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Abstract

Motivated by an application in wireless random-access networks, we study a class of polling systems with
Markovian routing, in which the server visits the queues in an order governed by a discrete-time Markov chain.
Assuming that the service disciplines at each of the queues fall in the class of branching-type service disciplines,
we derive a functional equation for (the probability generating function of) the joint queue length distribution
conditioned on a point in time when the server visits a certain queue. From this functional equation, expressions
for the (cross-)moments of the queue lengths follow. We also derive a pseudo-conservation law for this class
of polling systems. Using these results, we compute expressions for certain system parameters that minimise
the total expected amount of work in systems that arise from the wireless random-access network setting. In
addition, we derive approximations for those same parameters that minimise a weighted sum of mean waiting
times in these systems. Based on these expressions, we also present an adaptive control algorithm for finding
the optimal parameter values in a distributed fashion, which is particularly relevant in the context of wireless
random-access networks.

Keywords: queue lengths, binomial service disciplines, Markovian routing, random routing, wireless random-
access networks

1 Introduction
In this paper, we study a class of queueing systems consisting of multiple queues attended by a single server.
The server visits queues in order to provide service there, and incurs stochastic switch-over times when it moves
from one queue to another. These queueing systems are commonly called polling systems, and find their origin
in many real-life applications, such as manufacturing environments and computer-communication systems. For
an overview of the literature on polling systems and a more exhaustive overview of their applications, we refer to
surveys such as [2, 15, 18, 19].

Many studies on polling systems require the server to visit the queues in a fixed, cyclic order. In some cases,
however, this is not a realistic assumption. Instead, we study polling systems where the server operates under
the so-called Markovian routing mechanism. This implies that the order in which the server visits the queues
is governed by a discrete-time Markov chain with transition probabilities pi,j . Although there is a huge body
of literature on polling systems, models with Markovian routing have received remarkably little attention. This
is perhaps because the analysis of these systems is of a complex nature. More specifically, it is shown in [16]
that there is a striking dichotomy in the complexity of the analysis of polling systems. Polling systems of which
the joint queue length process observed at time points where the server starts a visit (also referred to as polling
epochs) constitutes a multi-type branching process (MTBP) with immigration (see e.g. [1] for a definition), are
more tractable than polling systems which do not satisfy this so-called branching property. Due to the stochastic
nature of the server routing, polling systems with a Markovian routing mechanism do not satisfy the branching
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property. The few publications that can be found on Markovian polling systems include [7], in which an expression
for the expected amount of work in the system at an arbitrary moment is derived for a few service disciplines. This
work is extended in [20], where it is shown how to derive expressions for the moments of the (joint) queue lengths
for the same service disciplines. Similar results for a slightly more general form of Markovian routing, where the
routing probabilities may depend on the event whether a queue is empty or not, are derived in [17]. Observe that
the Markovian routing mechanism is very general and captures many variations of polling models studied in the
literature. For instance, the cyclic polling model falls in this framework. Another example is the random routing
discipline, where after any visit period, the server visits queue j with probability pj , irrespective of the queue the
server just visited (cf. [12]).

The random routing discipline is particularly relevant in the context of wireless random-access networks,
which in fact motivated the present study. The various queues in the polling system correspond in that case to
the packet buffers at several wireless transmitters, which need to share the medium in a mutually exclusive way
because of interference. So-called Carrier-Sense Multiple-Access Collision-Avoidance (CSMA-CA) algorithms
provide a common mechanism for governing the use of such a shared wireless medium in a distributed fashion.
In CSMA-CA algorithms the various transmitters obey random back-off times between activity periods during
which they sense the medium to avoid collisions and provide other nodes an opportunity to activate. In the case
of exponentially distributed back-off durations, the alternating use of the medium by the nodes is probabilistically
equivalent to random routing in a polling system, as will be described in greater detail in Section 2. The relative
values of the back-off rates induce relative priorities among the nodes, and hence a crucial question is how the
back-off rates should be selected in order to minimise the overall average packet delay, which corresponds to the
optimal selection of the routing probabilities pj in the polling system.

Almost all studies on polling systems focus on a limited number of service disciplines, such as the exhaustive
discipline, where the server only switches to the next queue when the current one is empty, or the gated discipline,
where during a visit the server serves only those customers that were already present at the start of it. However,
with our motivation by wireless random-access networks in mind, we initially study the complete class of so-called
branching-type service disciplines; i.e., service disciplines that would allow the system to satisfy the branching
property in case the server were to visit the queues in a cyclic order. Subsequently, we give special attention to the
so-called binomial gated discipline introduced in [14], and its exhaustive counterpart as defined in [3] known as the
binomial exhaustive discipline. Under the binomial gated discipline, when the server finds n customers present at
the start of a visit period at queue j, he will serve a binomial (n, rj) number of these customers before switching,
0 < rj ≤ 1. Under the binomial exhaustive discipline, the server not only serves the binomial (n, rj) number of
the customers present at the start of the visit period, but subsequently also the type-j customers arriving during the
service of these customers (’the children’), the type-j customers arriving during the service of the children (’the
grandchildren’), and so on. As a result, the expected number of type-j customers that are left behind by the server
at the end of the visit period equals n(1− rj).

The main contributions of this paper can be summarised as follows. First, we analyse Markovian polling
systems with branching-type service disciplines in their most general form. We derive a functional equation
for (the probability generating function of) the joint queue length distributions at polling epochs, from which
expressions for the (cross-)moments of the joint queue-length distribution at an arbitrary point in time follow. We
also obtain an explicit expression for the expected amount of waiting work in the system, based on the concept
of the so-called pseudo-conservation law obtained in [4]. Although we believe these results to be of independent
interest, we subsequently focus on their application to wireless random-access networks. That is, for random
polling systems with queues served according to the binomial gated or the binomial exhaustive service discipline,
we study the question of how to choose several model parameters such as the routing probabilities pj so that a
weighted sum of mean waiting times of all customer types or a weighted sum of mean queue lengths pertaining
to all queues is minimised. We obtain accurate approximations for these optimal parameters that are expressed
in closed form and are even exact when the weights are chosen such that the weighted sum represents the mean
amount of work in the system. However, these (near-)optimal expressions cannot be used directly to obtain
optimal back-off rates in the wireless random-access network setting, since these expressions involve e.g. the
arrival rates of all queues, which in practice is not known to a transmitter. Therefore, we propose a distributed
algorithm that makes each node choose its back-off rate dynamically based on the durations of previous packet
inter-transmissions without requiring information concerning other nodes in the network. When all nodes adhere
to this algorithm, the back-off rates converge in some sense to their optimal values over time.

The rest of the paper is structured as follows. In Section 2, we give a formal description of the polling
model that we study and we introduce the necessary notation. Section 3 provides the analysis of the queue
length distribution of the model in its full generality. Based on this, we derive model parameters in Section 4
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that optimise the expected amount of work in the system, and nearly optimise any weighted sum of mean waiting
times or mean queue lengths as confirmed by extensive numerical experiments. Based on the resulting expressions
for the (near-)optimal routing probabilities, we describe the algorithm for obtaining (near-)optimal back-off rates
in the wireless network setting in Section 5. We elaborate on the convergence properties of this algorithm, and
provide several numerical examples.

2 Model description and notation
In this section, we give a description of the polling system under consideration, we introduce the notation required
and we discuss the equivalence between the polling model and a wireless random-access network. Throughout
the paper, matrices and vectors are printed in bold face. The vectors 0 and 1 represent a vector of appropriate size
of which each element equals zero and one, respectively.

We study a queueing system that consists of N ≥ 2 infinite-buffer queues, Q1, . . . , QN and a single server.
Customers arriving at Qi, also referred to as type-i customers, do so according to a Poisson process with intensity
λi. The generic service requirement of a type-i customer is represented by the random variable Bi, of which the
Laplace-Stieltjes transform (LST) is given by B̃i(s) = E[e−sBi ]. The workload that Qi brings to the system is
denoted by ρi = λiE[Bi]. We assume throughout that the aggregate workload ρ =

∑N
i=1 ρi is less than one.

All the queues share a single server. However, this server can only serve customers of one queue at a time.
Hence, after serving a given number of customers at one queue (a visit period), the server will switch over to
another queue to start service there. We refrain from the usual assumption that the server visits the queues in
a fixed cyclic order. Instead, we assume that the server adheres to the following scheme, known as Markovian
routing. The position of the server is governed by the irreducible discrete-time Markov chain {Zm,m ≥ 0} on
the state space S = {1, . . . , N}. The one-step transition probability matrix corresponding to this Markov chain
is given by P = (pi,j)i,j∈S , and its unique invariant probability measure denoted by q = (qi)i∈S satisfies the
conditions qP = q and

∑N
j=1 qj = 1. Hence, the queue being served during the m-th visit period is QZm .

In short, after completing a visit period to Qi, the server will switch over to Qj with probability pi,j . Such a
switch-over from Qi to Qj takes a continuously distributed random amount of time Si,j (also referred to as the
switch-over time), of which the LST is given by S̃i,j(s) = E[e−sSi,j ]. We assume all interarrival times, service
times and switch-over times in the model to be independent. In the sequel, we also consider the so-called random
routing mechanism, which is a special case of the Markovian routing mechanism that does not allow the routing
probabilities to depend on the departure queue Qi. In other words, when the server adheres to the random routing
mechanism, we have that pi,j = pj for all i ∈ S, which consequently leads to qj = pj for all j ∈ S.

In the context of wireless random-access networks as described in the introduction, each queue Qi has a back-
off rate νi which governs the exponentially distributed amount of time the node remains in back-off before starting
the next transmission. Because of the memoryless property of the exponential distribution, this is equivalent to a
polling system with switch-over times between any pair of queues that are exponentially distributed with parameter
ν0 =

∑N
i=1 νi and a random routing policy with routing probabilities pj = νj/ν0, j = 1, . . . , N . Yet another

equivalent interpretation is that each queue has the same back-off rate ν0, but only activates at the end of a back-off
period with probability pj . The latter representation will be particularly convenient when we develop an adaptive
algorithm for finding the optimal routing probabilities in a distributed fashion in Section 5.

The number of customers that are served during a visit period Vi at Qi is governed by the service discipline at
Qi. We do not limit our analysis to a single service discipline, but we assume that the service discipline at each of
the queues belongs to the class of service disciplines that satisfy the following property.

Property 2.1. If the server arrives atQi to find li customers there, then during the course of the server’s visit, each
of these li customers will effectively be replaced in an i.i.d. manner by a random population having a probability
generating function (PGF) H̃i(z) = H̃i(z1, . . . , zN ), which is called the offspring function and can be any N -
dimensional PGF.

This property is necessary for the joint queue length process at polling epochs to constitute an MTBP (cf. [16])
and allows for a large class of service disciplines. Two service disciplines satisfying this property that will receive
specific attention in this paper are the binomial gated and the binomial exhaustive service discipline. Under
the binomial gated discipline, the number of type-i customers that are served during a visit period, at the start
of which mi type-i customers are present in the system, is binomially distributed with parameters mi and ri,
ri ∈ (0, 1]. Thus, a type-i customer present at the start of a non-empty visit period is still present at the end
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of this period with probability 1 − ri, or is served during this period with probability ri. Since during a type-
i service time, new customers will arrive at each of the queues, the offspring function is in this case given by
H̃i(z) = (1 − ri)zi + riB̃i(

∑
j∈S λj(1 − zj)). The binomial exhaustive discipline has many similarities with

the binomial gated discipline. Again, a type-i customer present at the start of a visit period remains in the system
with probability 1 − ri. However, with probability ri, not only the customer itself will be served during the visit
period, but also all of its type-i offspring (thus, the type-i ‘children’ that arrive during this service time, the type-i
‘grandchildren’ that arrive during the service times of the children, and so on). Therefore, the visit period now
consists of a number of type-i busy periods (time to serve a type-i customer and all of its type-i offspring) that is
binomially distributed with parametersmi and ri. When denoting the duration of such a busy period generated by a
type-i customer by Γi, and its corresponding LST by Γ̃i(s) = E[e−sΓi ], the offspring function of a queue adhering
to the binomial exhaustive service discipline is thus given by H̃i(z) = (1−ri)zi+riΓ̃i(

∑
j∈S\{i} λj(1−zj)). In

both of these service disciplines, ri is a measure of the service exhaustiveness; the higher ri, the more customers
the server will serve on average at Qi over the course of a non-empty visit period. As such, we will also refer to
ri as the exhaustiveness probability. Observe that for ri = 1 the binomial gated and binomial exhaustive service
disciplines as described above reduce to the classical gated and exhaustive service disciplines.

We denote by Ci the time between two consecutive epochs where the server polls Qi. A server is said to poll
a queue when it starts a visit period at that queue. The time Ci consists of an average of 1/qi visit periods and
subsequent switch-over periods by virtue of the Markovian routing dynamics. Furthermore, any arbitrary visit
period and subsequent switch-over period in steady state corresponds to a visit to Qi with probability qi. Thus,
there are on average qj/qi visit periods and switch-overs to Qj between two polling epochs of Qi. The expected
time the server takes for a visit to Qj and the subsequent switch-over equals E[Vj ] +

∑
k∈S pj,kE[Sj,k]. As a

consequence,

E[Ci] =
1

qi

∑
j∈S

qj(E[Vj ] +
∑
k∈S

pj,kE[Sj,k]). (1)

It follows from balance arguments that E[Vi] = ρiE[Ci] and qiE[Vi]
qjE[Vj ] = ρi

ρj
. As such, we have by (1) that, for every

i ∈ S,

E[Ci] =
σ

qi(1− ρ)
, (2)

where σ =
∑
j∈S qj

∑
k∈S pj,kE[Sj,k] (see also [7]). Note that σ represents the overall mean of the switch-over

times incurred by the server. We denote by ζi the reciprocal of the expected number of customers served by the
server during a visit period Vi. We thus have that ζi = E[Bi]

E[Vi]
= 1

λiE[Ci]
.

In the remainder of this article, we are interested in the joint queue length distributions (including any customer
in service) at several time epochs. To this end, we denote by F i = (Fi,1, . . . , Fi,N ) the joint stationary queue
length conditioned on the event that the server currently pollsQi. The vectorsGi,M i,N i,Xi and Y i,j similarly
represent the joint stationary queue length conditioned on a point in time where the server ends a visit period atQi,
the server starts serving a type-i customer, the server completes service of a type-i customer, the server is serving
customers at Qi and the server is currently switching from Qi to Qj , respectively. The unconditional stationary
joint queue length of the queues in the system is given by L. For an arbitrary N -dimensional random variable
R = (R1, . . . , RN ), we denote itsN -dimensional PGF by R̃(z) = R̃(z1, . . . , zN ) = E[

∏
k∈S z

Rk

k ]. Furthermore,
we define R̃(k)(z) = ∂

∂zk
R̃(z), R̃(k,l)(z) = ∂

∂zl
∂
∂zk

R̃(z), r(k) = R̃(k)(z)|z=1 and r(k, l) = R̃(k,l)(z)|z=1.
Thus, we use lower cases to refer to derivatives of PGFs evaluated in z = 1. It holds that r(k) = E[Rk],
r(k, k) = E[R2

k]− E[Rk] and r(k, l) = E[RkRl] if k 6= l. So, for example, fi(k) denotes the mean queue length
ofQk when the server pollsQi. Likewise, fi(k, l) refers to the second-order cross moment pertaining to the queue
lengths of Qk and Ql when the server polls Qi and k 6= l. Besides the short-hand notation z = (z1, . . . , zN ) that
we used above, we will also use zHi = (z1, . . . , zi−1, Hi(z), zi+1, . . . , zN ) and Σ(z) =

∑
k∈S λk(1 − zk).

Furthermore, we denote by 1{A} the indicator function of the event A. Observe that the distribution of the
waiting time Wi for type-i customers with LST W̃i(s) = E[e−sWi ] is related to the queue length Li through the

distributional form of Little’s law W̃i(s) = L̃i(1−s/λi)

B̃i(s)
, as shown in [10].
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3 Analysis

In this section, we analyse the queue lengths of the various queues in the Markovian polling model with branching-
type service disciplines. In particular, we derive in Section 3.1, for all i ∈ S , a functional equation for the PGF
F̃i(z), which represents the queue lengths at a moment the server starts a visit period at Qi. Based on this, we
show how to compute the first- and second-order (cross-)moments of F i. These results lead to an expression for
E[Li], the mean queue length of Qi at an arbitrary point in time, which we present in Section 3.2. Finally, for our
class of polling systems, we derive in Section 3.3 an explicit expression for the expected amount

∑
i∈S ρiE[Wi]

of waiting work in the system waiting to be processed on the basis of the pseudo-conservation law.

3.1 Joint queue length at polling epochs

We now derive a functional equation for the PGF F̃i(z) of the queue length distribution conditioned on the event
that the server pollsQi, i ∈ S. Based on this functional equation, all moments of the joint queue length distribution
at a polling epoch of Qi can be derived. In particular, we show how to derive solvable sets of equations for fi(k)
and fi(k, l), k, l ∈ S. From these sets we obtain expressions for the first and second-order (cross-)moments of the
joint queue length distribution at polling epochs. We note that by using the same methodology, expressions for
higher-order moments can be derived.

3.1.1 Functional equation for F̃i(z)

To obtain a functional equation for F̃i(z), we first relate the queue length distribution at a polling epoch of Qi to
the queue length distribution at the preceding polling instant at any queue. To this end, recall that Zm refers to the
index of the queue that the server visits at the m-th polling instant. Furthermore, let Jm = (Jm,1, . . . , Jm,N ) and
Km = (Km,1, . . . ,Km,N ) be the joint queue length at the start of the m-th visit period (to any queue) since the
start-up of the system, and its end, respectively. By conditioning on Zm and Zm+1, we have that

E[1{Zm+1=j}
∏
k∈S

z
Jm+1,k

k ]

=
∑
i∈S

P(Zm+1 = j | Zm = i)P(Zm = i)E[
∏
k∈S

z
Jm+1,k

k | Zm+1 = j, Zm = i]. (3)

Observe that, as per Property 2.1, the total population in the system during the m-th visit period only changes
through the i.i.d. replacement of every type-Zm customer by a population with PGF H̃Zm(z). More colloquially
speaking, the type-Zm customers that get served during the m-th visit period allow new customers of any type
to arrive to the system over the course of this visit period. As the number of arriving customers of any type is
independent of Jm,i, i ∈ S\{Zm}, we have that

E[
∏
k∈S

z
Km,k

k | Zm = i] = E[
∏

k∈S\{i}

z
Jm,k

k | Zm = i]

∞∑
n=0

(H̃i(z))nP(Jm,i = n)

= E[(H̃i(z))Jm,i

∏
k∈S\{i}

z
Jm,k

k | Zm = i]. (4)

Furthermore, the population at the start of the (m+ 1)-st visit period consists of the customers already there at the
end of the m-th visit period, and the customers that arrive during the subsequent switch-over period according to
type-specific Poisson processes. As these two subpopulations are independent, we obtain

E[
∏
k∈S

z
Jm+1,k

k | Zm+1 = j, Zm = i]

= E[
∏
k∈S

z
Km,k

k | Zm = i]

∫ ∞
t=0

∞∑
n1=0

. . .
∞∑

nN=0

∏
k∈S

(znk

k e−λk
λnk

k

nk!
)dP(Si,j < t)

= E[
∏
k∈S

z
Km,k

k | Zm = i]S̃i,j(Σ(z)). (5)
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Combining (3)–(5) with the fact that P(Zm+1 = j | Zm = i) = pi,j now gives

E[1{Zm+1=j}
∏
k∈S

z
Jm+1,k

k ]

=
∑
i∈S

pi,jP(Zm = i)E[(H̃i(z))Jm,i

∏
k∈S\{i}

z
Jm,k

k | Zm = i]S̃i,j(Σ(z)). (6)

Next, observe that we can rewrite the left-hand side of (6) as E[1{Zm+1=j}
∏
k∈S z

Jm+1,k

k ] = P(Zm+1 =

j)E[
∏
k∈S z

Jm+1,k

k | Zm+1 = j]. Furthermore, we have by definition that limm→∞ P(Zm = i) = qi and
limm→∞ E[

∏
k∈S z

Jm,k

k | Zm = i] = F̃i(z). Hence, by letting m → ∞, (6) implies the following functional
equation for all i, j ∈ S:

qjF̃j(z) =
∑
i∈S

pi,jqiF̃i(z
H
i )S̃i,j(Σ(z)). (7)

3.1.2 Queue length moments at polling epochs

Now that we have derived the functional equation (7), we can compute all (cross-)moments of the queue lengths.
We now show how to compute the first and second-order (cross-)moments of the marginal queue lengths found in
the system at polling instants. Higher-order (cross-)moments can be computed through the same methodology, at
the cost of a larger computational complexity.

First, recall that E[Ll | server just polled Qj ] = E[Fj,l] = fj(l) , E[L2
l | server just polled Qj ] = E[F 2

j,l] =
fj(l) + fj(l, l) and that E[LlLm | server just polled Qj ] = E[Fj,lFj,m] = fj(l,m) for any j, l,m ∈ S, l 6= m. To
obtain these numbers, we first take the derivative with respect to zl in both sides of (7). This leads, for j, l ∈ S, to

qjF̃
(l)
j (z) =

∑
i∈S

pi,jqiλlE[Si,je
−(Σ(z))Si,j ]F̃i(z

H
i ) +

∑
i∈S\{l}

pi,jqiS̃i,j(Σ(z))F̃
(l)
i (zHi )

+
∑
i∈S

pi,jqiS̃i,j(Σ(z))H̃
(l)
i (z)F̃

(i)
i (zHi ). (8)

Evaluating this equation in the point z = 1 subsequently leads to

qjfj(l) =
∑
i∈S

pi,jqiλlE[Si,j ] +
∑

i∈S\{l}

pi,jqifi(l) +
∑
i∈S

pi,jqihi(l)fi(i). (9)

This set of N2 equations leads to expressions for fj(l), j, l ∈ S. If one is only interested in the values of fj(l) for
a specific value of l, the complexity of these computations can be reduced to only solving a set of N equations,
since an explicit expression for fi(i) is available; see Remark 3.1.

To find a similar set of equations for fj(l,m), j, l,m ∈ S, we first derive a functional equation for F̃ (l,m)
j (z).

By differentiating both sides of (8) with respect to zm, m ∈ S, we obtain

qjF̃
(l,m)
j (z) =

∑
i∈S

pi,jqiλlλmE[S2
i,je
−Σ(z)Si,j ]F̃i(z

H
i ) +

∑
i∈S\{m}

pi,jqiλlE[Si,je
−Σ(z)Si,j ]F̃

(m)
i (zHi )

+
∑
i∈S

pi,jqiλlE[Si,je
−Σ(z)Si,j ]H̃

(m)
i (z)F̃

(i)
i (zHi ) +

∑
i∈S\{l}

pi,jqiλmE[Si,je
−Σ(z)Si,j ]F̃

(l)
i (zHi )

+
∑

i∈S\{l,m}

pi,jqiS̃i,j(Σ(z))F̃
(l,m)
i (zHi ) +

∑
i∈S\{l}

pi,jqiS̃i,j(Σ(z))H̃
(m)
i (z)F̃

(i,l)
i (zHi )

+
∑
i∈S

pi,jqiλmE[Si,je
−Σ(z)Si,j ]H̃

(l)
i (z)F̃

(i)
i (zHi ) +

∑
i∈S

pi,jqiS̃i,j(Σ(z))H̃
(l,m)
i (z)F̃

(i)
i (zHi )

+
∑
i∈S

pi,jqiS̃i,j(Σ(z))H̃
(l)
i (z)H̃

(m)
i (z)F̃

(i,i)
i (zHi ) +

∑
i∈S\{l,m}

pi,jqiS̃i,j(Σ(z))H̃
(l)
i (z)F̃

(i,m)
i (zHi ).
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Similar to the computations above, evaluating this equation in the point z = 1 leads to

qjfj(l,m) =
∑
i∈S

pi,jqiλlλmE[S2
i,j ] +

∑
i∈S\{m}

pi,jqiλlE[Si,j ]fi(m) +
∑
i∈S

pi,jqiλlE[Si,j ]hi(m)fi(i)

+
∑

i∈S\{l}

pi,jqiλmE[Si,j ]fi(l) +
∑

i∈S\{l,m}

pi,jqifi(l,m) +
∑

i∈S\{l}

pi,jqihi(m)fi(i, l)

+
∑
i∈S

pi,jqiλmE[Si,j ]hi(l)fi(i) +
∑
i∈S

pi,jqihi(l,m)fi(i)

+
∑
i∈S

pi,jqihi(l)hi(m)fi(i, i) +
∑

i∈S\{m}

pi,jqihi(l)fi(i,m). (10)

For any j, l,m ∈ S , this constitutes a set of N3 equations for fj(l,m). Since expressions for fi(j), i, j ∈ S , are
already known by earlier computations, expressions for fj(l,m) can now be calculated for all j, l,m ∈ S. As
mentioned above, the expressions for fj(l) and fj(l,m) then subsequently lead to expressions for the first- and
second order (cross-)moments of the queue lengths when the server polls Qj . Although these moments may be of
separate interest, we also use the derived expressions for fj(l) and fj(l,m) in Section 3.2 to obtain moments for
Lj , the queue length of Qj at an arbitrary point in time. We finish this section with the observation that the sets of
equations expressed in (9) and (10) are uniquely solvable, provided that the aggregate workload ρ is smaller than
one. One can confirm this by reducing (9) and (10) to equation sets of the formAx = b, and showing in a tedious,
but straightforward way that the coefficient matrix A is invertible in that case.

Remark 3.1. For any i ∈ S, the term fi(i) can be computed explicitly. To do this, we make use of an observation,
most notably made by [9], that each time a visit beginning or a service completion occurs, this coincides with
either a service beginning or a visit completion. All service beginning epochs in a visit period to Qi are also
service completion epochs at Qi, except the first service beginning epoch, because it is actually a visit beginning
epoch. Likewise, all service completion epochs at Qi are also service beginning epochs at that queue, except the
last service completion epoch, because it is actually a visit completion epoch. Since ζi denotes the fraction of
service beginning (completion) epochs that also count as a visit beginning (completion) epoch, this observation
leads to

ζiF̃i(z) + M̃i(z) = ζiG̃i(z) + Ñi(z), (11)

or more specifically for the means,

ζifi(i) +mi(i) = ζigi(i) + ni(i). (12)

Over the course of a service time at Qi, on average ρi type-i customers arrive, after which one type-i customer
leaves the system because its service is completed. Therefore, mi(i)− ni(i) = ρi − 1. Furthermore, we have by
Property 2.1 that gi(i) = hi(i)fi(i). Relation (12) therefore reduces to an explicit expression for fi(i):

fi(i) =
1− ρi

ζi(1− hi(i))
=

λiσ(1− ρi)
qi(1− ρ)(1− hi(i))

, (13)

where the second equality follows from the fact that ζi = 1/(λiE[Ci]) combined with (2).

3.2 Joint queue length at an arbitrary point in time

In Section 3.1, we have studied the PGF and moments of the joint queue length distribution at polling epochs.
We now extend these results to obtain results for the queue lengths at an arbitrary point in time. We largely
follow the approach of [5, Theorem 1] to express L̃(z), the PGF of the stationary joint queue length at an arbitrary
point in time, in the conditional queue length PGFs studied above. Expressions for all (cross-)moments of the
unconditional queue lengths in the moments of the queue lengths found at polling epochs subsequently follow
from this relation.

To relate the unconditional queue length to the various conditional queue lengths studied before, we first
observe that the server serves Qi a fraction ρi of the time. At an arbitrary epoch during the remaining fraction
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(1−ρi) of time, the server is in a switch-over process, which with probability qipi,kE[Si,k]
σ happens to be a switch-

over from Qi to Qk. As a result, the unconditional PGF L̃(z) satisfies

L̃(z) =
∑
i∈S

(
ρiX̃i(z) +

(1− ρ)qi
σ

∑
k∈S

pi,kE[Si,k]Ỹi,k(z)
)
, (14)

where the PGFs X̃i(z) and Yi,k(z) represent the joint queue lengths at arbitrary points during a visit period at
Qi and a switch-over period from Qi to Qk, respectively. The customer population present in the system at
an arbitrary point in a visit period to Qi is comprised of the population already there at the start of the current
type-i service, and the customers that have arrived during the past part of the current service period. As these
two components are independent, we have that X̃i(z) = M̃i(z) 1−B̃i(Σ(z))

Σ(z)E[Bi]
. Furthermore, it is easy to see that

Ñi(z) = z−1
i B̃i(Σ(z))M̃i(z). Combining these two relations with (11) leads to

X̃i(z) =
ζi

E[Bi]

zi(F̃i(z)− G̃i(z))

zi − B̃i(Σ(z))

1− B̃i(Σ(z))

Σ(z)
, (15)

where, due to the fact that the service disciplines satisfy Property 2.1,

G̃i(z) = F̃i(z
H
i ). (16)

Similarly, as the customer population at an arbitrary point in a switch-over period from Qi to Qk is comprised of
the population at the end of the past visit period to Qi and the subsequent customer arrivals in the past part of the
switch-over time, we have that

Ỹi,k(z) = G̃i(z)
1− S̃i,k(Σ(z))

Σ(z)E[Si,k]
. (17)

A combination of the equations (14)–(17) leads to the unconditional PGF L̃ of the joint queue length expressed in
the PGFs F̃i that represent the joint queue length at the moment the server polls Qi.

We now show how one can use this relation to derive expressions for the unconditional mean marginal queue
lengths E[Li] = l(i). The same method can be used to obtain expressions for higher (cross-)moments, although
the computations become lengthier. By using (15), we first obtain the first moment of Xi,i as follows:

xi(i) = lim
zi↑1

d

dzi
(X̃i(z)|zk=1 ∀k 6=i) = lim

zi↑1

d

dzi

(
ζi

E[Bi]

zi(E[z
Fi,i

i ]− E[z
Gi,i

i ])

zi − B̃i(λi(1− zi))
1− B̃i(λi(1− zi))

λi(1− zi)

)

=
ζi(fi(i)− gi(i))

1− ρi
+
λ2
i ζiE[B2

i ](fi(i)− gi(i))
2(1− ρi)2

+
ζi(fi(i, i)− gi(i, i))

2(1− ρi)
+
λiE[B2

i ]

2E[Bi]

= 1 +
λ2
iE[B2

i ] + ζi(fi(i, i)(1− hi(i)2)− fi(i)hi(i, i))
2(1− ρi)

+
λiE[B2

i ]

2E[Bi]
, (18)

where we used in the fourth equality that ζi(fi(i)− gi(i)) = 1− ρi (cf. Remark 3.1), and the fact that gi(i, i) =
fi(i, i)(hi(i))

2 + fi(i)hi(i, i) due to (16). A similar, but slightly shorter computation yields that the first moment
of Xi,j , i 6= j is given by

xi(j) = lim
zj↑1

d

dzj
(X̃i(z)|zk=1 ∀k 6=j) = lim

zj↑1

d

dzj

(
ζi

E[Bi]

E[z
Fi,j

j ]− E[z
Gi,j

j ]

λj(1− zj)

)

=
ζi(gi(j, j)− fi(j, j))

2λjE[Bi]
=
ζi(2fi(i, j)hi(j) + fi(i, i)(hi(j))

2 + fi(i)hi(j, j))

2λjE[Bi]
, (19)

where the fourth equality again follows from (16), which implies that gi(j, j) = fi(j, j) + 2fi(i, j)hi(j) +
fi(i, i)(hi(j))

2 + fi(i)hi(j, j).
As for the mean queue length yi,k(j) during a switch-over period from Qi to Qk, we have by (17) that, for all

i, j, k ∈ S,

yi,k(j) = lim
zj↑1

d

dzj
(Ỹi(z)|zl=1 ∀l 6=j) = lim

zj↑1

d

dzj

(
E[z

Gi,j

j ]
1− S̃i,k(λj(1− zj))
(λj(1− zj))E[Si,k]

)
= gi(j) + λj

E[S2
i,k]

2E[Si,k]

= 1{j 6=i}fi(j) + fi(i)hi(j) + λj
E[S2

i,k]

2E[Si,k]
, (20)
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where the last equality follows from gi(j) = 1{j 6=i}fi(j) + fi(i)hi(j) (cf. (16)).
We can now derive an expression for the unconditional mean queue length E[Lj ] in terms of the f -terms

computed in the previous section. After differentiating both sides of (14) and evaluating the result in z = 1, we
obtain

E[Lj ] =
∑
i∈S

(
ρixi(j) +

(1− ρ)qi
σ

∑
k∈S

pi,kE[Si,k]yi,k(j)
)
. (21)

Since we already found expressions for xi(i), xi(j) and yi,k(j) in (18), (19) and (20), respectively, E[Lj ] is now
obtained in terms of moments of the queue lengths at polling instants, which we have already considered in Section
3.1.2. Note that this expression for the mean queue length also easily allows for expressions for the mean waiting
time and the mean amount of work. Regarding the latter, we provide an expression for the expected total amount
of work in the system in the next section.

3.3 Pseudo-conservation law
For polling systems with a server that visits the queues in a cyclic fashion, a stochastic decomposition for the total
amount of work in the system has been derived in [4]. In particular, the total amount of work in the polling system
at an arbitrary epoch can be decomposed into the amount of work in a corresponding M/G/1 system at an arbitrary
epoch and the amount of work in the polling system in a switching period of the server. This decomposition allows
for the derivation of a strikingly simple expression for the weighted sum

∑
i∈S ρiE[Wi]. This result is known as

the pseudo-conservation law (PCL). Following [4], the PCL has been extended to allow for polling systems with
Markovian routing in [7], but this extension only allows the server to serve the queues in exclusively an exhaustive,
gated or one-limited manner. In this section, we further extend the PCL to allow for any branching-type service
discipline.

In particular, it is shown in [7] that the total amount of waiting work in polling systems with Markovian routing
is given by∑

i∈S
ρiE[Wi] = ρ

∑
i∈S λiE[B2

i ]

2(1− ρ)
+

1

σ

∑
i∈S

qi
∑
k∈S

pi,kE[Si,k]E[Ψi,k], (22)

where the latter term represents the total expected amount of work in the system during a switch-over period, and
where E[Ψi,k] is the total expected amount of work in the system when the server is in the process of switching
from Qi to Qk. The authors in [7] then determine E[Ψi,k] for the exhaustive, gated, and one-limited service
discipline. Observe, however, that the amount of work in the system equals the sum of the (remaining) service
requirements of all the customers present in the system. As a result, we have for a switch-over period from Qi to
Qk that

E[Ψi,k] =
∑
j∈S

yi,k(j)E[Bj ]. (23)

By combining (22) and (23) with (20) and (13), respectively, we thus have for the general case that∑
i∈S

ρiE[Wi] =ρ

∑
i∈S λiE[B2

i ]

2(1− ρ)
+

1

σ

∑
i∈S

qi
∑
k∈S

pi,kE[Si,k]
∑

j∈S\{i}

fi(j)E[Bj ]

+
1

1− ρ
∑
i∈S

λi
1− ρi

1− hi(i)
∑
k∈S

pi,kE[Si,k]
∑
j∈S

E[Bj ]hi(j) +
ρ

2σ

∑
i∈S

qi
∑
k∈S

pi,kE[S2
i,k], (24)

provided that the service discipline pertaining to each queue satisfies Property 2.1. This expression uses the fi(j)-
terms that we computed in Section 3.1.2. In Section 4, we will use this newly derived PCL for optimisation
purposes.

4 Optimisation of routing probabilities and exhaustiveness probabilities
In this section, we use results obtained in Section 3 to study the optimisation problem of how to choose the routing
probabilities in the polling model so as to minimise a weighted sum

∑
i∈S ciE[Wi] of the mean waiting times (or
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equivalently through Little’s law, the mean queue lengths). Given that each of the queues adheres to a binomial
exhaustive or a binomial gated service discipline, we also study the question of how to choose the exhaustiveness
probabilities ri with the same objective in mind.

Of course, one can optimise these numbers by implementing (21) including the set of equations (10) to com-
pute

∑
i∈S ciE[Wi] =

∑
i∈S

ci
λi

(E[Li] − ρi), and searching through the complete parameter set using numerical
optimisation methods. However, this method lacks transparency and provides little insight into the effects of the
model parameters. Moreover, its computation time becomes prohibitively long as the number of queues increases.
Therefore, there is a need for symbolic and transparent (near-)optimal expressions which are easy to implement
and are suitable for optimisation purposes.

To allow for such expressions, suppose that the first two moments of the switch-over time distributions between
each pair of queues are the same; i.e. E[Si,j ] = E[S] and E[S2

i,j ] = E[S2] for all i, j ∈ S. Furthermore, suppose
that the server visits the queues according to a random routing scheme; i.e., the routing probability does not
depend on the queue the server visited just before the switch-over time (pi,j = pj for all i ∈ S and qj = pj for
all j ∈ S). Under these assumptions, we derive simple and closed-form expressions for the routing probabilities
and exhaustiveness probabilities that optimise the mean waiting or total amount of work in the system (ci = ρi
for all i ∈ S) in Section 4.1. For general weighted sums of the expected waiting times (i.e., for general ci), we
derive expressions of similar complexity in Section 4.2 that are nearly optimal, and we show them to be accurate.
Contrary to the numerical method described above, the expressions that we derive provide insight into the effects
of the model parameters on the waiting times and their computation times are negligible.

4.1 Minimising the mean total amount of work in the system

We start with optimising the mean total amount of work in the system, which is the sum of the mean amount∑
i∈S ρiE[Wi] of waiting work in the system and the mean amount

∑
i∈S ρi

E[B2
i ]

E[Bi]
of remaining work to be pro-

cessed of any customer that is currently being served. Since the latter expression is insensitive to the routing
probabilities and the exhaustiveness probabilities, the probabilities that minimise the mean total amount of work
in the system also minimise

∑
i∈S ρiE[Wi]. We therefore focus on this expression in the remainder of this section.

Recall that the server now initiates a setup to Qj with probability pj after a visit period, regardless of which
queue it actually visited. While doing so, it incurs a switch-over time with first two moments E[S] and E[S2]
for all j ∈ S. Following the analysis of [7, Remark 5.4] based on results of [12], one can show that under these
assumptions the PCL in (24) reduces to

∑
i∈S

ρiE[Wi] = ρ

∑
i∈S λiE[B2

i ]

2(1− ρ)
+

E[S]

1− ρ
∑
i∈S

ρi(1− ρi)
pi

+ρ

(
E[S2]

2E[S]
− E[S]

)
+

E[S]

1− ρ
∑
i∈S

ρi(1− ρi)hi(i)
pi(1− hi(i))

. (25)

The last term is the only term in this expression that depends on the service disciplines of the queues. Furthermore,
the summands E[S]

1−ρ
ρi(1−ρi)hi(i)
pi(1−hi(i))

= fi(i)hi(i)E[Bi] of the last term equal the expected amount of work the server
leaves behind at Qi when completing a visit period there.

4.1.1 Routing probabilities

Considering (25), it is obvious that for any branching-type service discipline at any queue, the problem of finding
the routing probabilities popt

i that minimise the mean total amount of work in the system is equivalent to the
problem of finding the variable τ = (τ1, . . . , τN ) that

minimises f(τ ) =
∑
i∈S

ρi(1− ρi)
τi

(
1 +

hi(i)

1− hi(i)

)
=
∑
i∈S

ρi(1− ρi)
τi(1− hi(i))

(26)

subject to u(τ ) =
∑
i∈S

τi = 1, v1,j(τ ) = −τj ≤ 0 and v2,j(τ ) = τj − 1 ≤ 0 for all j ∈ S.

This non-linear optimisation problem with equality and inequality constraints can be solved using a standard
application of the Karush-Kuhn-Tucker (KKT) conditions (see e.g. [8, Section 5.5.3]). Let τ ∗ = (τ∗1 , . . . , τ

∗
N ) be

given by τ∗i =

√
ρi(1−ρi)/(1−hi(i))∑

j∈S

√
ρj(1−ρj)/(1−hj(j))

. Define L as the number for which ∇f(τ ∗) + L∇u(τ ∗) equals 0, i.e.,
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L =
(∑

j∈S
√
ρj(1− ρj)/(1− hj(j))

)2

. Furthermore, let the N -dimensional vectors a and b be equal to 0. It
is then easily verified that τ ∗, L, a and b satisfy the KKT conditions

∇f(τ ∗) + L∇u(τ ∗) + a∇v1(τ ∗) + b∇v2(τ ∗) = 0, (stationarity)
u(τ ∗) = 0,v1(τ ∗) ≤ 0,v2(τ ∗) ≤ 0, (primal feasibility)
av1(τ ∗) = 0, bv2(τ ∗) = 0, (complementary slackness)
a ≥ 0 and b ≥ 0. (non-negativity)

The existence of values of L, a and b that satisfy the KKT conditions is required for τ ∗ to be the solution to the
optimisation problem, but it does in general not imply that τ ∗ is indeed optimal. However, since the objective
function f(τ ) is convex in τ1, . . . , τN , these conditions are sufficient for τ ∗ to be the solution to (26). As such,
the optimal routing probabilities pi that minimise the mean total amount of work in the system are given by

p
opt
i =

√
ρi(1− ρi)/(1− hi(i))∑

j∈S
√
ρj(1− ρj)/(1− hj(j))

. (27)

Remark 4.1. The optimal routing probabilities given in (27) generalise results found in [6, Section 4]. In that
paper, the authors derive optimal routing probabilities for the special cases of exhaustive and gated service; i.e.,
hi(i) = 0 and hi(i) = ρi, respectively.

4.1.2 Exhaustiveness probabilities

We now assume that each of the queues adheres to either a binomial exhaustive or a binomial gated service
discipline. We therefore partition the set S of queue indices in a set IBE of indices corresponding to queues
served according to the binomial exhaustive service discipline and a set IBG of indices referring to queues with
the binomial gated discipline. Recall that the last term in (25) is the only term in that expression that is sensitive
to the service discipline, and thus also to the exhaustiveness probabilities ri. As we now have that hi(i) =

1− (1− ρi1{i∈IBG})ri, the last term of (25) can be simplified to E[S]
1−ρ

∑
i∈S ki(

1
ri
− (1− ρi1{i∈IBG})), where

ki =
ρi(1− ρi)

pi(1− ρi1{i∈IBG})
. (28)

We aim to find the exhaustiveness probabilities that minimise
∑
i∈S ρiE[Wi]. Of course, when there are no

restrictions on ri, all exhaustiveness probabilities should be chosen equal to one in order to prevent unnecessary
setups, so that the amount of work in the system is minimised. However, as a result of this choice, the waiting
times of the various customers may be heavily influenced by their type in combination with their time of arrival
depending on the position of the server. This introduces a source of customer unfairness, especially in case of
the binomial exhaustive service discipline. Furthermore, in practice, there may be costs involved with having
demanding customer types, or equivalently, high exhaustiveness probabilities. In the wireless random-access
network application, a high exhaustiveness of one node may heavily delay the transmission of packets by other
nodes. Therefore, we add the constraint

∑
i∈S diri ≤ 1 to the problem, where the parameters di > 0 can be

interpreted as cost parameters.
Taking everything into account, the problem of finding the optimal exhaustiveness probabilities reduces to the

problem of finding the vector τ = (τ1, . . . , τN ) that

minimises f(τ ) =
∑
i∈S

ki
τi

(29)

subject to v1,i(τ ) = −τi ≤ 0, v2,i(τ ) = τi − 1 ≤ 0 and v3(τ ) =
∑
j∈S

djτj ≤ 1, for all i ∈ S.

Note that f(τ ) is a decreasing function in τ1, . . . , τN . Thus, if
∑
i∈S di < 1, the constraint v3(τ ) ≤ 0 cannot

be binding, as the constraint v2,i(τ ) ≤ 0 will prohibit that. As such, for this case, the solution to this problem is
given by τ∗i = 1 for all i ∈ S. Therefore, we proceed with considering the case

∑
i∈S di ≥ 1. If the constraints

v1,i(τ ) ≤ 0 and v2,i(τ ) ≤ 0 did not exist, one could show that (29) is minimised by the vector τ (0) with elements

τi(0) =

√
ki/di∑

j∈S
√
kjdj

(30)
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for each i ∈ S . However, this vector does not necessarily satisfy the constraint v2,i(τ (0)) ≤ 0. It is reasonable
to conjecture that if τi(0) ≥ 1, the optimal vector τ ∗ satisfies τ∗i = 1. In such a case, the optimal solution may
be found by truncating any values in (30) at one as needed, and, given that these values equal one, re-evaluating
the problem to solve for the remaining values. As any of the remaining values may become greater than one after
re-evaluation, this needs to be iterated until all values are not larger than one. At most N of these iterations are
needed to achieve this.

To summarise all of the above, it is reasonable to conjecture that the solution τ ∗ = τ (N) to the problem
specified in (29) has elements that are defined through the recursion

τi(j) = 1{τi(j−1)≥1∨
∑

k∈S dk<1} + 1{τi(j−1)<1∧
∑

k∈S dk≥1}
(1−

∑
k∈S dk1{τk(j−1)<1})

√
ki/di∑

k∈S 1{τk(j−1)<1}
√
kjdj

(31)

for j = 1, . . . , N . The number j corresponds to the j-th step of the recursion. We now show that τ ∗ =
τ (N) is indeed a solution to this problem including all mentioned constraints. To this end, we introduce E =

1{
∑

j∈S djτ
∗
j =1}

(∑
j∈S 1{τ∗j <1}

√
kjdj

)2

. Furthermore, let the vectors a and b be given by ai = 0 and bi =

1{τ∗i =1}(ki−diE) respectively. Through some straightforward computations, it can be shown that these particular
choices for a, b and E satisfy the following KKT conditions for the problem in (29):

∇f(τ ∗) + a∇v1(τ ∗) + b∇v2(τ ∗) + E∇v3(τ ∗) = 0, (stationarity)
v1(τ ∗) ≤ 0,v2(τ ∗) ≤ 0, v3(τ ∗) ≤ 0, (primal feasibility)
av1(τ ∗) = 0, bv2(τ ∗) = 0, Ev3(τ ∗) = 0, (complementary slackness)
a ≥ 0, b ≥ 0 and E ≥ 0. (non-negativity)

Since the KKT conditions are satisfied and f(τ ) is a convex function in τ1, . . . , τN , τ ∗ is indeed optimal for this
problem.

Going back to the original problem of finding the routing probabilities that minimise the mean total amount
of work in the system under the restriction that

∑
i∈S diri ≤ 1, we thus have that the optimal exhaustiveness

probabilities ropt
i are given by

r
opt
i = τi(N), (32)

where τi(N) is defined through the recursion (31) together with the initial value (30), and ki as defined in (28).

Remark 4.2. In Sections 4.1.1 and 4.1.2, we have derived separate expressions for the optimal routing proba-
bilities and exhaustiveness probabilities. Note that the found expressions for popt

i (ropt
i ) involve the parameters

ri (pi), so that there is an interaction between the optimal routing probabilities and the optimal exhaustiveness
probabilities. Joint optimisation of both the routing probabilities and exhaustiveness probabilities seems to be a
hard problem. One may, however, obtain optimal values for both the routing probabilities and the exhaustiveness
probabilities by using an alternating approach that first finds the optimal routing probabilities given an arbitrary
set of exhaustiveness probabilities, then determines new optimal exhaustiveness probabilities based on the newly
chosen routing probabilities, and so on. Numerical experiments show that only a few of these iterations are already
enough to obtain virtually optimal values for these parameters.

4.2 Minimising a weighted sum of the mean waiting times
Now that we have found the routing probabilities and the exhaustiveness probabilities that minimise the expected
amount of work in the system, the question arises which routing probabilities and exhaustiveness probabilities
minimise the weighted sum

∑
i∈S ciE[Wi] =

∑
i∈S

ci
λi

(E[Li] − ρi) with arbitrary, positive weights ci that are
not necessarily equal to ρi. By (21), this sum depends on fi(j) and fi(i, j) for each i, j ∈ S and thus constitutes
an intricate function of the model parameters. Optimisation of this function is hard and does not lead to simple
expressions for optimal model parameters. Therefore, we instead aim to find simple expressions that lead to a
near-optimal value of

∑
i∈S ciE[Wi], or equivalently, a near-optimal value of

∑
i∈S

ci
λi
E[Li]. To this end, we

initially consider a more tractable problem, namely the optimisation of the weighted sum
∑
i∈S

ci
λi
fi(i). We

thus replace E[Li], the mean queue length of Qi at any point in time, by fi(i), which refers to the mean queue
length of Qi when it is polled by the server. In Section 4.2.1, we derive expressions for routing probabilities and
exhaustiveness probabilities that minimise

∑
i∈S

ci
λi
fi(i). Using numerical results, we will see in Section 4.2.1

that these expressions also represent probabilities that nearly optimise
∑
i∈S ciE[Wi].
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4.2.1 Near-optimal expressions

We initially study the adapted problem of minimising
∑
i∈S

ci
λi
fi(i). Due to (13), we thus wish to minimise

∑
i∈S

ci
λi
fi(i) =

∑
i∈S

ciE[S](1− ρi)
pi(1− ρ)(1− hi(i))

. (33)

To find expressions for the routing probabilities pn-opt
i that minimise this sum, observe that this adapted problem is

equivalent to problem (26) but with ρi(1− ρi) in the numerator replaced by ci(1− ρi). By following the analysis
of Section 4.1.1, one finds that the pn-opt

i are given by

p
n-opt
i =

√
ci(1− ρi)/(1− hi(i))∑

j∈S
√
cj(1− ρj)/(1− hj(j))

(34)

for all i ∈ S.
We now consider the exhaustiveness probabilities, where we again take the constraint

∑
i∈S diri ≤ 1 into

account. Recall that hi(i) = 1 − (1 − ρi1{i∈IBG})ri when the server serves each of the queues according to
the binomial exhaustive or the binomial gated service discipline. As such, we observe using (33) that minimising∑
i∈S

ci
λi
fi(i) is equivalent to the minimisation of

∑
i∈S

κi

ri
, where κi = ci(1−ρi)

pi(1−ρi1{i∈IBG})
. By performing similar

calculations to those in Section 4.1.2, we now have that the exhaustiveness probabilities rn-opt
i that minimise (33)

are given by

r
n-opt
i = ri(N), (35)

where ri(j) is for all i, j ∈ S recursively defined through

ri(j) = 1{ri(j−1)≥1∨
∑

k∈S dk<1} + 1{ri(j−1)<1∧
∑

k∈S dk≥1}
(1−

∑
k∈S dk1{ri(j−1)<1})

√
κi/di∑

k∈S 1{ri(j−1)<1}
√
κjdj

with

ri(0) =

√
κi/di∑

j∈S
√
κjdj

.

We have now found the routing probabilities pn-opt
i and exhaustiveness probabilities rn-opt

i that minimise the
weighted sum

∑
i∈S

ci
λi
fi(i). Observe however, that in case ci = ρi for all i ∈ S, the expressions in (34)

and (35) coincide with (27) and (32). As such, these expressions also represent the probabilities that minimise∑
i∈S ciE[Wi] when ci = ρi. It is therefore reasonable to assume that for general ci, the pn-opt

i and rn-opt
i nearly

optimise the weighted sum of mean waiting times. In the next section, we conclude on the basis of numerical
results that this is indeed the case, so that (34) and (35) can be used for the optimisation of waiting times.

4.2.2 Numerical validation

In this section, we numerically study the accuracy of the near-optimal values pn-opt
i and rn-opt

i as computed in (34)
and (35). To this end, we consider a collection of 1152 model instances corresponding to all possible combinations
of the parameter settings given in Table 1. For each of these systems, we compute the smallest possible value βopt

of the weighted sum of mean waiting times, by determining the optimal routing and exhaustiveness probabilities
using numerical optimisation methods in combination with the results found in Section 3. We also compute the
routing and exhaustiveness probabilities derived in Section 4.2.1 that should nearly optimise the weighted sum∑
i∈S ciE[Wi] by iteratively calculating (34) and (35) using an alternating approach as sketched in Remark 4.2.

We denote the value of the weighted sum that corresponds to these probabilities as βn-opt.
Based on these numbers, we calculate the accuracy error ∆n-opt of the near-optimal probabilities for each

system:

∆n-opt = 100%× βn-opt − βopt

βopt .
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Parameter Considered parameter settings

N 2, 3, 4, 5

Service policy Binomial exhaustive, binomial gated

ρ 0.1, 0.5, 0.99

(Bi)i∈S
(
Exponential

(
1
2i

))
i∈S , (Deterministic (i))i∈S

(Si)i∈S (Uniform (0, 1))i∈S , (Uniform (0, 100))i∈S

(λi)i∈S

(
ρ

NE[Bi]

)
i∈S

,
(

2iρ
N(N+1)E[Bi]

)
i∈S

,
(

2(N+1−i)ρ
N(N+1)E[Bi]

)
i∈S

(ci)i∈S
(
ρ2
i

)
i∈S ,

(
eN+1−i)

i∈S

(di)i∈S

(
(N + 1− i)−1

)
i∈S

,
(√
N + 1− i

)
i∈S

Table 1: Parameter settings of the polling systems used for the numerical study of Section 4.2.2.

0-0.01% 0.01-1% 1-10% >10%

% of accuracy errors ∆n-opt 59.03% 31.68% 8.85% 0.43%
% of accuracy errors ∆base 0.26% 7.99% 33.07% 58.68%

Table 2: The accuracy differences ∆n-opt and ∆base categorised in bins.

For the sake of comparison, we also consider the base-line scenario where the routing and exhaustiveness proba-
bilities are chosen in a naive manner, namely pi = 1

N and ri = 1
diN

for all i ∈ S. This leads to the weighted sum
denoted by βbase, so that the accuracy error ∆base is defined similarly to ∆n-opt. Note that this base-line scenario
is optimal for completely symmetric systems. In Table 2, the errors ∆n-opt and ∆base pertaining to all model
instances are summarised. In particular, we see that ∆n-opt is smaller than 1% in more than 90% of all cases, and
is even smaller than 0.01% in more than half of the cases. This suggests that the values pn-opt

i and rn-opt
i indeed

virtually always lead to a weighted sum of mean waiting times that is close to optimal. They also seem to perform
much better than the base-line scenario, since Table 2 shows almost completely opposite numbers for ∆base. In
particular, the accuracy errors of the base-line scenario are larger than 1% in more than 90% of all cases, and they
even exceed 10% in more than half of the cases. This effect is also captured by the fact that the average value of
∆n-opt equals 0.425%, and that of ∆base equals 24.18%.

To give insight into parameter effects, Table 3 displays average values of ∆n-opt categorised in some of the
model parameters. From Table 3(a), we conclude that the accuracy of the near-optimal values is hardly influenced
by the number of queues in the system. However, judging by Table 3(b), the accuracy is sensitive to the workload
ρ offered to the server. As any choice for the routing and exhaustiveness probabilities is optimal in case of a zero
workload, it makes sense that the accuracy degrades slowly when the workload increases. Table 3(c) suggests that
the near-optimal values tend to perform better when there is less stochasticity in the system. Judging by Table
3(d), the performance is also increasing in the average duration of the switch-over times. This can be explained
by the fact that the routing or exhaustiveness probabilities have less impact on the waiting time when the switch-
over times become an increasing source of waiting time. Finally, Tables 3(e) and 3(f) suggest that a higher level
of asymmetry in the model parameters leads to larger inaccuracies. This is as expected, as the near-optimal
probabilities are optimal when the system to be optimised is completely symmetric.

Remark 4.3. In Sections 4.1.2 and 4.2.1, we have derived expressions for exhaustiveness probabilities that
(nearly) optimise a weighted sum of the mean waiting times. However, in practice, one may also be interested in
keeping the level of variation in the waiting times low. In an effort to reduce the level of variation, one may thus
choose to adapt the exhaustiveness probability in a dynamic fashion at the start of every n-th visit period at that
queue, based on the number of customers present in the queue at that particular polling epoch. More specifically,
let ropt

i be the expression of the (near-)optimal exhaustiveness probability at Qi as found before, and let f
i,r

opt
i

(i)

be the corresponding expected queue length at Qi at the start of any visit period to Qi, that can be computed
through (13). By using (16), the expected number of customers that the server leaves behind at that queue when
initiating the next switch-over period, is given by f

i,r
opt
i

(i)hi(i) = f
i,r

opt
i

(i)
(

1− (1− ρi1{i∈IBG})r
opt
i

)
. Like-
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(a)

N 2 3 4 5

Average ∆n-opt 0.41% 0.43% 0.43% 0.43%

(b)

ρ 0.1 0.5 0.99

Average ∆n-opt 0.00% 0.03% 1.24%

(c)

(Bi)i∈S (Exponential (1/2i))i∈S (Deterministic (i))i∈S

Average ∆n-opt 0.66% 0.19%

(d)

(Si)i∈S (Uniform (0, 1))i∈S (Uniform (0, 100))i∈S

Average ∆n-opt 0.61% 0.24%

(e)

(ci)i∈S
(
ρ2i
)
i∈S

(
eN+1−i

)
i∈S

Average ∆n-opt 0.23% 0.62%

(f)

(di)i∈S
(
(N + 1− i)−1)

i∈S

(√
N + 1− i

)
i∈S

Average ∆n-opt 0.62% 0.23%

Table 3: Average accuracy error categorised in some of the model parameters as specified in Table 1.

wise, if one decides that the server at Qi should adhere to the exhaustiveness probability rdyn
i,n instead during the

n-th visit period at Qi, at the start of which zi,n are present, the expected number of customers left behind at the

start of the subsequent switch-over period equals zi,n
(

1− (1− ρi1{i∈IBG})r
dyn
i,n

)
. To reduce variation in the

waiting times, rdyn
i,n could thus be chosen such that these two numbers are the same:

zi,n(1− (1− ρi1{i∈IBG})r
dyn
i,n ) = f

i,r
opt
i

(i)
(

1−
(
1− ρi1{i∈IBG}

)
r

opt
i

)
.

By rewriting this equation, and observing that rdyn
i,n cannot exceed one, we have that

r
dyn
i,n = min

{
1, (1− ρi1{i∈IBG})

−1

(
1−

f
i,r

opt
i

(i)

zi,n

(
1− (1− ρi1{i∈IBG})

)
r

opt
i

)}
. (36)

Observe that this expression only depends on model parameters that pertain to Qi, and not to other queues.
Choosing the exhaustiveness probabilities dynamically in this way makes customers waiting in a longer (shorter)
queue than average have a higher (lower) probability of getting served during the current visit period than in the
static case. This evidently reduces the variance of the waiting times. There is, however, no guarantee that the
mean waiting times E[Wi] for i ∈ S will not increase as a result.

5 Optimisation in wireless random-access networks
In the previous section, we have derived expressions for certain model parameters that are optimal or nearly
optimal in some sense. Among them, there are expressions for the routing probabilities pj that (nearly) optimise
a weighted sum of the mean waiting times (or equivalently, mean queue lengths) under the assumption of random
routing. As seen in (27) and (34), these expressions are of the form

p
opt
i =

γi∑
j∈S γj

, (37)

where the coefficients γi are positive and only depend on parameters pertaining to Qi. As such, the numerator of
(37) only depends onQi-specific values, but the denominator pertains to parameters of all queues for normalisation
purposes.

In the wireless random-access network setting as considered in Section 1, an important question is what the
activation probability of each node should be in order to minimise the overall mean number of packets waiting to be
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transmitted and hence the overall mean delay. Although each of the nodes in the network operates autonomously,
it is reasonable to assume that the nodes are cooperative and in principle strive to achieve such a common goal.
The found expressions of the form in (37) in principle offer a solution to this type of problem. However, these
expressions are not directly applicable to the wireless setting. Recall that the nodes operate in a distributed way;
i.e., they operate concurrently on the basis of the partial information that is known to them. The information
known to each node includes the value γi and the observed inter-transmission times so far, but not the values
γj pertaining to other nodes. In this section, we therefore propose an algorithm that makes each node update
its activation probability in such a way that these probabilities tend toward their (near-)optimal values γi∑

j∈S γj
,

provided that all nodes in the network follow this algorithm. The algorithm works in a distributed fashion as
desired: all the nodes execute this algorithm concurrently, but autonomously based on inter-transmission times
observed thus far and their value of γi. In Section 5.1, we describe two possible variants of the algorithm. The
first variant makes the nodes choose activation probabilities that converge to (values near) the desired values
p

opt
i over time with probability one. Although in the second variant the activation probabilities converge to their

limiting values in a weaker sense, we will see that this variant is more robust to a variable population of nodes in
the network or changing values of γi. Section 5.2 subsequently examines both variants of the algorithm in more
detail and elaborates on their convergence properties. Finally, we provide numerical examples for both variants in
Section 5.3.

5.1 Description of the distributed algorithm
We now propose an algorithm, which prescribes for each node which activation probability it should adopt based
on the information available to that specific node. We assume that the information known to any of the N present
nodes, which we index by i, includes the value γi and the durations of the previous inter-transmission times.
First, we introduce some additional notation. We index time by n, so that X(n) refers to the duration of the n-th
inter-transmission time. The activation probability of node i during the n-th inter-transmission time is denoted by
pi(n). As in Section 2, we refer to the back-off rates of the nodes as ν0. Thus, the inter-transmission time X(n) is
exponentially distributed with rate ν0

∑
j∈S pj(n), where the set S = {1, . . . , N} represents the N nodes present

in the network. Finally, for the sake of conciseness, we write [x]zy for min{max{x, y}, z}, (x)− for min{x, 0}
and (x)+ for max{x, 0}.

Now that the required additional notation has been introduced, we proceed to describe a distributed algorithm
that makes the activation probabilities move towards their (near-)optimal values in the long run.

Algorithm 5.1. Let α and M be positive constant coefficients, α < γ−1
i . Furthermore, let the i-th node (i ∈ S)

have an initial activation probability of pi(1) = γiθi(0), i = 1, . . . , N , where θi(0) is assumed to be in the
interval [α, γ−1

i ]. After the n-th transmission time, it calculates

θi(n) = [(1− ε(n))θi(n− 1) + ε(n)M(ν0X(n)− 1)]
γ−1
i
α , (38)

where the ε(n) are step sizes that depend on n. Subsequently, node i updates its activation probability according
to

pi(n+ 1) = γiθi(n). (39)

When each node adheres to this algorithm, the activation probabilities pi(n) of the various nodes will eventually
converge in some sense to the value γiθ̂, with θ̂ given by

θ̂ =
−M

2
+

√
M2

4
+

1∑
j∈S γj

, (40)

provided that α < θ̂.

In Section 5.2, we examine this algorithm in detail and focus on the convergence properties of this algorithm.
However, we first study this algorithm to see why it forms a solution to our problem, and to explore the roles of
the step sizes and the algorithm’s coefficients. To this end, we observe that if the values X(n) did not exhibit

random noise, i.e. X(n) = E[X(n)] =
(∑

j∈S γjν0θj(n− 1)
)−1

, the N -dimensional difference equation in
(38) would reduce to In Section 5.2, we examine this algorithm in detail and focus on the convergence properties
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of this algorithm. However, we first study this algorithm to see why it forms a solution to our problem, and to
explore the roles of the step sizes and the algorithm’s coefficients. To this end, we observe that if the values X(n)

did not exhibit random noise, i.e. X(n) = E[X(n)] =
(∑

j∈S γjν0θj(n− 1)
)−1

, the N -dimensional difference
equation in (38) would reduce to

θi(n) =

[
(1− ε(n))θi(n− 1) + ε(n)M

(
1∑

j∈S γjθj(n− 1)
− 1

)]γ−1
i

α

, (41)

for each i ∈ S. In this N -dimensional difference equation each of the θi(n) evolves in exactly the same way, so
that the fixed point θ of this N -dimensional difference equation must satisfy θi = θ̂ for all i for some value θ̂ as a
result of symmetry. Thus, the problem of finding the fixed point of the N -dimensional difference equation can be
reduced to finding the solution of the one-dimensional problem

θ̂ =

[
(1− ε(n))θ̂ + ε(n)M

(
1

θ̂
∑
j∈S γj

− 1

)]γ−1
i

α

,

which is easily seen to be given by θ̂ as specified in (40) when α is smaller than the expression displayed in (40).
Furthermore, it is easily verified that this expression is a unique fixed point of (41) and tends to 1∑

j∈S γj
when

M → ∞. By this observation and (39), it is thus not surprising that the activation probabilities pi of the nodes
will eventually be close to their (near-)optimal values popt

i , when taking M large enough. In fact, as M tends to
infinity, the expression of (40) tends to its limit from below. This is a desired property, as the sum of the activation
probabilities does not exceed one in that case for a finite M .

We consider two different variants of this algorithm. The first variant uses step sizes ε(n) that satisfy the
conditions

ε(n) ≥ 0 for all n ≥ 1, ε(n)→ 0 if n→∞,
∞∑
n=1

ε(n) =∞ and
∞∑
n=1

(ε(n))2 =∞. (42)

As we will see in Section 5.2, the activation probabilities converge with probability one to γiθ̂ when using this
variant. We also study a second variant of the algorithm, namely the one which assumes that the step sizes
ε(n) = ε are constant over time. We will see in Section 5.2 that although stationary iterates of (38) will then still
be contained in a small area around γiθ̂, this variant does not exhibit convergence with probability one since the
step sizes do not decrease over time. Due to the constant step sizes however, the second variant is more suitable
for use in networks with a variable population of nodes or changing values of γi; i.e. for settings for which the
(near-)optimal activation probability popt

i is of a variable nature. In the first variant, convergence of the activation
probabilities to new values of popt

i would after some point become unacceptably slow, due to the decreasing step
sizes. The second variant does not have this problem.

When deploying the algorithm, it is important to choose the coefficients of the algorithm well. In particular, the
lower bound α needs to be chosen positive so as to keep the algorithm from producing negative control parameters
θi(n), but smaller than θ̂ so as to preserve the desired limiting values. Due to the bounds α and γ−1

i , the control
parameters θ(n) take values in the hypercube H = {θ : α ≤ θi ≤ γ−1

i }. As for the coefficient M , we have
already seen that the higher the value of M , the closer the limiting value γiθ̂ is to the desired value popt

i . However,
a large M also implies that the iterates of (38) are prone to a significant amount of random noise. To prevent the
latter, the step sizes should be chosen such that ε(n)M , or in case of the second variant, εM is small enough. The
step size should however not be taken too small, as this will result in a low convergence speed.

5.2 Convergence properties
Now that Algorithm 5.1 has been introduced properly, we study this algorithm in detail and establish the con-
vergence properties of the two variants as considered in the previous section. Although both variants exhibit a
different form of convergence, we will see that the arguments needed to establish these convergence properties
are similar. In particular, results from [13] imply that the limiting result in both variants coincides with the unique
asymptotically stable point of the same N -dimensional ordinary differential equation (ODE), which can infor-
mally be thought of as the continuous-time equivalent of (38). To be more specific, we can rewrite (38) in the
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form

θi(n) = θi(n− 1) + ε(n)Yi(n) + ε(n)Zi(n) (43)

for each i ∈ S , where the variables Yi(n) and Zi(n) are given by Yi(n) = M(ν0X(n) − 1) − θi(n − 1) and

Zi(n) =
(α−θi(n−1)

ε(n) − Yi(n)
)+

+
(γ−1

i −θi(n−1)

ε(n) − Yi(n)
)−

, respectively. Thus, Zi(n) is the number with the
smallest absolute value needed to keep θi(n+1) between α and γ−1

i . TheN -dimensional ODE referred to in [13]
can now be expressed as

θ̇i = gi(θ) + zi(θ) (44)

for all i ∈ S , where θ is a function of a continuous-time parameter t rather than the discrete-time parameter n as
before. Here, gi(θ) = E[Yi(n) | θ(n − 1) = θ] = M((

∑
j∈S γjθj)

−1 − 1) − θi. Furthermore, zi(θ) is again a
number with the smallest absolute value needed to keep θ from leaving the hypercube H. Thus, zi(θ) becomes
positive (negative) whenever θi takes the boundary value of α (γ−1

i ) and needs to be ‘pushed’ back for θ to stay
inH. More specifically, we have that zi(θ) = −gi(θ)1{(θi=α∧gi(θ)<0)∨(θi=γ

−1
i ∧gi(θ)>0)}.

To find the asymptotically stable points of (44), we first look for fixed points of (44); i.e. points for which
θ̇i = 0 for all i ∈ S. To this end, note that gi(θ) has a positive root θ∗ with elements given by θ∗i = θ̂ for all
i ∈ S provided that α < θ̂ and is as such contained in the interior of H. Since gi(θ) is decreasing in θi, gi(θ) is
positive when θi equals α, as this is a lower boundary ofH. Similarly, gi(θ) is negative when θi equals the upper
boundary γ−1

i . As a result, we have that zi(θ) = 0 for any i ∈ S and θ ∈ H. Thus, any fixed point θ∗ of (44)
satisfies gi(θ∗) = 0 for all i ∈ S. As such, θ∗ = (θ∗1 , . . . , θ

∗
N ) = (θ̂, . . . , θ̂) is a fixed point of (44). This fixed

point is moreover unique, as gi(θ) only has one positive root due to its decreasingness in the non-negative orthant.
In order to apply the results from [13], it remains to be shown that the unique fixed point θ∗ is asymptotically

stable. To this end, we consider the Lyapunov function

L(θ) = (max
i∈S
{θi} −min

j∈S
{θj})2 +

(∑
k∈S

γk(θk − θ∗k)

)2

. (45)

It is evident that L(θ∗) = 0 and L(θ) > 0 for all θ ∈ H\{θ∗}. Furthermore, we see that the time-derivative of
L(θ) satisfies

L̇(θ) = 2(θ̇arg maxi∈S{θi} − θ̇arg minj∈S{θj})(max
i∈S
{θi} −min

j∈S
{θj}) + 2

∑
k∈S

θ̇k(θk − θ∗k)

= −2(max
i∈S
{θi} −min

j∈S
{θj})2 + 2

∑
k∈S

γkgk(θ)
∑
l∈S

γl(θl − θ∗l ), (46)

where the second inequality follows from (44) and the fact that zi(θ) equals zero for all θ ∈ H. Note that the
first term of (46) is negative, except when θi = θj for all i, j ∈ S, in which case the first term equals zero. As
for the second term, observe that any θ ∈ H that satisfies

∑
l∈S γlθl =

∑
l∈S γlθ

∗
l is a root of

∑
k∈S γkgk(θ).

As
∑
k∈S γkgk(θ) is decreasing in

∑
l∈S γlθl, it thus follows that the second term is negative, except when∑

l∈S γlθl =
∑
l∈S γlθ

∗
l . Combining these observations, we have that L̇(θ∗) = 0 and L̇(θ) < 0 for all θ ∈

H\{θ∗}. By standard theory on Lyapunov functions (see e.g. [11]), and the properties of the particular Lyapunov
function L(θ) as established above, we conclude that the fixed point θ∗ is asymptotically stable.

Now that we have identified the unique asymptotically stable point of (44), we can apply the results from
[13] to obtain the convergence properties of both variants of the algorithm. As proved in [13, Theorem 5.2.1],
the iterates of (38), or equivalently, (43), converge under very broad assumptions (which are satisfied here) with
probability one to the asymptotically stable point θ∗ = (θ̂, . . . , θ̂) of (44), in case the step sizes ε(n) decay over
time subject to the conditions given in (42). Thus, in the first variant of the algorithm, the activation probabilities
pi(n) converge with probability one to the value γiθ∗i for all i ∈ S, which we have already seen to be close to the
desired value popt

i .
As for the second variant, it is stated in [13, Theorem 8.2.1] that for similar algorithms with constant step

sizes, the iterates of (38) will not converge with probability one anymore, but will still in the long run fluctuate
around the asymptotically stable point θ∗ of the ODE (44). More specifically, the theorem implies there always
exists an ε > 0 small enough so that the probability that a stationary value θi(n) is contained in any arbitrarily
small area around this fixed point exceeds any given positive value smaller than one. Thus, the θi(n) converge to
the same limiting values as in the first variant, but in a weaker sense. However, as discussed in Section 5.1, the
second variant can handle changing values of

∑
j∈S γj better due to the constant step size.
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Figure 1: Evolution of the activation probabilities in the first example.

5.3 Numerical examples
We end the study of the distributed algorithm with two numerical examples illustrating the discussed variants of
Algorithm 5.1. First, we consider three interfering nodes in a network with γ1 = θ1(0) = 0.3, γ2 = θ2(0) = 0.15
and γ3 = θ3(0) = 0.05. To control their activation probabilities, the nodes adopt the first variant of the algorithm.
The coefficients of the algorithm are given by α = 1/1000 and M = 100, while the step sizes ε(n) are chosen
according to ε(n) = 1

n+log(n)+10M and as such satisfy the conditions in (42). Figure 1 plots the activation
probabilities as generated by the three nodes adhering to the algorithm with these settings. As expected, the
three back-off rates converge to (values close to) their optimal values popt

1 = 0.6, popt
2 = 0.3 and popt

3 = 0.1.
Furthermore, the back-off rates become less volatile as time progresses, due to the decaying step sizes.

To illustrate the second variant of the distributed algorithm, we again consider three nodes, this time with
γ1 = θ1(0) = 0.1, γ2 = θ2(0) = 0.05 and γ3 = θ3(0) = 0.075, respectively. To show that the second variant
allows for changing settings in the network, we assume that after 5000 packet inter-transmissions, the third node
disappears from the network. Furthermore, after 10000 packet inter-transmissions a third node reappears, this
time with parameter γ3 = θ3(0) = 0.1. To control the activation probabilities of the various nodes over time, we
adopt Algorithm 5.1 with coefficients α = 1/1000, M = 35 and constant step sizes ε(n) = ε = 1/2000.

Figure 2 plots the resulting evolution of the various activation probabilities pi(n). Initially, the activation
probabilities fluctuate around values that are slightly smaller than the optimal activation probabilities popt

1 = 4/9,
p

opt
2 = 2/9 and popt

3 = 1/3. Thus, the sum of the activation probabilities rarely exceeds one, as desired. When
the third node disappears after 5000 packet inter-transmission, the activation probabilities of the remaining nodes
adapt to the new situation and correctly move towards new limiting values. When a third node reappears after
the 10000-th packet inter-transmission, the activation probabilities once again adjust to the new situation. In
particular, we see that the activation probabilities of the first and third node eventually coincide, since γ1 = γ3 for
n ≥ 10000.

Remark 5.1. In practice, it may happen that a node has no packets to transmit. In such a case, the ‘empty’ node
will deactivate immediately after activation, due to its lack of packets to be transmitted. However, other nodes
might not be able to detect such an activation followed by an immediate deactivation. This would then result in
the (de)activating node updating its control parameter θi(n), while the other nodes do not update their control
parameter. This may cause problems, as the algorithm requires all of the nodes to update their control parameter
simultaneously. To avoid these problems, one may adapt the algorithm such that a node now sets its own activation
probability equal to zero when it has no packets to transmit, and in accordance with the original Algorithm 5.1
otherwise. The nodes however continue to update their control parameter θi(n) according to (38) at all times,
irrespective of the number of packets waiting to be transmitted. Simply put, an ‘empty’ node no longer activates
if it has no packets to transmit. This minor adjustment has the advantage that, when certain nodes remain empty
for a larger amount of time, the activation probabilities of the other nodes will adapt to this situation accordingly.
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