∈ Vnint,B,1,M : tΘ ≥ Tε.
(C.38)

(2) For all T > 0 there exists a Vε,T > 0 such that

∂−u (uψ(Θ, u))(v) ≤

{
ε if Θ ∈ VM \ Vnint,B,1,M : tΘ ≤ T, v ≥ tΘ ∨ Vε,T ,
β−α

2 + ε if Θ ∈ Vnint,B,1,M : tΘ ≤ T, v ≥ tΘ ∨ Vε,T .
(C.39)
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We prove (C.39) for the case Θ ∈ VM \Vnint,B,1,M (the case Θ ∈ Vnint,B,1,M can be treated
similarly). To that aim, we assume that there exists a sequence (Θn)n∈N in VM \ Vnint,B,1,M

such that tΘn ≤ T for n ∈ N and a sequence (un)n∈N such that un ≥ tΘn for n ∈ N,
limn→∞ un =∞ and

∂−u (uψ(Θn, u))(un) ≥ ε, n ∈ N. (C.40)

By concavity of u 7→ uψ(Θn, u) for n ∈ N (see Lemma C.4), we have

unψ(Θn, un)− tΘnψ(Θn, tΘn) ≥ ε (un − tΘn), n ∈ N. (C.41)

Therefore, the uniform bound on free energies in (3.34) and the inequality tΘn ≤ T allow us
to rewrite (C.41) as

ψ(Θn, un) ≥ ε− T (Cuf + ε)

un
, n ∈ N, (C.42)

which contradicts Lemma C.6 because limn→∞ un =∞.

It remains to prove (C.38). This is done in a similar manner for the case Θ ∈ VM \
Vnint,B,1,M (the case Θ ∈ Vnint,B,1,M can again be treated similarly), by assuming that there
exists a sequence (Θn)n∈N in VM \ Vnint,B,1,M such that limn→∞ tΘn =∞ and

∂−u (uψ(Θn, u))(2tΘn) ≥ ε, n ∈ N. (C.43)

Thus, similarly as in (C.41–C.42), the concavity of u 7→ uψ(Θn, u) and (C.43) give

ψ(Θn, 2tΘn) ≥ ε

2
+
ψ(Θn, tΘn)

2
, n ∈ N. (C.44)

At this point we use Proposition C.5 to assert that there exist Rε > 0 and Lε ∈ N such that,
for n satisfying tΘn ≥ Rε and L ≥ Lε, we have

ψ(Θn, tΘn) ≥ 1
tΘnL

log
∑

π∈WΘ,tΘn
,L

eT (π)
β−α

2 − ε
4 , (C.45)

ψ(Θn, 2tΘn) ≤ 1
2tΘnL

log
∑

π∈WΘn,2tΘn
,L

eT (π)
β−α

2 + ε
4 .

By using (C.44–C.45), we obtain that, for tΘn ≥ Rε and L ≥ Lε,

1
2tΘnL

log
∑

π∈WΘn,2tΘn
,L

eT (π)
β−α

2 ≥ 1
2tΘnL

log
∑

π∈WΘ,tΘn
,L

eT (π)
β−α

2 + ε
8 , (C.46)

uses some key ingredients that are provided which we can rewrite as

1
2tΘnL

log |WΘn,2tΘn ,L
|+ β−α

4tΘnL
min{T (π), π ∈ WΘn,2tΘn ,L

} (C.47)

≥ β−α
4tΘnL

min{T (π), π ∈ WΘn,tΘn ,L
}+ ε

8 .

Since Θn ∈ VM \ Vnint,B,1,M , there exist π1 ∈ WΘn,tΘn ,L
and π2 ∈ WΘn,2tΘn ,L

such that

T (π1) = lB(Θn) = min{T (π), π ∈ WΘn,tΘn ,L
}, (C.48)

T (π2) = lB(Θn) = min{T (π), π ∈ WΘn,2tΘn ,L
}.

Thus, for tΘn ≥ Rε and L ≥ Lε, the inequality in (C.47) becomes

1
2tΘnL

log |WΘn,2tΘn ,L
| ≥ ε

8 , (C.49)

which obviously contradicts Lemma A.2.
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D Concentration of measure

Let S be a finite set and let (Xi,Ai, µi)i∈S be a family of probability spaces. Consider the
product space X =

∏
i∈S Xi endowed with the product σ-field A = ⊗i∈SAi and with the

product probability measure µ = ⊗i∈Sµi.

Theorem D.1 (Talagrand [9]) Let f : X 7→ R be integrable with respect to (A, µ) and, for
i ∈ S, let di > 0 be such that |f(x) − f(y)| ≤ di when x, y ∈ X differ in the i-th coordinate
only. Let D =

∑
i∈S d

2
i . Then, for all ε > 0,

µ

{
x ∈ X :

∣∣∣∣f(x)−
∫
fdµ

∣∣∣∣ > ε

}
≤ 2e−

ε2

2D . (D.1)

The following corollary of Theorem D.1 was used several times in the paper. Let (α, β) ∈
CONE and let (ξi)i∈N be an i.i.d. sequence of Bernouilli trials taking the values −α and β with
probability 1

2 each. Let l ∈ N, T : {(x, y) ∈ Z2×Z2 : |x− y| = 1} → {0, 1} and Γ ⊂ Wl (recall
(1.1)). Let Fl : [−α, α]l → R be such that

Fl(x1, . . . , xl) = log
∑
π∈Γ

e
∑l
i=1 xi T ((πi−1,πi)). (D.2)

For all x, y ∈ [−α, α]l that differ in one coordinate only we have |Fl(x)−Fl(y)| ≤ 2α. Therefore
we can use Theorem D.1 with S = {1, . . . , l}, Xi = [−α, α] and µi = 1

2(δ−α + δβ) for all i ∈ S,
and D = 4α2l, to obtain that there exist C1, C2 > 0 such that, for every l ∈ N, Γ ⊂ Wn and
T : {(x, y) ∈ Z2 × Z2 : |x− y| = 1} → {0, 1},

P
(
|Fl(ξ1, . . . , ξm)− E(Fl(ξ1, . . . , ξm))| > η

)
≤ C1e

−C2η2

l . (D.3)

E Large deviation estimate

Let (ξi)i∈N be an i.i.d. sequence of Bernouilli trials taking values β and −α with probability
1
2 each. For N ≤ n ∈ N, denote by En,N the set of all ordered sequences of N disjoint and
non-empty intervals included in {1, . . . , n}, i.e.,

En,N =
{

(Ij)1≤j≤N ⊂ {1, . . . , n} : Ij = {min Ij , . . . ,max Ij} ∀ 1 ≤ j ≤ N,
max Ij < min Ij+1 ∀ 1 ≤ j ≤ N − 1 and Ij 6= ∅ ∀ 1 ≤ j ≤ N

}
. (E.1)

For (I) ∈ En,N , let T (I) =
∑N

j=1 |Ij | be the cumulative length of the intervals making up (I).

Pick γ > 0 and K ∈ N, and denote by Ê γn,K the set of those (I) in ∪1≤N≤(n/K) En,N that have
a cumulative length larger than γn, i.e.,

Ê γn,K = ∪n/KN=1

{
(I) ∈ En,N : T (I) ≥ γn

}
. (E.2)

Next, for η > 0 set

Qγ,ηn,K =
⋂

(I)∈Ê γn,K


N∑
j=1

∑
i∈Ij

ξi ≤ (β−α2 + η)T (I)

 . (E.3)
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Lemma E.1 For all (α, β) ∈ CONE, γ > 0 and η > 0 there exists an K̂ ∈ N such that, for
all K ≥ K̂,

lim
n→∞

P ((Qγ,ηn,K)c) = 0. (E.4)

Proof. An application of Cramér’s theorem for i.i.d. random variables gives that there
exists a cη > 0 such that, for every (I) ∈ Ê γn,K ,

Pξ
( N∑
j=1

∑
i∈Ij

ξi ≥ (β−α2 + η)T (I)

)
≤ e−cηT (I) ≤ e−cηγn, (E.5)

where we use that T (I) ≥ γn for every (I) ∈ Ê γn,K . Therefore

Pξ((Qγ,ηn,K)c) ≤ |Ê γn,K |e
−c(η)γn, (E.6)

and it remains to bound |Ê γn,K | as

Ê γn,K =

n/K∑
N=1

∣∣{(I) ∈ En,N : T (I) ≥ γn
}∣∣ ≤ n/K∑

N=1

(
n

2N

)
, (E.7)

where we use that choosing (I) ∈ En,N amounts to choosing in {1, . . . , n} the end points of
the N disjoint intervals. Thus, the right-hand side of (E.7) is at most (n/K)

(
n

2n/K

)
, which

for K large enough is o(ec(η)γn) as n→∞. �

F On the maximizers of the slope-based variational formula

In this appendix we prove that the supremum of the variational formula in (1.17) is attained at
some ρ̄ ∈ R̄p,M and for a unique v̄ ∈ B̄. For ease of notation we suppress the M,p-dependence
of f(α, β;M,p).

Recall (6.19) and for p ∈ (0, 1) and (α, β) ∈ CONE, let Op,M,α,β be the subset of R̄p,M
containing those ρ̄ that maximize the variational formula in (1.17), i.e.,

f(α, β) = h(ρ̄; α, β) = sup
v∈B̄

N̄(ρ̄, v)

D̄(ρ̄, v)
for ρ̄ ∈ Op,M,α,β. (F.1)

Recall (2.8–2.10) and set
v̄ = v(f(α, β)). (F.2)

Theorem F.1 For all p ∈ (0, 1) and (α, β) ∈ CONE the following hold:
(1) The set Op,M,α,β is non-empty.
(2) For all ρ̄ ∈ Op,M,α,β and all v ∈ B̄ satisfying f(α, β) = N̄(ρ̄, v)/D̄(ρ̄, v), v = v̄ for ρ̄-a.e.
(k, l) ∈ {A,B} × [0,∞) or k = I.

Proof. The following proposition will be proven in Section F.1 below and tells us that the
maximum of the old variational formula in (2.15) is attained for some ρ ∈ Rp,M . Recall the
definition of g(ρ;α, β) for ρ ∈ Rp,M in (6.9).

84



Theorem F.2 For (α, β) ∈ CONE, there exists a ρ ∈ Rp,M such that f(α, β) = g(ρ;α, β).

We give the proof of Theorem F.1 subject to Theorem F.2. To that aim, we pick (α, β) ∈
CONE and note that, by Theorem F.2, there exists a ρ̂ ∈ Rp,M such that f(α, β) = g(ρ̂;α, β).
In what follows, we suppress the (α, β)-dependence of g(ρ̂;α, β).

Since f(α, β) = g(ρ̂), (3.60) ensures that g(ρ̂) > 0, and by applying Lemma 6.1 we obtain
that

f(α, β) =
N(ρ̂, u(f(α, β)))

D(ρ̂, u(f(α, β)))
. (F.3)

Apply Lemma 6.5, which ensures that there exist a ρ̄ ∈ R̄p and a v ∈ F̄ such that

N(ρ̂, u(f(α, β)))

D(ρ̂, u(f(α, β)))
≤ N̄(ρ̄, v)

D̄(ρ̄, v)
. (F.4)

Then h(ρ̄) > 0, and we use Lemma 6.3, which tells us that

N̄(ρ̄, v)

D̄(ρ̄, v)
≤ N̄(ρ̄, v(h(ρ̄)))

D̄(ρ̄, v(h(ρ̄)))
. (F.5)

Now (F.3-F.5) and the variational formula in (1.17) are sufficient to complete the proof of (1).
The proof of (2) is a straightforward consequence of Lemma 6.1. �

F.1 Proof of Theorem F.2

We give the proof of Theorem F.2 subject to the following lemma, which will be proven in
Section F.1.1 below.

Lemma F.3 For all t > 0 and u ∈ BVM there exists an m0 ∈ N such that, for all ρ ∈ Rp,M
and v ∈ BVM satisfying v ≤ u and N(ρ, v)/D(ρ, v) ≥ t, there exists a ρ̃ ∈ Rm0

p,M such that
N(ρ̃, v)/D(ρ̃, v) ≥ N(ρ, v)/D(ρ, v).

Let (ρn)n∈N in Rp,M be such that n 7→ g(ρn;α, β) is increasing with limn→∞ g(ρn;α, β) =
f(α, β). Obviously we can choose (ρn)n∈N such that g(ρn;α, β) ≥ f(α, β)/2 for all n ∈ N.
Thus, with the help of Lemma 6.1, we obtain

g(ρn;α, β) =
N(ρn, u(g(ρn)))

D(ρn, u(g(ρn)))
, n ∈ N. (F.6)

Apply Lemma F.3 to see that there exists an m0 ∈ N such that for all n ∈ N there exists an
ρ̂n ∈ Rm0

p,M such that

N(ρ̂n, u(g(ρn)))

D(ρ̂n, u(g(ρn)))
≥ N(ρn, u(g(ρn)))

D(ρn, u(g(ρn)))
. (F.7)

A straightforward consequence of (F.7) is that

lim
n→∞

N(ρ̂n, u(g(ρn)))

D(ρ̂n, u(g(ρn)))
= f(α, β). (F.8)

Moreover, ρ̂n ∈M1(V m0

M ) for all n ≥ n0, and since V m0

M is compact we have that ρ̂n converges
weakly to ρ∞ ∈ Rm0

p,M along a subsequence. Lemma B.4 implies that n 7→ u(g(ρn)) is non-

increasing and converges pointwise to u(f(α, β)) as n → ∞. Since V m0

M is compact, Dini’s
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Theorem tells us that the convergence of u(g(ρn)) to u(f(α, β)) is uniform on V m0

M . Therefore,
using the uniform continuity of (u,Θ) 7→ uψ(Θ, u) (see Lemma C.3), we obtain

f(α, β) =
N(ρ∞, u(f(α, β)))

D(ρ∞, u(f(α, β)))
, (F.9)

which completes the proof of Theorem F.2.

F.1.1 Proof of Lemma F.3

First, we state and prove Claim F.4 below, which will be needed to prove Lemma F.3. Pick
m ≥ M + 2, and note that for Θ = (χ,∆Π, b0, b1, x) ∈ VM \ V

m
M we necessarily have xΘ = 2.

Define Tm : VM 7→ V
m
M as

Tm(Θ) =

{
Θ if Θ ∈ VmM ,
Θ̃ = (χ,∆Π, b0, b1, 1) if Θ = (χ,∆Π, b0, b1, 2) ∈ VM \ V

m
M ,

(F.10)

Claim F.4 For all ρ ∈ Rp,M and m ∈ N : m ≥M + 2, ρ ◦ T−1
m ∈ Rmp,M .

Proof. First note that Tm : VM 7→ V
m
M is continuous with respect to the dM -distance. Next,

pick ρ ∈ Rp,M . By the definition of Rp,M , there exists a strictly increasing sequence (Nk)k∈N
and (Πk

j )j∈N0 , (bkj )j∈N0 , (xkj )j∈N0 such that ρ = limk→∞ ρNk(Ω,Πk, bk, xk). The continuity of
Tm implies that

ρ ◦ T−1
m = lim

k→∞
ρNk(Ω,Πk, bk, xk) ◦ T−1

m , (F.11)

and we can easily check that

ρNk(Ω,Πk, bk, xk) ◦ T−1
m = ρNk(Ω,Πk, bk, x̃k), (F.12)

where for j, k ∈ N0 we define

x̃kj =

{
xkj if (Ω(j, ·),∆Πk

j , b
k
j , b

k
j+1x̃

k
j ) ∈ V

m
M ,

1 otherwise.
(F.13)

Consequently, ρ ◦ T−1
m ∈ Rp,M . �

We resume the proof of Lemma F.3. Pick t > 0, ρ ∈ Rp,M , u ∈ BVM and v ∈ BVM
satisfying v ≤ u and N(ρ, v)/D(ρ, v) ≥ t. Pick m ∈ N : m ≥ M + 2, whose value will be
specified later, and set ρm = ρ ◦ T−1

m , which belongs to Rp,M by Claim F.4. Write

N(ρm, v)

D(ρm, v)
− N(ρ, v)

D(ρ, v)
=

∫ 1

0
G′(t)dt with G(t) =

A+ tB

c+ tD
(F.14)

with

A =

∫
VM

vΘψ(Θ, vΘ) ρ(dΘ) B =

∫
VM\V

m
M

v
Θ̃
ψ(Θ̃, v

Θ̃
)− vΘψ(Θ, vΘ) ρ(dΘ) (F.15)

C =

∫
VM

vΘ ρ(dΘ) D =

∫
VM\V

m
M

v
Θ̃
− vΘ ρ(dΘ). (F.16)
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Note that the sign of the derivative G′(t) is constant and equal to the sign of

B − A

C
D =

∫
VM\V

m
M

vΘ

[
A

C

(
1−

v
Θ̃

vΘ

)
− ψ(Θ, vΘ) +

v
Θ̃

vΘ
ψ(Θ̃, v

Θ̃
)

]
ρ(dΘ). (F.17)

Therefore Lemma F.3 will be proven once we check that for m large enough the right-hand
side of (F.17) is strictly positive, uniformly in v ≤ u. To that aim, we recall Lemma C.6,
which tells us that ψ(Θ, vΘ) ≤ t/2 for every Θ ∈ VM \V

m
M , provided m is chosen large enough

(because vΘ ≥ tΘ ≥ m), and we recall (3.34), which tells us that ψ(Θ̃, v
Θ̃

) ≤ Cuf(α) for

Θ ∈ VM \ V
m
M . We further note that

v
Θ̃
≤ max

{
uΘ : Θ ∈ VM+2

M

}
<∞ for every Θ ∈ VM , (F.18)

which, together with the fact that A
C = N(ρ, v)/D(ρ, v) ≥ t > 0 and vΘ ≥ tΘ ≥ m for

Θ ∈ VM \ V
m
M , ensures that for m large enough the right-hand side of (F.17) is strictly

positive, uniformly in v ≤ u. This completes the proof of Lemma F.3.

G Uniqueness of the maximizers of the variational formula

In this appendix we first prove, with the help of Lemma G.2, that for Θ ∈ VM and u ≥ tΘ the
variational formula in Proposition 3.5 has unique maximizers. This uniqueness implies that,
for a given column type and a given time spent in the column, the copolymer has a unique
way to move through the column. We next use this uniqueness to show, with the help of
Proposition G.2, that for u ∈ BVM the maximizers of (3.45) are Borel functions of Θ ∈ VM .

Recall (3.57) and pick h ∈ E . Set

U(h) =
{

(rA,Θ, rB,Θ, rI,Θ)Θ∈VM ∈ ([0,∞)3)VM : rk,Θ ≥ 1 +
lk,Θ
hk,Θ

∀ k ∈ {A,B} ∀Θ ∈ VM ,

rI,Θ ≥ 1 ∀ k ∈ {A,B} ∀Θ ∈ VM ,
Θ 7→ rk,Θ Borel ∀ k ∈ {A,B, I}

}
, (G.1)

where we recall that
lk,Θ
hk,Θ

= 0 by convention when lk,Θ = hk,Θ = 0.

Proposition G.1 For all u ∈ BVM there exist h ∈ E and r ∈ U(h) such that, for all Θ ∈ VM ,

uΘ ψ(Θ, uΘ) = hA,Θ rA,Θ κ̃
(
rA,Θ,

lA,Θ
hA,Θ

)
(G.2)

+ hB,Θ rB,Θ
[
κ̃
(
rB,Θ,

lB,Θ
hB,Θ

)
+ β−α

2

]
+ hI,Θ rI,Θ φI(rI,Θ),

and
hA,Θ rA,Θ + hB,Θ rB,Θ + hI,Θ rI,Θ = uΘ. (G.3)

Proof. For l ∈ R, let

Nl = {(a, h) ∈ [0,∞)× [0, 1] : a ≥ h+ |l|}, N+
l = {(a, h) ∈ Nl : h > 0}, (G.4)

let gl : Nl 7→ [0,∞) be defined as gl(a, h) = a κ̃( ah ,
l
h) for h > 0 and gl(a, h) = 0 for h = 0, and

let g̃ : N0 7→ [0,∞) be defined as g̃(a, h) = aφI(
a
h) for h > 0 and g̃(a, h) = 0 for h = 0. We

can rewrite (3.45) as

uψ(Θ, u;α, β) = sup
(h),(a)∈L(Θ;u)

f lA,lB
[
(h), (a)

]
(G.5)
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with
f lA,lB

[
(h), (a)

]
= glA(aA, hA) + glB (aB, hB) + aB

β−α
2 + g̃(aI , hI). (G.6)

Lemma G.2 shows that, subject to some additional conditions, the maximizer in the right-
hand side of (G.5) is unique. This allows us to prove the continuity of this maximizer as a
function of Θ on each subset of a finite partition of VM , which implies the Borel measurability
of this maximizer and completes the proof of Proposition G.1.

Lemma G.2 For all Θ ∈ VM and u ≥ tΘ there exists a unique (h̄), (ā) ∈ L(Θ;u) satisfying:
(i) uψ(Θ, u;α, β) = f lA,lB [(h̄), (ā)].
(ii) h̄k > 0 if āk > 0 for k ∈ {A,B, I}.
(iii) āk = h̄k = 0 if l̄k = 0 for Θ ∈ V int,M and k ∈ {A,B}.
(iv) āk = h̄k = 0 if l̄k = 0 for Θ ∈ Vnint,k,2,M and k ∈ {A,B}.

Proof. We prove existence and uniqueness.

Existence. The existence of a (h1), (a1) ∈ L(Θ;u) satisfying (i) is ensured by the continuity
of flA,lB and the compactness of L(Θ;u). Assume that Θ ∈ V int,M , lA = 0 and (h1,A, a1,A) 6=
(0, 0). Then

g0(a1,A, h1,A) + g̃(a1,I , h1,I) ≤ g̃(a1,A, h1,A) + g̃(a1,I , h1,I) (G.7)

≤ 2 g̃
(a1,A+a1,I

2 ,
h1,A+h1,I

2

)
= g̃
(
a1,A + a1,I , h1,A + h1,I

)
,

where we use the inequality g0 ≤ g̃ and the concavity of g̃. Thus, by setting (h2), (a2) =
(0, h1,B, h1,A + h1,I), (0, a1,B, a1,A + a1,I), we obtain that (h2), (a2) ∈ L(Θ;u), satisfies (iii)
and

flA,lB ((h2), (a2)) ≥ flA,lB ((h1), (a1)), (G.8)

which implies that (h2), (a2) also satisfies (i). The case Θ ∈ V int,M , lB = 0 and the case
Θ ∈ Vnint,k,2,M , lk = 0, k ∈ {A,B}, can be treated similarly, to conclude that there exist
(h), (a) ∈ L(Θ;u) satisfying (i), (iii–iv). We will show that (ii) follows from these as well. The
proof will be given for the case Θ ∈ V int,M and lA, lB > 0, since (iii) already indicates that
hk = ak = 0 if lk = 0 for k ∈ {A,B} and Θ ∈ V int,M . The case Θ ∈ Vnint,M can be treated
similarly.

In the proof of Lemma C.4 we showed that (h), (a) ∈ L(Θ, u) maximizing (G.5) necessarily
satisfies hk > 0 if ak > lk for k ∈ {A,B} and hI > 0 if aI > 0. Thus, we only need to exclude
the cases hk = 0 and ak = lk > 0 for k ∈ {A,B}. We will therefore assume that hB = 0
and aB = lB, and prove that this leads to a contradiction. The case hA = 0 and aA = lA
is easier to deal with. We finally assume that aI > hI > 0 (the case aI = hI being easier).
We pick c > 1 and x > 0 small enough to ensure that aI − cx > hI − x > 0, and we set
(h)x, (a)x = (hA, x, hI − x), (aA, lB + cx, aI − cx). The proof will be complete once we show
that for x small enough the quantity

flA,lB ((h)x, (a)x)− flA,lB ((h), (a)) = glB (lB + cx, x)− Vx + cx
(
β−α

2

)
(G.9)

is strictly positive with Vx = g̃(aI , hI)− g̃(aI − cx, hI − x).

At this stage, we note that µ 7→ µφI(µ) is concave on [1,∞), and therefore is Lipshitz on
any interval [r, t] with r > 1. Since aI/hI > 0, there exists a C > 0, depending on (aI , hI)
only, such that Vx ≤ Cx for x small enough. Therefore (G.9) becomes

flA,lB ((h)x, (a)x)− flA,lB ((h), (a)) ≥ glB (lB + cx, x)−
(
C + c β−α2

)
x (G.10)
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for x small enough. By the concavity of glB , and since glB (lB + cx, 0) = 0, we can write
glB (lB + cx, x) ≥ x ∂2glB (lB + cx, x) for x > 0. By the definition of glB , and with (3.4), we
obtain that

∂2glB (lB + cx, x) =
(
1 + cx

lB

)
∂2κ
(
1 + cx

lB
, cxlB

)
. (G.11)

We now recall [5], Lemma 2.1.1, which claims that κ is defined on DOM = {(a, b) : a ≥ 1+b, b ≥
0} and is analytic on the interior of DOM. Moreover, in the proof of this lemma, an expression
for ∂b κ(a, b) is provided that is valid on the interior of DOM. From this expression, and since
c > 1, we can check that lims↓0 ∂2κ(1 + cs, s) =∞, which suffices to conclude that the right-
hand side of (G.9) is strictly positive for x small enough. This completes the proof of the
existence in Lemma G.2.

Uniqueness. The uniqueness of (h̄), (ā) is a straightforward consequence of the strict concav-
ity of glA and glB when lA 6= 0 and lB 6= 0 and of the concavity of g0 and g̃. We will not write
out the proof in detail, because it requires us to distinguish between the cases Θ ∈ V int,M and
Θ ∈ Vnint,M , between lk = 0 and lk 6= 0, k ∈ {A,B}, and also between xΘ = 1 and xΘ = 2.
The latter distinctions are tedious, but no technical diffulties arise. �

We resume the proof of Proposition G.1. We pick u ∈ BVM , and for each Θ ∈ VM we apply

Lemma G.2 at Θ, uΘ, to obtain a (h̄)Θ, (ā)Θ ∈ L(Θ;uΘ) satisfying (i–iv). We set (h̄) : Θ ∈
VM 7→ h̄Θ and (ā) : Θ ∈ VM 7→ āΘ, and we recall (3.57). If we can show that Θ 7→ (h̄)Θ

is Borel, then it follows that (h̄) ∈ E , because (ii) and the fact that (h̄)Θ, (ā)Θ ∈ L(Θ;uΘ)
for Θ ∈ VM ensure that the other conditions required to belong to E are fulfilled by (h̄).
Moreover, if we can we show that Θ 7→ (ā)Θ is Borel, then the proof of Proposition G.1 will
be complete, because we can set

(r̄A(Θ), r̄B(Θ), r̄I(Θ)) =
(
āA(Θ)

h̄A(Θ)
, āB(Θ)

h̄B(Θ)
, āI(Θ)

h̄I(Θ)

)
, Θ ∈ VM , (G.12)

with the convention r̄k(Θ) = 1 when āk(Θ) = h̄k(Θ) = 0 for k ∈ {A,B, I}, after which
(r̄) ∈ U(h) and (h̄), (r̄) satisfy (G.2) and (G.3).

To complete the proof it remains to show that Θ 7→ (h̄)Θ, (ā)Θ is Borel. Recall the partition

VM = V int,M ∪
(
∪(x,k)∈{1,2}×{A,B} V int,k,x,M

)
, (G.13)

and partition these five subsets in the right-hand side of (G.13) into smaller subsets depending
on the values taken by lA and lB. For V int,M , this gives

V int,M ={Θ ∈ V int,M : lA, lB > 0} ∪ {Θ ∈ V int,M : lA > 0, lB = 0} (G.14)

∪ {Θ ∈ V int,M : lA = 0, lB > 0} ∪ {Θ ∈ V int,M : lA = lB = 0},

and on each of these subsets the fact that (h̄)Θ, (ā)Θ are the unique elements in L(Θ;uΘ)
satisfying (i–iv) implies that Θ 7→ (h̄)Θ, (ā)Θ are continuous and therefore Borel. Since each
subsets in the right-hand side of (G.14) belongs to the Borel σ-field generated by dM (recall
(C.7)), we can conclude that Θ 7→ (h̄)Θ, (ā)Θ are Borel on VM . This completes the proof of
Proposition G.1. �
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