
EURANDOM PREPRINT SERIES
2013-027

Hypercube percolation

January 18, 2012

Remco van der Hofstad, Asaf Nachmias
ISSN 1389-2355

1



HYPERCUBE PERCOLATION

REMCO VAN DER HOFSTAD AND ASAF NACHMIAS

ABSTRACT. We study bond percolation on the Hamming hypercube {0,1}m around the critical probabil-
ity pc . It is known that if p = pc (1+O(2−m/3)), then with high probability the largest connected com-
ponent C1 is of size Θ(22m/3) and that this quantity is non-concentrated. Here we show that for any
sequence εm such that εm = o(1) but εm ≫ 2−m/3 percolation on the hypercube at pc (1+εm) has

|C1| = (2+o(1))εm2m and |C2| = o(εm2m) ,

with high probability, where C2 is the second largest component. This resolves a conjecture of Borgs,
Chayes, the first author, Slade and Spencer [18].
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1. INTRODUCTION

Percolation on the Hamming hypercube {0,1}m is a combinatorial model proposed in 1979 by Erdős
and Spencer [24]. The study of its phase transition poses two inherent difficulties. Firstly, its non-
trivial geometry makes the combinatorial “subgraph count” techniques unavailable. Secondly, the
critical probability where the phase transition occurs is significantly larger than 1/(m−1), making the
method of stochastic domination by branching processes very limited. Unfortunately, these are the
two prominent techniques for obtaining scaling windows in mean-field settings (see e.g., [4, 13, 19,
23, 31, 37, 43, 45, 46, 47]).

In light of the second difficulty, Borgs, Chayes, the first author, Slade and Spencer [16, 17, 18] sug-
gested that the precise location pc of the phase transition is the unique solution to the equation

Epc |C (0)| =λ2m/3 . (1.1)

where C (0) is the connected component containing the origin, |C (0)| denotes its size, and λ ∈ (0,1)
denotes an arbitrary constant. Later it will become clear how λ is chosen. The lace expansion was
then employed by the authors to show that at p = pc (1+O(2−m/3)) the largest connected component
C1 is of size Θ(22m/3) whp — the same asymptotics as in the critical Erdős and Rényi random graph
both with respect to the size of the cluster and the width of the scaling window (see Section 1.1 for
more details). However, this result does not rule out the possibility that this critical behavior proceeds
beyond the O(2−m/3) window and does not give an upper bound on the width of the scaling window.

The authors conjectured that the giant component “emerges” just above this window (see [18, Con-
jecture 3.2]). They were unable to prove this primarily because their combination of lace expansion
and sprinkling methodology breaks for p above the scaling window. In this paper we resolve their
conjecture:

Theorem 1.1. Consider bond percolation on the Hamming hypercube {0,1}m with p = pc (1+ε), where
pc = pc (λ) with λ ∈ (0,∞) a fixed constant, and ε = εm = o(1) is a positive sequence with εm ≫ 2−m/3.
Then |C1|

2εm2m
P−→ 1,

where
P−→ denotes convergence in probability, and

E|C (0)| = (4+o(1))ε2
m2m .

Furthermore, the second largest component C2 satisfies

|C2|
εm2m

P−→ 0.
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The main novelty of our approach is showing that large percolation clusters behave in some sense
like uniform random sets. We use this to deduce that two large clusters tend to “clump” together and
form a giant component. This analysis replaces the appeal to the hypercube’s isoperimetric inequality
which is key in all the previous works on this problem (see further details in Section 1.3). It essentially
rules out the possibility that two large percolation clusters are “worst-case” sets, that is, sets which
saturate the isoperimetric inequality (e.g., two balls of radius m/2−p

m around the two poles of the
hypercube). The precise behavior of the random walk on the hypercube plays a key role in prov-
ing such statements. Our proof combines this idea with some combinatorial ideas (the “sprinkling”
method of [3], see Section 1.3), and ideas originating in statistical physics (Aizenman and Barsky’s [1]
differential inequalities and variants of the triangle condition). Our proof methods are general and
apply for other families of graphs such as various expanders of high degree and high girth, finite tori
of dimension growing with the length and products of complete graphs of any dimension (answering
a question asked in [31]). We state our most general theorem in Section 1.5 and illustrate its use with
some examples.

The problem of establishing a phase transition for the appearance of a component of size order 2m

was solved in the breakthrough work of Ajtai, Komlós and Szemerédi [3]. They proved that when the
retention probability of an edge is scaled as p = c/m for a fixed constant c > 0 the model exhibits a
phase transition: if c < 1, then the largest component has size of order m and if c > 1, then the largest
component has size linear in 2m , with high probability.

At about the same time, Bollobás [13] initiated a study of zooming in onto the large scale properties
of the phase transition on the Erdős and Rényi [23] random graph G(n, p) (see Section 1.1 below).
However, unlike G(n, p), the phase transition in the hypercube does not occur around p = 1/(deg−1),
where deg denotes the degree of the graph. In fact, it was shown by the first author and Slade [34, 35]
that pc of the hypercube {0,1}m satisfies

pc = 1

m −1
+ 7/2

m3
+O(m−4) , (1.2)

Here and below we write f (m) = O(g (m)) if | f (m)|/|g (m)| is uniformly bounded from above by a
positive constant, f (m) = Θ(g (m)) if f (m) = O(g (m)) and g (m) = O( f (m)) and f (m) = o(g (m)) if
f (m)/g (m) tends to 0 with m. We also say that a sequence of events (Em)m≥1 occurs with high proba-
bility (whp) when limm→∞ P(Em) = 1.

The first improvement to [3] was obtained by Bollobás, Kohayakawa and Łuczak [15]. They showed
that if p = (1+εm)/(m−1) with εm = o(1) but εm ≥ 60m−1(logm)3, then |C1| = (2+o(1))εm2m whp. In
view of (1.2), it is clear that one cannot improve the regime of εm in their result to more than εm ≥ m−2.

In [18], the authors show that when εm ≥ e−cm1/3
and p = pc (1+ εm), then |C1| ≥ cεm2m whp. Note

that e−cm1/3 ≫ 2−αm for any α > 0 so the requirement on εm of Theorem 1.1 is much weaker. Our
result, combined with those in [16, 17, 18], shows that it is sharp and therefore fully identifies the
phase transition on the hypercube.

Other models of statistical physics, such as random minimal spanning trees and bootstrap perco-
lation on the hypercube have been studied before, we refer the reader to [7, 8, 49]. In the remainder of
this section we present some of the necessary background and context of the result, briefly describe
our techniques (we provide a more detailed overview of the proof in the next section) and present a
general theorem which is used to establish scaling windows for percolation on various other graphs
studied in the literature.

1.1. The Erdős and Rényi random graph. Recall that G(n, p) is obtained from the complete graph by
retaining each edge of the complete graph on n vertices with probability p and erasing it otherwise,
independently for all edges. Write C j for the j th largest component obtained this way. An inspiring
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discovery of Erdős and Rényi [23] is that this model exhibits a phase transition when p is scaled like
p = c/n. When c < 1 we have |C1| =Θ(logn) whp and |C1| =Θ(n) whp when c > 1.

The investigation of the case c ∼ 1, initiated by Bollobás [13] and further studied by Łuczak [43],
revealed an intricate picture of the phase transition’s nature. See [14] for results up to 1984, and
[4, 37, 38, 44] for references to subsequent work. We briefly describe these here.

The critical window. When p = (1+O(n−1/3))/n, for any fixed integer j ≥ 1,( |C1|
n2/3

, . . . ,
|C j |
n2/3

)
d−→ (χ1, . . . ,χ j ) ,

where (χi ) j
i=1 are random variables supported on (0,∞), and

d−→ denotes convergence in distribution.

The subcritical phase. Let εn = o(1) be a non-negative sequence with εn ≫ n−1/3 and put p = (1−
εn)/n, then, for any fixed integer j ≥ 1,

|C j |
2ε−2

n log(ε3
nn)

P−→ 1.

The supercritical phase. Let εn = o(1) be a non-negative sequence with εn ≫ n−1/3 and put p =
(1+εn)/n, then

|C1|
2εnn

P−→ 1,

and, for any fixed integer j ≥ 2,
|C j |

2ε−2
n log(ε3

nn)
P−→ 1.

Thus, the prominent qualitative features of this phase transition are:

(1) The emergence of the giant component occurs just above the scaling window. That is, only
in the supercritical phase we have that |C2| ≪ |C1|, and that |C1|/n increases suddenly but
smoothly above the critical value (in mathematical physics jargon, the phase transition is of
second order).

(2) Concentration of the size of the largest connected components outside the scaling window
and non-concentration inside the window.

(3) Duality: |C2| in the supercritical phase has the same asymptotics as |C1| in the corresponding
subcritical phase.

Theorem 1.1 shows that (1) and (2) occurs on the hypercube (the non-concentration of |C1| at pc

was proved in [30]). Property (3) on the hypercube remains an open problem (see Section 8).

1.2. Random subgraphs of transitive graphs. Let us briefly review the study of percolation on finite
transitive graphs presented in [16, 17, 18] (see also [6]). We focus here only on some of the many
results obtained in these papers. Let G be a finite transitive graph and write V for the number of
vertices of G . Let p ∈ [0,1] and write Gp for the random graph obtained from G by retaining each edge
with probability p and erasing it with probability 1−p, independently for all edges. We also write Pp

for this probability measure. We say an edge is p-open (p-closed) if was retained (erased). We say that
a path in the graph is p-open if all of its edges are p-open. For two vertices x, y we write x ↔ y for the
event that there exists a p-open path connecting x and y . For an integer j ≥ 1 we write C j for the j th
largest component of Gp (breaking ties arbitrarily) and for a vertex v we write C (v) for the component
in Gp containing v .
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For two vertices x, y we denote

∇p (x, y) =
∑
u,v

Pp (x ↔ u)Pp (u ↔ v)Pp (v ↔ y) . (1.3)

The quantity ∇p (x, y), known as the triangle diagram, was introduced by Aizenman and Newman [2]
to study critical percolation on high-dimensional infinite lattices. In that setting, the important fea-
ture of an infinite graph G is whether ∇pc (0,0) <∞. This condition is often referred to as the triangle
condition. In high-dimensions, Hara and Slade [28] proved the triangle condition. It allows to deduce
that numerous critical exponents attain the same values as they do on an infinite regular tree, see e.g.
[9, 2, 39, 41].

When G is a finite graph, ∇p (0,0) is obviously finite, however, there is still a finite triangle condition
which in turn guarantees that random critical subgraphs of G have the same geometry as random
subgraphs of the complete graph on V vertices, where V denotes the number of vertices in G . That is,
in the finite setting the role of the infinite regular tree is played by the complete graph. Let us make
this heuristic formal.

We always have that V →∞ and that λ ∈ (0,1) is a fixed constant. Let pc = pc (λ) be defined by

Epc (λ)|C (0)| =λV 1/3 . (1.4)

The finite triangle condition is the assumption that ∇pc (λ)(x, y) ≤ 1{x=y} +a0, for some a0 = a0(λ) suf-
ficiently small. The strong triangle condition, defined in [17, (1.26)], is the statement that there exists
a constant C such that for all p ≤ pc ,

∇p (x, y) ≤ 1{x=y} +Cχ(p)3/V +αV , (1.5)

where αV → 0 as m → ∞ and χ(p) = Ep |C (0)| denotes the expected cluster size. Throughout this
paper, we will assume that the strong triangle condition holds. In fact, in all examples where the finite
triangle condition is proved to hold, actually the strong triangle condition (1.5) is proved. In [17], (1.5)
is shown to hold for various graphs: the complete graph, the hypercube and high-dimensional tori
Zd

n . In particular, the next theorem states (1.5) for the hypercube.

Theorem 1.2 ([17]). Consider percolation on the hypercube {0,1}m . Then for any λ, there exists a con-
stant C =C (λ) > 0 such that for any p ≤ pc (λ) (as defined in (1.4))

∇p (x, y) ≤ 1{x=y} +C (χ(p)3/V +1/m) . (1.6)

As we discuss in Remark 4 below Theorem 1.3, our methodology can be used to yield a simple proof
of Theorem 1.2 without relying on the lace-expansion methods derived in [17]. The main effort in [16]
is to show that under condition (1.5) the phase transition behaves similarly to the one in G(n, p) de-
scribed in the previous section. The main results obtained in [16] are the following:

The critical window. Let G be a finite transitive graph for which (1.5) holds. Then, for p = pc (1+
O(V −1/3)),

P(A−1V 2/3 ≤ |C1| ≤ AV 2/3) = 1−O(A−1) .

The subcritical phase. Let G be a finite transitive graph for which (1.5) holds. Let ε = o(1) be a non-
negative sequence with ε≫V −1/3 and put p = pc (1−ε). Then, for all fixed δ> 0,

P(|C1| ≤ (2+δ)ε−1 log(ε3V )) = 1−o(1) .

The supercritical phase. Let G be a finite transitive graph for which (1.5) holds. Let ε = o(1) be a
non-negative sequence with ε≫V −1/3 and put p = pc (1+ε). Then,

P(|C1| ≥ AεV ) =O(A−1) .

Thus, while these results hold in a very general setting, they are incomplete. Most notably, in the
supercritical phase there is no matching lower bound on |C1|. So, a priori, it is possible that |C1| is



6 REMCO VAN DER HOFSTAD AND ASAF NACHMIAS

still of order V 2/3 when p = pc (1+ε) for some ε≫ V −1/3 and that the scaling window is in fact much
larger than V −1/3. It remains an open problem to show whether (1.5) by itself implies that |C1|/(εV )
converges in probability to a constant in the supercritical phase.

As we mentioned before, the particular case of the hypercube was addressed in [18]. There the
authors employed some of the result of [16, 17] together with a sprinkling argument to provide a lower

bound of order ε2m on |C1| valid only when ε≥ e−cm1/3
. We will rely on the sprinkling method for the

arguments in this paper, so let us briefly expand on it.

1.3. Sprinkling. The sprinkling technique was invented by Ajtai, Komlós and Szemerédi [3] to show
that |C1| =Θ(2m) when p = (1+ε)/m for fixed ε > 0 and can be described as follows. Fix some small
θ > 0 and write p1 = (1+ (1−θ)ε)/m and p2 ≥ θε/m such that (1−p1)(1−p2) = 1−p. It is clear that
Gp is distributed as the union of the edges in two independent copies of Gp1 and Gp2 . The sprin-
kling method consists of two steps. The first step is performed in Gp1 and uses a branching process
comparison argument together with Azuma-Hoeffding concentration inequality to obtain that whp
at least c22m vertices are contained in connected components of size at least 2c1m for some small but
fixed constants c1,c2 > 0. In the second step we add the edges of Gp2 (these are the “sprinkled” edges)
and show that they connect many of the clusters of size at least 2c1m into a giant cluster of size Θ(2m).

Let us give some details on how the last step is done. A key tool here is the isoperimetric inequality
for the hypercube stating that two disjoint subsets of the hypercube of size at least c22m/3 have at
least 2m/m100 disjoint paths of length C (c2)

p
m connecting them, for some constant C (c2). (The m100

in the denominator is not sharp, but this is immaterial as long as it is a polynomial in m.) This fact is
used in the following way. Write V ′ for the set of vertices which are contained in a component of size
at least 2c1m in Gp1 so that V ′ ≥ c22m . We say that sprinkling fails when |C1| ≤ c22m/3 in the union
Gp1 ∪Gp2 . If sprinkling fails, then we can partition V ′ = A⊎B such that both A and B have cardinality
at least c22m/3 and any path of length at most C (c2)

p
m between them has an edge which is p2-closed.

The number of such partitions is at most 22m /2c1m
. The probability that a path of length k has a p2-

closed edge is 1− pk
2 . Applying the isoperimetric inequality and using that the paths guaranteed to

exist by it are disjoint so that the edges in them are independent, the probability that sprinkling fails
is at most

22m /2c1m ·
(
1− (θε

m

)C (c2)
p

m
)2m /m100

= e−2(1+o(1))m
, (1.7)

which tends to 0.

1.4. Revised sprinkling. The sprinkling argument above is not optimal due to the use of the isoperi-
metric inequality. It is wasteful because it assumes that large percolation clusters can be “worst-case”
sets, that is, sets which saturate the isoperimetric inequality (e.g., two balls of radius m/2−pm around
two vertices at Hamming distance m). However, it is in fact very improbable for percolation clusters to
be similar to this kind of worst-case sets. Our approach replaces the use the isoperimetric inequality
by proving statements showing that large percolation clusters are “close” to uniform random sets of
similar size. It allows us to deduce that two large clusters share many closed edges with the property
that if we open even one of them, then the two clusters connect. While previously we had paths of
length

p
m connecting the two clusters, here we will have paths of length precisely 1. The final line of

our proof, replacing (1.7), will be

22εV /(kmε−2) ·
(
1− θε

m

)mε2V ≤ e−θε
3V (1+o(1)) , (1.8)

where km is some sequence with km →∞ very slowly. This tends to 0 since ε3V →∞. Compared with
the logic leading to (1.7), this line is rather suggestive. We will obtain that whp 2εV vertices are in
components of size at least kmε−2, explaining the 22εV /(kmε−2) factor in (1.8). The main effort in this
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paper is to justify the second factor showing that for any partition of these vertices into two sets of
size εV , the number of closed edges between them is at least ε2mV — the same number of edges one
would expect two uniform random sets of size εV to have between them. Therefore, given a partition,

the probability that sprinkling fails for it is bounded by
(
1− θε

m

)mε2V
.

1.5. The general theorem. Our methods use relatively simple geometric properties of the hypercube
and apply to a larger set of underlying graphs. We present this general setting that the majority of the
paper assumes and briefly discuss some other cases for which our main theorem holds aside from
the hypercube. We remark that the impatient reader may proceed assuming the underlying graph is
always the hypercube {0,1}m — we have set up the notation to support this since the hypercube, in
some sense, is our most “difficult” example.

The geometric conditions of our underlying graphs will be stated in terms of random walks. The
main advantage of this approach is that these conditions are relatively easy to verify. Let G be a finite
transitive graph on V vertices and degree m. Consider the non-backtracking random walk on it (this
is just a simple random walk not allowed to traverse back on the edge it just came from, see Section
3.4 for a precise definition). For any two vertices x, y , we put pt (x, y) for the probability that the walk
started at x visits y at time t . For any ξ> 0, we write Tmix(ξ) for the ξ-uniform mixing time of the walk,
that is,

Tmix(ξ) = min
{

t : max
x,y

pt (x, y)+pt+1(x, y)

2
≤ (1+ξ)V −1

}
.

Theorem 1.3. Let G be a transitive graph on V vertices with degree m and define pc as in (1.1) with λ=
1/10. Assume that there exists a sequence αV = o(1) with αV ≥ 1/m such that if we put m0 = Tmix(αV ),
then the following conditions hold:

(1) m →∞ as V →∞,
(2) [pc (m −1)]m0 = 1+O(αV ),
(3) For any vertices x, y,∑

u,v

m0∑
t1,t2,t3=0

t1+t2+t3≥3

pt1 (x,u)pt2 (u, v)pt3 (v, y) =O(αV /logV ).

Then,

(a) the finite triangle condition (1.5) holds (and hence the results in [16] described in Section 1.2
hold),

(b) for any sequence ε= εm satisfying εm ≫V −1/3 and εm = o(m−1
0 ),

|C1|
2εmV

P−→ 1, E|C (0)| = (4+o(1))ε2
mV ,

|C2|
εmV

P−→ 0.

Remark 1. In the case of the hypercube {0,1}m we will take αV = m−1 logm and verify the conditions
of Theorem 1.3. This is done in Section 7. Although the behavior of random walk on the hyper-
cube is well understood, we were not able to find an estimate on the uniform mixing time yielding
Tmix(m−1 logm) =Θ(m logm) in the literature. To show this we use the recent paper of Fitzner and the
first author [25] in which the non-backtracking walk transition matrix on the hypercube is analyzed.
We use this result in Lemma 7.1 to verify condition (3) and condition (2) follows directly from (1.2)
(though condition (2) can be verified by elementary means without using (1.2), see Remark 4).

Remark 2. Note that part (b) of Theorem 1.3 only applies when εm = o(m−1
0 ) and not for any εm = o(1).

Thus, for a complete proof of Theorem 1.1, we also require a separate argument dealing with the
regime εm ≥ cm−1

0 — in the case of the hypercube and other graphs mentioned in this paper, this is a
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much easier regime in which previous techniques based on sprinkling and isoperimetric inequalities
are effective.

Remark 3. Random walk conditions for percolation on finite graphs were first given by the sec-
ond author in [46]. The significant difference between the two approaches is that in [46] the con-
dition requires controlling the random walk behavior for a period of time which is as long as the
critical cluster diameter, that is, V 1/3. The outcome is that the results of [46] only apply when pc =
(1+O(V −1/3))/(m −1) and hence do not apply in the case of the hypercube. Here we are only inter-
ested in the behavior of the random walk up to the mixing time, even though that typical percolation
paths are much longer. The reason for this is that it turns out that it is enough to randomize the begin-
ning of a percolation path in order to obtain that the end point is uniformly distributed, see Section
2.4. Another difference is that the results in [46] only show that |C1| ≥ cεV for some c > 0 and do not
give the precise asymptotic value of |C1| as we do here.

Remark 4. Our approach also enables us to give a simple proof for the fact that the finite triangle
condition (Theorem 1.2) holds for the hypercube without using the lace expansion as in [17], and is
performed in [33]. Our proof of this fact relies on the estimate pc = 1/(m−1)+O(m−3) (which is much
weaker than (1.2) but also much easier to prove) and on the argument presented in Section 2.4. In
fact, in the current paper we only rely on this easy estimate for pc so our main result here, Theorem
1.1, is in fact self-contained and does not rely at any time on results obtained via the lace expansion
in [17] (we do use arguments of [16] which rely on the triangle condition). We refer to [33] for a more
extensive discussion on this subject.

In many cases, verifying the conditions of Theorem 1.3 is done using known methods from the
theory of percolation and random walks (note that condition (2) involves both a random walk and
a percolation estimate). We illustrate how to perform this in Section 7 in the case of the hypercube
(thus proving Theorem 1.1) and for expander families of high degree and high girth (see [36] for an
introduction to expanders). This is a class of graphs that contains various examples such as Payley
graphs (see e.g. [21]), products K d

n of complete graphs and many others. Percolation on products
of complete graphs were studied in [31, 32, 46] in the cases d = 2,3; our expander theorem allows
us to provide a complete description of the phase transition in any fixed dimension d , answering a
question posed in [31]. Recall that a sequence of graphs Gn is called an expander family if there exists
a constant c > 0 such that the second largest eigenvalue of the transition matrix of the simple random
walk is at most 1− c (the largest eigenvalue is 1). Also, the girth of a graph is the length of the shortest
cycle. It is a classical fact that on expanders Tmix(V −1) = O(logV ), where V is the number of vertices
of the graph, see e.g. [5, below (19)].

Theorem 1.4. Let Gm be a transitive family of expanders with degree m →∞ and V vertices. Assume
that m ≥ c logV and that the girth of G is at least c logm−1 V for some fixed c > 0. Then the conditions
of Theorem 1.3 hold and hence the conclusions of that theorem hold.

For products K d
n of complete graphs, the girth equals 3, V = nd and m = d(n −1), so that the girth

assumption is satisfied for c ≤ 3(1− o(1))/d and n sufficiently large. Theorem 1.3 applies to other
examples of graphs, not included in the last theorem, for example, products of complete graphs K d

n
where d may depend on n (as long as n +d →∞) and finite tori Zd

n but only when d = d(n) grows at
some rate with n. We omit the details since they are rather similar. We emphasize, however, that there
are important examples which our methods are insufficient to solve. Most prominently are bounded
degree expanders with low girth (the case of girth ≥ (2/3+ε) logm−1(n) was solved in [46]) and finite
tori Zd

n where d is large but fixed. It seems that new ideas are required to study percolation on these
graphs, see Section 8.
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1.6. Organization. This paper is organized as follows. In Section 2 we give an overview of our proof,
stating the main results upon which the proof is based. In Section 3 we prove several estimates on
the number of vertices satisfying various properties, such as having large clusters, or surviving up to
great depth. We further prove detailed estimates on connection probabilities. In Section 4 we prove
expected volume estimates both in the critical and supercritical regimes. In Section 5 we prove an
intrinsic-metric regularity theorem, showing that most vertices that survive long and have a large
cluster size have neighborhoods that are sufficiently regular. See Section 2 for an explanation on how
the estimates of Sections 4 and 5 are used in the proof. In Section 6 we show that most large clusters
have many closed edges between them, which is the main result in our proof. In Section 7 we perform
the improved sprinkling argument as indicated in Section 1.4, and complete the proof of Theorem
1.1. In Section 8 we discuss several open problems. We close the paper with Appendix A where we
sharpen the arguments in [9] and [17] to obtain the asymptotics of the supercritical cluster tail.
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during his visit in November 2011. We thank Gady Kozma for useful discussions and Gordon Slade for
valuable comments on a preliminary version of this paper. AN thanks Christian Borgs for introducing
him to [18, Conjecture 3.2] when he was an intern at Microsoft Research in the summer of 2005.

2. OVERVIEW OF THE PROOF

In this section we give an overview of the key steps in our proof. Throughout the rest of the paper
we assume that ε= εm is a sequence such that ε= o(1) but ε3V →∞.

2.1. Notations and tools. Let G be a transitive graph and recall that Gp is obtained from G by inde-
pendently retaining each edge with probability p. Recall that x ↔ y denotes that there exists a p-open
path connecting x and y . We write dGp (x, y) for the length of a shortest p-open path between x, y and

put dGp (x, y) = ∞ if x is not connected to y in Gp . We write x
r↔ y if dGp (x, y) ≤ r , we write x

=r←→ y

if dGp (x, y) = r and x
[a,b]←→ y if dGp (x, y) ∈ [a,b]. Further, we write x

P [a,b]←−→ y when there exists an open

path of length in [a,b] between x and y (not necessarily a shortest path). The event {x
[a,b]←→ y} is not

increasing with respect to adding edges, but the event {x
P [a,b]←−→ y} is, which often makes it easier to deal

with. Whenever the sign ↔ appears it will be clear what p is and we will drop it from the notation.
The intrinsic metric ball of radius r around x and its boundary are defined by

BG
x (r ) = {y : dGp (x, y) ≤ r } , ∂BG

x (r ) = {y : dGp (x, y) = r } .

Note that these are random sets of the graph and not the balls in shortest path metric of the graph
G . We often drop the G from the above notation and write Bx(r ) when it is clear what the underlying
graph G is. We also denote

BG
x ([a,b]) = {y : x

[a,b]←→ y} .

Our graphs always contain a marked vertex that we call the origin and denote by 0. In the case of the
hypercube this is taken to be the all 0 vector. We often drop 0 from notation and write B(r ) for B0(r )
whenever possible.

We now define the intrinsic metric one-arm event. This was introduced in [48] to study the mixing
time of critical G(n, p) clusters and was very useful in the context of high-dimensional percolation in
[39]. Define the event

HG (r ) = {
∂BG

0 (r ) ̸= ;}
,
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for any integer r ≥ 0 and

Γ(r ) = sup
G ′⊂G

P(HG ′
(r )) , (2.1)

where the supremum is over all subgraphs G ′ of G . The reason for the somewhat unnatural definition
of Γ above is the fact that the event ∂BG

0 (r ) ̸= ; is not monotone with respect to the addition of edges.
Indeed, turning an edge from closed to open may shorten a shortest path rendering the configuration
such that the event ∂BG

0 (r ) ̸= ; no longer occurs. This non-monotonicity problem is arising whenever
one conditions on BG

0 (r ) and would like to estimate the probability that some v ∈ ∂BG
0 (r ) survives an

additional ℓ generations, that is, that ∂BG
v (ℓ) ̸= ; off of BG

0 (r ). A priori, the survival probability may be
much larger on the subgraph G \ BG

0 (r ); the next theorem shows this is not the case.
The following theorem studies the survival probability and expected ball sizes at pc , and is the finite

graph analogue of a theorem of Kozma and the second author [39]. The proof is almost identical to
the one in [39] and is stated explicitly in [30, 40].

Theorem 2.1 (Volume and survival probability [39]). Let G be a finite transitive graph on V vertices
such that the finite triangle condition (1.5) holds, and consider percolation on G at p = pc (λ) with any
λ> 0. Then there exists a constant C =C (λ) > 0 such that for any r > 0,

(1) E|B(r )| ≤Cr , and
(2) Γ(r ) ≤C /r .

We often need to consider percolation performed at different values of p. We write Pp and Ep for the
probability distribution and the corresponding expectation operator with parameter p when neces-
sary. Furthermore, we sometimes need to consider percolation configurations at different p’s on the
same probability space. This is a standard procedure called the simultaneous coupling and it works
as follows. For each edge e of our graph G , we draw an independent uniform random variable U (e)
in [0,1]. We say that the edge e receives the value U (e). For any p ∈ [0,1], the set of p-open edges is
distributed precisely as {e : U (e) ≤ p}. In this way, Gp1 ⊂Gp2 with probability 1 whenever p1 ≤ p2.

2.2. Tails of the supercritical cluster size. We start by describing the tail of the cluster size in the
supercritical regime. Note that the following theorem requires only the finite triangle condition, and
not the stronger assumptions of Theorem 1.3 and so the restriction ε= o(m−1

0 ) is not needed.

Theorem 2.2 (Bounds on the cluster tail). Let G be a finite transitive graph of degree m on V vertices
such that the finite triangle condition (1.5) holds and put p = pc (1+ε) where ε = o(1) and ε≫ V −1/3.
Then, for any k satisfying k ≫ ε−2

P(|C (0)| ≥ k) ≤ 2ε
(
1+O(ε+ (ε3V )−1 + (ε2k)−1/4 +αV )

)
, (2.2)

and, for the sequence k0 = ε−2(ε3V )α for any α ∈ (0,1/3), there exists a c = c(α) > 0 such that

P(|C (0)| ≥ k0) ≥ 2ε
(
1+O(ε+ (ε3V )−c +αV )

)
. (2.3)

Theorem 2.2 is reminiscent of the fact that a branching process with Poisson progeny distribution
of mean 1+ε has survival probability of 2ε(1+O(ε)) when ε= o(1). Upper and lower bounds of order ε
for the cluster tail were proved already in [17] using Barsky and Aizenman’s differential inequalities [9].
However, to get the precise constant 2 we need to sharpen these differential inequalities and handle
some error terms in them that were neglected in the past. This derivation and the proof of Theorem
2.2 are presented in Appendix A. Its proof is entirely self-contained.

Let Z≥k denote the number of vertices with cluster size at least k, i.e.,

Z≥k =
∣∣{v : |C (v)| ≥ k

}∣∣ . (2.4)

We use Theorem 2.2 to show that Z≥k0 , with k0 as in the theorem, is concentrated. This advances us
towards the first factor on the left hand side of (1.8).
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Lemma 2.3 (Concentration of Z≥k0 ). In the setting of Theorem 2.2, if m →∞, then

Z≥k0

2εV
P−→ 1,

and
E|C (0)| ≤ (4+o(1))ε2V .

2.3. Many boundary edges between large clusters. The factor
(
1− θε

m

)mε2V in (1.8) suggests that af-
ter partitioning the large clusters into two sets of order εV vertices, as we did before, the number of
closed edges connecting them is of order mε2V . This is the content of Theorem 2.4 below which is the
main effort of this paper. It is rather intuitive if one believes that large clusters are uniform random
sets. Indeed, let v be a vertex in one of the sets of the partition. It has degree m and hence we expect
mε of these neighbors to belong to the second set of the partition. Summing over all vertices v we
obtain of the order ε2mV edges. Making this a precise statement requires some details which we now
provide.

We work under the general assumptions of Theorem 1.3. In particular, we are given sequences
εm ,αV such that both are o(1) and ε3

mV →∞ and αV ≥ 1/m. Without loss of generality we assume
that

αV ≥ (ε3
mV )−1/2 , (2.5)

otherwise we replace the original αV by (ε3
mV )−1/2, and note that in both cases αV = o(1) and satisfies

αV ≥ 1/m.
Let us start by introducing some notation. For vertices x, y and radii jx , jy , we define the event

A (x, y, jx , jy ) = {∂Bx ( jx) ̸= ;,∂By ( jy ) ̸= ; and Bx( jx)∩By ( jy ) =;} (2.6)

Intuitively, if A (x, y, jx , jy ) occurs for jx and jy sufficiently large, then x and y are both in the gi-
ant component. The event A (x, y, jx , jy ) plays a central role throughout our paper. We continue by
choosing some parameters. The role of each will become clear later. We put

M = Mm = logloglog(ε3V ∧α−1
V ∧ (εm0)−1) and r = rm = Mmε−1 . (2.7)

Note that Mm →∞ in our setting. We choose r0 by

r0 = ε−1

2
log(αV ε3V ) . (2.8)

In Corollary 4.6 we prove that E|B( j )| = Θ(ε−1(1+ε) j ) as long as j ≤ ε−1[log(ε3V )−4loglog(ε3V )] —
the same asymptotics as in a Poisson (1+ε) branching process (though in the branching process the
estimate is valid for all j ). This implies that E|B(r0)| = Θ

(p
αV εV

)
, a fact that we use throughout the

paper, but we do not use this right now.
For vertices x, y we define

S2r+r0 (x, y) = ∣∣{(u,u′) ∈ E(G) : {x
2r+r0←−→ u}◦ {y

2r+r0←−→ u′} ,

|Bu(2r + r0)| · |Bu′(2r + r0)| ≤ e40Mε−2(E|B(r0)|)2}∣∣ .

The edges counted in S2r+r0 (x, y) are the ones that will be used in the sprinkling. Informally, a pair of
vertices (x, y) is good when their clusters are large and S2r+r0 (x, y) is large, so that their clusters have
many bonds between them. We make this quantitative in the following definition:

Definition 2.1 ((r,r0)-good pairs). We say that x, y are (r,r0)-good if all of the following occur:

(1) A (x, y,2r,2r ),
(2) |C (x)| ≥ (ε3V )1/4ε−2 and |C (y)| ≥ (ε3V )1/4ε−2,
(3) S2r+r0 (x, y) ≥ (log M)−1V −1mε−2(E|B(r0)|)2.
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Write Pr,r0 for the number of (r,r0)-good pairs.

Theorem 2.4 (Most large clusters share many boundary edges). Let G be a graph on V vertices and
degree m satisfying the assumptions in Theorem 1.3. Assume that ε= εm satisfies

εm ≫V −1/3 and εm = o(m−1
0 ) , (2.9)

as in part (b) of Theorem 1.3. Take M and r = Mε−1 as in (2.7), and r0 as in (2.8). Then,

Pr,r0

(2εV )2
P−→ 1.

In light of Theorem 2.2, we expect that the number of pairs of vertices (x, y) with |C (x)| ≥ (ε3V )1/4ε−2

and |C (y)| ≥ (ε3V )1/4ε−2 is close to (2εV )2. Theorem 2.4 shows that the majority of these pairs have
clusters that share many edges between them. This allows us to proceed with the sprinkling argument
leading to (1.8) and we perform this in Section 7.1 leading to the proof of Theorem 1.3. Since the latter
proof assumes only Theorem 2.4, the curious reader may skip now to Section 7.1 to see how this is
done.

2.4. Uniform connection bounds and the role of the random walk. We briefly expand here on one
of our most useful percolation inequalities and its connection with random walks. In the analysis
of the Erdős-Rényi random graph G(n, p) symmetry plays a special role. One instance of this sym-
metry is that the function f (x) = P(0 ↔ x) is constant whenever x ̸= 0 and its value is precisely
(V − 1)−1(E|C (0)| − 1), and 1 when x = 0. Such a statement clearly does not hold on the hypercube
at pc : the probability that two neighbors are connected is at least m−1 (recall (1.2)) and the probabil-
ity that 0 is connected to one of the vertices in the barycenter of the cube is at most

p
m2−mE|C (0)|

by symmetry.
A key observation in our proof is that one can recover this symmetry as long as we require the

connecting paths to be longer than the mixing time of the random walk. A precise statement is that
percolation at pc on any graph G satisfying the assumptions of Theorem 1.3,

P(0
[m0,∞)←−−→ x) ≤ (1+o(1))

E|C (0)|
V

, (2.10)

where m0 is uniform mixing time, as defined in Theorem 1.3. This is the content of Lemma 3.13 (or
rather by taking r →∞ in the lemma). In addition to allowing us to estimate difficult sums such as
∇p (0,0) in (1.3) (see Section 3.6) and other similar quantities, this estimate also plays a key role in the
high level idea of the proof, as we now explain.

2.5. Sketch of proof of Theorem 2.4. The difficulty in Theorem 2.4 is the requirement (3) in Defini-
tion 2.1. Indeed, conditioned on survival (that is, on the event A (x, y,2r,2r )), the random variable
S2r+r0 (x, y) is not concentrated and hence it is hard to prove that it is large with high probability. In
fact, even the variable |B(r0)| is not concentrated. This is not a surprising fact: the number of descen-
dants at generation n of a branching process with mean µ> 1 divided by µn converges as n →∞ to a
non-trivial random variable. Intuitively, this non-concentration occurs because the first generations
of the process have a strong and lasting effect on the future of the population.

In order to counteract this, we condition on the event A (x, y,r,r ) and on the entire balls Bx(r ) and
By (r ) including all the open and closed edges touching them (during the actual proof we will use
some other radii jx , jy between r and 2r but this is a technical matter). We will prove that given this
conditioning the variable Sr+r0 (x, y) is concentrated around the value

|∂Bx (r )||∂By (r )|V −1m(E|B(r0)|)2 , (2.11)

and that |∂Bx(r )||∂By (r )| ≥ ε−2 with high probability, yielding that requirement (3) in Definition 2.1
occurs with high probability conditioned on the event above. Our choice of r0 in (2.8) is made in such
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a way that the above quantity is large (however, later we will see that r0 cannot be too large). Let us
elaborate on the estimate (2.11). Assume that Bx(r ) = A and By (r ) = B and write PA,B and EA,B for the
conditional probability and expectation given Bx(r ) = A and By (r ) = B . We have

EA,B Sr+r0 (x, y) ≈ ∑
a∈∂A,b∈∂B

∑
(u,u′)

PA,B ({a
r0←→ u}◦ {b

r0←→ u′}) ,

where we did not write equality because a) we ignored the second condition in the definition of
Sr+r0 (x, y) on |Bu(2r + r0)| · |Bu′(2r + r0)|, and b) some edges (u,u′) may be over-counted in the sum,
and c) we have neglected to count the closed edges (u,u′) that connect A and B (that is, occurring
in height smaller than r ). However, it turns out that all of these contributions are small compared to
(2.11). It is a standard matter by now to use the triangle condition in order to obtain that for most
edges (u,u′)

PA,B ({a
r0←→ u}◦ {b

r0←→ u′}) ≈ PA,B (a
r0←→ u)PA,B (b

r0←→ u′) ,

so in order to proceed we need a good lower bound on PA,B (a
r0←→ u). The uniform connection bounds,

that is Lemma 3.13 or (2.10), immediately gives that P(a
r0←→ u) ≥ (1−o(1))V −1E|B(r0)| for most vertices

u (since
∑

u P(a
r0←→ u) = E|B(r0)|). Had we had the same estimate for PA,B (a

r0←→ u), the lower bound on
the conditional first moment required to prove the estimate (2.11) would follow immediately. How-

ever, the probability PA,B (a
r0←→ u) may heavily depend on the sets A and B .

To that aim, in Section 5 we present an intrinsic metric regularity theorem, similar in spirit to the
extrinsic metric regularity theorem presented in [41]. Roughly, it states that for most sets A (more
precisely, the weight of sets not having this is o(ε)) for which Bx(r ) = A satisfies ∂Bx(r ) ̸= ;, we have
that most vertices a ∈ ∂A satisfy ∑

u
PA(a

r0←→ u) ≥ (1−o(1))E|B(r0)| ,

where PA is the conditional probability given Bx(r ) = A. Thus, the expected size of the “future” of
most vertices on the boundary is not affected by the conditioning on a typical “past”.

At this point comes another crucial application of the uniform connection bounds as in (2.10). In-
deed, even if the expected “future” of a vertex has the same asymptotics with or without conditioning,
we cannot a priori rule out the possibility that this conditional “future” concentrates on a small re-
mote portion of the underlying graph G — this can potentially violate the concentration around the
value in (2.11). However, our uniform connection bounds stated in Lemma 3.13 are robust enough

to deal with conditioning and immediately imply that PA(a
r0←→ u) = (1−o(1))V −1E|B(r0)| for most a

in ∂A and for most vertices u. In other words, not only did the conditioning not influence the size
of the “future”, it also left its distribution approximately unaltered. These considerations allow us to
give a lower bound of (2.11) on the conditional expectation. This and the conditional second moment
calculation required to show concentration are performed in Section 6.

3. PRELIMINARIES

In this section we provide some preliminary results that we will use. These involve various expecta-
tions and probabilities related to the random variable |∂B(r )| in Section 3.2 and 3.3, non-backtracking
random walks in Section 3.4 and its relation to uniform bounds for connection probabilities in Sec-
tion 3.5. In Section 3.6 we use these results to prove part (a) of Theorem 1.3. Finally, in Section 3.7
we bound triangle and square diagrams. The results in this section do not rely on the assumptions of
Theorem 1.3 but sometimes we do assume the finite triangle condition (1.5).
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3.1. The “off” method and BK-Reimer inequality. We will frequently handle the events ∂B(r ) ̸= ;
and x

=t←→ y . These events are non-monotone with respect to adding edges; indeed, adding an edge
may shorten a shortest path and prevent the events from holding. This non-monotonicity is a techni-
cal difficulty which unfortunately manifests itself in many of the arguments in this paper. Our main
tools to deal with this problem are the BK-Reimer inequality [12, 52] and the notion of events occur-
ring “off” a set of vertices. For the BK-Reimer inequality we use the formulation in [20].

For a subset of vertices A, we say that an event M occurs off A, intuitively, if it occurs in Gp \ A.
Formally, for a percolation configuration ω, we write ωA for the configuration obtained from ω by
turning all the edges touching A to closed. The event “M occurs off A” is defined to be {ω : ωA ∈M }.
We also frequently write Poff A to denote the measure Poff A(M ) = Pp (M off A). Equivalently, Poff A

can be thought of as a percolation measure in which all edges touching A are closed with probability
1 and the rest are distributed independently as before. We often drop p from the notation when it
is clear what p is. This framework also allows us to address the case when A = A(ω) is a random set
measurable with respect to Gp (the most prominent example is A = B0(r )). In this case, the event
{M occurs off A(ω)} is defined to be

{M occurs off A(ω)} = {ω : ωA(ω) ∈M } .

Let us review an example occurring frequently in our arguments in which M is an arbitrary event
and A = Bx(s). In this case,

P(M off Bx (s)) =∑
A

P(Bx(s) = A)P(M off A) , (3.1)

where we have used the fact that

P(M off Bx(s) | Bx(s) = A) = P(M off A) ,

since the events do not depend on edges touching A in both sides of the equation, and the marginal
of the two distributions on the edges not touching A is the same product measure. In terms of this
notation, for a subset of vertices A, we define

BG
x (r ; A) = {y : dGp (x, y) ≤ r off A} , ∂BG

x (r ; A) = {y : dGp (x, y) = r off A}

to be the intrinsic ball off A, and its boundary. We finally say that M occurs only on A if M occurs but
M off A does not occur. We frequently rely on the following inclusion:

Claim 3.1. For any event M and any subset of vertices A ⊂V ,

M \ {M only on A} ⊂ {M off A} .

Proof. By definition of “M only on A” the event on the left hand side equals

M ∩{
M c ∪ {M off A}

}
.

From this, it is easy to see that this event implies M off A. �

Remark. Equality in Claim 3.1 does not hold (unless the right hand side is replaced by M∩{M off A}).
This can easily be seen by taking a non-monotone event, say ∂Bx(r ) ̸= ;.

The following lemmas are inequalities valid for any graph G and any p.

Lemma 3.2 (Disjoint survival). For any graph G, p ∈ [0,1], vertices x, y, z and integers r, s,

P(∂Bx(r ) ̸= ;,∂By (s) ̸= ;,Bx(r )∩By (s) =;) ≤ P(∂Bx(r ) ̸= ;)max
A⊂V

Poff A(∂By (s) ̸= ;) .
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Proof. We condition on Bx(r ) = A such that A satisfies ∂Bx(r ) ̸= ; and P(Bx(r ) = A) > 0. The left hand
side is at most ∑

A : ∂Bx (r )̸=;
P(Bx(r ) = A)P(∂By (s) ̸= ; off A) ,

as in (3.1). The lemma now follows. �
Lemma 3.3. For any graph G, p ∈ [0,1], vertices u, v and integers r,ℓ> 0,

P(0
=r←→ u and 0

ℓ←→ v) ≤
∑

z

r∑
t=0

P(0
=t←→ z)P(z

ℓ←→ v)max
A⊂V

Poff A(z
=r−t←−→ u) .

Proof. We claim that if 0
=r←→ u and 0

ℓ←→ v , then there exist z ∈V and t ≤ r such that the two following
events occur disjointly

(a) There exists a shortest open path η of length r between 0 and u such that η(t ) = z, and
(b) There exist an open path between z and ℓ of length at most ℓ.

Indeed, if the event occurs, let η be the lexicographical first shortest path of length r between 0 and
u and let γ be an open path of length at most ℓ between 0 and v . We take z to be the last vertex on γ

which belongs to η and put t such that η(t ) = z. The witness for the first event is the set of open edges
of η together with all the closed edges in Gp (the closed edges determine that η is a shortest path)
and the second witness is the edges of γ from z to v . These are disjoint witnesses so we may use the
BK-Reimer inequality and bound

P(0
=r←→ u and 0

ℓ←→ v) ≤ ∑
z∈V ,t≤r

P((a))P(z
ℓ←→ v) .

To bound P((a)) we condition on B0(t ) = A such that A satisfies 0
=t←→ z, so

P((a)) = ∑
A:0

=t←→z

P(B0(t ) = A)P(z
=r−t←−→ u off A) ,

and the lemma follows. �

3.2. Survival probabilities. In this section, we prove Lemma 2.3 and a few other useful estimates of
a similar nature. In the rest of this section we only rely on the finite triangle condition (1.5), Theo-
rem 2.1 and Theorem 2.2 (both of which follow from the triangle condition, as shown in [39] and the
Appendix).

Lemma 3.4 (Relating connection probabilities for different p ′s). Let p1, p2 ∈ [0,1] satisfy p1 ≤ p2 and
let r > 0 be integer. The following bounds hold for any graph G and vertex v:

(1) Pp2 (∂Bv (r ) ̸= ;) ≤
(p2

p1

)r
Pp1 (∂Bv (r ) ̸= ;),

(2) Ep2 |∂Bv (r )| ≤
(p2

p1

)r
Ep1 |∂Bv (r )|.

Proof. We recall the standard simultaneous coupling between percolation measure at different p’s
discussed in Section 2.1. Order all the paths in G of length r starting at v lexicographically. Write A

for the event that ∂Bv (r ) ̸= ; in Gp2 and that the lexicographical first p2-open shortest path of length
r starting at v is in fact p1-open. We claim that

P(A ) =
(p1

p2

)r
P(∂Bv (r ) ̸= ; in Gp2 ) . (3.2)

Indeed, conditioned on the edges of Gp2 , the value U (e) of each edge in Gp2 is distributed uniformly on
the interval [0, p2]. Hence, the probability of the first shortest path being p1-open in this conditioning
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is precisely (p1/p2)r , which proves (3.2). To see (1), note that if the first p2-open shortest path is p1-
open, then it is a shortest path of length r in Gp1 , so that A implies that ∂Bv (r ) ̸= ; in Gp1 whence

Pp1 (∂Bv (r ) ̸= ;) ≥
(p1

p2

)r
Pp2 (∂Bv (r ) ̸= ;) .

The proof of (2) is similar and we omit the details. �
Corollary 3.5 (Correlation length is 1/ε). Let G be a transitive finite graph for which (1.5) holds and put
p = pc (1+ε). The following bounds hold for any subset of vertices A and any vertex v and any integer
r :

(1) Poff A
(
∂Bv (ε−1) ̸= ;)=O(ε) , and

(2) E|Bv (r ; A)| =O(r (1+ε)r ).

Proof. The result is immediate by combining Lemma 3.4 and Theorem 2.1. �
Remark. In Section 4 we will show a sharp estimate replacing (2) in the above corollary.

Lemma 3.6 (Supercritical survival probability). Let G be a transitive finite graph for which (1.5) holds
and put p = pc (1+ε). Then, for any M →∞ and any subset of vertices A,

Poff A(∂B(Mε−1) ̸= ;) ≤ (2+o(1))ε ,

and, for any M ≤ loglog(ε3V ) such that M →∞,

P(∂B(Mε−1) ̸= ;) ≥ (2−o(1))ε .

Proof. To prove the upper bound we write

Poff A(∂B(Mε−1) ̸= ;) = Poff A(∂B(Mε−1) ̸= ; , |C (0)| >
p

Mε−2)

+Poff A(∂B(Mε−1) ̸= ; , |C (0)| ≤
p

Mε−2) .

The first term on the right hand side is at most (2+o(1))ε by Theorem 2.2 — note that we used the
fact that the event |C (0)| ≥ k is monotone so Poff A(|C (0)| ≥ k) ≤ P(|C (0)| ≥ k). It remains to show that
the second term is o(ε). Indeed, if this event occurs, then there exists a radius j ∈ [Mε−1/3,2Mε−1/3]
such that

0 < ∂B( j ; A) ≤ 3M−1/2ε−1 and ∂B(Mε−1; A) ̸= ; .

Let J be the first level satisfying this. By Corollary 3.5 and the union bound

Poff A
(∃ y ∈ ∂B(J ; A) with ∂By (Mε−1/3; A) ̸= ; off B(J ; A) | B(J ; A)

)≤Cε|∂B(J ; A)| =O(M−1/2) .

Corollary 3.5 also shows that Poff A(∂B(Mε−1/3) ̸= ;) =O(ε), so putting this together gives

Poff A(∂B(Mε−1) ̸= ; , |C (x)| ≤
p

Mε−2) =O(M−1/2ε) , (3.3)

concluding the proof of the upper bound. For the lower bound, take k0 = ε−2(ε3V )α for some fixed
α ∈ (0,1/3). We have

P(∂B(Mε−1) ̸= ;) ≥ P(∂B(Mε−1) ̸= ; and |C (0)| ≥ k0)

= P(|C (0)| ≥ k0)−P(|C (0)| ≥ k0 and ∂B(Mε−1) =;) ,

so by Theorem 2.2 it suffices to bound the last term on the right hand side from above. Indeed, by
Markov’s inequality and Corollary 3.5,

P(|C (0)| ≥ k0 and ∂B(Mε−1) =;) ≤ P(|B(Mε−1)| ≥ k0) (3.4)

≤ C MeMε−1

k0
=O

(
ε(ε3V )−α log(ε3V )

)
= o(ε) ,

since M ≤ loglog(ε3V ). �
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We proceed with preparations towards the proof of Lemma 2.3. For an integer r > 0, we write Nr

for the random variable
Nr =

∣∣{x : ∂Bx(r ) ̸= ;}∣∣ .

We think of 1/ε as the correlation length, see [27]. In other words, when r ≫ 1/ε, then the vertices
contributing to Nr should be those in the giant component.

Lemma 3.7 (Nr is concentrated). Let Gm be a sequence of transitive finite graphs with degree m for
which (1.5) holds and m →∞. Put p = pc (1+ε), then for any r ≫ 1/ε satisfying r ≤ ε−1 loglog(ε3V ),

Nr

2εV
P−→ 1.

Proof. We use a second moment method on Nr . Lemma 3.6 and our assumption on r shows that

ENr = (2+o(1))εV .

The second moment is
EN 2

r =∑
x,y

P(∂Bx(r ) ̸= ; and ∂By (r ) ̸= ;) .

We have

P(∂Bx(r ) ̸= ; and ∂By (r ) ̸= ;) ≤ P(∂Bx(r ) ̸= ; and ∂By (r ) ̸= ;,Bx(r )∩By (r ) =;)

+P(x
2r←→ y) .

We sum the first term on the right hand side using Lemmas 3.2 and 3.6 and the second term using
Corollary 3.5. We get that

EN 2
r ≤ (4+o(1))ε2V 2 +O

(
V r (1+ε)2r )= (1+o(1))[ENr ]2 ,

since V r (1+ε)2r = o(ε2V 2) by our assumption on r and since ε3V →∞. The assertion of the lemma
now follows by Chebychev’s inequality. �
Proof of Lemma 2.3. Take M = Mm and r as in (2.7) and write

Z≥k0 = Nr +
∣∣{x : ∂Bx(r ) =;, |C (x)| ≥ k0

}∣∣− ∣∣{x : ∂Bx(r ) ̸= ;, |C (x)| < k0
}∣∣ .

By Lemma 3.7, Nr /(2εV )
P−→ 1, so it suffices to show that the expectation of both remaining terms is

o(εV ). The expectation of the first term is

V P(x : ∂Bx(r ) =;, |C (v)| ≥ k0) = o(εV ), (3.5)

by (3.4). The expectation of the second term now must be o(εV ) since both Nr and Z≥k0 have mean

(2+o(1))εV by Theorem 2.2 and Lemma 3.6. This shows that Z≥k0 /(2εV )
P−→ 1 as stated in Lemma 2.3.

To prove the upper bound on E|C (0)| we write

E|C (0)| =∑
y

P(0 ↔ y) =∑
y

P(0
[0,2r )←−→ y)+∑

y
P(0

[2r,∞)←−→ y) .

By Corollary 3.5, ∑
y

P(0
[0,2r )←−→ y) = E|B(2r )| ≤Cε−1 log3(ε3V ) = o(ε2V ) , (3.6)

since ε3V ≫ 1. If 0
[2r,∞)←−→ y , then the event

{∂B0(r ) ̸= ;,∂By (r ) ̸= ;,B0(r )∩By (r ) =;} ,

occurs. Hence Lemmas 3.2 and 3.6 give that P(0
[2r,∞)←−→ y) ≤ (4+o(1))ε2 and summing this over y gives

the required upper bound on E|C (0)|. �
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3.3. Disjoint survival probabilities. In this section we show that for most pairs x, y the event A (x, y,r,r )
occurs with probability asymptotic to 4ε2. The point is that r is chosen such that r ≫ ε−1, where ε−1 is
the correlation length, but r ≪ ε−1 log(ε3V ) which is the order of the diameter of C1 (we do not prove
the estimate on the diameter here, but it can be obtained using the techniques of this paper).

Lemma 3.8 (Number of pairs surviving disjointly). Let Gm be a sequence of transitive finite graphs
with degree m for which (1.5) holds and m → ∞. Put p = pc (1+ ε), then for any r ≫ ε−1 satisfying
r ≤ ε−1 loglog(ε3V ) ∣∣{x, y : A (x, y,r,r ) occurs

}∣∣
(2εV )2

P−→ 1.

Proof. Define
N (2)

r = ∣∣{x, y : A (x, y,r,r ) occurs
}∣∣ .

Then,

N 2
r −|{x, y : x

2r←→ y}| ≤ N (2)
r ≤ N 2

r ,

and E|{x, y : x
2r←→ y}| = o(ε2V 2) as we did in (3.6). The result now follows by Markov’s inequality and

Lemma 3.7. �
Lemma 3.9 (Most pairs have almost independent disjoint survival probabilities). Let Gm be a sequence
of transitive finite graphs with degree m for which (1.5) holds and m →∞. Put p = pc (1+ε). Then, for
any jx , jy ≤ ε−1 loglogε3V such that jx , jy ≫ ε−1, there exist at least (1−o(1))V 2 pairs of vertices x, y
such that

P(A (x, y, jx , jy )) = (1+o(1))4ε2 .

Proof. The upper bound P(A (x, y, jx , jx)) ≤ (1+o(1))4ε2 follows immediately from Lemmas 3.2 and
3.6 and is valid for all pairs x, y . We turn to showing the corresponding lower bound. First, the in-
equality E[N 2

r ] ≥ (ENr )2 can be written as∑
x,y

P(∂Bx (r ) ̸= ; and ∂By (r ) ̸= ;) ≥V 2P(∂B(r ) ̸= ;)2 .

We take r = ε−1 loglogε3V . Since P(∂Bx ( j ) ̸= ;) is decreasing in j , by Lemma 3.6 and our assumption
on jx and jy we get ∑

x,y
P(∂Bx( jx) ̸= ; and ∂By ( jy ) ̸= ;) ≥ (4−o(1))V 2ε2 .

Secondly, Corollary 3.5 implies that∑
x,y

P(x
2r←→ y) =V E[|B(2r )|] ≤CV r (1+ε)2r = o(ε2V 2) ,

by our choice of r and since ε3V →∞. Since

A (x, y, jx , jy ) ⊆ {∂Bx( jx) ̸= ;,∂By ( jy ) ̸= ;} \ {x
2r←→ y} ,

we deduce that ∑
x,y

P(A (x, y, jx , jy )) ≥ (4−o(1))ε2V 2 ,

and since the upper bound was valid for all x, y , the lemma follows. �
Lemma 3.10. Let Gm be a sequence of transitive finite graphs with degree m for which (1.5) holds and
m →∞. Put p = pc (1+ε). Then for any r ≤ ε−1 loglogε3V such that r ≫ ε−1 we have∣∣∣{x, y : A (x, y,r,r ) and |C (x)| ≤ (ε3V )1/4ε−2

}∣∣∣
(εV )2

P−→ 0.
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Proof. By Lemma 3.7, the assertion follows from the statement that∣∣{x : ∂Bx(r ) ̸= ; and |C (x)| ≤ (ε3V )1/4ε−2}∣∣/(εV )
P−→ 0.

To show this, note that

P
(
∂Bx (r ) =; and |C (x)| ≥ (ε3V )1/4ε−2)≤ P

(|Bx(r )| ≥ (ε3V )1/4ε−2)≤ Cr (1+ε)r

(ε3V )1/4ε−2
= o(ε) .

Hence, by Theorem 2.2,

P(∂Bx(r ) ̸= ; and |C (x)| ≥ (ε3V )1/4ε−2) ≥ (2−o(1))ε .

Together with Lemma 3.6, this yields that

P(∂Bx(r ) ̸= ; and |C (x)| ≤ (ε3V )1/4ε−2) = o(ε) ,

concluding our proof. �

3.4. Using the non-backtracking random walk. In the rest of this section we provide several basic
percolation estimates which we use throughout the paper. These include bounds on long and short
connection probabilities and bounds on various triangle and square diagrams. It is here that we make
crucial use of the geometry of the graph and the behavior of the random walk on it, namely, the as-
sumptions of Theorem 1.3. We frequently use non-backtracking random walk estimates. This walk is
a simple random walk on a graph that is not allowed to traverse back on an edge it has just walked on.
Let us first define it formally.

The non-backtracking random walk on an undirected graph G = (V ,E), starting from a vertex x ∈V ,
is a Markov chain {X t } with transition matrix Px on the state space of directed edges

−→
E =

{
(x, y) : {x, y} ∈ E

}
.

If X t = (x, y), then we write X (1)
t = x and X (2)

t = y . Also, for notational convenience, we write

P(x,w)(·) = Px(· | X0 = (x, w)
)
, and pt (x, y) = Px(

X (2)
t = y

)
.

The non-backtracking walk starting from a vertex x has initial state given by

Px(X0 = (x, y)) = 1
{(x,y)∈−→E }

1

deg(x)
,

and transition probabilities given by

P(u,v)(X1 = (v, w)) = 1
{(v,w)∈−→E ,w ̸=v}

1

deg(v)−1
,

where we write deg(x) for the degree of x in G . The following lemma will be useful.

Lemma 3.11. Let G be a regular graph of degree m. Then, for t ≥ 0,∑
u

p1(0,u)pt (u, z) = pt+1(0, z)+ 1

m −1
pt−1(0, z),

with the convention that p−1(0, z) = 0.

Proof. The claim follows by conditioning on whether the first step of the NBW counted in pt (u, z) is
equal to (u,0) or not. We omit further details. �
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3.5. Uniform upper bounds on long connection probabilities. In this section we show that long per-
colation paths are asymptotically equally likely to end at any vertex in G .

Lemma 3.12. Let G be a graph satisfying the assumptions in Theorem 1.3 and consider percolation on
it with p ≤ pc (1+ε). Then, for any integer t ≥ m0 and any vertex x,

Pp (0
=t←→ x)+Pp (0

=t+1←−→ x) ≤ 2+O(αV +εm0)

V
E|∂B(t −m0)| .

Proof. If 0
=t←→ x, then there exists a vertex v and a simple path ω of length m0 from x to v such that the

event

{ω is open}◦ {v
=t−m0←−−→ x}

occurs. Indeed, consider a shortest path η of length t between 0 to x. Take v = η(m0) and ω= η[1,m0].

Now, the first witness is the path ω and the witness for {v
=t−m0←−−→ x} is the path η[m0, t ] together with all

the closed edges in Gp (which determine that η[m0, t ] is a shortest path). These are disjoint witnesses.

If 0
=t+1←−→ x occurs, then we get the same conclusion with ω of length m0 + 1. We now apply the BK-

Reimer inequality and the fact that the probability that ω is open is precisely p |ω|. This yields

Pp (0
=t←→ x) ≤ pm0

∑
v

∑
ω : |ω|=m0
ω[m0]=v

Pp (v
=t−m0←−−→ x) ,

and

Pp (0
=t+1←−→ x) ≤ pm0+1

∑
v

∑
ω : |ω|=m0+1
ω[m0+1]=v

Pp (v
=t−m0←−−→ x) .

We now bound these above by relaxing the requirement that ω is simple and only requiring that it is
non-backtracking. Since m0 = Tmix(αV ), we get by definition that∣∣{ω : |ω| = m0,ω[m0] = v}

∣∣
m(m −1)m0−1

+
∣∣{ω : |ω| = m0 +1,ω[m0 +1] = v}

∣∣
m(m −1)m0

= pm0 (0, v)+pm0+1(0, v) ≤ 2+2αV

V
,

where we enumerated only non-backtracking paths in the above. Using this, condition (2) and sum-
ming over v gives

Pp (0
=t←→ x)+Pp (0

=t+1←−→ x) ≤ 2+O(αV )

V
[p(m −1)]m0E|∂B(t −m0)|

≤ 2+O(αV +εm0)

V
E|∂B(t −m0)| ,

concluding our proof. �
Lemma 3.13. Let G be a graph satisfying the assumptions in Theorem 1.3 and consider percolation on
it with p ≤ pc (1+ε). Then, for any r ≥ m0 and any vertex x,

Pp
(
0

P [m0,r ]←−−→ x
)≤ 1+O(αV +εm0)

V
E|B(r )| .

Proof. The proof is similar to that of Lemma 3.12. If the event occurs, then there exists a vertex v and
a simple path ω of length m0 from 0 to v such that the event

{ω is open}◦ {v
r←→ x} ,

occurs. Hence,

Pp (0
P [m0,r ]←−−→ x) ≤ pm0

∑
v

∑
ω : |ω|=m0
ω[m0]=v

Pp (v
r←→ x) ,
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by the BK inequality. By the same argument,

Pp (0
P [m0,r ]←−−→ x) ≤ pm0+1

∑
v

∑
ω : |ω|=m0+1
ω[m0+1]=v

Pp (v
r←→ x) .

The reason we make two such similar estimates is that due to possible periodicity, in each of the esti-
mates the sum over v may be 0 on half the vertices. We now take the average of these two estimates,
sum over v to get the E|B(r )| factor and use the same analysis as in Lemma 3.12 using condition (2).
This gives the required assertion of the lemma. �
Lemma 3.14. Let G be a graph satisfying the assumptions in Theorem 1.3 and consider percolation on
it with p ≤ pc (1+ε). Then, for any r ≥ m0 and any vertex x,

P(0
[r,2r ]←−→ x) ≤ 1+O(αV +εm0)

V
E|B([r −m0,2r −m0])| .

Proof. This follows by summing the estimate of Lemma 3.12 and using the fact that

E|∂B(t )| ≤ p(m −1)E|∂B(t −1)| ≤ (1+m−1 +ε)E|∂B(t −1)| ,
where the last inequality is due to condition (2) and the first inequality holds since, given ∂B(t −1),
|∂B(t )| is stochastically bounded above by a sum of |∂B(t − 1)| binomial random variables with pa-
rameters m −1 and p. The lemma follows since αV ≥ m−1. �

We close this section with a remark which will become useful later. We often would like to have
these uniform connection bounds off some subsets of vertices. The proofs in the lemmas of this
sections immediately generalize to such a setting. This is because the claim “the number of paths
from 0 to v of length m0 is at most n” still holds even if we are in G \ A, for any subset of vertices A. We
state the required assertion here and omit their proofs:

Lemma 3.15 (Uniform connection bounds off sets). Consider percolation on G = {0,1}m with p =
pc (1+ε), and let A be any subset of vertices. Then, for any r ≥ m0 and any vertex x,

Poff A(0
=r←→ x) ≤ (2+O(αV +εm0))V −1E|∂B(r −m0; A)| ,

Poff A
(
0

[m0,r ]←−→ x
) ≤ (1+O(αV +εm0))V −1E|B(r ; A)| .

3.6. Proof of part (a) of Theorem 1.3. We demonstrate the use of Lemma 3.13 by showing that the
finite triangle condition holds under the assumptions of Theorem 1.3. We begin with an easy calcula-
tion.

Claim 3.16. On any regular graph G of degree m and any vertices x, y,∑
u,v

∑
t1,t2,t3:t1+t2+t3∈{0,1,2}

pt1 (x,u)pt2 (u, v)pt3 (v, y) = 1{x=y} +O(m−1) ,

and ∑
u,v

∑
t1,t2,t3:t1+t2+t3∈{1,2}

pt1 (x,u)pt2 (u, v)pt3 (v, y) =O(m−1) .

Proof. We prove both statements simultaneously. The contribution coming from t1 + t2 + t3 = 0 is the
one we get when x = u = v = y giving 1{x=y}. The contributions coming from t1 + t2 + t3 = 1 can only
come from the cases u = v = y and (t1, t2, t3) = (1,0,0), or u = v = x and (t1, t2, t3) = (0,0,1), or u = x and
v = y and (t1, t2, t3) = (0,1,0). These are easily bounded using the fact that maxz pt (w, z) ≤ 1/(m−1) for
any t ≥ 1. We perform a similar case analysis to bound the contributions of t1+t2+t3 = 2. If (t1, t2, t3) =
(0,0,2), then we must have u = v = x and p2(v, y) =O(m−1); this argument also handles the case where
one of the other ti ’s is 2. In the case (t1, t2, t3) = (1,1,0) we must have that v = y and that u is a neighbor
both of x and y . There are at most m such u’s and for each we have that p1(x,u)p1(u, y) = O(m−2).
The cases (t1, t2, t3) ∈ {(0,1,1), (1,0,1)} are handled similarly. �
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Proof of part (a) of Theorem 1.3. Let p ≤ pc . If one of the connections in the sum ∇p (x, y) is of length
in [m0,∞), say between x and u, then we may estimate∑

u,v
Pp (x

[m0,∞)←−−→ u)Pp (u ↔ v)Pp (v ↔ y) ≤ (1+o(1))Ep |C (0)|
V

∑
u,v

Pp (u ↔ v)Pp (v ↔ y)

= (1+o(1))(Ep |C (0)|)3

V
,

where we used Lemma 3.13 (and took r →∞ in both sides of the lemma) for the first inequality. Thus,
we are only left to deal with short connections,

∇p (x, y) ≤ ∑
u,v

Pp (x
m0←→ u)Pp (u

m0←→ v)Pp (v
m0←→ y)+O(V −1χ(p)3) .

We write

Pp (x
m0←→ u) =

m0∑
t1=0

Pp (x
=t1←→ u) ,

and do the same for all three terms so that

∇p (x, y) ≤ ∑
u,v

m0∑
t1,t2,t3

Pp (x
=t1←→ u)Pp (u

=t2←→ v)Pp (v
=t3←→ y)+O(V −1χ(p)3) . (3.7)

We bound

Pp (x
=t1←→ u) ≤ m(m −1)t1−1pt1 (x,u)p t1 ,

simply because m(m −1)t1−1pt1 (x,u) is an upper bound on the number of simple paths of length t1

starting at x and ending at u. Hence

∇p (x, y) ≤ m3

(m −1)3

∑
u,v

m0∑
t1,t2,t3

[p(m −1)]t1+t2+t3 pt1 (x,u)pt2 (u, v)pt3 (v, y)+O(V −1χ(p)3) .

Since p ≤ pc , assumption (2) gives that [p(m −1)]t1+t2+t3 = 1+O(αV ), and condition (3) together with
Claim 3.16 yields that

∇p (x, y) ≤ 1{x=y} +O(V −1χ(p)3)+O(m−1 +αV /logV ) ,

concluding the proof. �

3.7. Restricted triangle and square diagrams. In this section, we provide several extensions to the
triangle condition (1.5). We will bound the triangle diagram in the supercritical phase (which requires
a bound on the length of connections, otherwise the sums blow up) and estimate a square diagram
which will be useful in a key second moment calculation in Section 6.

Lemma 3.17 (Short supercritical triangles). Let G be a graph satisfying the assumptions in Theorem
1.3 and consider percolation on it with p ≤ pc (1+ε). Then,

max
x,y

∑
u,v : {u,v} ̸={0,0}

Pp (x
m0←→ u)Pp (u

m0←→ v)Pp (v
m0←→ y) =O(αV +εm0) .

Proof. This follows immediately by assumptions (2) and (3) of Theorem 1.3 and the usual bound

Pp (x
=s←→ u) ≤ p sm(m −1)s−1ps(x,u) ,

as we did before. �
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(u1, u
′

1
)

(u2, u
′

2
)

z1 z2

≤ r1

≤ r1

≤ r2

≤ r2

FIGURE 1. A square diagram.

Corollary 3.18 (Long supercritical triangles). Let G be a graph satisfying the assumptions in Theorem
1.3 and consider percolation on it with p ≤ pc (1+ ε). Let r1,r2,r3 be integers that are all at least m0.
Then,

max
x,y

∑
u,v : {u,v }̸={x,y}

P(x
r1←→ u)P(u

r2←→ v)P(v
r3←→ y)

≤O(αV +εm0)+ (3+O(αV +εm0))

V
E|B(r1)|E|B(r2)|E|B(r3)| . (3.8)

Proof. We split the sum into two cases. The first case is that at least one of the connection events

occurs with a path of length at least m0. For instance, if x
P [m0,r1]←−−−→ u occurs, then we use Lemma 3.13

to bound, uniformly in x, y ,∑
u,v

P(x
P [m0,r1]←−−−→ u)P(u

r2←→ v)P(v
r3←→ y)

≤ (1+O(αV +εm0))

V
E|B(r1)|∑

u,v
P(u

r2←→ v)P(v
r3←→ y)

= (1+O(αV +εm0))

V
E|B(r1)|E|B(r2)|E|B(r3)| .

The second case is when all the connections occur with paths of length at most m0, in which case we
use Lemma 3.17 and get a O(αV +εm0) bound. This concludes the proof. �
Lemma 3.19 (Supercritical square diagram). Let G be a graph satisfying the assumptions in Theorem
1.3 and consider percolation on it with p ≤ pc (1+ε). Let r1,r2 be both at least m0. Then,∑
(u1,u′

1),(u2,u′
2),z1,z2

P(z1
r1←→ u1)P(z1

r1←→ u2)P(z2
r2←→ u′

1)P(z2
r2←→ u′

2) ≤C m2(E|B(r1)|)2(E|B(r2)|)2+CV m2m0αV .

Proof. See Figure 1. If one of the connections is of length at least m0, then we use Lemma 3.13 and the

summation simplifies. For instance, if u1
[m0,r1]←−−→ z1, then we use Lemma 3.13 and sum over z1, followed

by sums over u1 and u2. This gives a bound of

C m2(E|B(r1)|)2

V

∑
u′

1,u′
2,z2

P(z2
r2←→ u′

1)P(z2
r2←→ u′

2) ≤C m2[E|B(r1)|2E|B(r2)|]2 ,

where C > 1 is an upper bound on 1+O(αV +εm0).
We are left to bound the sum∑

(u1,u′
1),(u2,u′

2),z1,z2

P(z1
m0←→ u1)P(z1

m0←→ u2)P(z2
m0←→ u′

1)P(z2
m0←→ u′

2) (3.9)

=V
∑

(u1,u′
1),(u2,u′

2),z2

P(0
m0←→ u1)P(0

m0←→ u2)P(z2
m0←→ u′

1)P(z2
m0←→ u′

2) ,
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by transitivity. We write this sum as V
∑

u′
2

f (u′
2)g (u′

2), where

g (u′
2) = ∑

(u1,u′
1),z2

P(0
m0←→ u1)P(z2

m0←→ u′
1)P(z2

m0←→ u′
2), f (u′

2) = ∑
u2∼u′

2

P(0
m0←→ u2). (3.10)

We then bound

V
∑
u′

2

f (u′
2)g (u′

2) ≤V
(∑

u′
2

f (u′
2)

)(
max

u′
2

g (u′
2)

)
(3.11)

=V mE|B(m0)|max
x

∑
(u1,u′

1),z2

P(0
m0←→ u1)P(z2

m0←→ u′
1)P(z2

m0←→ x).

By condition (2) in Theorem 1.3, we can write the above as

V
∑
u′

2

f (u′
2)g (u′

2) ≤CV m2E|B(m0)|max
x

∑
u1,u′

1,z2

m0∑
t1,t2,t3≥0

pt1 (0,u1)p1(u1,u′
1)pt2 (u′

1, z2)pt3 (z2, x) (3.12)

≤CV m2E|B(m0)|max
x

∑
u1,z2

m0∑
t1,t2,t3≥0

pt1 (0,u1)[pt2+1(u1, z2)+ 1

m −1
pt2−1(u1, z2)]pt3 (z2, x)

≤CV m2E|B(m0)|(αV +O(1/m)) ≤CV m2E|B(m0)|αV ,

where we use Lemma 3.11 in the second inequality, and Claim 3.16, condition (2) in Theorem 1.3
and αV ≥ 1/m in the final inequality. Further, E|B(m0)| = O(m0) by Corollary 3.5 and the fact that
m0 = o(ε−1). This concludes our proof. �

4. VOLUME ESTIMATES

In this section, we study the expected volume of intrinsic balls and their boundaries at various radii
in both the critical and supercritical phase.

4.1. In the critical regime. Given a subset of vertices A and integer r ≥ 0 we write

G(r ; A) = E|∂B(r ; A)|, G(r ) = max
A⊆V (G)

G(r ; A) .

Theorem 2.1 implies that for “most” r ’s the value G(r ) is bounded above by a constant (more pre-
cisely, given any fixed A and R, the number of r ’s satisfying 1 ≤ r ≤ R and E|∂B(r ; A)| ≥C /δ is at most
δR). The following useful result states that G(r ) is at most a constant for all r . We believe that this es-
timate should hold only under the assumption of the triangle condition but we are only able to prove
it under the stronger assumptions of Theorem 1.3.

Theorem 4.1 (Expected boundary size). Let G be a graph satisfying the assumptions of Theorem 1.3
and consider percolation on it with p = pc . Then there exists a constant C > 0 such that for any integer
r ,

G(r ) ≤C .

Proof. Define F (r ) = E|B(r )| and F (r ; A) = E|B(r ; A)|, so that F (r ; A) ≤ F (r ) for all subsets A. Define
G∗(r ) = maxs≤r G(s), and let r ≥ 2m0 be a maximizer of G∗, that is, r is such that G(r ′) ≤G(r ) for any
r ′ < r . Let A = A(r ) be the subset of vertices which maximizes G(r ; A) so that G(r ; A) = G(r ) = G∗(r ).
Given such r and A = A(r ) we will prove that there exists c > 0 such that for any integer s ≥ 0,

F (r + s; A) ≥ cG∗(r )F (s; A) . (4.1)

We begin by bounding

F (r + s; A) ≥∑
v

Poff A(0
(r,r+s]←−−→ v) .
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For a vertex u we define C u(0; A) = {x : 0 ↔ x off A ∪ {u}}. Now, for any vertex v , if there exists u ̸= v

such that 0
=r←→ u off A and u

s↔ v off C u(0; A), then 0
(r,r+s]←−−→ v off A. Furthermore, if such u exists, then

it is unique because otherwise v ∈C u(0; A). We deduce that

F (r + s; A) ≥
∑

v ̸=u
Poff A(0

=r←→ u and {u
s↔ v off C u(0; A)}) .

We now condition on C u(0; A) = H for some admissible H (that is, for which the probability of the
event C u(0; A) = H is positive, and in which 0

=r←→ u occurs). In this conditioning, we also condition on
the status of all edges touching H . Note that by definition A∩H =;. We can write the right hand side
of the last inequality as ∑

v ̸=u

∑
H : 0

=r←→u off A

Poff A(C u(0; A) = H)Poff A(u
s↔ v off H) ,

in the same way as we derived (3.1). This can be rewritten as∑
v ̸=u

∑
H : 0

=r↔u off A

Poff A(C u(0; A) = H)
[
Poff A(u

s↔ v)−Poff A(u
s↔ v only on H)

]
.

We open the parenthesis and have that the first part of this sum equals precisely G∗(r )F (s; A) since r
and A were maximizers. We need to show that the second part of the sum is of lower order. To that
aim, if u

s↔ v only on H , then there exists h ∈ H such that h ̸= u and {u
s↔ h} ◦ {h

s↔ v}. By the BK
inequality, we bound the second part of the sum above by∑

u

∑
H : 0

=r←→u off A

∑
h∈H ,h ̸=u,v

Poff A(C u(0; A) = H)Poff A(u
s↔ h)Poff A(h

s↔ v) .

Summing over v and changing the order of the summation gives that the last sum is at most

F (s; A)
∑

u ̸=h
Poff A(0

=r↔ u,0 ↔ h)Poff A(u
s↔ h) .

We bound this from above using Lemma 3.3 by

F (s; A)
∑

u ̸=h,z

∑
t≤r

Poff A(0
=t←→ z) max

D⊆V (G)
P(z

=r−t←−→ u off A∪D)Poff A(z ↔ h)Poff A(u
s↔ h) . (4.2)

We sum this separately for t ≤ r −m0 and t ∈ [r −m0,r ]. For t ≤ r −m0, we bound for any D ⊂V

P(z
=r−t←−→ u off A∪D) ≤ 3G(r − t −m0; A∪D)

V
≤ 3G∗(r )

V
,

where the first inequality is by Lemma 3.15 and the second by definition of G∗(r ). Hence, the sum
over t ≤ r −m0 in (4.2) is at most

3G∗(r )F (s; A)

V

∑
u,h,z

Poff A(0
r↔ z)Poff A(z ↔ h)Poff A(h

s↔ u) ≤ 3G∗(r )F (s; A)(E|C (0)|)3

V
= 3λ3G∗(r )F (s; A) ,

where the inequality we got by summing over u,h and z (in that order) and the equality is due to the
definition of pc in (1.1). Our λ= 1/10 is chosen small enough so that 3λ3 ≤ 1/2.

We now bound the sum in (4.2) for t ∈ [r −m0,r ]. We first bound

Poff A(0
=t←→ z) ≤ 3G∗(r )

V
,

as we did before using Lemma 3.15 and pull that term out of the sum. This gives an upper bound of

3G∗(r )F (s; A)

V

∑
u ̸=h,z

m0∑
s1=0

max
D⊆V (G)

P(z
=s1←→ u off A∪D)Poff A(z ↔ h)Poff A(u

s↔ h) .
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We would like to sum the first term in the sum over s1 and get a contribution of P(z
m0←→ u). We cannot

do that however, because the maximizing set D may depend on s1 so these are not necessarily disjoint
events. Instead we bound for all D ⊆V (G)

P(z
=s1←→ u off A∪D) ≤ m(m −1)s1 p s1

c ps1 (z,u) ≤ (1+o(1))ps1 (z,u)

where the first inequality is since m(m −1)s1 ps1 (z,u) bounds the number of simple paths of length s1

connecting z to u and the second inequality is due to condition (2) of Theorem 1.3. Now, if one of
the connections z ↔ h or u

s↔ h is in fact a connection of length at least m0 we use Lemma 3.13 to

simplify the sum. For instance, if the connection is z
[m0,∞)←−−→ h, then we bound the probability of this

by 2V −1E|C (0)| and the sum simplifies to

4G∗(r )F (s; A)E|C (0)|
V 2

∑
u ̸=h,z

m0∑
s1=0

ps1 (z,u)P(u
s↔ h) ,

we then sum over h,u, z and s1 and get a contribution of

4G∗(r )F (s; A)m0(E|C (0)|)2

V
= o(G∗(r )F (s; A)) ,

since (E|C (0)|)2 =O(V 2/3) and m0 = o(ε−1) = o(V 1/3). Thus, it remains to bound

3G∗(r )F (s; A)

V

∑
u ̸=h,z

m0∑
s1=0

ps1 (z,u)Poff A(z
m0←→ h)Poff A(u

m0←→ h) .

We bound this by

CG∗(r )F (s; A)

V

∑
u ̸=h,z

m0∑
s1=0,s2=1,s3=0

ps1 (z,u)ps2 (u,h)ps3 (h, z) = o(1) ·G∗(r )F (s; A) ,

where we used Claim 3.16 and condition (3) of Theorem 1.3. This concludes the proof of (4.1).
We now turn to prove the main result assuming (4.1). First, for any r ≤ 2m0 we have that the number

of non-backtracking paths emanating from 0 is at most m(m −1)r−1 and hence, for any A,

G(r ; A) ≤ m(m −1)r−1pr
c = 1+o(1) ,

by condition (2) of Theorem 1.3. It remains to consider the case r ≥ 2m0. Assume by contradiction
that there exists some r ≥ 2m0 such that r is the maximizer in the definition G∗(r ) and that G∗(r ) ≥ 2/c
where c is the constant from (4.1). Fix such r and let A = A(r ) be the maximizing set as in (4.1). Now,
putting s = r in (4.1) gives

F (2r ; A) ≥ cG∗(r )F (r ; A) ≥ 2F (r ; A) .

Putting s = 2r in (4.1) gives

F (3r ; A) ≥ cG∗(r )F (2r ; A) ≥ 4F (r ; A) ,

and so, by induction, for any k,

F (kr ; A) ≥ 2k−1F (r ; A) .

We have reached a contradiction, since on the right hand side we have a quantity going to ∞ in k
(note that A cannot contain 0, otherwise it will not be maximizing, so F (r ; A) ≥ 1) and on the left hand
side our quantity is bounded by V . �

We now wish to obtain the reverse inequality to Theorem 4.1, that is, a lower bound to E|∂B(r )|. Of
course, this cannot hold for all r but it turns out to hold as long as r ≪V 1/3. This is the correct upper
bound on r because the diameter of critical clusters is of order V 1/3 (see [48]).
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Lemma 4.2 (Lower bound on critical expected ball). Let G be any transitive finite graph and put p = pc

where pc is defined in (1.4). Then, there exists a constant ξ> 0 such that for all r ≤ ξV 1/3,

E|B(r )| ≥ r /4.

Proof. For convenience write c = 1/4. Assume by contradiction that E|B(r )| ≤ cr . Given this assump-
tion, we will prove by induction that for any integer k ≥ 0,

E
∣∣B(

[r (1+k/2),r (1+ (k +1)/2)]
)∣∣≤ 2k+1ck+2r . (4.3)

Let us begin with the case k = 0. Since E|B(r )| ≤ cr there exists r ′ ∈ [r /2,r ] such that E|∂B(r ′)| ≤ 2c.
Hence,

E|B([r,3r /2])| = ∑
A

P(B(r ′) = A)E[|B([r,3r /2])| | B(r ′) = A]

= ∑
A

P(B(r ′) = A)E
[ ∑

a∈∂A
E|Ba(3r /2− r ′; A)|]

≤ crE|∂B(r ′)| ≤ 2c2r ,

where the inequality follows since E|Ba(3r /2−r ′; A)| ≤ E|B(r )| ≤ cr for any A by monotonicity. Assume
now that (4.3) holds for some k and we prove it for k +1. Since it holds for k, we have that there exists
r ′ ∈ [r (1+k/2),r (1+ (k +1)/2)] such that E|∂B(r ′)| ≤ 2k+2ck+2. By conditioning on B(r ′) = A as before
we get that

E
∣∣B(

[r (1+ (k +1)/2),r (1+ (k +2)/2)]
)∣∣≤ cr ·2k+2ck+2 ,

concluding the proof (4.3). Now, since c < 1/2 it is clear that the sum over k of (4.3) is at most Cr ,
contradicting the fact that Epc |C (0)| = λV 1/3 by our definition of pc in (1.4). Note that the constant ξ
may depend on λ. �
Lemma 4.3 (Lower bound on expected boundary size). Let G be a transitive finite graph for which
(1.5) holds and put p = pc . Then there exists constants c,ξ> 0 such that for any r ≤ ξV 1/3,

E|∂B(r )| ≥ c .

Proof. By Lemma 4.2 and Theorem 2.1 we have that E|B([2r,Cr ])| ≥ r for some large fixed C > 0. Also,

E|B(Cr )|2 ≤∑
x,y

P(0
Cr←→ x,0

Cr←→ y) ≤ ∑
x,y,z

P(0
Cr←→ z)P(z

Cr←→ x)P(z
Cr←→ y) ≤Cr 3 ,

by Theorem 2.1. By the inequality

P(X > a) ≥ (EX −a)2/EX 2 (4.4)

valid for any non-negative random variable X and a < EX , with a = 0,

P(∂B(2r ) ̸= ;) ≥ c/r ,

for some c > 0. Furthermore, given B(r ), each vertex of ∂B(r ) has probability at most Cr−1 of reaching
∂B(2r ) by Theorem 2.1. Hence, for any ζ> 0,

P(∂B(2r ) ̸= ; and |∂B(r )| ≤ ζr ) ≤C 2ζ/r .

We now have

P(|∂B(r )| ≥ ζr ) ≥ P(∂B(2r ) ̸= ;)−P(∂B(2r ) ̸= ; and |∂B(r )| ≤ ζr )

≥ c

r
− C 2ζ

r
,

and the lemma follows by choosing ζ> 0 small enough. �
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4.2. In the supercritical regime. In this section, we extend the volume estimates to the supercritical
regime. The following is an immediate corollary of Theorem 4.1:

Lemma 4.4 (Upper bound on supercritical volume). Let G be a graph satisfying the assumptions in
Theorem 1.3 and consider percolation on it with p ≤ pc (1+ε). Then for any r and any A ⊂V we have

E|∂B(t ; A)| ≤C (1+ε)t , and E|B(r ; A)| ≤Cε−1(1+ε)r .

Proof. The first assertion is immediate by Theorem 4.1 and Lemma 3.4. The second assertion follows
by summing the first over t ≤ r . �

The corresponding lower bound is more complicated to obtain, and as before, can only hold up to
some value of r . In conjunction with Lemma 4.4, it identifies E|B(r )| =Θ(ε−1(1+ε)r ) for appropriate
r ’s.

Theorem 4.5 (Lower bound on supercritical volume). Let G be a graph satisfying the assumptions in
Theorem 1.3 and consider percolation on it with p = pc (1+ε). Then for any r satisfying

E|B(r )| ≤ ε2V

(logε3V )4
, (4.5)

the following bound holds:
E|B(r )| ≥ cε−1(1+ε)r .

Proof. First, we may assume that

r ≤ ε−1 log(ε3V ) , (4.6)

since otherwise the assumption of the lemma cannot hold together with the conclusion. Recall now
the simultaneous coupling (described at the end of Section 2.1) between percolation at p1 = pc and
p2 = pc (1+ε). Let

Aℓ(x) = {0
=ℓ←→ x in Gp2 },

and given a simple path η of length ℓ between 0 and x, write

Aℓ(x,η) = {0
=ℓ←→ x in Gp2 and η is the lexicographical first p2-open path between 0 and x} ,

so that Aℓ(x) = ∪
ηAℓ(x,η). Write Bℓ(x,η) for the event that the edges of η are in fact p1-open (not

just p2). We have that

Aℓ(x,η)∩Bℓ(x,η) ⊆ {0
=ℓ←→ x in Gp1 } ,

so, ∪
ℓ∈[r−ε−1,r ],η

Aℓ(x,η)∩Bℓ(x,η) ⊆ {0
[r−ε−1,r ]←−−−→ x in Gp1 } . (4.7)

We will show that∑
x

P
(
0

[r−ε−1,r ]←−−−→ x in Gp1 \
∪

ℓ∈[r−ε−1,r ],η

Aℓ(x,η)∩Bℓ(x,η)
)
= o(ε−1) , (4.8)

and first complete the proof subject to (4.8). Since {Aℓ(x,η)∩Bℓ(x,η)}ℓ,η are disjoint events, (4.7) and
(4.8) show that ∑

x,ℓ∈[r−ε−1,r ],η

P(Aℓ(x,η)∩Bℓ(x,η)) ≥ Ep1 |B([r −ε−1,r ])|−o(ε−1) ≥ cε−1 ,

where the last inequality used Lemma 4.3 and the fact that r ≪V 1/3 by (4.6) and ε≫V −1/3. From this
the required result follows since

P(Bℓ(x,η) |Aℓ(x,η)) = (1+ε)−ℓ ,
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which implies that

Ep2 |B(r )| ≥ ∑
x,ℓ∈[r−ε−1,r ],η

P(Aℓ(x,η)) (4.9)

= ∑
x,ℓ∈[r−ε−1,r ],η

P(Aℓ(x,η))P(Bℓ(x,η) |Aℓ(x,η))(1+ε)ℓ

≥ (1+ε)r−ε−1 ∑
x,ℓ∈[r−ε−1,r ],η

P(Aℓ(x,η)∩Bℓ(x,η))

≥ (1+ε)r−ε−1
cε−1 .

Thus, our main effort is to show (4.8) under the restriction of (4.5) and (4.6). Fix x and assume that
the event

{0
[r−ε−1,r ]←−−−→ x in Gp1 } \

∪
ℓ∈[r−ε−1,r ],η

Aℓ(x,η)∩Bℓ(x,η) (4.10)

occurs. In words, this event means that either the shortest p2-open path is shorter than the shortest
p1-path or that they have the same length but the lexicographically first shortest p2-path contains
an edge having value in [p1, p2]. This implies that the p2-path shortcuts the p1-path. Formally, given
vertices u, v and integers ℓ ∈ [r −ε−1,r ],k ∈ [0,ℓ], t ∈ [2,ℓ] with k + t ≤ ℓ write T (u, v, x,ℓ,k, t ) for the
event that there exists paths η1,η2,η3,γ in the graph such that

(1) η1 is a shortest p1-open path of length k connecting 0 to u,
(2) η2 is a shortest p1-open path of length t connecting u to v ,
(3) η3 is a shortest p1-open path of length ℓ− t −k connecting v to x,
(4) Bx (ℓ−k − t )∩B0(k) =; in Gp1 ,
(5) γ is p2-open path of length at most t connecting u to v and one of the edges of γ receives value

in [p1, p2], and
(6) η1,η2,η3 and γ are disjoint paths,

see Figure 2. The event (4.10) implies that T (u, v, x,ℓ,k, t ) occurs for some u, v,ℓ,k, t satisfying the
conditions above. Our treatment of the case t ≥ m0 is easier than the case t ≤ m0 so let us perform
this first. When t ≥ m0 we forget about condition (4) and the special edge with value [p1, p2] in (5) and
take a union over ℓ,k and t ∈ [m0,r ] of the event T (u, v, x,ℓ,k, t ). This union implies the existence of
vertices u, v such that the following events occur disjointly:

(1) 0
r↔ u in Gp1 ,

(2) u
P [m0,r ]←−−→ v in Gp1 ,

(3) v
r↔ x in Gp1 ,

(4) u
r↔ v in Gp2 .

Indeed, the witnesses to these (monotone) events are the paths η1,η2,η3,γ. We now wish to use the
BK inequality, however, as the astute reader may have already noticed, our witnesses are not stated
in an i.i.d. product measure. Let us expand briefly on how we may still use the BK inequality. We
may consider our simultaneous coupling measure to be an i.i.d. product measure by putting on each
edge a countable infinite sequence of independent random bits receiving 0 with probability 1/2 and 1
otherwise such that this sequence encodes the uniform [0,1] random variable attached to each edge.
In this setting, a witness for an edge being p-open is the sequence of bits attached to the edge and
similarly for the edge being p-closed. Similarly, we define this way events of the form “E1 in Gp1

occurs disjointly from E2 in Gp2 ”. With this definition of witnesses we may use the BK inequality here
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0

x

u

v

= k

= t

= ℓ− k − t
p2-open, |γ| ≤ t

η1

η3
γ

η2

FIGURE 2. The event T (u, v, x,ℓ,k, t ) — an excursion.

to bound the probability of the union above and sum over x (as in (4.8). This gives an upper bound of∑
u,v,x

Pp1 (0
r↔ u)Pp1 (u

P [m0,r ]←−−→ v)Pp1 (v
r↔ x)Pp2 (u

r↔ v) .

We sum over x and get a factor of r by Theorem 2.1. We bound Pp1 (u
P [m0,r ]←−−→ v) ≤ Cr V −1 by Lemma

3.13 and Theorem 2.1. We then sum over v and get a factor of Ep2 |B(r )| and on u to get another factor
of r . All together this gives an upper bound of

Cr 3Ep2 |B(r )|
V

=O(ε−1 log−1(ε3V )) = o(ε−1) ,

by (4.5).
We now treat the case in which t ∈ [2,m0]. We claim that the event T (u, v, x,ℓ,k, t ) implies that

there exist disjoint paths η2,γ between u and v such that |η2| = t and |γ| ≤ t and the intersection of
the following events occurs:

(a) η2 is p1-open,
(b) γ is p2-open, and one of its edges receives value in [p1, p2],

(c) 0
=k←→ u off η2 ∪γ and v

=ℓ−k−t←−−−→ x off η2 ∪γ∪B0(k) in Gp1 .

Indeed, let η1,η2,η3,γ be the disjoint paths guaranteed to exists in the definition of T (u, v, x,ℓ,k, t ).
The paths η2 andγ show that both (a) and (b) indeed occur (note that we have relaxed the requirement
that η2 is a shortest p1-open path). Seeing that (c) occurs is slightly more subtle. First observe that for
any two vertices z, y and integer ℓ≥ 0

{z
=ℓ←→ y off A} = ∪

β:|β|=ℓ,β∩A=;

({
β is open

} ∩
β′:|β′|<ℓ,β′∩A=;

{
β′ has a closed edge

})
,

where β,β′ are simple paths in G and we slightly abuse notation and write β∩ A = ; to denote that
the edges of β are disjoint from the edges touching A. To see that (c) holds we note that the event
T (u, v, x,ℓ,k, t ) implies that η1 is of length k between 0 and u, disjoint from η2 ∪γ, is p1-open and

any shorter path between 0 and u has a p1-closed edge in it; in particular, 0
=k←→ u off η2 ∪γ occurs in

Gp1 . Similarly, η3 is of length ℓ−k − t between v and x, is disjoint from η2 ∪γ∪B0(k), is p1-open and

any shorter path between v and x has a p1-closed edge in it; in particular v
=ℓ−k−t←−−−→ x off η2 ∪γ∪B0(k)

occurs in Gp1 .
Now, the events (a), (b), (c) are independent since they are measurable with respect to disjoint sets

of edges (the edges of η2, γ and all the rest). The probability of their intersection is hence

p |η2|
1 p |γ|

2

[
1− (p1/p2)|γ|

]
Pp1

(
0

=k←→ u off η2 ∪γ and v
=ℓ−k−t←−−−→ x off η2 ∪γ∪B0(k)

)
,



HYPERCUBE PERCOLATION 31

where the factor [1−(p1/p2)|γ|] is the probability that one edge ofγhas value in [p1, p2] conditioned on
all edges being p2-open. We compute the probability on the right hand side as usual by conditioning
on B0(k), this gives

p |η2|
1 p |γ|

2

[
1− (p1/p2)|γ|

] ∑
A:0

=k←→u

Pp1 (B0(k) = A)Pp1 (v
=ℓ−k−t←−−−→ x off A∪η2 ∪γ) .

We now start summing all this over u, v, x,ℓ,k, t ,η2,γ. We start by summing over x the last probability,

giving as a constant factor by Theorem 4.1. The sum over A gives a term of Pp1 (0
=k←→ u off η2∪γ) which

we sum over k ∈ [0,r ] and bound this by Pp1 (0
r↔ u). Furthermore, the number of possible η2’s is at

most m(m −1)t pt (u, v) and if |γ| = s ≤ t , then the number of such γ’s is at most m(m −1)s−1ps(u, v).
We also bound [1− (p1/p2)s] ≤C sε. All this gives that∑

u,v,x,ℓ,k,t∈[2,m0]
P(T (u, v, x,ℓ,k, t )) ≤Cε

∑
u,v,ℓ

t∈[2,m0],s∈[1,t ]

(m −1)s+t p t
1p s

2spt (u, v)ps(u, v)Pp1 (0
r↔ u) .

By condition (2) of Theorem 1.3 and the fact that m0 = o(ε−1), we have that (m−1)s+t p t
1p s

2 = 1+o(αV ),
so we may bound this sum by

Cε
∑
u,ℓ

Pp1 (0
r↔ u)

∑
v,t∈[2,m0],s∈[1,t ]

spt (u, v)ps(u, v) .

The sum over ℓ ∈ [r −ε−1,r ] gives a factor of ε−1, and since G is transitive, the second sum over v, t , s
does not depend on u. Hence we may sum over u separately using Theorem 2.1 giving a bound of

Cr
∑

v,t∈[2,m0],s∈[1,t ]
spt (u, v)ps(u, v) .

For each s ≥ 1 and s1 ∈ {1, . . . , s}, we can bound

ps(0, v) ≤ m

m −1

∑
w

ps1 (0, w)ps−s1 (w, v) ,

because the number of non-backtracking paths of length s from 0 to v is at most the sum over w the
number of non-backtracking paths of length s1 from 0 to w times the number of non-backtracking
paths of length s− s1 from w to v (the factor m/(m−1) comes from properly normalizing these num-
bers). As a result,∑

v,t∈[2,m0],s∈[1,t ]
spt (0, v)ps(0, v) ≤ m

m −1

∑
v,w

∑
t∈[2,m0],s1∈[1,t ],s2≤s1

pt (0, v)ps1 (0, w)ps2 (w, v) ≤ CαV

logV
,

by condition (3) in Theorem 1.3 and the fact that t + s1 + s2 ≥ 3. All together we get that∑
u,v,x,ℓ,k,t∈[2,m0]

P(T (u, v, x,ℓ,k, t )) ≤ CrαV

logV
= o(ε−1) ,

by our assumption (4.6) and since αV = o(1). This finishes the proof of (4.8) and concludes the proof
of the theorem. �

The following are easy corollaries:

Corollary 4.6. Let G be a graph satisfying the assumptions in Theorem 1.3 and consider percolation on
it with p = pc (1+ε). Then for any r satisfying

r ≤ ε−1[ log(ε3V )−4loglog(ε3V )
]

,

the following bound holds
E|B(r )| =Θ(ε−1(1+ε)r ) .
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In particular for r0 defined in (2.8)

E|B(r0)| =Θ(
√

αV εV ) .

Proof. The upper bound follows from Lemma 4.4 and the lower bound from Theorem 4.5. �
Lemma 4.7. Let G be a graph satisfying the assumptions in Theorem 1.3 and consider percolation on it
with p ≤ pc (1+ε). Let r be an integer satisfying the assumptions of Theorem 4.5. Then,

E|B(r )|2 ≤Cε−1(E|B(r )|)2 .

Proof. If 0
r↔ x and 0

r↔ y , then there exists a vertex z and an integer t ≤ r such that the event

{0
=t←→ z}◦ {z

r−t←→ x}◦ {z
r−t←→ y}

holds. Apply BK-Reimer and sum over x, y and then z to bound

E|B(r )|2 ≤
r∑

t=1
E|∂B(t )|E|B(r − t )|E|B(r − t )| .

We apply Lemma 4.4 and Theorem 4.1 to bound

E|B(r )|2 ≤Cε−3(1+ε)2r ,

and Theorem 4.5 gives the required claim. �

5. AN INTRINSIC-METRIC REGULARITY THEOREM

For an increasing event E and a vertex a, we say that a is pivotal for E for the event that E occurs
but does not occur in the modified configuration in which we close all the edges touching a. We write
Piv(E) for the set of pivotal vertices for the event E . For vertices a, x, radii r1, jx and A ⊂V , we define

Gr1, jx (a, x; A) = E
[|{u : a

P [2m0,r1]←−−−−→ u off A \ {a} and a ∈ Piv({x
jx+r1←−→ u})}| ∣∣ Bx( jx ) = A

]
.

Definition 5.1 (Regenerative and fit vertices). (a) Given vertices x, a, radii r1, jx ≥ m0 and a real num-
ber β> 0, we say that a is (β, jx ,r1)-regenerative if

(1) x
= jx←→ a, and

(2) Gr1, jx

(
a, x;Bx( jx)

)≥ (1−β)E|B(r1)|,
and note that this event is determined by the status of the edges touching Bx ( jx). We say that a is

(β, jx ,r1)-nonregenerative if x
= jx←→ a but it is not (β, jx ,r1)-regenerative.

(b) Given an additional real number δ> 0, we say that x is (δ,β, jx ,r1)-fit if

(1) ∂Bx( jx) ̸= ; holds and,
(2) the number of (β, jx ,r1)-nonregenerative vertices is at most δε−1.

It will also be convenient to combine our error terms. For this, we define

ωm =α1/2
V +εm0 , (5.1)

so that ωm = o(1). Our goal in this section is to prove that if ∂Bx( jx) ̸= ;, then x is fit with high proba-
bility. This is the intrinsic metric regularity theorem discussed in Section 2.5.

Theorem 5.1 (Intrinsic regularity). Let G be a graph satisfying the assumptions of Theorem 1.3. Let
p = pc (1+ε), let r = rm = M/ε where M = Mm is defined in (2.7) and r1 ∈ [ε−1,r0], where r0 is defined
in (2.8). For any δ,β ∈ (0,1) there exist at least (1−O(ω1/4

m ))r radii jx ∈ [r,2r ] such that

P(x is (δ,β, jx ,r1)-fit) ≥ (
1−O

(
δ−1β−2e2Mω1/4

m

))
P(∂Bx( jx) ̸= ;) .

We start by proving some preparatory lemmas:
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Lemma 5.2. Assume the setting of Theorem 5.1. Then,

2r∑
jx=r

∑
a,u

P
(
x

= jx←→ a, a
P [2m0,r1]←−−−−→ u off Bx ( jx) \ {a}

)≥ (
1−O(ωm)

)
E|B([r,2r ])|E|B(r1)| .

Proof. We condition on Bx( jx) = A for any admissible A (that is, A for which the event x
= jx←→ a occurs

and P(Bx( jx) = A) > 0). Then,

P(a
P [2m0,r1]←−−−−→ u off Bx( jx) \ {a} | Bx( jx) = A) = P(a

P [2m0,r1]←−−−−→ u off A \ {a}) ,

and

P(a
P [2m0,r1]←−−−−→ u off A \ {a}) = P(a

P [2m0,r1]←−−−−→ u)−P(a
P [2m0,r1]←−−−−→ u only on A \ {a}) .

Summing over the first term gives∑
a,u, jx∈[r,2r ]

P(x
= jx←→ a)P(a

P [2m0,r1]←−−−−→ u) ≥ E|B([r,2r ])|(E|B(r1)|−E|B(2m0)|)
= (1−O(ωm))E|B(r1)|E|B([r,2r ])| ,

since E|B(2m0)| ≤ C m0 by Corollary 3.5 and E|B(r1)| ≥ cε−1 by Theorem 4.5 and since r1 ≥ ε−1. It
remains to bound the sum∑

a,u, jx∈[r,2r ]

∑
A

P(Bx( jx) = A)P(a
P [2m0,r1]←−−−−→ u only on A \ {a}) .

As usual, if a
P [2m0,r1]←−−−−→ u only on A \ {a} occurs, then there exists z ∈ A such that {a

r1←→ z}◦ {z
r1←→ u}. BK

inequality now gives ∑
a,u, jx∈[r,2r ]

∑
A

P(Bx( jx) = A)
∑

z∈A\{a}
P(a

r1←→ z)P(z
r1←→ u) . (5.2)

We sum over u and extract a factor of E|B(r1)|. We then change the order of summation, so the sum
simplifies to

E|B(r1)| ∑
a,z ̸=a, jx∈[r,2r ]

P(x
= jx←→ a , x

jx←→ z)P(a
r1←→ z) .

We sum over jx (noting that the events x
= jx←→ a , x

jx←→ z are disjoint as jx varies) and bound this sum by

E|B(r1)| ∑
a,z ̸=a

P(x
2r←→ a, x

2r←→ z)P(a
r1←→ z) .

As usual, if x
2r←→ a and x

2r←→ z, then there exists z ′ such that the event

{x
2r←→ z ′}◦ {z ′ 2r←→ z}◦ {z ′ 2r←→ a}

occurs. By the BK inequality we bound the above sum by

E|B(r1)| ∑
a,z ′,z ̸=a

P(x
2r←→ z ′)P(z ′ 2r←→ z)P(z ′ 2r←→ a)P(a

r1←→ z) .

We may now sum over a and z ̸= a using Corollary 3.18 and then sum over z ′ to get that this is bounded
by

CE|B(r1)|E|B(2r )|
[
ωm + E|B(r1)|(E|B(2r )|)2

V

]
.

This concludes our proof since the second term in the parenthesis is of order at mostα1/2
V e4M (ε3V )−1/2 ≤

α1/2
V by the upper bound on r1, our choice of r and M in (2.7) and Corollary 4.6. �
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x

u

z1

a

z2

|η1| = t

|η2| = jx − t

|γ3| ≤ r1 |γ1| ≤ r1

|γ2| ≤ r1

FIGURE 3. a is not pivotal for the event x
jx+r1←→ u.

Lemma 5.3. Assume the setting of Theorem 5.1. There exists a C > 0, such that

2r∑
jx=r

∑
a,u

P
(
x

= jx←→ a, a
P [2m0,r1]←−−−−→ u off Bx( jx) \ {a}, a ∈ Piv({x

jx+r1←−→ u})
)≥ (

1−O(ωm)
)
E|B([r,2r ])|E|B(r1)| .

Proof. Fix jx ∈ [r,2r ]. We rely on Lemma 5.2, and bound the difference in the probabilities appearing
in Lemma 5.2 and the one above. If the event

{x
= jx←→ a, a

P [2m0,r1]←−−−−→ u off Bx( jx) \ {a}} (5.3)

occurs but a ̸∈ Piv({x
jx+r1←−→ u}), then there exist z1, z2 and t ≤ jx and paths η1,η2,γ1,γ2,γ3 such that

(a) γ1 is an open path of length at most r1 connecting a to z2,
(b) γ2 is an open path of length at most r1 connecting z2 to u,
(c) γ3 is an open path of length at most r1 + jx connecting z1 to z2,
(d) η1 is a shortest open path of length precisely t connecting x to z1,
(e) η2 is a shortest open path of length precisely jx − t connecting z1 to a,
(f) γ1,γ2,γ3,η1,η2 are disjoint.

See Figure 3. Indeed, assume that a is not pivotal for x
jx+r1←−→ u and (5.3) holds. Let η be the lexico-

graphically first shortest open path of length jx between x and a and γ a disjoint open path of length
in [2m0,r1] between a and u off Bx( jx)\{a} which we are guaranteed to have since (5.3) holds. Since a
is not pivotal we learn that there exists another open path β between x and u of length at most jx +r1

that does not visit a. Hence, β goes “around” a, or in formal words, there exists vertices z1 and z2 on β

appearing on it in that order such that z1 ∈ η and z2 ∈ γ and the part of β between z1 and z2 is disjoint
from η∪γ. We take t < jx to be such that η(t ) = z1 and put η1 = η[0, t ],η2 = η[t , jx]. We take γ3 to
be the section of β between z1 and z2 and γ1,γ2 be the sections of γ from a to z2 and from z2 to u,
respectively.

For all jx , t ∈ [r,2r ] these events (that is, the existence of z1, z2 and the disjoint paths) are disjoint
since η1 and η2 are required to be shortest open paths. The union of these events over jx , t implies
that there exists z1, z2 such that

{x
2r←→ z1}◦ {z1

2r←→ a}◦ {a
r1←→ z2}◦ {z1

r1+2r←−→ z2}◦ {z2
r1←→ u} ,
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since we can just take η1,η2,γ1,γ2,γ3 as our disjoint witnesses. Using BK inequality we bound the
required sum from above by∑

a,u,z1,z2 :
z1 ̸=z2,z1 ̸=a,z2 ̸=a

P(x
2r←→ z1)P(z1

2r←→ a)P(a
r1←→ z2)P(z1

r1+2r←−→ z2)P(z2
r1←→ u) .

Summing first over u extracts a factor of E|B(r1)|, and we sum over a and z2 using Corollary 3.18, and
lastly sum over z1. This gives a bound of

CE|B(r1)|E|B(2r )|
[
ωm + E|B(r1)|E|B(r1 +2r )|E|B(2r )|

V

]
.

We apply Lemma 5.2 to conclude the proof since the second term in the parenthesis is of order at
most αV e4M ≤ α1/2

V by the upper bound on r1, our choice of r and M in (2.7) and Corollary 4.6. Also
note that E|B([r,2r )| ≥ E|B(2r )|/2 by Corollary 4.6 and our choice of r and M . �
Lemma 5.4. Assume the setting of Theorem 5.1. For any vertices x, a,

2r∑
jx=r

∑
u

P
(
x

= jx←→ a, a
P [2m0,r1]←−−−−→ u off Bx( jx) \ {a}

)≤ (1+O(ωm))V −1E|B(r1)|E|B([r,2r ])| .

Proof. The event x
= jx←→ a, a

P [2m0,r1]←−−−−→ u off Bx( jx) \ {a} implies that

{x
= jx←→ a}◦ {a

r1←→ u} ,

the second witness is the open edges of an open path of length in [2m0,r1] off Bx( jx)\{a} and the first
witness is the lexicographically first shortest open path of length jx between x and a together with all
the closed edges of the graph. The BK-Reimer inequality gives that

P
(
x

= jx←→ a, a
P [2m0,r1]←−−−−→ u off Bx( jx) \ {a}

)≤ P(x
= jx←→ a)P(a

r1←→ u) .

We sum over u and jx ∈ [r,2r ] get that the sum is bounded by

E|B(r1)|P(x
[r,2r ]←−→ a) .

Lemma 3.14 gives that

P(x
[r,2r ]←−→ a) ≤ (1+O(ωm))V −1E|B([r −m0,2r −m0])| .

We have that

E|B([r −m0,2r −m0])| ≤ E|B([r,2r ])|+E|B([r −m0,r ])| ≤ (1+O(εm0))E|B([r,2r ])|
since E|B([r −m0,r ])| ≤C m0(1+ε)r by Theorem 4.1 and Corollary 3.5 and since E|B([r,2r ]) ≥ cε−1(1+
ε)2r by Corollary 4.6 (we use the assumption that r ≫ ε−1). Hence

P(x
[r,2r ]←−→ a) ≤ (1+O(ωm))V −1E|B([r,2r ])| , (5.4)

concluding our proof. �
Proof of Theorem 5.1. By combining Lemmas 5.3 and 5.4 we deduce that for any x there exist at least
(1−O(ω1/2

m ))V vertices a such that

2r∑
jx=r

∑
u

P
(
x

= jx←→ a, a
P [2m0,r1]←−−−−→ u off Bx ( jx) \ {a}, a ∈ Piv({x

jx+r1←−→ u})
)= (1+O(ω1/2

m ))V −1E|B(r1)|E|B([r,2r ])| .

Write G̃ for the variable

G̃ =
2r∑

jx=r
G jx ,r1 (a, x;Bx( jx))1

{x
= jx←→a}

.
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Note that G̃ is a random variable that is measurable with respect to Bx(2r ) (that is, it is determined

by the status of the edges touching Bx(2r )) and that it equals 0 unless x
[r,2r ]←−→ a. Furthermore, only

one of the summands can be nonzero because the events in the indicators are disjoint. Our previous
approximate equality can be rewritten as

EG̃ = (1+O(ω1/2
m ))V −1E|B(r1)|E|B([r,2r ])| .

Hence, for at least (1−O(ω1/2
m ))V vertices a,

E
[
G̃

∣∣x
[r,2r ]←−→ a

]≥ (1−O(ω1/2
m ))E|B(r1)| , (5.5)

by Lemma 3.14. This gives the conditional first moment estimate. The second moment calculation is
somewhat easier. We have

EG̃2 =
2r∑

jx=r

∑
u1,u2

E
[

P
(
a

P [2m0,r1]←−−−−→ u1 off Bx( jx) \ {a} | Bx ( jx)
)
P
(
a

P [2m0,r1]←−−−−→ u2 off Bx( jx) \ {a} | Bx( jx)
)
1

{x
= jx←→a}

]
.

We bound, almost surely in Bx( jx) and for i = 1,2,

P(a
P [2m0,r1]←−−−−→ ui off Bx( jx) \ {a} | Bx( jx)) ≤ P(a

r1←→ ui ),

and sum over u1 and u2 to get that

EG̃21
{x

[r,2r ]←→a}
≤ [

E|B(r1)|]2P(x
[r,2r ]←−→ a) ,

so that
E
[
G̃2

∣∣x
[r,2r ]←−→ a

]≤ [
E|B(r1)|]2 .

Combining this with (5.5), we obtain

Var
(
G̃

∣∣x
[r,2r ]←−→ a

)=O
(
[E|B(r1)|]2ω1/2

m

)
.

By Chebychev’s inequality, for any β> 0,

P
(
G̃ ≤ (1−β)E|B(r1)| ∣∣x

[r,2r ]←−→ a
)=O(β−2ω1/2

m ) .

Recall that this holds for at least (1−O(ω1/2
m ))V vertices a. Call these vertices valid. We have∑

a valid
P
(
x

[r,2r ]←−→ a,G̃ ≤ (1−β)E|B(r1)|
)
=O

(
E|B([r,2r ])|β−2ω1/2

m

)
,

by our previous estimate. Also, since there are at most O(ω1/2
m V ) invalid a’s, we apply (5.4) to bound

the sum over all a by ∑
a

P
(
x

[r,2r ]←−→ a,G̃ ≤ (1−β)E|B(r1)|
)
=O

(
E|B([r,2r ])|β−2ω1/2

m

)
.

Returning to our original notation, we rewrite this as
2r∑

jx=r

∑
a

P
(
x

= jx←→ a,G jx ,r1 (a, x;Bx( jx )) ≤ (1−β)E|B(r1)|
)
=O

(
E|B([r,2r ])|β−2ω1/2

m

)
.

Hence, there are at least (1−O(ω1/4
m ))r radii jx ∈ [r,2r ] such that∑

a
P
(
x

= jx←→ a,G jx ,r1 (a, x;Bx ( jx)) ≤ (1−β)E|B(r1)|
)

= O
(
E|B([r,2r ])|r−1β−2ω1/4

m

)
= O(e2Mβ−2ω1/4

m ) ,

where the last inequality is by Lemma 4.4. Given such jx , write X ( jx) for the random variable

X ( jx) =
∣∣∣{a : x

= jx←→ a,G jx ,r1 (a, x;Bx( jx)) ≤ (1−β)E|B(r1)|
}∣∣∣ ,
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so that EX ( jx) ≤ C e2Mβ−2ω1/4
m . The variable X ( jx ) equals the number of (β, jx ,r1)-non-regenerative

vertices. By Markov’s inequality we get that for any δ> 0

P(X ( jx) ≥ δε−1) =O
(
εδ−1β−2e2Mω1/4

m

)
,

and we conclude by Lemma 3.6 that at least (1−O(ω1/4
m ))r radii jx ∈ [r,2r ] satisfy

P(∂Bx( jx) ̸= ; and X ( jx) ≤ δε−1) ≥ (
1−O(δ−1β−2e2Mω1/4

m )
)
P(∂Bx ( jx) ̸= ;) ,

as required. �

6. LARGE CLUSTERS ARE CLOSE

In this section, we prove Theorem 2.4 which shows that many closed edges exist between most
large clusters. This section involves all our notation from the previous sections and in particular the
parameters V ,m,m0,εm ,αV . We define β,k,ℓ,ζ,δ as

β= (log M)−2, k = M

log M
, ℓ= (log M)1/4, ζ= (log M)−1/8, δ= ζ/2. (6.1)

For notational convenience we also denote

{a
P [2m0,r0],x←−−−−−→ u} = {a

P [2m0,r0]←−−−−→ u}∩ {a ∈ Piv(x
jx+r0←−→ u)} ,

{b
P [2m0,r0],y←−−−−−→ u′} = {b

P [2m0,r0]←−−−−→ u′}∩ {b ∈ Piv(y
jy+r0←−→ u′)} .

Let S jx , jy ,r0 (x, y) be the random variable counting the number of edges (u,u′) such that there exist
vertices a,b with

(1) A (x, y, jx , jy ),

(2) x
= jx←→ a and y

= jy←→ b and

(3) a
P [2m0,r0],x←−−−−−→ u and

(4) b
P [2m0,r0],y←−−−−−→ u′ off Bx( jx + r0).

Further define

Ŝ2r,2r,r0 (x, y) = ∣∣{(u,u′) : {x
2r+r0←−→ u}◦ {y

2r+r0←−→ u′} , |Bu(2r + r0)| · |Bu′(2r + r0)| ≥ e40Mε−2(E|B(r0)|)2}∣∣ .

We will use the fact that for any jx , jy ∈ {r, . . . ,2r }2

S2r+r0 (x, y) ≥ S jx , jy ,r0 (x, y)− Ŝ2r,2r,r0 (x, y) , (6.2)

where S2r+r0 (x, y) is the random variable defined above Theorem 2.4. Finally, write A (x, y, jx , jy ,r0,β,k)
for the intersection of the events

(1) A (x, y, jx , jy ),
(2) |Bx ( jx)| ≤ ε−2(1+ε)3r and |By ( jy )| ≤ ε−2(1+ε)3r and |∂Bx( jx)| ≤ ε−1(1+ε)3r ,
(3) |∂Bx( jx)| ≥ ek/4ε−1 and |∂By ( jy )| ≥ ek/4ε−1,
(4) x is (1,β, jx ,r0)-fit and y is (1,β, jy ,r0)-fit,
(5)

E
[

S jx , jy ,r0 (x, y)1
{∂Bx ( jx )

2r0←→∂By ( jy )}
| Bx( jx),By ( jy )

]
≤V −1mε−2(E|B(r0)|)2α1/2

V .

This event is measurable with respect to Bx( jx),By ( jy ). The following three statements will prove
Theorem 2.4:

Lemma 6.1. Assume the setting of Theorem 2.4. Then,

E
∣∣{x, y : A (x, y,2r,2r ) and Ŝ2r,2r,r0 (x, y) ≥β1/2V −1mε−2(E|B(r0)|)2}∣∣= o(ε2V 2) .
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Theorem 6.2. Assume the setting of Theorem 2.4. Then there exists radii j1, . . . , jℓ ∈ [r,2r ] such that for
at least (1−o(1))V 2 pairs x, y,

P
(
A (x, y,2r,2r ) and

∩
jx , jy∈{ j1,..., jℓ}2

A (x, y, jx , jy ,r0,β,k)c
)
= o(ε2) .

Theorem 6.3. Assume the setting of Theorem 2.4 and let x, y be a pair of vertices. Then, for any radii
jx , jy ∈ {r, . . . ,2r }2,

P
(
S jx , jy ,r0 (x, y) ≤ 2β1/2V −1mε−2(E|B(r0)|)2 and A (x, y, jx , jy ,r0,β,k)

)=O(β1/2ε2) .

Proof of Theorem 2.4 subject to Lemma 6.1 and Theorems 6.2–6.3. Lemma 3.8 shows that

|{x, y : A (x, y,2r,2r )}|
4ε2V 2

P−→ 1.

Thus, it suffices to prove that∣∣{x, y : A (x, y,2r,2r ) and x, y are not (r,r0)-good
}∣∣

ε2V 2
P−→ 0.

Lemma 3.10 shows that∣∣{x, y : A (x, y,2r,2r ) and |C (x)| ≤ (ε3V )1/4ε−2 or |C (y)| ≤ (ε3V )1/4ε−2
}∣∣

ε2V 2
P−→ 0.

We are left to handle requirement (3) in the definition of (r,r0)-good. Let j1, . . . , jℓ be the radii guar-
anteed to exist by Theorem 6.2 and let x, y be a pair of vertices for which the assertion of Theorem 6.2
holds. Theorem 6.2 asserts that the number of such pairs is (1−o(1))V 2 so the sum of P(A (x, y,2r,2r ))
over pairs not counted is o(ε2V 2). Write J (x), J (y) for the lexicographically first pair ( jx , jy ) ∈ { j1, . . . , jℓ}2

for which the event A (x, y, jx , jy ,r0,β,k) occurs, or put J (x) = J (y) =∞ if no such jx , jy exist. Then for
at least (1−o(1))V 2 pairs x, y

P(A (x, y,2r,2r ), J (x) =∞, J (y) =∞) = o(ε2) .

Theorem 6.3 together with the union bound implies that for any such pair x, y∑
jx , jy∈{ j1,..., jℓ}2

P
(
S jx , jy ,r0 (x, y) ≤ 2β1/2V −1mε−2(E|B(r0)|)2, J (x) = jx , J (y) = jy

)=O(β1/2ℓ2ε2) ,

which is o(ε2) by our choice of ℓ and β in (6.1). By these last two statements we deduce that

E
∣∣{x, y : A (x, y,2r,2r ) and ∀ jx , jy S jx , jy ,r0 (x, y) ≤ 2β1/2V −1mε−2(E|B(r0)|)2}∣∣= o(ε2V 2) .

This together with (6.2) and Lemma 6.1 implies that

E
∣∣{x, y : A (x, y,2r,2r ) and S2r+r0 (x, y) ≤β1/2V −1mε−2(E|B(r0)|)2}∣∣= o(ε2V 2) ,

concluding our proof since β1/2 = (log M)−1. �

6.1. Proof of Lemma 6.1: Bounding the error Ŝ2r,2r,r0 . In this section, we prove Lemma 6.1. We begin
by providing some useful estimates.

Lemma 6.4. Assume the setting of Theorem 2.4 and let p = pc (1+ε). There exists C > 0 such that for
any positive integer n

(1)
∑

x,y,(u,u′)
P
(
{u

n←→ x}◦ {u′ n←→ y} and u
2n←→ u′)≤C

[
mε−5(1+ε)4n +αV V mε−2(1+ε)2n]

.

(2)
∑

x,y,(u,u′)
P
(
{u

n←→ x}◦ {u′ n←→ y} and x
2n←→ y

)≤C
[
mε−5(1+ε)4n +αV V mε−2(1+ε)2n]

.
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x
y

z1 z2

(u, u′)

= t1 = t2

≤ 2n− t1 − t2

≤ n− t1 ≤ n− t2

x
y

z1 z2

(u, u′)

= t1 = t2

≤ 2n− t1 − t2

≤ n− t1 ≤ n− t2

(a) (b)

FIGURE 4. The edge (u,u′) is counted in the first and second sum of Lemma 6.4.

Proof. We begin by showing (1). If {u
n←→ x}◦ {u′ n←→ y} and u

2n←→ u′, then there exists vertices z1, z2 and
integers t1, t2 ≤ n such that the event

{u
=t1←→ z1,u′ =t2←→ z2,dGp (u,u′) ≥ t1 + t2}◦ {z1

2n−t1−t2←−−−−→ z2}◦ {x
n−t1←→ z1}◦ {y

n−t2←→ z2} ,

or the event

{u
=t1←→ z1,u′ =t2←→ z2,dGp (u,u′) ≥ t1 + t2}◦ {z1

2n−t1−t2←−−−−→ z2}◦ {x
n−t1←→ z2}◦ {y

n−t2←→ z1} ,

occur. See Figure 4 (a). Indeed, let η be the shortest open path of length at most 2n between u and u′
and let γx,u ,γy,u′ be two disjoint paths of length at most n connecting x to u and y to u′, respectively.
We take z1, z2 to be the first vertices of γx,u and γy,u′ which belongs to η. There are two possible order-
ings of z1, z2 on η, that is, (u, z1, z2,u′) or (u, z2, z1,u′), which give the two possible events. Assume the
ordering on η is (u, z1, z2,u′) (the two orderings give rise to identical contributions to the sum in (1)),
and put t1, t2 to be the distances on η between u and z1 and between z2 and u′, respectively and write
η1,η2 to be the corresponding sections of η and η3 is the section of η between z1 and z2. The paths γ1

and γ2 are the sections of γx,u and γy,u′ from x to z1 and from y to z2, respectively. The witness for the
first event is η1,η2 together with all the closed edges of Gp (the closed edges determine that η1,η2 are
indeed shortest open paths, and that dGp (u,u′) ≥ t1 + t2), for the second, third and fourth events, the
witnesses are just η3,γ1 and γ2, respectively.

We now apply the BK-Reimer inequality and bound the sum in (1) by

2
∑

x,y,z1,z2,(u,u′),t1≤n,t2≤n

P(u
=t1←→ z1,u′ =t2←→ z2,dGp (u,u′) ≥ t1 + t2)P(z1

2n−t1−t2←−−−−→ z2)P(x
n−t1←→ z1)P(y

n−t2←→ z2) .

We first sum over x, y and get a factor of Cε−2(1+ε)2n−t1−t2 by Lemma 4.4. The event u
=t1←→ z1,u′ =t2←→

z2,dGp (u,u′) ≥ t1 + t2 implies that u
=t1←→ z1 and u′ =t2←→ z2 off Bu(t1) hence we may bound its probability

by ∑
A : u

=t1←→z1

P(Bu(t1) = A)P(u′ =t2←→ z2 off A) ,

and so we get an upper bound of

Cε−2
∑

z1,z2,(u,u′),t1≤n,t2≤n

(1+ε)2n−t1−t2 P(u
=t1←→ z1)max

A
P(u′ =t2←→ z2 off A)P(z1

2n−t1−t2←−−−−→ z2) . (6.3)
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We bound this in two parts. If t2 ≥ m0, then we use Lemma 3.15 together with Lemma 4.4 to bound,

uniformly in A, P(u′ =t2←→ z2 off A) ≤ CV −1(1+ ε)t2 . We then sum over z2 and z1 in that order using
Lemma 4.4 and extract a V m factor from summing over (u,u′). If t2 ≤ m0 and t1 ≥ m0, then we use

Lemma 3.13 together with Lemma 4.4 to bound P(u
=t1←→ z1) ≤CV −1(1+ε)t1 . Further, we use condition

(2) in Theorem 1.3 and ε= o(m−1
0 ) to bound, uniformly in A, P(u′ =t2←→ z2 off A) ≤C pt2 (u′, z2). We then

sum over z1 and z2 in that order using Lemma 4.4 and extract a V m factor from summing over (u,u′).
All this gives an upper bound of

C mε−3(1+ε)4n
∑

t1,t2≤n
(1+ε)−t1−t2 ≤C mε−5(1+ε)4n ,

as required. We next sum (6.3) over t1, t2 ≤ m0. We first relax (1+ε)2n−t1−t2 ≤ (1+ε)2n and P(z1
2n−t1−t2←−−−−→

z2) ≤ P(z1
2n←→ z2), and then sum over t1, t2 to get an upper bound of

Cε−2(1+ε)2n
∑

z1,z2,(u,u′)
P(u

m0←→ z1)P(u′ m0←→ z2)P(z1
2n←→ z2) .

We now sum over z1, z2 using Corollary 3.18 and Lemma 4.4. We get that this is bounded by

CV mε−2(1+ε)2n
[m2

0ε
−1(1+ε)2n

V
+αV

]
≤C

[
mε−5(1+ε)4n +αV V mε−2(1+ε)2n]

,

since m0 ≤ ε−1, as required.

To bound (2) we proceed in a very similar fashion. If {u
n←→ x}◦{u′ n←→ y} and x

2n←→ y then there exists
vertices z1, z2 and t1, t2 ≤ n such that the event

{x
=t1←→ z1, y

=t2←→ z2,dGp (x, y) ≥ t1 + t2}◦ {z1
2n−t1−t2←−−−−→ z2}◦ {u

n−t1←→ z1}◦ {u′ n−t2←→ z2} ,

or the event

{x
=t1←→ z2, y

=t2←→ z1,dGp (x, y) ≥ t1 + t2}◦ {z1
2n−t1−t2←−−−−→ z2}◦ {u

n−t1←→ z1}◦ {u′ n−t2←→ z2} ,

occur, by the same reasoning as before, see Figure 4 (b). Let us handle the first case only (the second
leads to an identical contribution). We appeal to the BK-Reimer inequality and as before we condition
on Bx(t1) and bound

P(x
=t1←→ z1, y

=t2←→ z2,dGp (x, y) ≥ t1 + t2) ≤
∑

A:x
=t1←→z1

P(Bx(t1) = A)P(y
=t2←→ z2 off A) .

We sum over y then x using Lemma 4.4 giving a bound of

C
∑

z1,z2,(u,u′),t1,t2≤n

(1+ε)t1+t2 P(u
n−t1←→ z1)P(z1

2n−t1−t2←−−−−→ z2)P(u′ n−t2←→ z2) .

An appeal to Corollary 3.18 and Lemma 4.4 to sum over z1, z2 gives a bound of

CV m
∑

t1,t2≤n
(1+ε)t1+t2

[ε−3(1+ε)4n−2(t1+t2)

V
+αV

]
≤C

[
mε−5(1+ε)4n +αV V mε−2(1+ε)2n]

,

where the last inequality is a direct calculation. �

Proof of Lemma 6.1. For convenience put n = 2r + r0. By Markov’s inequality, the expectation we
need to bound is at most

2β−1/2V m−1ε2(E|B(r0)|)−2
∑

x,y,(u,u′)
P
(
{x

n←→ u}◦ {y
n←→ u′} , |Bu(n)| ≥ e20Mε−1E|B(r0)|) . (6.4)
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We split the sum into

S1 =
∑

x,y,(u,u′)
P
(
{x

n←→ u}◦ {y
n←→ u′} , |Bu(n)| ≥ e20Mε−1E|B(r0)| and Bu(n)∩Bu′(n) =;)

,

and

S2 =
∑

x,y,(u,u′)
P
(
{x

n←→ u}◦ {y
n←→ u′} ,u

2n←→ u′) .

We bound S1 using the BK inequality

S1 ≤
∑

x,y,(u,u′)
P
(
x

n←→ u , |Bu(n)| ≥ e20Mε−1E|B(r0)|)P(y
n←→ u′) .

Summing over y and x and then over (u,u′) gives that this is at most

V mE|B(n)| ·E|B(n)|1{|B(n)|≥e20Mε−1E|B(r0)|}| .
We use the Cauchy-Schwarz inequality to bound

E|B(n)|1{|B(n)|≥e20Mε−1E|B(r0)|}| ≤
[
E|B(n)|2P(|B(n)| ≥ e20Mε−1E|B(r0)|)]1/2 .

We bound this using Lemma 4.7 and the Markov inequality by

E|B(n)|1{|B(n)|≥e20Mε−1E|B(r0)|}| ≤C e−10M (E|B(n)|)3/2(E|B(r0)|)−1/2 ,

and conclude that
S1 ≤C e−10M V m(E|B(n)|)5/2(E|B(r0)|)−1/2 .

We bound S2 using part (1) of Lemma 6.4 by

S2 ≤C
[
mε−5(1+ε)4n +αV V mε−2(1+ε)2n]

.

We put these two back into (6.4) and get that we can bound this sum by

CV 2ε2(E|B(n)|)5/2

β1/2e10M (E|B(r0)|)5/2
+ CV ε−3(1+ε)4n

β1/2(E|B(r0)|)2
+ C mαV V 2(1+ε)2n

β1/2m(E|B(r0)|)2
= o(ε2V 2) ,

by our choice of r0 in (2.8), n = r0 +2r , r = M/ε, β= (log M)−2 and using Corollary 4.6. �

6.2. Proof of Theorem 6.2: Finding good radii. We proceed towards the proof of Theorem 6.2. Recall
the choice of parameters in (6.1).

Lemma 6.5. For any radius r ≥ ε−1 and any ζ> 0,

P
(
|∂B(r )| > 0 and ∃ j ∈ [ε−1,r −ε−1] with |∂B( j )| ≤ ζε−1

)
≤O(ζε) .

Proof. Assume that the event holds, and let J be the first radius j with j ∈ [ε−1,r − ε−1] which has
|∂B( j )| ≤ ζε−1. Conditioned on J and B(J ), for |∂B(r )| > 0 to occur, one of the vertices on the boundary
of B(J ) needs to reach level r . Since r − j ≥ ε−1, Corollary 3.5 and the union bound gives that this
probability is at most Cζ. This together with the fact that the probability of |∂B( j )| > 0 is at most Cε,
by Corollary 3.5, concludes the proof. �

In the lemma below, we write PA(·) = P(· off A | Bx( jx) = A) and let EA be the corresponding expec-
tation.

Lemma 6.6. There exists c > 0 such that for any radius jx ∈ [r,2r ] the following statement holds. Let
the set A be such that x is (δ,β, jx ,kε−1)-fit and |∂Bx( jx)| ≥ ζε−1 when Bx( jx) = A. Then,

PA
(|∂Bx( jx +kε−1/2)| ≥ ε−1ek/4)≥ cζ .
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Proof. We perform a second moment argument on |Bx([ jx + kε−1/2, jx + kε−1]| rather than on the
required random variable. Since x is (δ,β, jx ,kε−1)-fit

EA|Bx([ jx , jx +kε−1])| ≥ (|∂A|−δε−1)(1−β)E|B(kε−1)| .
Furthermore,

EA|Bx([ jx , jx +kε−1/2])| ≤ |∂A|E|B(kε−1/2)| ,
by monotonicity. Since |∂A| ≥ 2δε−1 by our choice of ζ and δ, and β= o(1) (recall (6.1)), Corollary 4.6
now gives us a lower bound on the first moment

EA|Bx([ jx +kε−1/2, jx +kε−1])| ≥ 1

4
|∂A|E|B(kε−1)| ,

To calculate the second moment, if u, v are counted in |B([ jx , jx +kε−1])|, then either there exists two
vertices a1, a2 in ∂A such that

{a1
kε−1

←→ u off A}◦ {a2
kε−1

←→ v off A} ,

or there exists a ∈ ∂A, a vertex z and t ≤ kε−1 such that

{a
=t←→ z off A}◦ {z

kε−1−t←−−→ u off A}◦ {z
kε−1−t←−−→ v off A} .

We apply the BK-Reimer inequality and sum over u, v . We get

EA|Bx([ jx , jx +kε−1])|2 ≤ |∂A|2(E|B(kε−1)|)2 +
∑

a∈∂A,z,t≤kε−1

PA(a
=t←→ z off A)(E|B(kε−1 − t )|)2 .

We first sum over z using Lemma 4.4, then appeal again to Corollary 4.6 to get that

EA|Bx([ jx , jx +kε−1])|2 ≤C (E|B(kε−1)|)2[|∂A|2 +|∂A|ε−1] .

By (4.4),

PA
(|Bx([ jx +kε−1/2, jx +kε−1])| ≥ 1

8 |∂A|E|B(kε−1)|)≥ c|∂A|2
|∂A|2 +|∂A|ε−1

≥ cζ ,

where the last inequality is since |∂A| ≥ ζε−1. By Theorem 4.5, we can write this as

PA
(|Bx ([ jx +kε−1/2, jx +kε−1])| ≥ cζε−2ek)≥ cζ , (6.5)

for some constant c > 0. Now, if |Bx([ jx+kε−1/2, jx+kε−1])| ≥ cζε−2ek and |∂Bx( jx+kε−1/2)| ≤ ε−1ek/4

occurs, then

|∂Bx( jx +kε−1/2)| ≤ ε−1ek/4 and
∑

v∈∂Bx ( jx+kε−1/2)

|Bv (kε−1/2; A)| ≥ cζε−2ek ,

must both occur. By the Markov inequality and Lemma 4.4, the probability of this event is at most

ε−2e3k/4

cζε−2ek
=O(ζ−1e−k/4) = o(ζ) ,

by our choice of ζ and k in (6.1). Putting this together with (6.5) yields the assertion of the lemma. �
Lemma 6.7 (Finding good radii). There exists radii k1, . . . ,kℓ in [r,2r ] such that

ki+1 −ki ≥ kε−1 ,

for all i = 1, . . . ,ℓ and

P(x is (δ,β,ki ,kε−1)-fit) = (1+O(ω1/5
m ))P(∂Bx(ki ) ̸= ;) ,

P(x is (1,β,ki ,r0)-fit) = (1+O(ω1/5
m ))P(∂Bx(ki ) ̸= ;) ,

P(x is (δ,β,ki +kε−1/2,r0)-fit) = (1+O(ω1/5
m ))P(∂Bx(ki +kε−1/2) ̸= ;) .
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Proof. This is the only place where we use Theorem 5.1. Indeed, say a radius j ∈ [r,2r ] is good if it
satisfies the three assertions of the proposition with ki replaced by j . Three appeals to Theorem 5.1
give that at least (1−o(1))r radii j ∈ [r,2r ] are good by our choice of δ and β. Now, since ℓk = o(M) and
r = Mε−1 it is immediate that there exist ℓ good radii which are kε−1 separated from each other. �
Lemma 6.8. For at least (1−o(1))V 2 pairs x, y and for any jx , jy ∈ [r,2r ],

E
[

S jx , jy ,r0 1
{x

2r0+4r←→ y}

]
≤V −1m(E|B(r0)|)2α3/4

V .

Proof. Part (2) of Lemma 6.4 with n = r0 +2r and a straightforward calculation with Theorem 4.5 and
our choice of parameters shows that∑

x,y
E
[
S jx , jy ,r0 1

{x
2r0+ jx+ jy←→ y}

]≤CV m(E|B(r0)|)2[αV e8M +αV e4M ] ,

which gives the result since CαV e8M ≤α3/4
V by our choice of M in (2.7). �

Proof of Theorem 6.2. Recall the requirements (1)-(5) in the definition of A (x, y, jx , jy ,r0,β,k). We ap-
ply Lemma 6.7 and let k1, . . . ,kℓ be the corresponding radii. We prove the theorem with radii { j1, . . . , jℓ}
defined by

ji = ki +kε−1/2,

for i = 1, . . . ,ℓ and assume x, y are such that the assertion of Lemma 6.8 holds. We will prove that for
these pairs x, y

P
(
A (x, y,2r,2r ) and

∩
jx , jy∈{ j1,..., jℓ}

{(q) does not hold for jx , jy }
)
= o(ε2) , (6.6)

for q ∈ {1,2,3,4,5}. We do this in the order (1), (2), (4), (5) and (3). Since A (x, y,2r,2r ) ⊆A (x, y, jx , jy )
when jx , jy ≤ 2r , (6.6) holds trivially for q = 1 and all x, y , jx , jy ≤ 2r .

For any jx ∈ { j1, . . . , jℓ},

P
(
A (x, y, jx , jy ) and |Bx ( jx)| ≥ ε−2(1+ε)3r )≤Cε2(1+ε)−r =O(e−Mε2) ,

by the Markov inequality, Lemma 4.4, the BK-Reimer inequality and Corollary 3.5. This implies that

P
(
A (x, y,2r,2r ) and ∃ jx ∈ { j1, . . . , jℓ} such that |Bx( jx)| ≥ ε−2(1+ε)3r )= o(ε2) ,

since ℓ= o(eM ). Similarly,

P
(
A (x, y, jx , jy ) and |∂Bx( jx)| ≥ ε−1(1+ε)3r )≤Cε2(1+ε)−r =O(e−Mε2) ,

leading to the same bound. This proves (6.6) for q = 2.
Next, we wish to show that for any jx ∈ { j1, . . . , jℓ},

P
(
A (x, y, jx , jy ) and x is not (1,β, jx ,r0)-fit

)=O(ε2ω1/5
m ) . (6.7)

It is tempting to use the BK-Reimer inequality here, however, we cannot claim that the event in (6.7)
implies that ∂By ( jy ) ̸= ; occurs disjointly from the event x is not (1,β, jx ,r0)-fit, since they are both
non-monotone events and the corresponding witnesses may share closed edges. Instead, we condi-
tion Bx( jx) = A and get that

P
(
A (x, y, jx , jy ) and x is not (1,β, jx ,r0)-fit

)= ∑
A : x is not (1,β, jx ,r0)-fit

P(Bx( jx) = A)P(∂By ( jy ) ̸= ; off A) ,

since (1,β, jx ,r0)-fit is determined by the status of the edges touching Bx( jx). We use Corollary 3.5 to
bound P(∂By ( jy ) ̸= ; off A) =O(ε) and

P(∂Bx( jx ) ̸= ; and x is not (1,β, jx ,r0)-fit) = P(∂Bx( jx) ̸= ;)−P(∂Bx ( jx) ̸= ; and x is (1,β, jx ,r0)-fit)

≤ P(∂Bx( jx) ̸= ;)O(ω1/5
m ),
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by our choice of radii in Lemma 6.7, so Corollary 3.5 gives (6.7). Therefore,

P
(
A (x, y,2r,2r ) and ∃ jx ∈ { j1, . . . , jℓ} such that x is not (1,β, jx ,r0)-fit

)=O(ℓε2ω1/5
m ) = o(ε2) ,

by our choice of ℓ in (6.1), of M in (2.7), and of ωm in (5.1). This proves (6.6) for q = 4.
Similarly, by Lemma 6.8 and Markov’s inequality, for any jx , jy ,

P
(
A (x, y, jx , jy ) and (5) does not hold

)≤Cε2α1/4
V .

The union bound implies that

P
(
A (x, y,2r,2r ) and ∃ jx , jy ∈ { j1, . . . , jℓ} (5) does not hold

)=O(ℓ2α1/4
V ε2) = o(ε2) ,

by our choice of ℓ. Therefore, (6.6) holds for q = 5.
Thus, it remains to prove (6.6) for q = 3. This is the difficult requirement in which we only prove

that one of the radii in { j1, . . . , jℓ} satisfies it (in fact, all radii satisfy it, but that is harder to prove, and
we refrain from doing so). In the same way as in the proof of (6.6) for q = 4, using Corollary 3.5, it is
enough to show that

P
(
∂Bx(2r ) ̸= ; and |∂Bx( jx)| ≤ ek/4ε−1 ∀ jx ∈ { j1, . . . , jℓ}

)= o(ε) . (6.8)

For i ∈ {1, . . . ,ℓ}, we write Ai for the event that x is (δ,β,ki ,kε−1)-fit and Bi for the event that |∂Bx( ji )| ≤
ε−1ek/4 and Di for the event

Di =
{|∂Bx(kt )| ≥ ζε−1 ∀ t ∈ {1, . . . , i }

}
,

so that
P
(
∂Bx(2r ) ̸= ; and |∂Bx( jx)| ≤ P(Dℓ∩B1 ∩·· ·∩Bℓ)+P({∂Bx(2r ) ̸= ;}∩Dc

ℓ).

Then we can split

P(Dℓ∩B1 ∩·· ·∩Bℓ) ≤ P(Dℓ∩A c
ℓ )+P(Dℓ∩B1 ∩·· ·∩Bℓ∩Aℓ) .

By our choice of ki in Lemma 6.7 and Corollary 3.5 we have that P(Dℓ∩A c
ℓ

) ≤ εω1/5
m , so that

P(Dℓ∩B1 ∩·· ·∩Bℓ) ≤ εω1/5
m +P(Bℓ |Dℓ∩B1 ∩·· ·∩Bℓ−1 ∩Aℓ)P(Dℓ−1 ∩B1 ∩·· ·∩Bℓ−1) .

Thus, by Lemma 6.6,

P(Dℓ∩B1 ∩·· ·∩Bℓ) ≤ εω1/5
m + (1− cζ)P(Dℓ−1 ∩B1 ∩·· ·∩Bℓ−1) ,

By iterating this we obtain

P(Dℓ∩B1 ∩·· ·∩Bℓ) ≤ εℓω1/5
m +Cε(1− cζ)ℓ = o(ε) ,

since ℓω1/5
m = o(1) and ζ−1 = o(ℓ) (recall (6.1)), and P(D1) ≤ Cε by Corollary 3.5. Lastly, Lemma 6.5

shows that
P({∂Bx(2r ) ̸= ;}∩Dc

ℓ) = o(ε) ,

showing (6.8) and thus concluding the proof of (6.6) for q = 3 and the proof of Theorem 6.2. �
6.3. Proof of Theorem 6.3: Conditional second moment. We now set the stage for the proof of The-
orem 6.3. We perform this by a conditional second moment argument on S jx , jy ,r0 (x, y). We will be
conditioning on Bx( jx) = A and By ( jy ) = B where A and B are such that the event A (x, y, jx , jy ,r0,β,k)
holds. We abuse notation, as before, and treat A,B as sets of vertices but our conditioning is on the
status of all edges touching Bx( jx −1) and By ( jy −1). Thus, while A and B are disjoint sets of vertices,
they may be sharing closed edges. With this in mind, we generalize the notation just before Lemma
6.6, and write PA, PB and PA,B for the measures

PA(·) = P(· off A | Bx( jx) = A) ,

PB (·) = P(· off B | By ( jy ) = B) ,

PA,B (·) = P(· off A∪B | Bx( jx) = A,By ( jy ) = B) .
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We start by proving five preparatory lemmas.

Lemma 6.9. Assume that A,B are such that x, y are (1,β, jx ,r0)-fit and (1,β, jy ,r0)-fit, respectively.
Then,∑
a,b∈∂A×∂B

∑
(u,u′)

PA(a
P [2m0,r0],x←−−−−−→ u)PB (b

P [2m0,r0],y←−−−−−→ u′) ≥ (1−8β1/2)V −1(E|B(r0)|)2m(|∂A|−ε−1)(|∂B |−ε−1) .

Proof. Let a ∈ ∂A be a (β, jx ,r0)-regenerative vertex. Then, by definition,∑
u

PA(a
P [2m0,r0],x←−−−−−→ u) ≥ (1−β)E|B(r0)| .

Denote by U the set of vertices

U = {
u : PA(a

P [2m0,r0],x←−−−−−→ u) ≤ (1−β1/2)V −1E|B(r0)|} ,

and recall that Lemma 3.15 guarantees that

PA
(
a

P [2m0,r0],x←−−−−−→ u
)≤ (1+o(β))E|B(r0)|

V
,

by our choice of β in (6.1), so that

(1−β)E|B(r0)| ≤∑
u

PA(a
P [2m0,r0],x←−−−−−→ u) ≤ |U |(1−β1/2)V −1E|B(r0)|+ (V −|U |)(1+o(β))V −1E|B(r0)| ,

and we deduce that |U | ≤ 2β1/2V . In other words, for at least (1−2β1/2)V vertices u,

PA
(
a

P [2m0,r0],x←−−−−−→ u
)≥ (1−β1/2)E|B(r0)|

V
.

Similarly, for any b ∈ ∂B which is (β, jy ,r0)-regenerative, there exist at least (1−2β1/2)V vertices u such
that

PB
(
b

P [2m0,r0],y←−−−−−→ u
)≥ (1−β1/2)E|B(r0)|

V
.

Thus, for such a and b, at least (1−4β1/2)V vertices u satisfy both inequalities. Write D for this set
of vertices so that |Dc | ≤ 4β1/2V . Since the degree of each vertex is m, the number of edges having at
least one side in Dc is at most 4β1/2V m. Thus, at least (1−8β1/2)V m directed edges (u,u′) are such
that u and u′ both satisfy the above inequalities. Hence∑

(u,u′)
PA

(
a

P [2m0,r0],x←−−−−−→ u
)
PB

(
b

P [2m0,r0],y←−−−−−→ u′)≥ (1−8β1/2)(E|B(r0)|)2m

V
.

Since x is (1,β, jx ,r0)-fit and y is (1,β, jy ,r0)-fit the number of such pairs a,b is at least

(|∂A|−ε−1)(|∂B |−ε−1) ,

and the lemma follows. �
Lemma 6.10. The following bounds hold:∑

(a,b)∈∂A×∂B
(u,u′),z1,t1∈[m0,r0]

PA,B
(
a

P [2m0,r0]←−−−−→ u, a
r0←→ z1

)
PB (b

=t1←→ z1)PB (z1
r0−t1←−→ u′) ≤α1/2

V |∂A||∂B |V −1m(E|B(r0)|)2 ,

and ∑
(a,b)∈∂A×∂B

(u,u′),z1,t1∈[m0,r0]

PA,B (a
P [2m0,r0]←−−−−→ u, a

r0←→ z1)PB (b
r0−t1←−→ z1)PB (z1

=t1←→ u′) ≤α1/2
V |∂A||∂B |V −1m(E|B(r0)|)2 .



46 REMCO VAN DER HOFSTAD AND ASAF NACHMIAS

Proof. The proof of the second assertion is identical to the first, so we only prove the first. If a
P [2m0,r0]←−−−−→

u and a
r0←→ z1, then there exists z2 and t2 ∈ [m0,r0] such that

{a
=t2←→ z2}◦ {z2

r0−t2←−→ u}◦ {z2
r0−t2←−→ z1}

or there exists z2 such that

{a
m0←→ z2}◦ {z2

P [m0,r0]←−−−→ u}◦ {z2
P [m0,r0]←−−−→ z1}

or there exists z2 such that

{a
P [m0,r0]←−−−→ z2}◦ {z2

m0←→ u}◦ {z2
P [m0,r0]←−−−→ z1} .

To see this, let η be the lexicographically first shortest open path between a and z1 so that |η| ≤ r0 and
let γ be an open path between a and u such that |γ| ∈ [2m0,r0]. Let z2 be the last vertex (according to
the ordering induced by γ) on γ belonging to η (that is, the part of γ after z2 is disjoint from η and the
part of η after z2 is disjoint from γ). Let t2 be the distance between a and z2 along η. If t2 ≥ m0, then
the first event occurs: the first witness is the first t2 open edges of η together with all the closed edges
in the graph, the second witness is the set of open edges of γ between z2 to u (note that there are no
more than r0− t2 edges since the part of γ between a to z2 is of length at least t2) and the third witness
is the set of open edges of η between z2 and u. If t2 ≤ m0 occurs and the part of γ between z2 and u is
longer than m0, then the second event occurs by similar reasoning. Finally, if t2 ≤ m0 occurs and the
part of γ between z2 and u is of length at most m0, then the part of γ between a and z2 is longer than
m0 and the third event occurs.

This leads to three different terms, we use the BK-Reimer inequality and get that the required sum
is at most S (a) +S (b) +S (c), where

S (a) = ∑
(a,b)∈∂A×∂B ,(u,u′),
z1,z2,t1,t2∈[m0,r0]

PA,B (a
=t2←→ z2)PA,B (z2

r0−t2←−→ u)PA,B (z2
r0−t2←−→ z1)PB (b

=t1←→ z1)PB (z1
r0−t1←−→ u′) ,

and

S (b) =
∑

(a,b)∈∂A×∂B ,(u,u′),
z1,z2,t1∈[m0,r0]

PA,B (a
m0←→ z2)PA,B (z2

P [m0,r0]←−−−→ u)PA,B (z2
P [m0,r0]←−−−→ z1)PB (b

=t1←→ z1)PB (z1
r0−t1←−→ u′) ,

and

S (c) = ∑
(a,b)∈∂A×∂B ,(u,u′),

z1,z2,t1∈[m0,r0]

PA,B (a
P [m0,r0]←−−−→ z2)PA,B (z2

m0←→ u)PA,B (z2
P [m0,r0]←−−−→ z1)PB (b

=t1←→ z1)PB (z1
r0−t1←−→ u′) .

We use Lemma 3.15 together with Lemma 4.4 to bound the factors PA,B (a
=t2←→ z2) and PB (b

=t1←→ z1) in
S (a) by CV −1(1+ε)t2 and CV −1(1+ε)t1 , respectively. This gives

S (a) ≤CV −2
∑

(a,b)∈∂A×∂B ,(u,u′),
t1,t2∈[m0,r0]

(1+ε)t1+t2
∑

z1,z2

PA,B (z2
r0−t2←−→ u)PA,B (z2

r0−t2←−→ z1)PA,B (z1
r0−t1←−→ u′) .

We sum over z1, z2 using Corollary 3.18 together with Lemma 4.4 to get that

S (a) ≤ CV −2
∑

(a,b)∈∂A×∂B ,(u,u′),
t1,t2∈[m0,r0]

(1+ε)t1+t2
[
αV + ε−3(1+ε)3r0−t1−2t2

V

]
≤ CαV m|∂A||∂B |V −1ε−2(1+ε)2r0 +C |∂A||∂B |V −2mε−4(1+ε)3r0 r0 ,

where the last inequality is an immediate calculation. By Theorem 4.5 the first term is at most

CαV |∂A||∂B |V −1m(E|B(r0)|)2 ,
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and by our choice of r0 in (2.8), the second term is at most

α1/2
V log(ε3V )p

ε3V
|∂A||∂B |V −1m(E|B(r0)|)2 .

This gives an upper bound on S (a) fitting the error in the assertion of the lemma. To estimate S (b) we

use Lemma 3.13 to bound PA,B (z2
P [m0,r0]←−−−→ u) and PA,B (z2

P [m0,r0]←−−−→ z1). This gives

S (b) ≤C
(E|B(r0)|)2

V 2

∑
(a,b)∈∂A×∂B ,(u,u′),

z1,z2,t1∈[m0,r0]

PA,B (a
m0←→ z2)PB (b

=t1←→ z1)PB (z1
r0−t1←−→ u′) .

We now sum over (u,u′), z1, z2 and t1 using Lemma 4.4. We get that

S (b) ≤ C |∂A||∂B |V −2m(E|B(r0)|)2r0m0ε
−1(1+ε)r0 ≤ C m0εα

1/2
Vp

ε3V
C |∂A||∂B |V −1m(E|B(r0)|)2 ,

by Theorem 4.5 and (2.8). Since m0 = o(ε−1), this fits within the error estimate in the assertion of the
lemma. The estimate on S (c) is performed in precisely the same as for S (b), and gives the same error
estimate, concluding the proof. �

Lemma 6.11. The following bounds hold:∑
(a,b)∈∂A×∂B ,a′∈∂A
(u,u′),z1,t1∈[m0,r0]

PA,B (a
P [2m0,r0]←−−−−→ u)PA,B (a′ r0←→ z1)PB (b

=t1←→ z1)PB (z1
r0−t1←−→ u′) ≤α1/2

V ε|∂A|2|∂B |V −1m(E|B(r0)|)2 ,

and ∑
(a,b)∈∂A×∂B ,a′∈∂A
(u,u′),z1,t1∈[m0,r0]

PA,B (a
P [2m0,r0]←−−−−→ u)PA,B (a′ r0←→ z1)PB (b

r0−t1←−→ z1)PB (z1
=t1←→ u′) ≤α1/2

V ε|∂A|2|∂B |V −1m(E|B(r0)|)2 .

Proof. The proof of the second assertion is identical to the first, so we only prove the first. We use

Lemma 3.15 to bound PA,B (a
P [2m0,r0]←−−−−→ u) ≤ CV −1E|B(r0)| and PB (b

=t1←→ z1) ≤ CV −1(1+ ε)t1 . We then

sum PB (z1
r0−t1←−→ u′) over (u,u′) to obtain a factor of C mε−1(1+ ε)r0−t1 by Lemma 4.4. We now sum

PA,B (a′ r0←→ z1) over z1 and get another E|B(r0)| factor and now sum all this over a,b, a′, t1. This gives a
contribution of

C |∂A|2|∂B |V −2mr0(E|B(r0)|)3 ,

by Theorem 4.5. This is at most

Cε|∂A|α1/2
V log(ε3V )p
ε3V

|∂A||∂B |V −1m(E|B(r0)|)2 ,

by our choice of r0 in (2.8) and Lemma 4.4, concluding our proof. �

Lemma 6.12. The following bounds hold:∑
a,b∈∂A×∂B

(u,u′),z1∈B ,t1∈[m0,r0]

PA(a
=t1←→ z1)PA(z1

r0−t1←−→ u)PB (b
P [2m0,r0]←−−−−→ u′) ≤C |∂A||∂B ||B |V −2mr0(E|B(r0)|)2 ,

and ∑
a,b∈∂A×∂B

(u,u′),z1∈B ,t1∈[m0,r0]

PA(a
r0−t1←−→ z1)PA(z1

=t1←→ u)PB (b
P [2m0,r0]←−−−−→ u′) ≤C |∂A||∂B ||B |V −2mr0(E|B(r0)|)2 .



48 REMCO VAN DER HOFSTAD AND ASAF NACHMIAS

Proof. The proof of the second assertion is identical to the first so we only prove the first. We use
Lemma 3.13 to bound

PB (b
P [2m0,r0]←−−−−→ u′) ≤ (1+o(1))V −1E|B(r0)| ,

and, as before, we use Lemma 3.12 together with Lemma 4.4 to bound

PA(a
=t1←→ z1) ≤CV −1(1+ε)t1 ,

sum over u′ such that (u,u′) ∈ E(G), and finally use Lemma 4.4 to bound∑
u

PA(z1
r0−t1←−→ u) ≤Cε−1(1+ε)r0−t1 .

Altogether, after summing over a ∈ ∂A,b ∈ ∂B , z1 ∈ B , t1 ≤ r0, this gives the bound of

C |∂A||∂B ||B |V −2mr0ε
−1(1+ε)r0E|B(r0)| ≤C |∂A||∂B ||B |V −2mr0(E|B(r0)|)2 ,

where we have used Theorem 4.5. �
Lemma 6.13. For any positive δ> 0 and β> 0,

EA,B S jx , jy ,r0 (x, y) ≥ (1−8β1/2)V −1m(E|B(r0)|)2(|∂A|−ε−1)(|∂B |−ε−1)−Err,

where
Err ≤C |∂A||∂B |V −1m(E|B(r0)|)2

[
r0(|A|+ |B |)V −1 +α1/2

V (1+ε|∂A|)
]

.

Proof. We have that

EA,B S jx , jy ,r0 (x, y) =
∑

(a,b)∈∂A×∂B

∑
(u,u′)

PA,B
(
{a

P [2m0,r0],x←−−−−−→ u} and {b
P [2m0,r0],y←−−−−−→ u′ off Bx( jx + r0)}

)
, (6.9)

because the additional requirement that a and b are pivotals in the definitions of {a
P [2m0,r0],x←−−−−−→ u} and

{b
P [2m0,r0],y←−−−−−→ u′} implies that they are unique in ∂A ×∂B , so no pair (a,b) is overcounted in the sum.

We define B∂A(r0; A ∪B) =∪a′∈∂ABa′(r0; A ∪B). We condition on B∂A(r0; A ∪B) = H for an admissible

H (that is, any H that has positive probability and a
P [2m0,r0],x←−−−−−→ u off B occurs in it). Each summand in

(6.9) equals ∑
H

PA,B
(
B∂A(r0; A∪B) = H

)
PA,B

(
b

P [2m0,r0],y←−−−−−→ u′ off H | B∂A(r0; A∪B) = H
)

,

and we have

PA,B

(
b

P [2m0,r0],y←−−−−−→ u′ off H | B∂A(r0; A∪B) = H
)
= PB

(
b

P [2m0,r0],y←−−−−−→ u′ off A∪H
)

,

because in both sides the status of the edges touching A ∪ H cannot change the occurrence of the
event. This gives that

EA,B S jx , jy ,r0 (x, y) =
∑

(a,b)∈∂A×∂B

∑
(u,u′)

∑
H

PA,B (B∂A(r0; A∪B) = H)PB (b
P [2m0,r0],y←−−−−−→ u′ off A∪H) .

Now, by Claim 3.1,

PB (b
P [2m0,r0],y←−−−−−→ u′ off A∪H) ≥ PB (b

P [2m0,r0],y←−−−−−→ u′)−PB (b
P [2m0,r0]←−−−−→ u′ only on A∪H) ,

where in the last term we have dropped the requirement that y is pivotal (which only increases the
probability). Hence by summing on H we get,

EA,B S jx , jy ,r0 (x, y) ≥
∑

(a,b)∈∂A×∂B

∑
(u,u′)

PA,B (a
P [2m0,r0],x←−−−−−→ u)PB (b

P [2m0,r0],y←−−−−−→ u′)−S2 ,
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where

S2 =
∑

(a,b)∈∂A×∂B

∑
(u,u′)

∑
H

PA,B (B∂A(r0; A∪B) = H)PB (b
P [2m0,r0]←−−−−→ u′ only on A∪H) . (6.10)

As before,

PA,B (a
P [2m0,r0],x←−−−−−→ u) = PA(a

P [2m0,r0],x←−−−−−→ u off B) ,

since the status of the edges touching A∪B in both sides does not matter. Claim 3.1 again gives that

PA(a
P [2m0,r0],x←−−−−−→ u off B) ≥ PA(a

P [2m0,r0],x←−−−−−→ u)−PA(a
P [2m0,r0]←−−−−→ u only on B) ,

and so we may further expand
EA,B S jx , jy ,r0 (x, y) ≥ S1 −S2 −S3 ,

with

S1 =
∑

(a,b)∈∂A×∂B

∑
(u,u′)

PA(a
P [2m0,r0],x←−−−−−→ u)PB (b

P [2m0,r0],y←−−−−−→ u′) ,

S3 =
∑

(a,b)∈∂A×∂B

∑
(u,u′)

PA(a
P [2m0,r0]←−−−−→ u only on B)PB (b

P [2m0,r0]←−−−−→ u′) ,

and S2 is defined in (6.10). Lemma 6.9 gives the required lower bound on S1 which yields the positive
contribution in the assertion of this lemma. We now bound S2 and S3 from above, starting with S3. If

a
P [2m0,r0]←−−−−→ u only on B , then either a

2m0←→ u or there exists z1 ∈ B and t1 ∈ [m0,r0] such that

{a
=t1←→ z1}◦ {z1

r0−t1←−→ u} or {a
r0−t1←−→ z1}◦ {z1

=t1←→ u} ,

Indeed, let γ be the lexicographically first shortest path between a and u. If |γ| ≤ 2m0, then a
2m0←→ u,

otherwise |γ| ∈ [2m0,r0] and we take z1 to be the first vertex in B visited byγ and t is such thatγ(t ) = z1.
If t ≥ m0, then we put t1 = t and otherwise we put t1 = |γ|− t . In any case t1 ∈ [m0,r0]. When t ≥ m0,

the witness for a
=t1←→ z1 is the set of open edges of the path γ[0, t ] together with all the closed edges of

the graph and the witness for z1
r0−t1←−→ u are the open edges of γ[t , |γ|]. The case t ≤ m0 is done similarly.

We get that

S3 ≤ ∑
(a,b)∈∂A×∂B

(u,u′)

PA(a
2m0←→ u)PB (b

P [2m0,r0]←−−−−→ u′)

+ ∑
(a,b)∈∂A×∂B

(u,u′),z1∈B ,t1∈[m0,r0]

PA(a
=t1←→ z1)PA(z1

r0−t1←−→ u)PB (b
P [2m0,r0]←−−−−→ u′)

+ ∑
(a,b)∈∂A×∂B

(u,u′),z1∈B ,t1∈[m0,r0]

PA(a
r0−t1←−→ z1)PA(z1

=t1←→ u)PB (b
P [2m0,r0]←−−−−→ u′) .

For the first term we bound PB (b
P [2m0,r0]←−−−−→ u′) ≤CV −1E|B(r0)| by Lemma 3.13 and sum over everything

to get a contribution bounded by

C |∂A||∂B |mV −1E|B(r0)|m0 ≤ C |∂A||∂B |V −1m(E|B(r0)|)2[m0(E|B(r0)|)−1]
≤ Cα1/2

V |∂A||∂B |V −1m(E|B(r0)|)2 , (6.11)

by our choice of r0 in (2.8), our assumptions αV ≥ (ε3V )−1/2 in (2.5) and m0 = o(ε−1) and Corollary
4.6. This fits in the second term of Err in the assertion of the lemma. We bound the second and third
terms using Lemma 6.12 giving an upper bound of

C |∂A||∂B ||B |V −2mr0(E|B(r0)|)2 ,

which fits in the first term of Err in the assertion of the lemma.
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We proceed to bound S2 in (6.10) from above. As before, if b
P [2m0,r0]←−−−−→ u′ only on H ∪ A, then either

b
2m0←→ u′ or there exists z1 ∈ H ∪ A and t1 ∈ [m0,r0] such that

{b
=t1←→ z1}◦ {z1

r0−t1←−→ u′} or {b
r0−t1←−→ z1}◦ {z1

=t1←→ u′} . (6.12)

The case b
2m0←→ u′ is handled as before and gives a contribution of C |∂A||∂B |mV −1E|B(r0)|m0 which

by (6.11) again fits the second term of Err. To handle the other cases, let us first sum the contribution
to S2 due to (6.12) over z1 ∈ H . We use the BK-Reimer inequality and change order of summation to
bound this contribution to S2 by∑

(a,b)∈∂A×∂B
(u,u′),z1,t1∈[m0,r0]

PA,B (a
P [2m0,r0]←−−−−→ u,∃a′ ∈ ∂A such that a′ r0←→ z1)PB (b

=t1←→ z1)PB (z1
r0−t1←−→ u′)

+ ∑
(a,b)∈∂A×∂B

(u,u′),z1,t1≤r0

PA,B (a
P [2m0,r0]←−−−−→ u,∃a′ ∈ ∂A such that a′ r0←→ z1)PB (b

r0−t1←−→ z1)PB (z1
=t1←→ u′) .

Now, if a
P [2m0,r0]←−−−−→ u and there exists a′ ∈ ∂A with a′ r0←→ z1, then either a

P [2m0,r0]←−−−−→ u, a
r0←→ z1 or there

exists a′ ∈ ∂A such that {a
P [2m0,r0]←−−−−→ u} ◦ {a′ r0←→ z1}. Hence we may bound this from above by (I )+ (I I )

where

(I ) = ∑
(a,b)∈∂A×∂B

(u,u′),z1,t1∈[m0,r0]

PA,B (a
P [2m0,r0]←−−−−→ u, a

r0←→ z1)PB (b
=t1←→ z1)PB (z1

r0−t1←−→ u′)

+
∑

(a,b)∈∂A×∂B
(u,u′),z1,t1≤r0

PA,B (a
P [2m0,r0]←−−−−→ u, a

r0←→ z1)PB (b
r0−t1←−→ z1)PB (z1

=t1←→ u′) ,

and

(I I ) = ∑
(a,b)∈∂A×∂B ,a′∈∂A
(u,u′),z1,t1∈[m0,r0]

PA,B (a
P [2m0,r0]←−−−−→ u)PA,B (a′ r0←→ z1)PB (b

=t1←→ z1)PB (z1
r0−t1←−→ u′)

+ ∑
(a,b)∈∂A×∂B ,a′∈∂A

(u,u′),z1,t1≤r0

PA,B (a
P [2m0,r0]←−−−−→ u)PA,B (a′ r0←→ z1)PB (b

r0−t1←−→ z1)PB (z1
=t1←→ u′) .

Lemma 6.10 readily gives that (I ) ≤ α1/2
V |∂A||∂B |V −1m(E|B(r0)|)2 which fits into the second term of

Err. Lemma 6.11 gives that (I I ) ≤α1/2
V ε|∂A|2|∂B |V −1m(E|B(r0)|)2 which fits in the second term of Err.

We sum the contribution to S2 due to (6.12) over z1 ∈ A and bound it from above by∑
(a,b)∈∂A×∂B

(u,u′),z1∈A,t1∈[m0,r0]

PA,B (a
P [2m0,r0]←−−−−→ u)PB (b

=t1←→ z1)PB (z1
r0−t1←−→ u′) ≤C |∂A||∂B ||A|V −2mr0(E|B(r0)|)2 ,

by an appeal to Lemma 6.12. This fits in the first term of Err and concludes our proof. �
Lemma 6.14. The following bound holds:

EA,B S jx , jy ,r0 (x, y)21
{∂A

2r0̸↔∂B }
≤Q1 +Q2 +Q3 ,

where

Q1 = (
1+O(αV +εm0)

)
V −2m2(E|B(r0)|)4|∂A|2|∂B |2 ,

Q2 = CV −2m2ε−1(E|B(r0)|)4|∂A||∂B |(|∂A|+ |∂B |) ,

Q3 = CV −2m2ε−2(E|B(r0)|)4|∂A||∂B | .
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Proof. Assume that (u1,u′
1) and (u2,u′

2) are two edges and let a, a1, a2 be vertices in ∂A and b,b1,b2

vertices in ∂B . Define

T (u1,u2, a1, a2) = {a1
P [2m0,r0]←−−−−→ u1}◦ {a2

P [2m0,r0]←−−−−→ u2}, T (u1,u2, a) = {a
P [2m0,r0]←−−−−→ u1}∩ {a

P [2m0,r0]←−−−−→ u2} .
(6.13)

We define T (u′
1,u′

2,b1,b2) and T (u′
1,u′

2,b) in a similar fashion.
Now, if (u1,u′

1) and (u2,u′
2) are counted in S jx , jy ,r0 (x, y)21

{∂A
2r0̸↔∂B}

, then one of the following events

must occur off A∪B :

(1) There exists a1, a2,b1,b2 such that T (u1,u2, a1, a2)◦T (u′
1,u′

2,b1,b2) occurs,
(2) There exists a1, a2,b such that T (u1,u2, a1, a2) ◦T (u′

1,u′
2,b) occurs, or the symmetric case

T (u1,u2, a)◦T (u′
1,u′

2,b1,b2).
(3) There exists a,b such that T (u1,u2, a)◦T (u′

1,u′
2,b) occurs.

See Figure 5. Observe that the disjoint occurrence of the events is implied since ∂A
2r0̸↔ ∂B . We now

sum the probability of these events over (u1,u′
1), (u2,u′

2) and this gives us three terms which we will
bound by Q1,Q2 and Q3, respectively. By Lemma 3.13 and the BK inequality,

PA,B (T (u1,u2, a1, a2)) ≤
(
1+O(αV +εm0)

)
(E|B(r0)|)2

V 2
, (6.14)

whence∑
a1,a2,b1,b2,

(u1,u′
1),(u2,u′

2)

PA,B (T (u1,u2, a1, a2)◦T (u′
1,u′

2,b1,b2)) ≤ (
1+O(αV +εm0)

)
V −2m2(E|B(r0)|)4|∂A|2|∂B |2 ,

which equals Q1. To bound the probability of (2), if T (u′
1,u′

2,b) occurs, then, as before, there exists a
vertex z1 and t1 ∈ [m0,r0] such that

{b
=t1←→ z1}◦ {z1

r0−t1←−→ u′
1}◦ {z1

r0−t1←−→ u′
2} ,

or there exists z1 such that

{b
m0←→ z1}◦ {z1

P [m0,r0]←−−−→ u′
1}◦ {z1

P [m0,r0]←−−−→ u′
2} ,

or there exists z1 such that

{b
P [m0,r0]←−−−→ z1}◦ {z1

P [m0,r0]←−−−→ u′
1}◦ {z1

m0←→ u′
2} .

Hence, the BK-Reimer inequality gives that∑
u′

1,u′
2

PA,B (T (u′
1,u′

2,b)) ≤
∑

u′
1,u′

2,z1,
t1∈[m0,r0]

PA,B (b
=t1←→ z1)PA,B (z1

r0−t1←−→ u′
1)PA,B (z1

r0−t1←−→ u′
2)

+ ∑
u′

1,u′
2,z1

PA,B (b
m0←→ z1)PA,B (z1

P [m0,r0]←−−−→ u′
1)PA,B (z1

P [m0,r0]←−−−→ u′
2)

+ ∑
u′

1,u′
2,z1

PA,B (b
P [m0,r0]←−−−→ z1)PA,B (z1

P [m0,r0]←−−−→ u′
1)PA,B (z1

m0←→ u′
2) .

We estimate the first sum by summing on u′
2,u′

1 then on z1, t1 using Lemma 4.4 to get a bound of

Cε−3(1+ε)2r0 ≤Cε−1(E|B(r0)|)2 ,

by Theorem 4.5. The second and third sums are bounded by C m0(E|B(r0)|)2 which is of lower order
since εm0 = o(1) by (2.9). We use the BK inequality and (6.14) to bound the contribution due to the
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(1) (2) (3)

a1 a1a2 a2b1 b2 b a b

(u1, u
′

1
)

(u2, u
′

2
)

(u1, u
′

1
)

(u2, u
′

2
)

(u1, u
′

1
)

(u2, u
′

2
)

FIGURE 5. The three contributions to the second moment of S jx , jy ,r0 (x, y). The main
contribution comes from (1).

first event in (2) by∑
a1,a2,b,(u1,u′

1),
(u2,u′

2)

PA,B (T (u1,u2, a1, a2))PA,B (T (u′
1,u′

2,b)) ≤CV −2m2ε−1(E|B(r0)|)4|∂A|2|∂B | .

The symmetric in (2) obeys the same bound with the roles of |∂A| and |∂B | reversed. This contribution
equals Q2. To bound the contribution due to (3), we note that∑

a,b,(u1,u′
1),(u2,u′

2)

PA,B (T (u1,u2, a))PA,B (T (u′
1,u′

2,b)) ,

is bounded using the BK-Reimer inequality by the three sums∑
a,b,(u1,u′

1),(u2,u′
2)

z1,z2,t1,t2∈[m0,r0]

PA,B (a
=t1←→ z1)PA,B (z1

r0−t1←−→ u1)PA,B (z1
r0−t1←−→ u2)PA,B (b

=t2←→ z2)PA,B (z2
r0−t2←−→ u′

1)PA,B (z2
r0−t2←−→ u′

2) ,

∑
a,b,(u1,u′

1),(u2,u′
2)

z1,z2,t1∈[m0,r0]

PA,B (a
=t1←→ z1)PA,B (z1

r0−t1←−→ u1)PA,B (z1
r0−t1←−→ u2)PA,B (b

m0←→ z2)PA,B (z2
P [m0,r0]←−−−→ u′

1)PA,B (z2
P [m0,r0]←−−−→ u′

2) ,

and∑
a,b,(u1,u′

1)
(u2,u′

2),z1,z2

PA,B (a
m0←→ z1)PA,B (z1

P [m0,r0]←−−−→ u1)PA,B (z1
P [m0,r0]←−−−→ u2)PA,B (b

m0←→ z2)PA,B (z2
P [m0,r0]←−−−→ u′

1)PA,B (z2
P [m0,r0]←−−−→ u′

2) .

To bound the first sum, we use Lemma 3.12 and Lemma 4.4 to bound PA,B (a
=t1←→ z1) ≤CV −1(1+ε)t1 and

PA,B (b
=t2←→ z2) ≤CV −1(1+ε)t2 . We then use Lemma 3.19 and Lemma 4.4 to sum over z1, z2, (u1,u′

1), (u2,u′
2).

This gives us an upper bound of

CV −2|∂A||∂B |m2ε−6(1+ε)4r0 +C |∂A||∂B |V −1m2m0αV
∑

t1,t2∈[m0,r0]
(1+ε)t1+t2

≤CV −2|∂A||∂B |m2ε−2(E|B(r0)|)4 ,

where the last inequality is due to Theorem 4.5 and our choice of r0 in (2.8). This is contained in Q3.
To bound the second sum, we use Lemma 3.15 to bound each of the last two terms by CV −1E|B(r0)|.
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We then sum over (u1,u′
1) and (u2,u′

2) using Lemma 4.4. We then sum over z1, z2 using Lemma 4.4
and finally over a,b, t1 to get that this sum is at most

C |∂A||∂B |V −2m2(E|B(r0)|)4ε−1m0 ,

which is contained in Q3 since εm0 = o(1). For the third sum we use Lemma 3.15 four times, and then
sum over everything to get a bound of

C |∂A||∂B |V −2m2(E|B(r0)|)4m2
0 ,

which is also contained in Q3, concluding our proof. �
Proof of Theorem 6.3. We condition on the events Bx( jx) = A and By ( jy ) = B such that the event
A (x, y, jx , jy ,r0,β,k) holds. By requirement (2) of A (x, y, jx , jy ,r0,β,k) and our choice of parameters

r0(|A|+ |B |)V −1 ≤V −1ε−3 log(ε3V )e3M ≤ (logε3V )−1 ,

and
α1/2

V ε|∂A| ≤ e3Mα1/2
V ≤α1/4

V .

Hence the error term in Lemma 6.13 is at most

Err ≤C
[
(logε3V )−1 +α1/4

V

]|∂A||∂B |V −1m(E|B(r0)|)2 .

Lemma 6.13 together with requirement (5) in the definition of A (x, y, jx , jy ,r0,β,k) and our choice of
β in (6.1) (in particular, that β≪α1/4

V ∧ (logε3V )−1 by (2.7)) give

EA,B

[
S jx , jy ,r0 (x, y)1

{∂A
2r0̸↔∂B}

]
≥ (1−Cβ1/2)V −1m(E|B(r0)|)2|∂A||∂B | .

Since |∂A| and |∂B | are at least ek/4ε−1,

ε−1|∂A|2|∂B |+ε−1|∂A|2|∂B |+ε−2|∂A||∂B | ≤C e−k/4|∂A|2|∂B |2 ,

hence, by Lemma 6.14 and our choice of parameters,

EA,B

[
S jx , jy ,r0 (x, y)21

{∂A
2r0̸↔∂B}

]≤ (
1+O(e−k/4)

)
V −2m2(E|B(r0)|)4|∂A|2|∂B |2 .

We conclude that

PA,B
(
S jx , jy ,r0 (x, y) ≥ 2β1/2V −1m(E|B(r0)|)2|∂A||∂B |)≥ 1−O(β1/2) ,

where we used the fact that e−k/4 = o(β) and (4.4). This concludes our proof since |∂A| and |∂B | are at
least ε−1. �

7. PROOFS OF MAIN THEOREMS

7.1. Proof of Theorem 1.3. In Section 2.4 we already proved Theorem 1.3(a) hence we may assume
that the finite triangle condition (1.5) holds and focus on part (b) of the theorem. Since |C1| ≤ k0+Z≥k0

where k0 is from Theorem 2.2, Lemma 2.3 immediately gives that |C1| ≤ (2+o(1))εV whp, showing the
required upper bound on |C1| — note that this argument only uses the finite triangle condition hence
it is valid for any εm satisfying εm ≫ V −1/3 and εm = o(1). For the lower bound we will additionally
assume, as part (b) requires, that εm = o(m−1

0 ) and show that

Pp
(|C1| ≥ (2−o(1))εV

)= 1−o(1) . (7.1)

This establishes part (b) of Theorem 1.3. Recall that p = pc (1+ ε) is our percolation probability, let
θ > 0 be an arbitrary small constant and put p2, p1 to satisfy

p2 = θε/m , pc (1+ε) = p1 + (1−p1)p2 ,

so that pc (1+ (1− θ)ε) ≤ p1 ≤ pc (1+ ε) since pc ≥ 1/m. Denote by Gp1 and Gp2 two independent
percolation instances of G with parameters p1 and p2, respectively. The sprinkling procedure relies
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on the fact that Gp is distributed as Gp1 ∪Gp2 . We first apply Theorem 2.4 to Gp1 and deduce that for
M ,r defined in (2.7) and r0 defined in (2.8),

Pp1

(
Pr,r0 ≥ (1−3θ)4ε2V 2)≥ 1−o(1) . (7.2)

Now we wish to show that when we “sprinkle” this configuration in Gp1 , that is, when we add to the
configuration independent p2-open edges, most of these vertices join together to form one cluster
of size roughly 2εV . To make this formal, given Gp1 , we construct an auxiliary simple graph H with
vertex set

V (H) = {
x ∈Gp1 : |C (x)| ≥ (ε3V )1/4ε−2} ,

and edge set

E(H) = {
(x, y) ∈V (H)2 : x, y are (r,r0)-good

}
.

Thus, using Lemma 2.3 with k0 = ε−2(ε3V )1/4 and (7.2), with probability at least 1−o(1),

|V (H)| = (2+o(1))εV , |E(H)| ≥ (1−3θ)4ε2V 2 . (7.3)

Denote v = |V (H)| and write x1, . . . , xv for the vertices in Gp1 corresponding to those of H . Given
Gp1 for which the event in (7.3) occurs, we will show that whp in Gp1 ∪Gp2 there is no way to partition
the set of vertices into M1⊎M2 = {x1, . . . , xv } with |M1| ≥ 3θv and |M2| ≥ 3θv such that there is no open
path in Gp1 ∪Gp2 connecting a vertex in M1 with a vertex in M2. This implies that whp the largest
connected component in Gp1 ∪Gp2 is of size at least (1−3θ)v .

To show this, we first claim that the number of such partitions is at most 23(ε3V )3/4
since |C (xi )| ≥

(ε3V )1/4ε−2. Secondly, given such a partition, we claim that the number of edges (u,u′) such that u ∈
M1 and u′ ∈ M2 (note that, by definition, these edges must be p1-closed) is at least e−40M (log M)−1θε2V m.
To see this, we consider the set of edges in H for which both sides lie in either M1 or M2 (more pre-
cisely, the vertices of H corresponding to M1 and M2). This number is at most

M 2
1 +M 2

2 ≤ (3θv)2 + (1−3θ)2v2 ≤ (1−5θ)v2,

where we used the fact that θ > 0 is a small enough constant, M1 +M2 = v and both M1 and M2 are in
[3θv, (1−3θ)v]. By (7.3), the number of edges in H such that one end is in M1 and the other in M2 is
at least θε2V 2. In other words, there are at least θε2V 2 pairs (x, y) ∈ M1 ×M2 such that S2r+r0 (x, y) ≥
(log M)−1V −1mε−2(E|B(r0)|)2. Note that is a large number due to our condition (2.8). In total, we
counted at least θε2V 2 · (log M)−1V −1mε−2(E|B(r0)|)2 edges (u,u′) and no edge is counted more than
|Bu(2r + r0)| · |Bu′(2r + r0)| times, which is at most e40Mε−2(E|B(r0)|)2 by the definition of S2r+r0 (x, y)
and the second claim follows.

Hence, if |C1| ≤ (1−3θ)v , then there exists such a partition in which all of the above edges (u,u′)
are p2-closed. By the two claims above, the probability of this is at most

23(ε3V )3/4
(1−p2)e−40M (log M)−1θmε2V ≤ 23(ε3V )3/4

e−e−40M (log M)−1θ2ε3V = o(1) ,

since p2 = θε/m and by our choice of parameters in (2.7) and (2.9). This concludes the proof of (7.1)
since θ > 0 was arbitrary and establishes the required estimate on |C1| of Theorem 1.3 (b).

We now use (7.1) to show the required bounds on E|C (0)| and |C2|. The upper bound E|C (0)| ≤
(4+o(1))ε2V is stated in Lemma 2.3 and the lower bound follows immediately from our estimate on
C1. Indeed, write C j for the j th largest component. Then

E|C (0)| =V −1
∑

v∈V (G)
E|C (v)| =V −1

∑
j≥1

E|C j |2 ≥V −1E|C1|2 ≥ (4−o(1))ε2V ,

where the first equality is by transitivity, the second equality is because each component C j is counted
|C j | times in the sum on the left and the last inequality is due to (7.1). Furthermore, by this inequality
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and Lemma 2.3, we deduce that ∑
j≥2

E|C j |2 = o(ε2V 2) ,

and hence |C2| = o(εV ) whp. This concludes the proof of Theorem 1.3. �

7.2. Proof of Theorem 1.1. In this section we restrict our attention to the hypercube and prove The-
orem 1.1. We begin by showing that m0, defined in Theorem 1.3 with αV = m−1 logm, satisfies m0 =
O(m logm). See Lemma 7.1. The proof of Theorem 1.1 is then split into two cases. In the first case we
assume that εm ≤ 1/m2 so that ε= o(m−1

0 ) and appeal to Theorem 1.3. In the second case we perform
the classical sprinkling argument for the case ε≥ 1/m2, as done in [18].

Lemma 7.1 (NBW estimates). On the hypercube {0,1}m

Tmix(m−1 logm) =O(m logm) ,

and for any integer L ≥ 1

sup
x,y

∑
u,v

L∑
t1,t2,t3=0

t1+t2+t3≥3

pt1 (x,u)pt2 (u, v)pt3 (v, y) ≤O(1/m2)+O(L3/V ). (7.4)

Proof. We make use of the results in [25], as we explain now. The bound on Tmix(m−1 logm) =O(m logm)
is [25, Theorem 3.5]. We next explain how to prove (7.4), which will give condition (3) in Theorem 1.3
for L = Am logm and an appropriate A > 0.

Let D : {0,1}m → [0,1] be the simple random walk transition probability on the hypercube, that is,
D(v) = 1/m whenever v is a neighbor of the all zero vector. Our proof of (7.4) relies on Fourier theory.
For convenience, we take the Fourier dual of {0,1}m to be {0,1}m . Then, the Fourier transform f̂ (k) of
f : {0,1}m →R is given by

f̂ (k) = ∑
x∈{0,1}m

(−1)x·k f (x), (7.5)

with inverse Fourier transform

f (x) = 1

V

∑
k∈{0,1}m

(−1)x·k f̂ (k). (7.6)

For the hypercube, D̂(k) takes the appealingly simple form

D̂(k) = 1−2a(k)/m, (7.7)

where a(k) is the number of non-zero coordinates of k.
In [25, Theorem 3.5] it is proved that, when m ≥ 2 and t ≥ 1, with p̂t (k) denoting the Fourier trans-

form of x 7→ pt (0, x),

|p̂t (k)| ≤ max
(|D̂(k)|,1/

p
m −1

)t−1, (7.8)

and p̂0(k) = 1. This gives us all the necessary bounds to prove the NBW triangle condition (7.4).
Denote the sum in (7.4) by S. The contribution to S where t1 + t2 + t3 = 3 equals O(1/m2). Thus, we

are left to bound the contribution due to t1, t2, t3 with t1 + t2 + t3 ≥ 4. For any t ≥ 1,

pt (x, y) ≤ m

m −1
(D ∗pt−1)(x, y), (7.9)

where, for f , g : {0,1}m →R, we define the convolution f ∗ g by

( f ∗ g )(x) = ∑
y∈{0,1}m

f (y)g (x − y). (7.10)
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Therefore,

S ≤C /m2 +34( m

m −1

)4 sup
x,y

L∑
s1,s2,s3=0

s1+s2+s3≥0

(D∗4 ∗ps1 ∗ps2 ∗ps3 )(x, y), (7.11)

where 34 is an upper bound on the number of ways we can add 4 to the coordinates of (s1, s2, s3) to get
(t1, t2, t3) with t1 + t2 + t +3 ≥ 4. The above can be bounded in terms of Fourier transforms as

S ≤C /m2 + C

V
sup
x,y

∑
k∈{0,1}m

(−1)k·(y−x)
L∑

s1,s2,s3=0
s1+s2+s3≥0

D̂(k)4p̂s1 (k)p̂s2 (k)p̂s3 (k) (7.12)

≤C /m2 + C

V

∑
k∈{0,1}m

L∑
s1,s2,s3=0

s1+s2+s3≥0

D̂(k)4|p̂s1 (k)||p̂s2 (k)||p̂s3 (k)|.

The contribution to k = 0 equals L3/V since D̂(0) = p̂t (0) = 1, and the contribution due to k = 1 (where
1 denotes the all 1 vector) obeys the same bound. It is not hard to adapt the proof of [17, Proposition
1.2] to show that the sum over k ̸= 0,1 is O(1/m2). We perform the details of this computation now.

Writing x+ = max(x,0) for x ∈R, and noting that there are at most 2 values of s for which (s−1)+ = t ,
we obtain

S ≤C /m2 +2L3/V + C

V

∑
k∈{0,1}m : k ̸=0,1

L∑
s1,s2,s3=0

D̂(k)4 max
(|D̂(k)|,1/

p
m −1

)(s1−1)++(s2−1)++(s3−1)+

≤C /m2 +2L3/V + C 23

V

∑
k∈{0,1}m : k ̸=0,1

D̂(k)4
∞∑

s1,s2,s3=0
max

(|D̂(k)|,1/
p

m −1
)s1+s2+s3

=C /m2 +2L3/V + C 23

V

∑
k∈{0,1}m : k ̸=0,1

D̂(k)4[
1−max

(|D̂(k)|,1/
p

m −1
)]3 . (7.13)

We bound

1

V

∑
k∈{0,1}m : k ̸=0,1

D̂(k)4[
1−max

(|D̂(k)|,1/
p

m −1
)]3 (7.14)

≤ 1

V

∑
k∈{0,1}m : k ̸=0,1

D̂(k)4
[ 1

[1−|D̂(k)|]3
+ 1

[1−1/
p

m −1]3

]
.

We next use the fact that 1
V

∑
k∈{0,1}m D̂(k)4 is the probability that a four-step simple random walk on

the hypercube returns to its starting point, which is O(1/m2). Alternatively, and more useful for the
proof that follows, we can write

1

V

∑
k∈{0,1}m

D̂(k)4 = 2−m
m∑

j=0

(
m

j

)
(1−2 j /m)4 = m−4E[(2X −m)4] =O(1/m2), (7.15)

where X has a binomial distribution with parameters 1/2 and m, and we use that E[(2X − m)4] =
O(m2). We use similar ideas to deal with the contribution involving [1−|D̂(k)|]−3, which we rewrite as

1

V

∑
k∈{0,1}m : k ̸=0,1

D̂(k)4

[1−|D̂(k)|]3
= 2−m

m−1∑
j=1

(
m

j

)
(1−2 j /m)4

[(2 j /m)∧ (2−2 j /m)]3
. (7.16)

The sum 2−m ∑
j ̸∈[m/4,3m/4]

(m
j

)
is exponentially small in m by either Stirling’s formula or large deviation

bounds on the binomial distribution with parameters m and 1/2. When j ∈ [m/4,3m/4], we can
bound 1/[(2 j /m)∧ (2−2 j /m)]3 ≤ 8 to bound the above sum by O(1/m2) in the same way as in (7.15).
Together with (7.13), this completes the proof of (7.4). �
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Proof of Theorem 1.1. We start by proving the theorem in the case εm ≤ 1/m2. We takeαV = m−1 logm
and Lemma 7.1 shows that m0 = O(m logm) and that condition (3) of Theorem 1.3 holds. Condition
(2) of Theorem 1.3 holds by (1.2). Condition (1) is fulfilled automatically, therefore, in this case Theo-
rem 1.1 follows from Theorem 1.3.

We now handle the case ε ≥ 1/m2 and ε = o(1). We start by proving (7.1) in this case. In [18], it
is proven that |C1| ≥ cεV whp in this case, and the argument used there is based on isoperimetry
together with Lemma 2.3 and suffices to prove the required 2εV estimate in our setting as well, as we
show now.

Let θ > 0 be a small arbitrary constant. As before, fix the sprinkling probability p2 = θε/m and take
p1 such that p = pc (1+ε) = p1 + (1−p1)p2 so that p1 = pc (1+ (1−θ+o(1))ε). By Lemma 2.3, whp in
Gp1 ,

2(1−2θ)εV ≤ Z≥k0 ≤ 2(1+θ)εV ,

for k0 = ε−2(ε3V )1/4. As a result, there are at most 2(1+θ)εV /k0 = 2(1+θ)(ε3V )3/4 clusters of size at
least k0. Denote these clusters by (Di )i∈I , so that |I | ≤ 2(1+θ)(ε3V )3/4.

As before, we now perform sprinkling and add the edges of Gp2 . We bound the probability that
after the sprinkling there is a partition of the clusters (Di )i∈I into two sets S,T both containing at least
θεV vertices such that there is no path in Gp2 connecting them. If there is no such partition, then the
largest component in Gp1 ∪Gp2 has size at least (2−3θ)εV and we conclude the proof. We follow [18,
Proof of Proposition 2.5].

Since |I | ≤ 2(1+θ)(ε3V )3/4 the number of such partitions is at most 22(1+θ)(ε3V )3/4
. We bound the

probability that given such a partition there is no p2-open path connecting them. By [18, Lemma 2.4],
whenever ∆≥ 1 satisfies

e−∆
2/2m ≤ θε/2, (7.17)

there is a collection of at least 1
2θεm−2∆V edge disjoint paths connecting S and T , each of length at

most ∆. This is where the isoperimetric inequality on the hypercube is being used. Note that ∆ needs
to be large, in fact, we put ∆= m2/3 and use the fact that ε≥ m−2 so that (7.17) holds. The probability
that a path of length ∆ has a p2-closed edge in it is 1−p∆

2 . Since the paths are disjoint, these events are
independent, and we learn that the probability that they all have a p2-closed edge in them is at most(

1−p∆
2

) 1
2θεm−2∆V ≤ e−cp∆

2 θεm−2∆V = e−cθ∆ε∆m−3∆V . (7.18)

Thus, the total probability that sprinkling fails is at most

22(1+θ)(ε3V )3/4
e−cθ∆ε∆m−3∆V = e−c2(1−o(1))m

, (7.19)

since ε≥ m−2 (in fact, this argument works as long as ε≥ e−cm1/3
). The proof of (7.1) when ε≫V −1/3

and ε= o(1) is now completed.
The remaining bounds on |C1|, E|C (0)| and |C2|only rely on (7.1) and Lemma 2.3 and are performed

exactly as in the conclusion of the proof of Theorem 1.3. This completes the proof of Theorem 1.1. �

7.3. Proof of Theorem 1.4. Our expansion and girth assumption of the theorem allows us to deduce
some crude yet sufficient bounds on pt (·, ·), namely, that there exists some constant q > 0 so that

pt (0,0) ≤
{

V −q t ≤C logV ,

CV −1 t ≥C logV ,
and pt (x, y) ≤

{
(m −1)−t t ≤ (c logm−1 V )/2,

V −q t ≥ (c logm−1 V )/2.
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Indeed, the second bound on pt (0,0) comes from the classical fact that Tmix(CV −1) = O(logV ). See
e.g. [5, below (19)]. The first bound on pt (0,0) comes from the girth assumption. Indeed, the graph
induced on the vertices of graph distance at most ⌊g /2⌋, where g is the girth, is a tree. Hence, in order
for the walker to return to 0 at time t it must be at distance t −⌊g /2⌋ from 0 and then take the unique
path of length ⌊g /2⌋ to 0 so that q can be taken to be any number smaller than c/2. The bounds on
pt (x, y) are proved similarly.

We take αV = C (logV )−1 (which is at least 1/m by our assumption that m ≥ c logV ) and prove
that conditions (2) and (3) of Theorem 1.3 hold. Note that m0 = O(logV ). To show condition (2) we
show that percolation with p = (m −1)−1(1+αV /logV ) has Ep |C (0)| ≫ V 1/3 so that pc ≤ p. To show
this lower bound on Ep |C (0)| in this regime of p it is possible to use a classical sprinkling argument.
However, it is quicker to use [46, Theorem 4] and verify that

ε−1r
2r∑

t=1
[(1+ε)t∧r −1]pt (0,0) = o(1) , (7.20)

where ε=αV /logV and r = ε−1[log(ε3V )−3loglog(ε3V )]. Theorem 4 of [46] then yields that P(|C1| ≥
bεV /(log(ε3V ))3) = 1−o(1) for some b > 0 which immediately gives a lower bound on E|C (0)| since

E|C (0)| ≥V −1E|C1|2 ≥ (1+o(1))b2ε2V /(log(ε3V ))6 ≫V 1/3 ,

by our choice of ε. We use our bounds on pt (0,0) above and sum (7.20) separately for t ≤C logV and
t ≥C logV . For t ≤C logV we bound (1+ε)t −1 =O(εt ) and use our first bound pt (0,0) ≤V −q to get

ε−1r
C logV∑

t=1
[(1+ε)t∧r −1]pt (0,0) ≤ r

C logV∑
t=1

tV −q = o(1) .

When t ≥C logV we bound

(1+ε)t∧r −1 ≤ (1+ε)r = ε3V (logε3V )−3 =O(ε3V (logV )−3) ,

by our choice of ε. We use our second bound pt (0,0) ≤CV −1 to bound

ε−1r
2r∑

t=C logV
[(1+ε)t∧r −1]pt (0,0) =O(r 2ε2(logV )−3) = o(1) ,

since r ≤C (logV )2. This concludes the verification of condition (2) of Theorem 1.3.

To verify condition (3) we need to prove the bound∑
u,v

C logV∑
t1,t2,t3 : t1+t2+t3≥3

pt1 (x,u)pt2 (u, v)pt3 (v, y) =O((logV )−2) . (7.21)

We first handle the special case of (t1, t2, t3) = (1,1,1). An immediate calculation with Lemma 3.11
gives that (on any regular graph of degree m)∑

u,v
p1(x,u)p1(u, v)p1(v, y) =O(1/m2) .

In all other cases of (t1, t2, t3) we use our bound on pti (x, y) for i ∈ 1,2,3 such that ti is the largest
of t1, t2, t3 (which must be at least 2). We pull this bound out of the sum, and sum the other two
terms over u and v to get a multiplicative contribution of precisely 1. The sum over (t1, t2, t3) such
that 3 ≤ t1 + t2 + t3 < 15 is bounded by C (logV )−2 since the number of such triplets is bounded,
and each contributes at most C (logV )−2 because one of the ti ’s is at least 2, so that our bounds on
pt (x, y) guarantee that for this ti we have pti (·, ·) ≤ O(1/m2) ≤ O(1/(logV )2) by the assumption that
m ≥ c logV . Similarly, the sum over triplets (t1, t2, t3) such that t1 + t2 + t3 ≥ 15 and ti ≤ m0 is also
bounded by C (logV )−2 since the number of such triplets is at most C (logV )3, and each contributes at
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most C (logV )−5 because at least one of the ti ’s is at least 5 and for this ti we have pti (·, ·) ≤C (logV )−5

again by our assumption that m ≥ c logV . This concludes our verification of conditions (2) and (3) of
Theorem 1.3 and concludes our proof. �

8. OPEN PROBLEMS

(1) In this paper we prove a law of large numbers for |C1| above the critical window for percolation
on the hypercube. Show that |C1| satisfies a central limit theorem in this regime. In G(n, p) this
and much more was established by Pittel and Wormald [51].

(2) Show that |C2| = (2+o(1))ε−2 log(ε32m) when p = pc (1+ε) and that |C1| = (2+o(1))ε−2 log(ε32m)
when p = pc (1 − ε) for ε ≫ V −1/3 and ε = o(1). This is the content of [18, Conjectures 3.1
and 3.3]. In [15] this is proved for ε ≥ 60(logn)3/n in the supercritical regime, and for ε ≥
(logn)2/(n1/2 loglogn) in the subcritical regime. In G(n, p) these results are proved in [51] and
[38, Theorem 5.6].

(3) Show that (|C j |2−2m/3) j≥1 converges in distribution when p = pc (1+ t2−m/3) and t ∈R is fixed
and identify the limit distribution. Up to a time change, this should be the limiting distribu-
tion of (|C j |n−2/3) j≥1 in G(n, p) with p = (1+ tn−1/3)/n identified by Aldous [4].

(4) Consider percolation on the nearest-neighbor torus Zd
n where d is a large fixed constant and

n →∞ with p = pc (1+ε) such that ε≫ n−d/3 and ε= o(1). Show that |C1|/(εnd ) converges to a
constant. Does this constant equal the limit as ε ↓ 0 of ε−1θZd (pc (1+ε))? Here θZd (p) denotes
the probability that the cluster of the origin is infinite at p-bond percolation on the infinite lat-
tice Zd . The techniques of this paper are not sufficient to show this mainly because condition
(2) of Theorem 1.3 does not hold in Zd

n (in fact, it is easy to see that pc − (2d −1)−1 ≥ c > 0 for
some positive constant c = c(d) — this is always the case when our underlying transitive graph
has constant degree and short cycles). The critical regime of this graph is well understood by
the works [16, 17, 29, 30].

(5) Show that the finite triangle condition (1.5) holds on any family of expander graphs.

(6) Let δ > 0 be a fixed constant and consider the giant component C1 obtained by performing
percolation on the hypercube with p = (1+δ)/m. Show that whp the mixing time of the simple
random walk on C1 is polynomial in m. Is this mixing time of order m2? This is what one
expects by the analogous question on G(n, p), see [10, 26]. Further analogy with the near-
critical G(n, p) (see [22]) suggests that whp the mixing time on C1 when p = pc (1+ε) with the
usual condition that ε≫ 2−m/3 and ε= o(1) is of order ε−3 log(ε32m).

APPENDIX A. ASYMPTOTICS OF THE SUPER-CRITICAL CLUSTER TAIL

Our goal in this section is to prove Theorem 2.2. In [16], Theorem 2.2 is proved without the precise
constant 2. Here we sharpen this proof to get this constant. We assume that G is a general transitive
graph having degree m and volume V satisfying the finite triangle condition (1.5). In order to stay
close to the notation in [16], we define

∇max
p = sup

x ̸=y
∇p (x, y) ,

and
τp (x) = Pp (0 ←→ x). (A.1)
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Proposition A.1 (Upper bound on the cluster tail). Let G be a finite transitive graph of degree m on
V vertices such that the finite triangle condition (1.5) holds and put p = pc (1+ε) where ε = o(1) and
ε≫V −1/3. Then, for every k = kε satisfying kε ≥ ε−2,

Pp (|C (0)| ≥ k) ≤ 2ε(1+O(ε+ (ε3V )−1 + (ε2k)−1/4 +αV )). (A.2)

Proposition A.2 (Lower bound on the cluster tail). Let G be a finite transitive graph of degree m on
V vertices such that the finite triangle condition (1.5) holds and put p = pc (1+ε) where ε = o(1) and
ε≫V −1/3. Then, for every α ∈ (0,1/3), there exists a c = c(α) > 0 such that

Pp

(
|C (0)| ≥ ε−2(ε3V )α

)
≥ 2ε(1+O(ε+ (ε3V )−c +αV )). (A.3)

Remark. The above propositions apply also to infinite transitive graphs (where (ε3V )−c is replaced by
0), assuming that (1.5) holds with χ(p)3/V replaced by 0.

Proof of Theorem 2.2. Follows immediately from the above propositions. �

A.1. Differential inequalities. We follow [16, Section 5]. For p,γ ∈ [0,1], we define the magnetization
by

M(p,γ) =
V∑

k=1
[1− (1−γ)k ]Pp (|C (0)| = k). (A.4)

For fixed p, the function γ 7→ M(p,γ) is strictly increasing, with M(p,0) = 0 and M(p,1) = 1. When we
color all vertices independently green with probability γ, and we let G denote the set of green vertices,
then (A.4) has the appealing probabilistic interpretation of

M(p,γ) = Pp,γ(0 ←→G ), (A.5)

where Pp,γ is the probability measure of the joint bond and site percolation model, where bonds and
sites have an independent status. This representation is important for the derivation of useful differ-
ential inequalities involving the magnetization.

Lemma A.3 (Differential inequalities for the magnetization). Let G be a finite transitive graph on V
vertices and degree m. Then at any p,γ ∈ (0,1)

(1−p)
∂M

∂p
≤ m(1−γ)M

∂M

∂γ
, (A.6)

M ≤ γ
∂M

∂γ
+ [1

2
mpM 2 +γM

]+ [1

2
mpM +γ

]
p
∂M

∂p
, (A.7)

and

M ≥ mp
[
γ+ (1−γ)

1

2
m(m −1)p2α(p)M 2]∂M

∂γ
, (A.8)

where

α(p) = (1−2p)2 − (1+mp +2(mp)2)∇max
p −mpM − (mp)2M 2. (A.9)

The inequality (A.6) is proved in [1], where it was used to prove the sharpness of the percolation
phase transition on Zd , and was first stated in the context of finite graphs in [16, (5.14)]. The differen-
tial inequality in (A.7) is an adaptation of another differential inequality proved and used in [1], which
is improved here in order to obtain sharp constants in our bounds. The bound in (A.8) is an adap-
tation of [16, (5.16)], which was used there in order to prove an upper bound on M(p,γ). Again, the
inequality is adapted in order to obtain the optimal constants. We will first use Lemma A.3 to obtain
Propositions A.1 and A.2.
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A.2. The magnetization for subcritical p. We take p = pc (1−ε) with ε = o(1) and ε3V ≫ 1, and we
take γ = o(1). Then, [16, Lemma 5.3] shows that M(p,γ) = O(

p
γ). The main aim of this section is to

improve upon this bound, using the improved differential inequality in (A.8).
We have that M(p,γ) = O(

p
γ) and χ(p) = O(1/ε) by [16, Theorem 1.5]. Further more, assumption

(1.5) gives that ∇max
p = O(αV + (ε3V )−1) and [16, (1.30)] then implies that mp ≤ 1+O(αV ). Putting all

this into (A.9) yields
α(p) ≥ 1+O

(p
γ+ (ε3V )−1 +αV

)
. (A.10)

Substituting (A.10) into (A.8) in turn gives that

M ≥ (
1+O

(p
γ+ (ε3V )−1 +αV

))[
γ+ 1

2
M 2]∂M

∂γ
. (A.11)

We now use this to prove the following lemma:

Lemma A.4 (Upper bound on the slightly subcritical magnetization). Let G be a finite transitive graph
of degree m on V vertices such that the finite triangle condition (1.5) holds. Let γ = o(1) and put p =
pc (1−ε) with ε= o(1) and ε3V ≫ 1. Then,

M(p,γ) ≤√
2γ

(
1+O

(p
γ+ (ε3V )−1 +αV

))
. (A.12)

A similar bound as in Lemma A.4 was proved in [16, Lemma 5.3], whose proof we adapt here, with√
2γ replaced with

√
12γ, and a less precise error bound. The precise constant

p
2 is important for us

here as it relates to the constant 2 for the 2ε(1+o(1)) survival probability.

Proof. We note that (A.11) implies that

M ≥ B

2
M 2∂M

∂γ
, (A.13)

where we abbreviate B = 1+O
(p

γ+ (ε3V )−1 +αV
)
. Therefore,

∂[M 2]

∂γ
≤ 4/B. (A.14)

Integrating between 0 and γ, and using that M(p,0) = 0 yields that

M 2 ≤ 4γ/B , (A.15)

so that M ≤p
γ(2/

p
B). Now, when we have this inequality, we can further bound

γ≥ B

4
M 2, (A.16)

so that by (A.11) we get

M ≥ B
[
1/2+B/4

]
M 2∂M

∂γ
. (A.17)

Performing the same integration steps, we arrive at

M 2 ≤ 2

B/2+B 2/4
γ. (A.18)

Therefore, the constant has become a little better (recall that B is close to 1). Iterating these steps
yields that, for every k ≥ 1,

M 2 ≤ 2∑k
l=1(B/2) j

γ. (A.19)

We prove (A.19) by induction on k, the initialization for k = 1,2 having been proved above. To advance
the induction hypothesis, suppose that (A.19) holds for k ≥ 1. Define

Ak =
k∑

l=1
(B/2) j , (A.20)
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so that (A.19) is equivalent to M 2 ≤ 2γ/Ak . In turn, this yields that γ≥ Ak M 2/2, so that

M ≥ B
[

Ak /2+1/2
]

M 2∂M

∂γ
, (A.21)

which in turn yields that

M 2 ≤ 2

B [1+ Ak ]/2
γ. (A.22)

Note that
B [1+ Ak ]/2 = Ak+1, (A.23)

which advances the induction. By (A.19), we obtain that

M 2 ≤ 2∑∞
l=1(B/2) j

γ= 2[2−B ]γ/B. (A.24)

Finally, the fact that
[2−B ]/B = 1+O

(p
γ+ (ε3V )−1 +αV

)
(A.25)

completes the proof. �
A.3. The magnetization for supercritical p. In this section, we use extrapolation inequalities to ob-
tain a bound on the supercritical magnetization from the subcritical one derived in Lemma A.4. Our
precise result is the following:

Lemma A.5 (Upper bound on the slightly supercritical magnetization). Let G be a finite transitive
graph of degree m on V vertices such that the finite triangle condition (1.5) holds and put p = pc (1+ε)
where ε= o(1) and ε≫V −1/3. Then for any c ∈ (0,1/3),

M(p,γ) ≤
(
ε+

√
2γ+ε2

)(
1+O

(
ε+p

γ+ (ε3V )−c +αV
))

. (A.26)

Proof. We follow the proof in [16, Section 5.3], paying special attention to the constants and error
terms. Indeed, we use (A.6) and the chain rule to deduce that, with A = (1− 2pc )−1, and M̃(p,h) =
M(p,1−e−h),

∂M̃

∂p
≤ m AM̃

∂M̃

∂h
. (A.27)

Take P1 = (pc (1+ε),h) and write m1 = M̃(P1). Further, take η= ε(ε3V )−c for some c ∈ (0,1/3), so that
η= o(ε) and η3V →∞, and take P2 = (pc (1−η), Am1ε

′), where

ε′ = ε+η+ h

Am1
. (A.28)

Then, with m2 = M̃(P2), we have that m2 ≥ m1 (see e.g., [16, (5.46)]). Therefore, by Lemma A.4 and
again writing B = 1+O

(p
γ+ (ε3V )−1 +αV

)
with γ= 1−e−h ,

M(p,1−e−h) = m1 ≤ m2 ≤
√

2B(1−e−Am1ε′) (A.29)

= (1+O(m1ε
′))

√
2ABm1ε′

= (1+O(m1ε))
√

2ABm1(ε+η)+2Bh

= (1+O(ε+ (ε3V )−c ))
√

2ABm1ε+2Bh,

where in the last inequality we use that η= ε(ε3V )−c ≪ ε and m1 ≤ 1. The inequality

m1 ≤
√

2ABm1ε+2Bh

has roots
m± = ABε±

√
2Bh + (ABε)2. (A.30)
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Since m1 ≥ 0 and m+ ≥ 0 while m− ≤ 0, we deduce that

M(pc +ε/m,1−e−h) = m1 ≤ (1+O(ε+ (ε3V )−c ))(ABε+
√

2Bh + (ABε)2). (A.31)

We have that γ= 1−e−h = h(1+O(h)) and A = 1+O(αV ) (by [16, (1.30)]) and B = 1+O
(p

γ+(ε3V )−1+
αV

)
. Putting all this together in the last inequality completes the proof. �

Proof of Proposition A.1. We note that, for any l ≥ k ≥ 1 and a > 0,

1− (
1−a/k

)l ≥ 1−e−a . (A.32)

Therefore, by (A.4),

Pp (|C (0)| ≥ k) ≤ [1−e−a]−1M(p, a/k). (A.33)

Recall that k ≫ ε−2 and take a = (ε2k)1/2 so that a/k = ε2(ε2k)−1/2 = o(ε2). We note that for γ =
ε2(ε2k)−1/2, (A.26) reduces to

M(p,γ) ≤ 2ε
(
1+O

(
ε+ (ε3V )−1 + (ε2k)−1/4 +αV

))
. (A.34)

Then, by (A.34) and the fact that 1−e−a = 1+o((ε2k)−1/4),

M(p, a/k) ≤ 2ε
(
1+O

(
ε+ (ε3V )−1 + (ε2k)−1/4 +αV

))
. (A.35)

This completes the proof of Proposition A.1. �

A.4. Lower bound on tail probabilities. In the remainder of this section, we shall prove Proposition
A.2. Throughout this proof, we will take p = pc (1+ε).

We shall assume that with k0 = ε−2(ε3V )α ≫ ε−2 and α ∈ (0,1/3), there exists b10 = b10(α) such that

Pp (|C (v)| ≥ ε−2(ε3V )α) ≥ b10ε. (A.36)

The bound in (A.36) is proved for finite graphs in [16, Theorem 1.6(i)] and in [9], in conjunction with
[28], on infinite lattices satisfying the triangle condition. The proof of (A.36) is similar to the argument
we shall give for the improved bound, and shall be omitted here. In turn, (A.36) implies that, for
γ= 1/k0 = ε2(ε3V )−α = o(ε2), there exists a constant b̃10 such that

M(p,γ) ≥ [1− [1−γ]k0 ]Pp (|C (v)| ≥ k0) ≥ b̃10ε. (A.37)

Equation (A.37) will be an essential ingredient in our proof. We start by proving the following lemma:

Lemma A.6 (Lower bound on the magnetization). Let G be a finite transitive graph of degree m on
V vertices such that the finite triangle condition (1.5) holds and put p = pc (1+ε) where ε = o(1) and
ε≫V −1/3. Then, for γ= ε2(ε3V )−α with α ∈ (0,1/3) and any c < 1,

M(p,γ) ≥ 2ε
[
1+O

(
ε+ (ε3V )−c +αV

)]
. (A.38)

Proof. Throughout the proof, we fix α ∈ (0,1/3). We recall the differential inequality (A.7)

M ≤ γ
∂M

∂γ
+ [1

2
mpM 2 +γM

]+ [1

2
mpM +γ

]
p
∂M

∂p
. (A.39)

By (A.37), and the fact that γ 7→ M(p,γ) is increasing, for any γ = ε2(ε3V )−α we have that γ = O(Mε).
Further, mp ≤ 1+O(ε+αV ), so that, for some A > 1 with A = 1+O(ε+αV ) we obtain

M ≤ γ
∂M

∂γ
+ A

2
M 2 + A

2
M p

∂M

∂p
. (A.40)

We rewrite (A.40) as

0 ≤ 1

M

∂M

∂γ
+ 1

γ

∂

∂p
[

A

2
pM −p], (A.41)
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and integrate for γ ∈ [γ0,γ1] and p ∈ [p0, p1], where γ0 = (δε)2(δ3ε3V )−α. We note that (A.37) holds for
p0 = pc (1+εδ) for any δ= o(1) and γ= γ0. We further take

p0 = pc (1+δε), p1 = pc (1+ε), γ1 = e(log(1/δ))a
γ0, (A.42)

where a > 1 is chosen below.
Then, as in [27, (5.57) and the argument below it], by the fact that p 7→ M(p,γ) and γ 7→ M(p,γ) are

non-decreasing,

0 ≤ (p1 −p0) log
M(p1,γ1)

M(p0,γ0)
+ log(γ1/γ0)[

A

2
p1M(p1,γ1)− (p1 −p0)]. (A.43)

Now,
log(γ1/γ0) = (log(1/δ))a , (A.44)

while, by Lemma A.5 and (A.37),

M(p1,γ1) ≤ 2ε
(
1+O

(
ε+ (ε3V )−1)), M(p0,γ0) ≥ b̃10δε, (A.45)

so that, for δ> 0 sufficiently small,

log
M(p1,γ1)

M(p0,γ0)
≤ log(2ε/(b̃10δε)) ≤ 2log(1/δ). (A.46)

Dividing (A.43) through by (log(1/δ))a , we arrive at

A

2
p1M(p1,γ1) ≥ pc (1−δ)ε

[
1−2(log(1/δ))1−a

]
. (A.47)

Recalling that p1 = pc (1+ε) and that a > 1, as well as the fact that A = 1+O(ε+αV ), this yields

M(p,γ1) ≥ 2ε[1+O(ε+ (log(1/δ))1−a +αV )]. (A.48)

Finally, note that

γ1 = e(log(1/δ))a
γ0 = e(log(1/δ))a

(δε)2(δ3ε3V )−α (A.49)

= ε2(ε3V )−α
(
e(log(1/δ))a

δ2−3α)≥ ε2(ε3V )−α,

when we take δ = e−(ε3V )1/a
for any a > 1. Indeed, then e(log(1/δ))a

δ2−3α → ∞ as δ → 0. Since γ 7→
M(p,γ) is increasing, this implies that

M(p,γ) ≥ M(p,γ1) ≥ 2ε[1+O(ε+ (log(1/δ))1−a +αV )] = 2ε
[
1+O

(
ε+ (ε3V )1/a−1 +αV

)]
. (A.50)

Denoting c = 1−1/a, this proves the claim. �
Proof of Proposition A.2. We use [16, (6.5) in Lemma 6.1], which states that, for any 0 ≤ γ0,γ1 ≤ 1,

Pp (|C (0)| ≥ k) ≥ M(p,γ1)− γ1

γ0
eγ0k M(p,γ0). (A.51)

Now we take γ1 = ε2(ε3V )−α
′

with α′ ∈ (0,1/3) taken as in Lemma A.6, γ0 = ε2(ε3V )−α with α<α′, and
k = 1/γ0. Then eγ0k = e, while, by Lemma A.5 and the fact that γ0 = o(ε2), we obtain that

M(p,γ0) ≤ 2ε(1+o(1)). (A.52)

Therefore, by Lemma A.6 and (A.51), taking c = 1/2 in Lemma A.6,

Pp (|C (0)| ≥ k) ≥ 2ε(1+O(ε+ (ε3V )−1/2 +αV ))− (ε3V )α
′−αO(ε). (A.53)

We obtain that

Pp (|C (0)| ≥ ε−2(ε3V )α) ≥ 2ε(1+O(ε+ (ε3V )−1/2 + (ε3V )α−α
′ +αV )). (A.54)

This proves the claim in Proposition A.2 with c =α−α′ ∈ (0,1/3). �
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A.5. Derivation of (A.8). We follow the proof in [16, Appendix A.2] as closely as possible, deviating in
one essential inequality. Indeed, in [16, (A.23-A.32)], it is proved that

M(p,γ) ≥ pm
∂M

∂γ
(p,γ)Pp,γ(0 ⇔G )−X2 −X3 , (A.55)

where X2 and X3 are defined in [16, A.32] and the event 0 ⇔G means that there are x, y ∈G with x ̸= y
such that 0 ↔ x and 0 ↔ y disjointly. We copy the bounds on X2 and X3 in [16, (A.46)] and [16, (A.53)]
respectively, which prove that

X2 ≤ p2mM 2(p,γ)
∂M

∂γ
(p,γ), X3 ≤∇max

p pmM 2(p,γ)
∂M

∂γ
(p,γ), (A.56)

and we improve upon the lower bound on Pp,γ(0 ⇔ G ) only. Our precise results is contained in the
following lemma:

Lemma A.7 (Improved lower bound on the double connection). For all p,γ ∈ [0,1],

Pp,γ(0 ⇔G ) ≥ γ+ (1−γ)
1

2
m(m −1)p2α(p)M 2(p,γ), (A.57)

where

α(p) = (1−2p)2 − (1+mp +2(mp)2)∇max
p −mpM(p,γ)− (mp)2M(p,γ)2.

Proof. Note that if 0 ∈G , then 0 ⇔G occurs. Therefore, we obtain

Pp,γ(0 ⇔G ) = γ+ (1−γ)Pp,γ(0 ⇔G | 0 ̸∈G ). (A.58)

Thus, we are left to obtain a lower bound on Pp,γ(0 ⇔ G | 0 ̸∈ G ). For this, we follow the original
argument in [16, Section A.2], adapting it when necessary.

For a directed bond b = (x, y), we write b = x and b = y for its top and bottom. Let e, f be two
distinct bonds with e = f = 0, and let Ee, f be the event that the bonds e and f are occupied, and
that in the reduced graph G− = (V −,E−) obtained by removing the bonds e and f , the following three
events occur: e ←→G , f ←→G , and C (e)∩C ( f ) =;.

Let P−
p,γ denote the joint bond/vertex measure on G−. We note that the event {0 ⇔G } contains the

event ∪e, f Ee, f , where the (non-disjoint) union is over unordered pairs of bonds e, f incident to the
origin. Then, by Bonferroni’s inequality and since Ee, f is independent of 0 ̸∈G , we get

Pp,γ(0 ⇔G | 0 ̸∈G ) ≥ Pp,γ
(∪e, f Ee, f | 0 ̸∈G

)≥ ∑
{e, f }

Pp,γ(Ee, f )−Y1 (A.59)

= p2
∑
e, f

P−
p,γ(e ←→G , f ←→G , C (e)∩C ( f ) =;)−Y1,

where

Y1 = 1

2

∑
{e1, f1} ̸={e2, f2}

Pp,γ(Ee1, f1 ∩Ee2, f2 | 0 ̸∈G ). (A.60)

We first bound Y1. For this, we note that there are two contributions to Y1, depending on the number
of distinct elements in {e1, f1,e2, f2}, which can be 3 or 4, and whose contributions we denote by Y1,3

and Y1,4, respectively.
We start by bounding Y1,3. The number of pairs of pairs of edges {e1, f1} ̸= {e2, f2} such that |{e1, f1,e2, f2}| =

3 is m(m −1)(m −2). For such a pair, let x1, x2, x3 denote the distinct elements of {e1, f 1,e2, f 2} such
that x1 corresponds to the end of the edge that appears twice in {e1, f1,e2, f2}. If Ee1, f1 ∩Ee2, f2 occurs,
then either

{(0, x1) occ.}◦ {(0, x2) occ.}◦ {(0, x3) occ.}◦ {x1 ←→G }◦ {x2 ←→G }◦ {x3 ←→G }
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occurs, or there exists a z such that

{(0, x1) occ.}◦ {(0, x2) occ.}◦ {(0, x3) occ.}◦ {x1 ←→G }

◦ {x2 ←→ z}◦ {x3 ←→ z}◦ {z ←→G }

occurs. Therefore,

Y1,3 ≤ (1−γ)
1

2
m(m −1)(m −2)p3M(p,γ)2[M(p,γ)+∇max

p ] , (A.61)

where we bounded ∑
z

Pp (x2 ←→ z)Pp (x3 ←→ z) ≤∇max
p ,

which is wasteful, but sufficient for our purposes.
For Y1,4, we sum over {e1, f1} ̸= {e2, f2} with the constraint that all these edges are distinct. The

number of such pairs of pairs is m(m − 1)(m − 2)(m − 3)/4. Then, a similar computation as for Y1,3

yields that

Y1,4 ≤ (1−γ)
1

8
m(m −1)(m −2)(m −3)p4M(p,γ)2[M(p,γ)2 +8∇max

p ]. (A.62)

We continue to bound the sum over {e, f } in (A.59) from below. Let

W =We, f = {e ←→G , f ←→G , C (e)∩C ( f ) =;}, (A.63)

denote the event whose probability appears on the right side of (A.59). Conditioning on the set C (e) =
A ⊂V −, we see that

P−
p,γ(W ) = ∑

A: f ̸∈A

P−
p,γ(C (e) = A, e ←→G , f ←→G , C (e)∩C ( f ) =;). (A.64)

This can be rewritten as

P−
p,γ(W ) =

∑
A : f ̸∈A

P−
p,γ(C (e) = A, e ←→G , f ←→G in V − \ A), (A.65)

where { f ←→ G in V − \ A} is the event that there exists x ∈ G such that f ←→ x in V − \ A. The inter-
section of the first two events on the right hand side of (A.65) is independent of the third event, and
hence

P−
p,γ(W ) = ∑

A : e ̸∈A

P−
p,γ(C (e) = A, e ←→G ) P−

p,γ( f ←→G in V − \ A). (A.66)

Let M−(x) = P−
p,γ(x ←→ G ), for x ∈ V −. Then, by the BK inequality and the fact that the two-point

function on G− is bounded above by the two-point function on G ,

P−
p,γ( f ←→G in V − \ A) = M−( f )−P−

p,γ( f ←→G only on A) (A.67)

≥ M−( f )− ∑
y∈A

τp ( f , y)M−(y).

By definition and the BK inequality,

M−(x) = M(p,γ)−Pp,γ(e or f is occ. and piv. for x ←→G ) (A.68)

≥ M(p,γ)(1−2p).

It follows from (A.66)–(A.68) and the upper bound M−(x) ≤ M(p,γ) that

P−
p,γ(W ) ≥ M(p,γ)

∑
A:e ̸∈A

P−
p,γ(C (e) = A, e ←→G )

[
(1−2p)− ∑

y∈A
τp ( f , y)

]
= M(p,γ)

[
M−(e)(1−2p)− ∑

y∈V −
τp ( f , y)P−

p,γ(e ←→ y, e ←→G )
]
. (A.69)
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It is not difficult to show, using the BK inequality, that

P−
p,γ(e ←→ y, e ←→G ) ≤ ∑

w∈V −
τp (e, w)τp (w, y)M−(w), (A.70)

and hence, by (A.68)–(A.69),

P−
p,γ(W ) ≥ M(p,γ)

[
M−(e)(1−2p)− ∑

y,w∈V −
τp ( f , y)τp (e, w)τp (w, y)M−(w)

]
≥ M 2(p,γ)

[
(1−2p)2 −∇max

p

]
.

This completes the proof of (A.57). �
A.6. Derivation of (A.7). In this section, we prove (A.7), which is an adaptation of the proof of the
related inequality

M ≤ γ
∂M

∂γ
+M 2 +pM

∂M

∂p
, (A.71)

which is proved in [1] (see also [27, Lemma (5.53)]). The main difference between (A.71) and (A.7) is
in the precise constants. Indeed, we have that pm ≈ 1 and M ≫ γ, so that, (A.7) is morally equivalent
to

M ≤ γ
∂M

∂γ
+ 1

2
M 2 + 1

2
pM

∂M

∂p
, (A.72)

i.e., in the inequality in (A.71) the last two terms are multiplied by 1/2.
We follow the proof of [27, Lemma (5.53)] as closely as possible, deviating only when necessary.

Indeed,

M(p,γ) = Pp,γ(C (0)∩G ̸= ;) = Pp,γ(|C (0)∩G | = 1)+Pp,γ(|C (0)∩G | ≥ 2). (A.73)

The first term on the r.h.s. of (A.73) equals γ∂M
∂γ , as derived in [27, (5.69)]. For the second term, we

define Ax to be the event that either x ∈ G or that x is connected by an occupied path to a vertex
g ∈G . Then,

Pp,γ(|C (0)∩G | ≥ 2) = Pp,γ(A0 ◦ A0) (A.74)

+Pp,γ(|C (0)∩G | ≥ 2, A0 ◦ A0 does not occur).

In the derivation of (A.71), we simply apply the BK-inequality to obtain

Pp,γ(A0 ◦ A0) ≤ Pp,γ(A0)2 = M(p,γ)2, (A.75)

leading to the second term in (A.71). Instead, we split, depending on whether 0 ∈ G or not. If 0 ∈ G ,
then 0 ∈G occurs disjointly from A0, so that the BK-inequality yields

Pp,γ(A0 ◦ A0,0 ∈G ) ≤ Pp,γ(A0 ◦ {0 ∈G }) ≤ γP(A0) = γM(p,γ). (A.76)

When, instead, 0 ̸∈G , there must be at least two neighbors e of the origin for which the event

Ae ◦ A0 ◦ {(0,e) occ.} (A.77)

occurs. Therefore, we can bound, with N denoting the number of neighbors e for which the event in
(A.77) occurs, so that N ≥ 2 a.s. and Markov’s inequality yields

Pp,γ(A0 ◦ A0,0 ̸∈G ) ≤ ∑
e∼0

Ep,γ

[ 1

N
1l{Ae◦A0◦{(0,e) occ.}}

]
≤ 1

2

∑
e∼0

Pp,γ(Ae ◦ A0 ◦ {(0,e) occ.}). (A.78)

Therefore, again by the BK-inequality,

Pp,γ(A0 ◦ A0,0 ̸∈G ) ≤ 1

2

∑
e

Pp,γ(Ae )Pp,γ(A0)p = 1

2
pmM(p,γ)2,
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so that

Pp,γ(A0 ◦ A0) ≤ 1

2
pmM(p,γ)2 +γM(p,γ), (A.79)

which yields the second term in (A.7).
We move on to the bound on the probability of the event that |C (0)∩G | ≥ 2, but that A0 ◦ A0 does

not occur. This event is equivalent to the existence of an edge b = (x, y) for which the following occurs:

(i) the edge b is occupied; and
(ii) in the subgraph of G obtained by deleting b, the following events occur:

(a) no vertex of G is joined to the origin by an open path;
(b) x is joined to 0 by an occupied path;
(c) the event Ay ◦ Ay occurs.

The events in (ii) are independent of the occupation status of the edge b = (x, y) so that

Pp,γ(|C (0)∩G | ≥ 2, A0 ◦ A0 does not occur) (A.80)

= p

1−p

∑
x∼y

Pp,γ((x, y) closed, x ∈C (0),C (0)∩G =;, Ay ◦ Ay )

≤ p

1−p

∑
x∼y

Pp,γ(x ∈C (0),C (0)∩G =;, Ay ◦ Ay ),

where we write x ∼ y to denote that (x, y) is a bond. We condition on C (0) to obtain

Pp,γ(C (0)∩G =;, Ay ◦ Ay ) (A.81)

= p

1−p

∑
x∼y

∑
A

Pp (C (0) = A)Pp,γ(C (0)∩G =;, Ay ◦ Ay |C (0) = A),

where the sum over A is over all sets of vertices which contain 0 and x but not y . Conditionally on
C (0) = A, the events C (0)∩G =; and Ay ◦ Ay are independent, since C (0)∩G =; is defined on the
vertices in A, while Ay ◦ Ay depends on the vertices in Ac and the edges between them. Thus,

Pp,γ(C (0)∩G =;, Ay ◦ Ay |C (0) = A) (A.82)

= Pp,γ(C (0)∩G =; |C (0) = A)Pp,γ(Ay ◦ Ay off A),

where we write {Ay ◦ Ay off A} for the event that Ay ◦ Ay occurs in the graph where all edges with at
least one endpoint in the set A are removed. So far, the derivation equals that in the proof of [27,
Lemma (5.53)]. Now we shall deviate. We split, depending on whether y ∈G or not, to obtain

Pp,γ(Ay ◦ Ay off A) = Pp,γ(Ay ◦ Ay off A, y ∈G )+Pp,γ(Ay ◦ Ay off A, y ̸∈G ).

When y ∈G ,

{Ay ◦ Ay off A, y ∈G } = {({y ∈G }◦ Ay ) off A}, (A.83)

so that, by the BK-inequality,

Pp,γ(Ay ◦ Ay off A, y ∈G ) ≤ γPp,γ(Ay off A). (A.84)
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As a result,
p

1−p

∑
x∼y

Pp,γ(x ∈C (0),C (0)∩G =;, Ay ◦ Ay , y ∈G ) (A.85)

≤ γp

1−p

∑
x∼y

∑
A

Pp (C (0) = A)Pp,γ(C (0)∩G =; |C (0) = A)Pp,γ(Ay off A)

= γp

1−p

∑
x∼y

∑
A

Pp (C (0) = A)Pp,γ(C (0)∩G =;, Ay |C (0) = A)

= γp

1−p

∑
x∼y

Pp,γ(x ∈C (0),C (0)∩G =;,C (y)∩G ̸= ;) = γp
∂M

∂p
,

where the first equality follows again by conditional independence, and the last equality by the fact
that (see [27, (5.67)])

(1−p)
∂M

∂p
= ∑

x∼y
Pp,γ(x ∈C (0),C (0)∩G =;,C (y)∩G ̸= ;). (A.86)

We are left to bound the contribution where y ̸∈G . For this, we note that when Ay ◦ Ay occurs off A
and y ̸∈G , then there must be at least two neighbors z of y for which the event{(

Az ◦ Ay ◦ {(y, z) occ.}
)

off A
}

(A.87)

occurs. Therefore, by a similar argument as in (A.78),

Pp,γ(Ay ◦ Ay off A, y ̸∈G ) ≤ 1

2

∑
z∼y

Pp,γ

(
(Az ◦ Ay ◦ {(y, z) occ.}) off A

)
. (A.88)

By the BK-inequality,

Pp,γ

(
(Az ◦ Ay ◦ {(y, z) occ.}) off A

)
≤ pPp,γ(Az off A)Pp,γ(Ay off A)

≤ pM(p,γ)Pp,γ(Ay off A).

Repeating the steps in (A.85), we thus arrive at

p

1−p

∑
x∼y

Pp,γ(x ∈C (0),C (0)∩G =;, Ay ◦ Ay , y ̸∈G ) ≤ 1

2
mp2M(p,γ)

∂M

∂p
. (A.89)

Therefore, summing the two bounds in (A.85) and (A.89), we arrive at

Pp,γ(|C (0)∩G | ≥ 2, A0 ◦ A0 does not occur) ≤ [1

2
mpM(p,γ)+γ

]
p
∂M

∂p
,

which is the third term in (A.7). This completes the proof of (A.7). �
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