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Abstract

We study competing first passage percolation on graphs generated by the configuration
model. At time 0, vertex 1 and vertex 2 are infected with the type 1 and the type 2
infection, respectively, and an uninfected vertex then becomes type 1 (2) infected at rate A
(A2) times the number of edges connecting it to a type 1 (2) infected neighbor. Our main
result is that, if the degree distribution is a power-law with exponent 7 € (2, 3), then, as the
number of vertices tends to infinity, one of the infection types will almost surely occupy all
but a finite number of vertices. Furthermore, which one of the infections wins is random and
both infections have a positive probability of winning regardless of the values of A\; and As.
The picture is similar with multiple starting points for the infections.

1 Introduction

Consider a graph generated by the configuration model with random i.i.d. degrees, that is, given
a finite number n of vertices, each vertex is independently assigned a random number of half-
edges according to a given probability distribution and the half-edges are then paired randomly
to form edges (see below for more details). Independently assign two exponentially distributed
passage times Xj(e) and Xa(e) to each edge e in the graph, where Xj(e) has parameter A\
and Xs(e) parameter Ao, and let two infections controlled by these passage times compete for
space on the graph. More precisely, at time 0, vertex 1 is infected with the type 1 infection,
vertex 2 is infected with the type 2 infection and all other vertices are uninfected. The infections
then spread via nearest neighbors in the graph in that the time that it takes for the type 1 (2)
infection to traverse an edge e and invade the vertex at the other end is given by X;j(e) (Xa(e)).
Furthermore, once a vertex becomes type 1 (2) infected, it stays type 1 (2) infected forever and it
also becomes immune to the type 2 (1) infection. Note that, since the vertices are exchangeable
in the configuration model, the process is equivalent in distribution to the process obtained by
infecting two randomly chosen vertices at time 0.

We shall impose a condition on the degree distribution that guarantees that the underlying graph
has a giant component that comprises almost all vertices. According to the above dynamics,
almost all vertices will then eventually be infected. We are interested in asymptotic properties
of the process as n — oo. Specifically, we are interested in comparing the fraction of vertices
occupied by the type 1 and the type 2 infections, respectively, when the degree distribution is

*Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden; mia@math.su.se
fDepartment of Mathematics and Computer Science, Eindhoven University of Technology, Box 513, 5600 MB
Eindhoven, The Netherlands; rhofstad@win.tue.nl



a power law with exponent 7 € (2,3), that is, when the degree distribution has finite mean
but infinite variance. Our main result is roughly that the probability that both infection types
occupy positive fractions of the vertex set is 0 for all choices of A1 and \o. Moreover, the winning
type will in fact conquer all but a finite number of vertices. A natural guess is that asymptotic
coexistence is possible if and only if the infections have the same intensity — which for instance
is the case for first passage percolation on Z? and on random regular graphs; see Section ?? —
but this is hence not the case in our setting.

1.1 The configuration model

Let D1,..., D, denote the degrees of the vertices in the graph. These are i.i.d. random variables,
and we shall throughout assume that

(A1) P(D >2) =1,
(A2) there exists a 7 € (2,3) and constants ca > ¢; > 0 such that, for all z > 0,

™D <P(D > z) < cpe 7Y, (1)
For some results, the assumption (A2) will be strengthend to
(A2") there exist 7 € (2,3) and ¢p € (0,00) such that P(D > z) = cpz=T"D(1 + o(1)).

As described above, the graph is constructed in that each vertex i is assigned D; half-edges, and
the half-edges are then paired randomly: first we pick two half-edges at random and create an
edge out of them, then we pick two half-edges at random from the set of remaining half-edges and
pair them into an edge, etc. If the total degree happens to be odd, then we add one half-edge at
vertex n (clearly this will not affect the properties of the model asymptotically). The construction
can give rise to self-loops and multiple edges between vertices, but these imperfections will be
relatively rare when n is large; see [?, 7.

It is well-known that the critical point for the occurrence of a giant component — that is, a
component comprising a positive fraction of the vertices as n — oo — in the configuration model
is given by v := E[D(D — 1)]/E[D] = 1; see e.g. [?, 7, ?]. The quantity v is the reproduction
mean in a branching process with offspring distribution D* — 1 where D* is a size-biased version
of a degree variable. More precisely, with (p4)4>1 denoting the degree distribution, the offspring
distribution is given by

pa= e, )

Such a branching process approximates the initial stages of the exploration of the components
in the configuration model, and the asymptotic relative size of the largest component in the
graph is given by the survival probability of the branching process [?, 7, ?]. When the degree
distribution is a power-law with exponent 7 € (2,3), as stipulated in (A2), it is easy to see that
v = oo so that the graph is always supercritical. Moreover, the assumption (A1) implies that
the survival probability of the branching process is 1 so that the asymptotic fraction of vertices
in the giant component converges to 1.



1.2 Main result

Consider two infections spreading on a realization of the configuration model according to the
dynamics described in the beginning of the section, that is, an uninfected vertex becomes type
1 (2) infected at rate A; (A2) times the number of edges connecting it to type 1 (2) infected
neighbors. First note that, by time-scaling and symmetry, we may assume that Ay = 1 and Ao =
A > 1. Let N;(n) denote the final number of type i infected vertices, and write N;(n) = N;(n)/n
for the final fraction of type i infected vertices. Clearly Na(n) = 1 — Ny(n), so it is enough to
consider Ni(n). The following is our main result:

Theorem 1.1 (The winner takes it all). Fiz A > 1 and write p = 1/\.

(a) The fraction Ni(n) of type 1 infected vertices converges in probability to the indicator
variable 1y, <15y as n — oo, where Vi and Vo are two i.i.d. proper random variables with
support on RT.

(b) Assume (A2°). On the event that Vi < uVa, the number Nao(n) of type 2 infected vertices
converges to a proper random variable No. Similarly, on the event that Vi > uVa, the
number Ny(n) of type 2 infected vertices converges to a proper random variable Ny.

Remark 1.1 (Explosion times). The variables V; (i = 1,2) are explosion times of a certain
continuous-time branching process with infinite mean. The process is started from D; individuals,
representing the edges of vertex i, and will be characterized in more detail in Section 7?7. In part
(b), the limiting random variables N; (i = 1,2) have explicit characterizations involving the
(almost surely finite) extinction time of a certain Markov process; see Section ??. In fact, the
proof will reveal that the limiting number of vertices that is captured by the losing type is equal
to 1 with strictly positive proability, which is the smallest possible value. Thus, the ABBA quote
‘The winner takes it all. The loser standing small...” could not be more appropriate.

Roughly stated, the theorem implies that coexistence between the infection types is never pos-
sible. Instead, one of the infection types will invade all but a finite number of vertices and,
regardless of the relation between the intensities, both infections have a positive probability of
winning. The proof is mainly based on ingredients from |?|, where standard first passage perco-
lation (that is, first passage percolation with one infection type and exponential passage times)
on the configuration model is analyzed.

Let us first give a short heuristic explanation: With high probability (whp), the initially infected
vertex 1 and vertex 2 will not be located very close to each other in the graph and hence the
infection types will initially evolve without interfering with each other. This means that the
initial stages of the spread of each one of the infections can be approximated by a continuous-
time branching process, which has infinite mean when the degree distribution has infinite variance
(because of size biasing). These two processes will both explode in finite time, and the type that
explodes first is random and asymptotically equal to 1 precisely when Vi < puVs. Theorem
77 follows from the fact that the type with the smallest explosion time will get a lead that is
impossible to catch up with for the other type. More specifically, the type that explodes first
will whp occupy all hubs in the graph shortly after the time of explosion, while the other type
occupies only a finite number of vertices. From the hubs the exploding type will then rapidly
invade the rest of the graph before the other type makes any substantial progress at all.

We next investigate the setting where we start the competition from several vertices chosen
uniformly at random.



Theorem 1.2 (Multiple starting points). Fiz A > 1 and write p = 1/\. Also fix integers
ki,ko > 1, and start with ki type 1 infected individuals and ko type 2 infected individuals chosen
uniformly at random from the set of vertices.

(a) The fraction N1(n) of type 1 infected vertices converges in probability to the indicator
variable 1y, by <iVa gy} GSTL = 00, where Vi i, and Va i, are two independent proper random

variables with support on RT.

(b) Assume (A2°). On the event that Vi, < puVay,, the number Na(n) of type 2 infected
vertices converges to a proper random vartable No.

(c) Assume (A2’). For every ki,ky > 1, P(Vig, < puVar,) € (0,1). Moreover, for fized
a € (0,00), as k — oo that

P(Vig < tVaur) = P(Y1 < pa®7Y3) € (0,1), (3)

where Y1,Ys are two i.i.d. random variables with distribution

* 1
Y_/O 1+Qtdt’ )

for a stable subordinator (Qy)i>o with Ele™@] = e~ "t for some o = o(cp).

Remark 1.2. The variable V; ,, has the distribution of the explosion time of a continuous-time
branching process with the same reproduction rules as in the case with a single initial type i vertex,
but now the number of individuals that the process is started from is distributed as D1+ ...+ Dy,
and represents the total degree of the k; initial type © vertices. The scaling of the explosion time
of the branching process started from k individuals for large k is investigated in more detail in
Lemma ?7.

In Theorem 7?7, we see that the fastest species does not necessarily win even when it has twice as
many starting points, but it does when o — oo, i.e., when starting from a much larger number
of vertices than the slower species. We only prove Theorem 7?7 in the case where k1 = ko = 1,
in which case it reduces to Theorem ??. The case where (k1, k2) # (1,1) is similar. Hence only
the proof of (?7) in Theorem ?7?(c) is provided in detail; see Section ?7.

1.3 Related work and open problems

First passage percolation on various types of discrete probabilistic structures has been extensively
studied; see e.g. [?, 7, 7, ?, 7, ?]. The classical example is when the underlying structure is taken
to be the Z%lattice. The case with exponential passage times is then often referred to as the
Richardson model and the main focus of study is the growth and shape of the infected region
[?, 7, 7, ?7]. The Richardson model has also been extended to a two-type version that describes
a competition between two infection types; see |?]. Infinite coexistence then refers to the event
that both infection types occupies infinite parts of the lattice, and it is conjectured that this
has positive probability if and only if the infections have the same intensity. The if-direction
was proved for d = 2 in [?] and for general d independently in [?] and [?|. The only-if-direction
remains unproved, but convincing partial results can be found in [?].

As for the configuration model, the area of network modeling has been very active the last decade
and the configuration model is one of the most studied models. One of its main advantages is



that it gives control over the degree distribution, which is an important quantity in a network
with great impact on global properties. As mentioned, first passage percolation with exponential
edge weights on the configuration model has been analyzed in [?]. The results there revolve
around the length of the time-minimizing path between two vertices and the time that it takes
to travel along such a path. In [?], these results are extended to all continuous edge-weight
distributions under the assumption of finite variance degrees.

Recently, in |?], competing first passage percolation has been studied on so-called random regular
graphs, which can be generated by the configuration model with constant degree, that is, with
P(D = d) = 1 for some d. The setup in [?] allows for a number of different types of starting
configurations, and the main result relates the asymptotic fractions occupied by the respective
infection types to the sizes of the initial sets and the intensities. When the infections are started
from two randomly chosen vertices, coexistence occurs with probability 1 if the infections have
the same intensity, while, when one infection is stronger than the other, the stronger type wins,
as one might expect. The somewhat counterintuitive result in the present paper is hence a
consequence of large variability in the degrees. We conjecture that the result formulated here
remains valid precisely when the explosion time of the corresponding continuous-time branching
process is finite. See |?] for a discussion of explosion times for age-dependent branching processes.

A natural continuation of the present work is to study the case when 7 > 3, that is, when the
degree distribution has finite variance. We conjecture that the result is then the same as for
constant degrees as described above. Another natural extension is to investigate other types
of distributions for the passage times. The results may then well differ from the exponential
case. For instance, ongoing work on the case with constant passage timesand 7 € (2, 3) (possibly
different for the two species) indicates that the fastest species always wins, and that there is no
coexistence even when the passage times are equal |?]|. It would also be interesting to allow for
more general types of starting configurations. Would it for instance help a weaker type if the
number of vertices that it is started from is taken to be some power of n? Finally we mention the
possibility of investigating whether the results generalize to other graph structures with simlar
degree distribution, e.g. inhomogeneous random graphs and graphs generated by preferential
attachment mechanisms.

2 Preliminaries

In this section we summarize the results on one-type first passage percolation from [?] that we
shall need. Theorem ?7(a) and ??(b) are then proved in Section ?? and ??, respectively. Also,
the proof of the asymptotic characterization (??) is given in Section ?7.

Let each edge in a realization of the configuration model independently be equipped with an
exponential passage time with mean 1. In summary, it is shown in [?] that, when the degree
distribution satisfies (A1) and (A2), the asymptotic minimal time between vertex 1 and vertex
2 is given by Vi 4 Vb, where V; and V5 are i.i.d. random variables indicating the explosion time
of an infinite mean continuous-time branching process that approximates the initial stages of
the flow through the graph starting from vertex 1 and 2 respectively; see below. The result
follows roughly by showing that the sets of vertices that can be reached from vertex 1 and 2,
respectively, within time ¢ are whp disjoint up until the time when the associated branching
processes explode, and that they then hook up, creating a path between 1 and 2.



Exploration of first-passage percolation on the configuration model. To be a bit more
precise, we first describe a natural stepwise procedure for exploring the graph and the flow of
infection through it starting from a given vertex v. Let SWG%) denote the graph consisting
of the set of explored vertices and edges after m steps, where SWG stands for Smallest-Weight
Graph. Write Sy, () for the set of unexplored half-edges emanating from vertices in SWG,(:{) and
define S(U ]S | Finally, let ]—',Sf) denote the set of half-edges belonging to vertices in the
complement of SWG(mv). When there is no risk of confusion, we will often omit the superscript
v in the notation. Set SWG; = {v}, so that S; = D,. Given SWG,,, the graph SWG,, ;1 is

constructed as follows:

1. Pick a half-edge at random from the set S,,,. Write x for the vertex that this half-edge is
attached to, and note that x € SWG,,

2. Pick another half-edge at random from §,, U F,, and write y for the vertex that this
half-edge is attached to.

3. If y € SWG,,, — that is, if the second half-edge is in F,,, — then SWG,,, 11 consists of SWG,,,
along with the vertex y and the edge (x,y). If n is large and m is much smaller than n,
this will be the most likely scenario.

4. If y € SWG,,, — that is, if the second half-edge is in S,;, — then SWG,,, 1 consist of SWG,,
along with the edge (z,y). This means that we have detected a cycle in the graph.

The above procedure can be seen as a discrete-time representation of the flow through the
graph observed at the times when the infection traverses a new edge: Each unexplored half-
edge emanating from a vertex that has already been reached by the flow has an exponential
passage time with mean 1 attached to it. In step 1 we pick such a half-edge at random, which
is equivalent to picking the one with the smallest passage time. Then, in step 2, we check which
other half-edge that the chosen half-edge is connected to. This identifies the vertex at the other
end of the edge. If this vertex has not yet been reached by the flow, it is added to the explored
graph along with the connecting edge in step 3. If the vertex has already been reached by the
flow, only the edges is added in step 4, creating a cycle.

As for the number of unexplored half-edges emanating from explored vertices, this is increased
by the forward degree of the added vertex minus 1 in case a vertex is added, and decreased by
2 in case a cycle is detected. Hence, defining

B — the forward degree of the added vertex if a vertex is added in step i;
| —1if acycle is created in step 1,

we have for m > 2 that
m

Sm=Dy+ > (B;i—1).
i=2
Denote the time that it takes for the flow to grow to m edges by T),, and let (E;):2; be a sequence

of i.i.d. Exp(1)-variables. The time for traversing the edge that is added in the ith step is the
minimum of 5; i.i.d. exponential variables with mean 1 and thus it has the same distribution as

E;/S;. Hence
d m
= Z (5)

m\tq



Write V(G) for the vertex set of a graph G and define

that is, R,, is the step when the mth vertex is added to the explored graph. Since no vertex is
added in a step where a cycle is created, we have that R, > m. However, if n is large and m
is small in relation to n, it is unlikely to encounter cycles in the early stages of the exploration
process and thus R,, =~ m for small m. Hence, we should be able to replace m by R,, above
and still obtain quantities with similar behavior. Indeed, Proposition ?? below states that T,
(the time until the flow has reached m vertices) and 7}, have the same limiting distribution as
n — oo as long as m is not too large.

Passage times for smallest-weight paths. To identify the limiting distribution of 7},,, note
that, as long as no cycles are encountered, the exploration graph is a tree and its evolution can
therefore be approximated by a continuous-time branching process. The root is the starting ver-
tex v, which dies immediately and leaves behind D,, children, corresponding to the D, neighbors
of v that are targeted by unexplored half-edges emanating from v. All individuals (=targeted
vertices) then live for an Exp(1)-distributed amount of time, independently of each other, and
when the ith individual dies it leaves behind Ez children, where (Ei)z‘zl is an i.i.d. sequence with
distribution (?7?). Indeed, as long as no cycles are created, the offspring of a given individual is
the forward degree of the corresponding vertex, and the forward degrees of explored vertices are
asymptotically independent with the size-biased distribution specified in (??). The number of
alive individuals after m > 2 steps is given by

Sm=Dy+Y (Bi—1)

=2

and hence the time when the total offspring in the approximating branching process reaches
size m is equal in distribution to Y ;" E;/S;. In [?] it is shown that the branching process
approximation remains valid for m = m,, — oo as long as m,, does not grow too fast with n.
Define

It turns out that “does not grow too fast” means roughly that m,= o(a,).

Write X (u <> v) for the passage time between the vertices u and v, that is, X (u <> v) = Ty, (4,0
with m(u,v) = inf{m : v € SWG™}. The relevant results from [?| are summarized in the
following proposition. Here, part (a) is essential in proving part (b), and part (d) follows by
combining parts (b) and (c). For details we refer to |?]: Part (a) is Proposition 4.7, part (b) is
Proposition 4.6(b), where the characterization of V' is made explicit in (6.14) in the proof, part
(c) is Proposition 4.9 and, finally, part (d) is Theorem 3.2(b).

Proposition 2.1 (Bhamidi, van der Hofstad, Hooghiemstra (2010)). Consider first passage
percolation on a graph generated by the configuration model with a degree distribution that satisfies

(A1) and (A2).

(a) There exists a p > 0 such that the sequence (B;)i>1 can be coupled to the i.i.d. sequence

(Bi)is1 with law (??) in such a way that (B;)"y = (B;)" ., whp.



(b) Let my, be such that log(my,/a,) = o(\/logn) and assume that m = m, — oo is such that
my < my. Asn — oo, the times Ty, and Ty, both converge in distribution to a proper
random variable V', where

d ~~ E;
vVEY
i=1 i

The law of V is interpreted as the explosion time of the approximating branching process.

(¢) Form =m, < a, and any two vertices u and v, the two exploration graphs SWG,(m) and
SWG,(m) are whp disjoint, implying that the corresponding limiting variables V,, and V,,
are independent. Furthermore, at time m = O(ay,), the graph SWGH U SWG%}) becomes
connected.

(d) The passage time X (u <> v) converges in distribution to a random variable distributed as
Vi + Vo

Coupling of competition to first passage percolation. We now return to the setting
with two infection types that are imposed at time 0 at the vertices 1 and 2 and then spread
at rate 1 and A > 1, respectively. Recall that p = 1/A. The following coupling of the two
infection types will be used in the rest of the paper: Each edge e = (u,v) is equipped with an
exponentially distributed random variable X (e) with mean 1. The infections then evolve in that,
if w is type 1 (2) infected, then the time until the infection reaches v via the edge (u,v) is given
by X (u,v) (uX (u,v)) and, if vertex v is uninfected at that point, it becomes type 1 (2) infected.
The resulting process clearly has the same distribution as the original process. It also has the
property that, if the passage time for type 1 along a given path is 7', then the passage time for
type 2 along the same path is uT'.

3 Proof of Theorem ?77(a)

In this section we prove Theorem ?7(a). Recall that the randomness in the process is represented
by one single Exp(1)-variable per edge, as described above. All random times that appear in
the sequel are based on these variables and are then multiplied by p to obtain the corresponding
quantities for the type 2 infection. Following the notation in the previous section, we write
Vi =limy, 00 T, éi) and Vo = lim,, oo Té?, where V; are characterized in Proposition ??(b).

Proposition 3.1. Fiz i <1 and let U be a vertex chosen uniformly at random from the vertex

set. Asn — oo,
P (U is type 1 infected, T, < pT>) — P(Vy < pVa)

and
P (U is type 2 infected, T\ > pT?) — P(Vy > pVa).

With this proposition at hand, Theorem ?7(a) follows easily from Markov’s inequality:
Proof of Theorem ?7?(a). We start by writing

IN1(n) = Ty | < L0 @y — Lvicuvay | + |N1(n) — Lo @y (7)



By Proposition ??(d), the first term converges to 0. As for the second term, by Markov’s
inequality and Proposition 77, we have for any € > 0 that

_ 1
P(|N1(n) )}y >e) < gIED(U is type 1 infected, T," > uT}?) — 0.

~ L e

Thus, it follows that Ni(n) N Livi <ui)» as desired. O

Let €, = c(loglogn)~! for some constant ¢ and define A,, = {T3) + ¢, < pTs> — &, }. In order
to prove Proposition 7?7, we will show that

P(U is type 1 infected ‘An) — 1. (8)

With B, = {T{) — e, > uT> + e,}, analogous arguments can be applied to show that
P(U is type 2 infected|B,) — 1. Since &, — 0 and P(T\) < uT?) — P(Vi < ulVs) and
]P’(TCS,? > uTy2) — P(Vy > uVs), Proposition ?? follows from this.

The proof of (??) is divided in three parts, specified in Lemma ??-?? below. Recall that X (u <> v)
denotes the passage time between the vertices u and v.

Lemma 3.2. For a uniformly chosen vertex U, IP’(X(l «~U)< bn) — 1 for all b, — .

Proof. Just note that, by Proposition ??(d), the passage time between vertices 1 and U converges
to a proper random variable. O

To formulate the second lemma, with CM,, (D) denoting the underlying graph obtained from
the configuration model, let CM,,(D)\{u: D, > s} denote the same graph but where vertices
with degree larger than or equal to s do not take part in the spread of the infection, that is, the
vertices are still present in the network but are declared immune to the infection.

Lemma 3.3. Let the vertex U be chosen uniformly at random from the vertex set. There exist
b, — oo such that IP)(,uX(2 < U) in CM,(D)\{v: D, > (logn)?} > bn) — 1 for any o <
(3—7)7L

Combining Lemma 7?7 and 77, it follows that the randomly chosen vertex U is whp type 1
infected if, for some o < (3—7)71, all vertices with degree at least (logn)? are type 1 infected at
some finite time point. The last lemma states that, conditionally on A,, this is indeed the case.

Lemma 3.4. For o < (3 — 1)~ ! sufficiently close to (3 — 7)~, conditionally on A,, whp all
vertices with degree larger than or equal to (logn)? are type 1 infected at time TS + e

It remains to prove Lemma 7?7 and Lemma ?77. We begin with Lemma 77, which is the easier
one.

Proof of Lemma ??. According to Proposition ??(b) and (d), the passage time X (2 « U) is
whp at most T;fp) + T,(Z[;:) + &, for some €, | 0, where p is the exponent of the exact coupling in

Proposition ??(a). If only vertices with degree smaller than (logn)? are active, then whp
nP

) 4 L,
Tnp - Z §(truc)7
k=1"k

9



where
k

Si™) = Dy - Lipy<gogmyy + D (Bi = 1) - Lig c1ogmye)
i=2
for an i.i.d. sequence (Ez)f:pz with distribution (?7?), that is, a power law with exponent 7—1. Let
f(n) ~ g(n) denote that ¢ < f(n)/g(n) < ¢ in the limit as n — oo (whp when f(n) is random),
where ¢ < ¢ are strictly positive constants. Often we will be able to take ¢ = ¢/, meaning that
f(n)/g(n) converges to ¢ (in probability when f(n) is random), but the more general definition
is needed to handle the assumption (A2) on the degree distribution. We calculate that

(logn)°

)
E[(Bi_l)'l{éigaogn)c}]” Z; 77D« (logn)7 @),
=

and that
(logn)”
53 ™ \2 -(3—1 o(4—T1
Var((Bi = 1) 1, ogmey) ~ ElB) i cogmey] ~ D 3777 ~ (logm)™*77,
j=1

so that E[S“")] ~ nf(logn)°®=7) and Var(5%"9) ~ nf(logn)°“=7). Furthermore, trivially

nP

E k

) k

Tn/’ 2 Z ? ) g(truc) .
k=nr /2 k

We now claim that whp §,(;r“°) < Ck(logn)?B=7) for all k € [n”/2,n”] and some constant C. To
see this, note that S](Ctj_“f ) > S,(;ruc) so that it suffices to show that

P (§;;,§"°> > C (n”/2) (log n)0<3—7>) 0.

With C chosen such that Cn?(logn)?=7) > 3E[S5")

e ], this is a consequence of Chebyshev’s

inequality, since

Var(S(5) (logn)(T=2)

2

9

> 1 ~ 3~
(truc) - P 0'(3—7') (truc) < (truc)
P (Snp > 2C’n (logn) ) <P (Snp > QE[SM ]> < 7

~ (BIS5%)/2)
where the right-hand side clearly converges to 0. It follows that, whp,

nP
1
) >
T = C(log )37 Z Ey/k
k=nr /2

where ZZinp/Q Ey/k ~logn. If 0 < 1/(3 —17), then k :== 1 —0(3 —7) > 0 and the desired
conclusion follows with b,, = ¢(logn)". O

In order to prove Lemma ?7, we will need the following bound, derived in [?, (4.36)].

Lemma 3.5 (van der Hofstad, Hooghiemstra, Znamenski (2007)). Let I' and A be two disjoint
vertex sets and write I' ¥ A for the event that no vertex in I' is connected to a verter in A.
Write Dr and Dy for the total degree of the vertices in T' and A, respectively, and L, for the
total degree of all vertices. Furthermore, let P, be the conditional probability of the configuration
model given the degree sequence (D;)}_,. Then,

Po(T 4 A) < e~ DrDa/CLn), (9)

10



Proof of Lemma ??7. Fix a vertex w with Dy, > (logn)?, write Dyax = max, D, for the maximal
degree, and denote VI = {u: D,, = Dpax}. We will show that

P(X(w > V) > ¢, /2) =0 (n71) (10)

and
P(X(1 ¢ VP*) > TV +e,/2) = o(1). (11)

Lemma 77 follows from this by noting that

P(3w: Dy, > (logn)?, w is not type 1 at time Ts. + &,,)
< P(3w: Dy > (logn)?, w is not type 1 at time Ty, + 5, X (1 3 VIOX) < T + ¢, /2)
+P(X (1 ¢ Vmaxy > TV 4 ¢, /2)
< nP(Dy, > (logn)?, X (w <+ V) > ¢,/2) + P(X (1 <> V) > T 4-¢,,/2) = o(1).

To prove (?77?), we will construct a path vy,..., v, with v9 = w and v, € VI and with the
property that the passage time for the edge (v;, v;11) is at most (log Dy, )1, while D,, > (logn)®
where a; grows exponentially in ¢. The total passage time along the path is hence

m m

m 1 1 ) . )
; log D, 2 log ((logn)a:) ~ loglogn 2 w9 <loglogn> ) (12)

i=1 i=1

as desired.

Say that an edge emanating from a vertex u is fast if its passage time is at most (log D,,)~! and
write M, for the number of such edges. Note that

— le) _Du 1
E[My | Du] = Dy[l — ™!/ 198 P] = log Dy, [1 o <10gD >]

and that, by standard concentration inequalities,

P(M, < D,/[2log D,]) < e~¢Pu/1o8 D,

Indeed, conditionally on D, = d, we have that M, 4 Bin(d,1/logd) and, for any p, it follows
from standard large deviation techniques that

P(Bin(d, p) < pd/2) < e (171822, (13)
see e.g. |?, Corollary 2.18|. In particular, if D, > (logn)? and ¢ > 1, we obtain that
P(Hu: Dy, > (1 —log2)(logn)?, M, < D,/[2log Du]) < pe~(ogn)?/2log((logm))] — (1), (14)

Thus, we may assume that M, > D,,/[2log(D,,)] for any u with D,, > (logn)’.

Write A; = {u: D, > n;}, where n; will be defined below and shown to equal (logn)® for an
exponentially growing sequence (a;). Furthermore, let I'(u) denote the set of fast half-edges from
a vertex u and write |I'(u)| = D', We now construct the aforementioned path connecting w
and V¥ iteratively, by setting v := w and then, given v;, defining v;11 € A4 to be the vertex
with smallest index such that a half-edge in I'(v;) is paired to a half-edge incident to v;+1. We
need to show that, with sufficiently high probability, such vertices exist all the way up until we
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have reached V***. This will follow basically by observing that, for any vertex u; € A;, we have
by Lemma 77 that

Pp(T(ui) ¢ Aig1) < e_Diaz‘StDAz‘-H/(QLn) (15)
and then combining this with suitable estimates of the exponent.

First we define the sequence (7;);>1. To this end, let 71 = (logn)? and define n; for i > 2
recursively as

0 ><1—5)/<r—2>

1
logn ’ (16)

Ni+1 = (

where ¢ € (0,1) will be determined later on. To identify (7;);>1, write 7; = (logn)® and check
that (o)i>1 satisfy the recursion

i1 = o~ (7)
As a result,
nm(25) 72 () e
SN 1= 1
iz

which grows exponentially as long as oy =0 > (1 —6)/(3 —7), that is, 6 > 1 —0(3 — 7).

We next proceed to estimate the exponent in (??). Let A(s) = {j: D; > s} — so that hence
A; = A(n;) — and note that

d nP(D > s (o
Dy = ZDU Lyp,>s3 > SZ Lp,>s) = 8- (2) ~ns (T2,

where the last inequality holds with probability 1 — o(n™%) for any a > 0 as long as s is much
smaller than the maximal degree, e.g. s < n1=9/2/("=1) for some § > 0 — this follows from
(??) by noting that » 1p, >} is binomially distributed. Also recall that we may assume that
IT'(u)| > D, /[21og(D,,)] for every u with D, > (logn)?. Hence, for every vertex u; € A; and as
long as n; < n(1=9/2)/(=1),

P(T () # A1) < exp{—c(mi/log(n))n >} + o(n™®). (19)
Using (77?) it follows that
P(D(u;) # A1) < exp{—c(n/log(n;)) - (logn)/1=D} 1 o(n~), (20)

which is o(n™%) for any a > 0, since 1/(1 — §) > 1 and 7?/log(n;) is uniformly bounded from
below as 17; — oo. Taking a > 3, this implies that, as long as n; < n(1=9/2)/(7=1),

]P)n(al and u; € A;: I’(ul) > Ai+1) = O(nil). (21)
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Hence, as long as n; < n(1=0/2)/(=1) "the probability that the construction of the path (vi)i>1
fails in some step is o(n™1).

Let i* = max{i: n; < n(1=9/2/(7=D} be the largest 4 for which 7; is small enough to guarantee
that the failure probability is suitably small. The path vy, ...,v;* then has the property that
D,, > (logn)%® and the passage time on the edge (v;,v;11) is at most (log D,,) !, as required.
To complete the proof of (?7), it remains to show that, with probability 1 — o(n~!), the vertex
v+ has an edge with vanishing weight connecting to a vertex in V;"®*. To this end, note that, by
construction

(=8/2)(-2) (1-5/2)
n =90-1 <D, <n D, (22)

Furthermore, Dyayx > n(1=9/4/(7=1) with probability 1 — o(n™1), since
P(Dpax > 2) <1— (1 —ca= "), (23)

which decays stretched exponentially for = n(=%/4/(=1_ Define v = [(1 — 6/2)(r — 2)]/[(1 —
0)(t—1)] and £ = (1—0/4)/(7—1) and let H denote the number of (multiple) edges between v;
and V;'**, assuming that D, , = n” and Dpax = né. Then H is hypergeometrically distributed
with

né

E[H] = n" - ~ n’H—E—l,

n—n’
where

yHE—1= §+2(r—1)—1],

5
41 -90)(1—1)
which is positive as soon as 6 > 1 — 2(7 — 2). To bound P(H < E[H]/4), let H' be a binomial
random variable with parameters p = (n® —n?)/(n — n?) and n”, where we note that & > v
for 6 <1 — (7 —2). Then H and H' can be coupled so that P(H' < H) = 1, and furthermore
E[H'|/E[H] 1 1, so that E[H]| < 2E[H’] for large n. Using (?7?), it follows that

P (H S E[H]/4) S P (Hl S E[H/]/Q) S e_cn"/(nf_n’Y)/(n_n’Y) ~ e—Cn’Y+§71'
Hence, with probability 1 — o(n™1), the vertex v;+ is connected to V1 by at least E[H]/4 ~
n"+¢1 edges. Let (E;);>1 be an i.i.d. sequence of Exp(1)-variables. The probability that among
the edges connecting v;+ and V12X there is at least one with passage time at most (logn)~! is
bounded from above by

nYt+e-1 1 1 nétv—1 1
P{ mn E;,<— | =1-P|E; > — =1—-e" [logn — 1 _ o(n~1).
i=1 logn logn

This completes the proof of (?7).

To prove (?77?), first note that it follows from [?, Lemma A.1], that the number of infected vertices
at time Té;) is whp larger than b, for any b,, with b,/a,, — 0, and that, by Proposition ??(a),
there exist p > 0 such that the degrees (BZ);‘ZP2 of the n” first vertices that were infected are whp
equal to an i.i.d. collection (B;)?”, with distribution (??). A calculation analogous to (??) yields
that max{Ba, ..., Bpe} > n?1=9/(7=2) whp for any § € (0,1). The vertex with maximal degree
at time T can now be connected to Vi by a path constructed in the same way as in the proof
of (2?). Note that in this case we have 71 = n?(1=9/("=2) which gives n; = n*S' /(logn)¢" " with
¢ =(1-0)/(r —2). This means that the bound on the passage time for the path is of the order
(logn)~!, which is even smaller than the required (loglogn)~!. O

13



4 Proof of Theorem ?7(b)

In this section, we prove Theorem ?7?(b). We now explore the first passage percolation from the
two vertices 1 and 2 simultaneously. Let Tl(glrf) denote the time when the SWG from these two
vertices consists of m vertices (recall the definition (??) of R,,). Furthermore, write I and I for
the winning and the losing type, respectively, that is, I = 1+ 1gy;5 15y and IT = 1+ Ly, <15} -
Our first result is that T,Ecla’i) converges to the minimum of the explosion times V; and Vs of the
one-type exploration processes, and that the asymptotic number N}, of vertices that are then
occupied by the losing type is finite. In the rest of the section we then prove that the asymptotic
number N} of vertices occupied by the losing type after time Tga’j) is also almost surely finite.

Lemma 4.1. Let N}¥(n) = max{m: Ty < T3?}. Then, as n — oo,

(T2, N7 () =5 (Vi A (uV2), N, (24)

where .
N}, = max {m: Z Ej/S;II) <ViA(uV2)}. (25)

j=1

Proof. By Proposition ??(c), the set of type 1 and type 2 infected vertices, respectively, are whp
disjoint at the time Tl(;a’j) when the winning type reaches size a,, that is, none of the infection
types has then tried to occupy a vertex that was already taken by the other type. Up to that
time, the exploration processes starting from vertex 1 and 2, respectively, hence behaves like in
the corresponding one-type processes. The asymptotic distributions of T,%’ff and N}, (n) follow
from the characterization (??) of the time T}, in a one-type process and the convergence result
in Proposition ?7?(c). O

The next result describes how vertices are being found by the winning species. Write N, ,(t’k) (n)
for the fraction of vertices that have degree k and that have been captured by the winning type
at time T}{l’:) + t, that is,
Nl(t’k)(n) = #{v: D, = k and v is infected by type I at time T}%’i) +t}/n.

The essence of the result is that N I(t’k)(n) develops in the same way as in a one-type process with
the winning type. Indeed, T,(;u‘i) can be interpreted as the time when the super-vertices have
been found by the winning type and, after this time, the winning type will start finding vertices
very quickly, which will make it hard for the losing type to spread. We denote the mean passage

time per edge for the winning type by p; (that is, us is equal to 1 or u depending on whether
I =1or I =2)and define

V(k)=>_ E;/S;k),
j=1

where '
Sj(k}) =k+ Zj:(Bl — 1).

=1

Proposition 4.2 (Number of fixed degree winning type vertices at fixed time). As n — oo,

NP (n) L5 B(u,V (k) < )B(D = k).
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The proof of Proposition 77 is deferred to the end of this section. We first complete the proof of
Theorem ?7?(b) subject to it. To this end, we grow the SWG of the losing type from size N;;(n)
onwards. At this moment, whp the losing type has not yet tried to occupy a vertex that was
already taken by the winning type. However, when we grow the SWG further, then the winning
kind will grow very quickly due to its explosion. We will show that the growth of the losing kind
is thus delayed to the extent that it will only conquer finitely many vertices. An important tool
in proving this rigorously is a stochastic process (S,) keeping track of the number of half-edges
incident to the SWG of the losing type.

Recall that, by the construction of the exploration process described in Section 77, the quantity

ng) represents the number of half-edges incident to the SWG of the losing type when the SWG
contains precisely j vertices. Write Ry (o) = Ry, and define Sy = SE% and T} = 0. The
sequences (1, )m>1 and (S}, )m>1 are then constructed recursively in that 7)) -7/ | = E,,,/S! |
for an i.i.d. sequence (Ey,)m>1 of exponential variables with parameter 1, and

S —8' =D -1, with D' =By, (26)

where, conditionally on Em and 7] _,, the indicator I, is Bernoulli with success probability
P(V(Bp) > T',_; | Bm,T!,_,). Here, the sequence (B,,) is i.i.d. with distribution (??).

We claim that the process (S],) keeps track of the asymptotic number of half-edges incident to
the SWG of the losing type. To understand this, assume that there are S, half-edges incident
to the SWG after the (IV};(n) + m)th growth. The minimal edge weight then has distribution
T, -1, _,=E/S _,. When we pair the half-edge with this minimal weight, the conditional
probability of attaching it to a vertex that is of the winning type at time 7, _; and that has
degree k given T, _, is, by Proposition ??, close to

BN (n) KP(D = k)
L, = ED

P(u,V (k) < T'r/n—l | T'r,n—l)'

As a result, with D* denoting a size-biased version of a degree variable D, the probability that
the half-edge is attached to a vertex of degree k that does not have the winning type at time
T! _, is close to

KP(D = k)

Bpy PV (8) > Thoy | Thy) = B(D* = KIBGuV (DY) > Ty | Ty, D' = )

When this happens, the number of half-edges incident to the SWG of the losing type is increased
by k — 1. On the other hand, when the half-edge is attached to a vertex of the winning kind,
then the number of losing type half-edges decreases by 1. Putting this together and using that

BL<D -1 proves the claim in (?77).

Recall that the total asymptotic number of losing type vertices is denoted by Ny7. This number
can now be expressed as
NII = NI*I + N**

11

where N}, is defined in Lemma ?? and N;7 := max{S), > 1}. Indeed, the losing type cannot
grow any further after the point when (S/,) hits 0. To prove Theorem ?7?, it hence suffices to
show that the random variable N/ is finite almost surely. Note that the sequence (Em)m21 that
determines the step sizes D/, in the recursion (??) has infinite mean, which implies that many of
its values are large. This is the problem that we need to overcome in showing that N} is finite.

In order to do this, we first need to investigate V' (k) and some related quantities in more detail.
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Lemma 4.3 (Asymptotics for V (k) for large k). Assume that (A2’) holds. As k — oo,
BV (k) - / 1/(1+ Qy)dt
0

where (Q¢)t>0 is a (T — 2)-stable motion. Further,
E[/ 1/(1 —i—Qt)dt} < . (27)
0

Proof. Recall that V (k) = 3772 E;/S;(k), where S;(k) =k + S (B; —1). Since B is in the

domain of attraction of a stable law with exponent 7 — 2, we have that (S;r—2(k)/k)i>0 LN
(14 Q¢)t>0, where (Q¢)r>0 is a stable subordinator with exponent 7 — 2. Thus,

BV (k) -5 /Oo /(14 Qp)dt =:Y. (28)
0

As for the expectation of the integral random variable Y, we use Fubini to write

E[/OOO 1/(1+Qt)dt} :/OOOE[1/(1+Qt)]dt (29)

/ / —5(1+Qt) dsdt
= / / e_se_UtSTﬂdsdt,
0 0

where we have used that E[e @] = e=7" " for some o > 0. We continue to compute this as

E[/Ooo 1/(1+ Qt)dt} = (17/000 s T ds < oo, (30)

since 7 — 2 € (0,1). O
Lemma ?7 allows us to prove (?7) in Theorem ?7(c):

Proof of (77) in Theorem ??(c). We note that V; 4 Vi(Aik), where A; ) = Z§:1 D; ; and

(D;,j)ij>1 are ii.d. random variables with the same distribution as D. When k — oo, we have

that A;x/k — E[D]. As a result, (E[D]k)3~ Vi), -5 V3, while (E[D]k)3"Vaar —> a7 ~3Y5,
where Y7, Ys are i.i.d. copies of Y. Hence,

PV < iVa,ar) = P((EIDIR) Vi < p(EB[DIR)* Vour) = P(Vi < g™ V2).  (31)
0

Next we investigate the tail behavior of the random variables @y and Y = [7°1/(1 + Q;)dt in
more detail.

Lemma 4.4 (Tail probabilities of @, and Y'). There exists a v = y(o,7) > 0 such that

B(Qy < u) < oW/, (32)

and there exists a k such that X
P(Y > y) < oY /(3—7’)'
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Proof. For (?7), we use the exponential Chebychev inequality to obtain that, for every s > 0

T—2

P(Q, < u) = B(e™% > ¢™) < ™ E[e™%] = ee V"
Minimizing over s > 0 gives s = (o(7 — 2)y/u)"/3~7), and substitution of s yields the claim in
(77).

For (7?7), we fix A > 1 to be chosen later on, and condition on @, < A—1or Q, > A—1. This
yields

The first probability is by (??) bounded by
IF’(Y >y Qy/z <A- 1) < P(Qy/Q <A- 1) < e_,y/y1/(3—7)/(14_1)(4—7)/(3—7)7
where 7/ = 4271/ G=7) For P(Y >y, Qy/2 > A—1), we note that Q,, > 0, so that 1/(1+Q;) <1

for every ¢ < y/2 and the process (Q4y/2 — Qy/2)t>0 has the same law as (Q¢)¢>0. Thus, on the
event that @y, > A — 1,

y/2 p oo 1 p y/2 p oo 1 p
Y < / 1 t+/ t < / 1 t+/ t.
0 g2 1+ Q1 0 /2 A+ (Qury2 — Qy2)

Hence

o 1

P(Y > y,Qyp>A—1) < P(/y/z A+ (Qrry2 — Qyy2)

:[P</OOOAthdt2y/2).

Further, since for every C > 0, the law of (CQ¢)¢>0 is the same as that of (Qycr—2), we see that

& 1 1 [ 1 d 1 /°° 1
- dt==| ——att= | —
/0 A+Qt A/O 1+Qt/A A 0 1+Qt/AT—2

= A3 / 1 dt = AT3Y.
0o 1+Q:

dtzy/2>

Thus, we obtain that
P(Y > y) < e VV/CTI/ANEIETD L iy > 3Ty 19y,
Taking A such that A3~7/2 = 2, this leads to
P(Y >y) <e v/ L P(Y > 2). (34)
Iteration of (?7) leads to (?7). O

With these estimates at hand we are now ready to prove Theorem ?7?(b).

Proof of Theorem 77 (b). Recall the construction of the process (S],)m>0 in the recursion (?7?).
As described above, the process keeps track of the number of half-edges incident to losing type
vertices after the explosion of the winning type. Also recall that the asymptotic number of
vertices captured by the losing type after this time is given by N} = max{m : S}, > 1}. We
need to show that N/ < co almost surely.
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We first claim that E[D), | N/, D}] < oo for m > 3. To this end, recall that 7)) — T, | =
En/S), 1, where (Ep,)m>1 is an i.i.d. sequence of Exp(1)-variables. Conditionally on N7, D’l,
we thus have that

Tr/nfl > Ei/N;kI + Eé/(N;kI + Dll - 1)‘

It suffices to investigate the case where N}, + D| —1 > 1, since otherwise N, = 2. Then, for
k > 1 large, we split

E[Dy, | Nipy D) = E[BuB(V(Bo) > Ty | B T )15, -y | iy DS]
+E[BmP(Y Z Tr/n—lBgn_T ‘ BmaTygz—l) {B >k} ’ uvD/l]
The first term is bounded by k, the second is, for large k, dominated by
E[ By exp{—r(Tp-1)"C B}z L | Nii D).
Now, T/, > (Ey + E2)/Z, where Z = N}, V (N}, + D} — 1). Therefore,
E[EmeXp{—li( 7,71—1)1/(3 ™ m}]l{B >k} ‘ NI*I’D/}
< E[Bm exp{—chl/(?’ T)(E1 + Ez)l/(3 T)Bm}ﬂ{§m>k} | NI*I,D’]
Using that
E[exp{—a(E; + Ep)"/""}] = / ue™ " du = ™),
0
we thus arrive at
E [Bm exp{—~x(T}, )Y m}]]'{B >k} | N7;, D]
-2 2(3—7 * 2 2r—5
<OMZPE[BnB, > D5 4 | NIDY = O0(W)Z°E[By PLig ]

We compute that
E[B27'5 <O ZEQT 5[ (r—-1) 2674

since 7 € (2,3). Thus, indeed E[D], | N/, D] < oo, and also E[D],] < oo.

We next extend this argument to show that E[D] | N/,Dj] — 0 as m — oco. We use the
fact that m — T, _, is stochastically increasing, and, since E[D], | N}, D]] < oo, we obtain

that 7/, 2% oo. Thus, P(V(B,) > T, 1 | By, T/, ;) tends to zero unless B, is large. By

m—1
monotone convergence, E[D! | N;;,Dj] — 0. As a result, since E[D],] < oo, by dominated
convergence also E[D] | — 0.
Since S}, —S! _; = D], —1, we have that S/, — S/, _; — —1. This in turn implies that (S},)m>0

hits zero in finite time, so that N5 = max{m: S}, 2 1} < oo a.s. Indeed, take mg so large that
E[D;,] < € for every m > mg. Then S, is some finite random variable. In order for S}, > 1
for every m > mg to occur, we need fo have that > ieme Dm = (m —mg) + 5y, for every
m > mg. Take m > 2(mg A S/, ), which we can do a.s. by taking m sufficiently large. Then,

mo
> D;, > (m —mg) + S}, implies that )" D!, > (m — mg)/2. By the Markov

j=mo+1 j=mo+1
inequality, the probability of this event is at most

p( Z D}, > (m—mo)/2) < m—2m0 zmj E[D.] < 2.

Jj=mo+1 Jj=mo+1
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The above is true for arbitrary € > 0, so that P(S], > 1 Vm) = 0. O

We finish by proving Proposition 77.

Proof of Proposition ?7?. Let U be a randomly chosen vertex and write 1"* for the indicator
taking the value 1 when vertex U has degree k and is occupied by the winning type I at time
Th2 +t. Note that

NP (n) = E[1EY | CM, (D). (35)

We aim at using a second moment method on NI(t’k) (n), and start by showing that E[1{"] —
P(V(k) < t)P(D = k). First note that

P(14" = 1) = P(U is infected by type I at time T,%’z) +t|Dy = k)P(Dy = k), (36)

so that it suffices to show that the first factor above converges to P(V (k) < t). To this end,
assume that V3 < pVs — that is, assume that the winning type is I = 1 — and recall that
X(1 <> U) denotes the passage time between vertices 1 and U in a one-type process with only
type 1 infection. It follows from the analysis in [?|, summarized in Proposition ??, that X (1 < U)
converges in distribution to Vi + V' (k): First we grow the SWG from vertex 1 to size a,,. The
time when this occurs 7)) converges in distribution to V3. We then grow the SWG from U until
it hits the SWG from vertex 1. This occurs when it has size C,, ~ a,, and the time it takes to
reach this size converges to V' (k) — indeed, V (k) describes the asymptotic explosion time for an
exploration process started at a vertex with degree k. Hence,

P(X(1 4 U)<TY +t|Dy = k) —» P(V(k) < t). (37)

We need to show that the presence of type 2 infection started from vertex 2 does not affect this
convergence result.

Write SWG™(s) for the one-type SWG from vertex u at time s, that is, SWG™(s) consists
of the vertices and edges that have been reached by the flow from vertex u at time s. Let
en = (loglogn)™' and note that, if Vi < pVs, then T\) + &, < uT> — ¢ for n large. By
Lemma ??, the number of type 2 infected vertices at time 7. then converges to an almost
surely finite random variable. Furthermore, the probability that any additional vertices become
type 2 infected in the time interval (T(;:L),TCEB + €,,) converges to 0, since €, — 0. Hence, whp
SWGI(TsY 4 £,) NSWCGP(TLY + ¢,) = @. Also, by Lemma ??, the type 1 infection has whp
occupied all vertices with degree larger than (logn)? at time T\ + &,,.

Now consider the SWG from vertex U, where whp U ¢ SWG® (T(Sl) +¢&y,). Without the presence
of the type 2 infection, this will hit SWG® (T4 + &,) when it has reached size C,, ~ a, and the
time for this converges to V (k). We claim that whp it does not hit the type 2 infection before this
happens. This follows from Lemma ??: The passage time from any vertex in SWG® (Ts +¢,)
to U, not using vertices with degree larger than (logn)? — indeed, these are already occupied
by the type 1 infection and hence not available — is whp larger than b,, where b, — co. Hence,
the passage time from any type 2 vertex to U is whp larger than 2V (k) + € for any € > 0. This
means that whp the type 2 infection does not reach any of the vertices along the minimal weight
path between SWG™® (T + ¢,,) and U before time V (k) + . Indeed, if it would, then there
would be a path between vertex 2 and U that avoids high-degree vertices and that has passage
time less than 2V (k) + ¢.

It follows that, if V1 < uVa, then the passage time between vertex 1 and U behaves asymptotically
the same as in a one-type process with only type 1 infection, as desired.
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We continue by studying the second moment of N ,(t’k) (n). By (?7?),
B[N (n)?] = E[E[1Y | OM(D)?] = E[16,716,"], (38)
where Uy, Us are two independent uniform random vertices. We rewrite this as

E[N{"M (n)?] = P(LSY =187 =1) = P = 11" = 1| Dy, = Dy, = k)P(Dy, = Dy, = k).

By the fact that the degrees are i.i.d., it follows that

1 1
P(Dy, = Dy, = k) = (1 - ) P(D =k)>+ —P(D =k) = P(D = k)%
n n
Further,
IP’(]le) — ﬂ%ﬁ;k) =1| Dy, = Dy, = k) (39)

= P(Uy, Uy both infected by type I at time T,%’j) + t‘DU1 = Dy, = k).

The above conditional probability converges to P(V (k) < t)? — this follows from the steps below
(??) — and we have already shown that X (1 <+ U;) converges in distribution to V; + Vi(k). In
the same way, we can construct the SWG from vertex Us to see that X (1 <» Us) converges in
distribution to Vi 4 Va(k), where Va(k) is independent of Vi (k). Indeed, the SWG from both
vertex 1 and Uy are asymptotically negligible compared to the entire graph, and therefore hardly
change the distribution of the SWG from Us. As a result,

P(U1, Uz both infected by type I at time T]gavj) + t’DUl = Dy, = k) (40)
— P(Vi(k) < t,Va(k) < k) =P(V (k) <t)?,

the latter due to independence. We conclude that E[N}t’k) (n)?] = EJ 7I(t’k) (n)]? + o(1), so that

Var(]\_/I(t’k) (n)?) — 0. As a result, since also E[Nj(t’k) (n)] = P(V(k) < t)P(D = k), we arrive at

N () 5 P(V (k) < )P(D = k), (41)

as required. O
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