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Abstract. In the last decades the problem of metastability has been attacked on rigorous

grounds via many different approaches and techniques which are briefly reviewed in this

paper. It is then useful to understand connections between different point of views. In view

of this we consider irreducible, aperiodic and reversible Markov chains with exponentially

small transition probabilities in the framework of Metropolis dynamics. We compare two

different cycle decompositions and prove their equivalence.
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1. Introduction

Cycle decomposition is a very useful tool to estimate first hitting times for stochastic pro-

cesses. In this note we compare, and prove the equivalence, between two different approaches

that will be respectively called path and graph cycle decompositions. These results are utterly

important in the generic study of the metastability phenomenon.
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1.1. Metastability

The phenomenon of metastability is defined by the following scenario: (i) a system is

“trapped” for an abnormally long time in a state — the metastable state — different from

the eventual equilibrium state consistent with the thermodynamical parameters. (ii) In the

metastable state the system behaves as if it were in regular equilibrium. (iii) Subsequently,

the system undergoes a sudden transition at a random time from the metastable to the sta-

ble state. The mathematical study of this phenomenon has been a standing issue since the

foundation of Statistical Mechanics, but only in the 80’s rigorous mathematical approaches

started to be developed and, due to the great interest of the subject, they then proliferated

to a multitude of different approaches. These mathematical approaches, however, are not

completely equivalent as they rely on different definitions of metastable states and thus in-

volve different properties of hitting and escape times. The situation is particularly delicate

for evolutions of infinite–volume systems and for irreversible systems. The proliferation of

definitions and hypotheses on metastable behavior arises from the diversity of the physical

situations in which the phenomenon appears. This diversity results in contrasting demands

on the appropriate mathematical theory. The main issues confronted by the mathematical

treatment of metastability can be grouped into three categories.

Conservative vs non–conservative dynamics. This dichotomy applies to dynamics for

statistical mechanical models of fluids or magnets. Non–conservative dynamics are those

that do not conserve the total number of particles or the total magnetization. They include

Glauber (that is, single spin–flip) dynamics (used to model metastable ferromagnets) and

many probabilistic cellular automata (that is, parallel dynamics). In contrast, conserva-

tive dynamics are suitable to the study of supersaturated gases. Its study poses enormous

challenges because particle or magnetization conservation introduces non–local effects.

Finite vs infinite configuration space. Two extreme types of metastability studies can be

distinguished. In the finite–space case, the configuration space remains fixed (or bounded)

while the drift towards (meta)stable configurations is increased (e.g., temperature goes to

zero). In the infinite–space setup, the size of the configuration space grows in an unbounded

fashion, while drifts are kept approximately constant. In many instances both parameters

(drift and size of the space) change simultaneously, but usually these changes are coupled

so one of the effects is dominant. Mathematically, the distinction stems from the possibility

of “entropic” effects in the infinite–volume case that changes the scale at which distribution

laws must be controlled. The iconic case is the thermodynamic limit of spin or gas models,

see for instance [29, 30, 36, 53]. In these models, exit from metastability requires nucleation,

that is the formation of a critical droplet. The probability of such an event in a large volume

must include the “entropic contribution” due to the fact that the nucleation can take place
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anywhere in the volume.

Parallel dynamics and cost functions. Following the matrix imposed by Metropolis and

Glauber dynamics, stochastic transition rates are written as exponentials of cost functions.

For reversible single spin–flip dynamics these costs are determined by the difference of energy

between the two states involved in the move. This is not so for parallel dynamics (for

instance for Probabilistic Cellular Automata [6, 20, 23]) in which, at each step, all spins are

independently tested. In such evolutions, costs are a possibly complicated function of the

different patterns of spin flips connecting the relevant states. In these cases it is therefore

necessary to dissociate energy profiles from energy barriers. The former are associated to

invariant measures and determine the set of stable and metastable configurations. The latter

are associated to transition rates and determine drifts and exit times.

1.2. Different approaches to metastability

Early approaches to metastability were based on the computation of expected values with

respect to restricted equilibrium states [51]. This paradigm is still influential in physics, see

e.g. [39]. The influence of Probability on Statistical Mechanics led to an alternative pattern

of thoughts based on stochastic dynamics and focused on their spectral properties and on the

behavior of their typical trajectories. This point of view has given rise to different theoretical

constructions that can be classified, roughly, in three major groups.

(I) Classical approach: Hitting times of Markov chains. The escape time from metasta-

bility is determined, by the visiting or hitting time to a set of states of very small (invariant)

measure, when most of the measure is carried by a different, somehow reduced, set of states

(see, e.g. [37]). Similar problems were confronted in reliability theory where typical states

were called good and those concerned by the hitting times were called bad. The exponential

character of good–to–bad transitions is due to the existence of two different time scales: long

times are needed to go from good to bad states, while the return to good states from any-

where (except, perhaps, the bad states) is much shorter. As a result, a system in a good state

can reach the bad ones only through a large fluctuation bringing it all the way to the bad

state. Indeed, any “intermediate” fluctuation would be followed by an unavoidable return

to the good states, where, by Markovianity, the process would start afresh independently of

previous attempts. Hence, the escape time is made of a large number of independent returns

to the good states followed by a final successful excursion to badness that must happen

without hesitation, in a much shorter time. The exit time is, therefore, a geometric random

variable with extremely small success probability. In the limit exponentiality is found.

(II) Large deviations of trajectory distributions. Freidlin and Wentzel [28] were the first

to use the large deviation machinery to study the problem of exit times from an attractive

domain. Their theory applies to stochastic differential equations with a deterministic driving
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gradient force and a small Brownian stochastic term. The deterministic part of the dynamics

is responsible for the fast return to “good states” while the stochastic contribution provides

the escape mechanism. The smallness of this last contribution leads to very long time scales

for the visit to “bad” states. Typical trajectories are described using a graphical method

built out of two basic ingredients: cycles (associated to metastable pieces of trajectories)

and exit tubes (describing typical escape trajectories).

The Freidlin and Wentzel theory evolved into two related schools that we shall call

the graphical [15] and the pathwise [14] approach. The former relies on a refinement of

Freidlin and Wentzel’s graphical methods allowing for a detailed study of exit paths via a

decomposition into cycles and saddle points traversed from cycle to cycle. The exit time also

decomposes into the time spent at each point of the exit path. This graphical approach has

been applied to reversible Metropolis dynamics and to simulated annealing in [15–17,55–57].

The pathwise approach, on the other hand, proposed in [14], was introduced as an adap-

tation of the ideas of Freidlin and Wentzel to Metropolis–like dynamics, with all notions and

properties expressed in terms of an energy profile associated to the invariant measure. This

provides a clearer and physically appealing picture. In particular, absolute energy minima

identify stable states and “deep” local energy minima lead to metastability. The two time

scales within each energy well correspond, respectively, to fast “downhill” and infrequent

“uphill” trajectories. In the limit of very steep wells (temperature tending to zero), the

theory yields rather precise information on: (i) the transition time, i.e., the time needed

to arrive to the stable equilibrium, which is determined by the height of the largest energy

barrier separating metastable from stable states. (ii) The typical exit tube, i.e., the sequences

of configurations along which the formation of the stable phase takes place. This is the

physically relevant mechanism that, in gas or spin systems, is mediated by the appearance

of a critical droplet after which the system quickly relaxes to equilibrium.

The full power of this method was first exploited in [48] and comprehensively reviewed

in [50]. It has been extended to non–reversible Markov processes in [49] (though irreversibility

brings back to the graphical approach). The approach was further simplified in [40] where

transition times are determined on the basis of a ranking of stability levels, without requiring

detailed knowledge of typical trajectories.

(III) Potential–theoretical approach: spectral properties of Markov transition matrices. In

the early eighties Aldous and Brown [1] proposed a new approach to the hitting–time theory

based on spectral properties of the transition matrix and the use of the Dirichlet form. This

approach has the advantage of leading to quite precise error bounds for the exponential

approximation. The current version of this strategy is the potential–theoretic approach

developed in [8] (see [7] for reviews). Besides exponential laws, this method gives more precise
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estimates of the expected value of the transition time, including a prefactor that cannot be

found with alternative approaches. The determination of this prefactor, however, requires

the knowledge of the critical droplet and neighboring configurations; information that has to

be imported from more detailed pathwise studies. In [3] another use of spectral and potential

theoretical techniques is proposed in which only visits to well bottoms are registered. Upon

time rescaling, a continuous–time Markov process is obtained whose transition rates encode

the information on transition times. (See also [4, 5] for recent development).

1.3. Application overview

We outline briefly some applications of the theories described above. The aim is not to be

exhaustive, but rather to list references useful in relation to the definitions and comparisons

to follow.

The general theory [15, 16, 40, 48–50, 54] and metastability studies in the nineties (see

[2,14,19,21,26,38,43,46,47] for the pathwise approach and [17,55–57] for the graphical ap-

proach) refer to single–spin flip dynamics (Metropolis, Glauber) of Ising–like models (includ-

ing mean–field versions) in finite volume and at low temperature. Studies within the general

potential theoretical approach refer both to a general Markov–process point of view [9, 10]

and applications to mean–field and Ising model [8, 13].

The study of metastability for conservative dynamics started a decade after and initially

involved nearest–neighbor lattice gases at low temperature and density inside finite boxes

with open boundary conditions mimicking infinite reservoirs fixing particle density. Relevant

references are [31, 32, 36, 44] for the pathwise approach and [11, 33–35] for the potential

theoretic approach.

Models with parallel dynamics were studied first from a numerical point of view in [6] and

then rigorously in [20,22–25] (pathwise approach) and [45] (potential theoretic approach).

The more involved infinite–volume limit, at low temperature or vanishing magnetic field,

was first studied via large deviations techniques in [18,27,41,42,52,53] and potential theoret-

ically in [12]. These references dealt with Ising and Blume–Capel models under Glauber dy-

namics. The Ising lattice gas model subjected to Kawasaki dynamics was studied in [29,30,36]

and [12] (potential theoretic approach) in the limit of temperature and volume growing ex-

ponentially fast to infinity.

1.4. Aim of the paper

As it has been explained above, due to the great theoretical and applicative interest of

metastability, different mathematical theories of metastability have been developed in the

past years. It is interesting to understand the mutual connections in order to apply results

proven in one framework to systems that are naturally approached in a different one.
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We have also remarked that within each theory different flavors have appeared. In par-

ticular, in the framework of the “large deviation” point of view, two different approaches to

cycle decomposition, the graphical and the path one, have been developed. The former has

been introduced and applied in a very general setup while the latter as been first introduced

for Metropolis dynamics and then extended to models with cost functions such as Proba-

bilistic Cellular Automata [20,23]. Due to its generality, the results on hitting times proven

with the graphical approach are written in terms of complicated expression whose physical

meaning is sometimes difficult to be caught. On the other hand, in the framework of the

path approach everything is clearly written in terms of differences of energies, but the theory

applies only to Metropolis–like systems.

Our opinion is that it is interesting and it can also be very fruitful to understand the

connections between these two approaches in order to mix the strength of the former with

the simplicity of the latter. As a first step in this direction we prove the equivalence of the

two approaches in the case of the Metropolis dynamics, whose definition is now recalled.

1.5. Setup

We consider a finite state space S equipped with a function H : S → R. Sometimes for a

point x ∈ S, we will write the energy of x for the value H(x).

We assume that S2 is equipped with a connectivity function q : S2 → [0; 1], which

satisfies the following conditions: (i) for any x ∈ S,
∑

y 6=x q(x, y) ≤ 1; (ii) for any (x, y) ∈
S2, q(x, y) = q(y, x); (iii) for any (x, y) ∈ S2, there exists n ∈ N and x1, . . . , xn such that

x0 = x, xn = y and q(xi, xi+1) > 0 for i = 0, . . . , n− 1.

For β > 0, we then define the Metropolis Markov chain X as being the Markov chain

with transitions given by pβ where the kernel pβ satisfies

pβ(x, y) = q(x, y) exp
(
−β (H(y)−H(x))+

)
if x 6= y and pβ(x, x) = 1−

∑
y 6=x pβ(x, y).

The chain started at x ∈ S will be denoted by x0 = x, x1, . . . , xt, . . . and the associated

probability will be denoted by Px. The main notion the paper will deal upon is that of

hitting time

τG := inf{t, xt ∈ G} (1.1)

to a set G ⊂ S.

A particularly famous example of Metropolis dynamics is given by the standard Ising

model under Glauber dynamic.

The purpose of this paper is to discuss the first exit problem of a general set G for the

dynamics defined above for large β. It turns out that the most relevant case corresponds
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to G given by a cycle, namely a set whose internal points, for large β, are typically visited

many times by our process before exiting.

The paper is organized as follows: in Section 2 and Section 3 we recall the definition of

cycles and the main results on hitting times respectively in the framework of the path and

the graph approach. In Section 4 we explore the connections between the two approaches

and state their equivalence.

2. Path cycles

We briefly review the path approach to cycle decomposition in [48]. In particular we discuss

few properties that will be useful in Section 4. A path ω is a sequence (ω1, . . . , ωn) of

communicating states, that is to say q(ωi, ωi+1) > 0 for any i = 0, . . . , n − 1. We write

ω : x→ y to denote a path joining x to y.

We say that a subset G of S is connected if for any x, x′ ∈ G, there exists a path

ω : x → x′ such that ω is entirely contained in G. Two not empty subsets G,G′ ⊂ S are

connected whenever there exists x ∈ G and x′ ∈ G′ such that q(x, x′) > 0.

If G is a subset of S on which H is constant, we will write H(G) for the value of H on

G.

Definition 2.1 Let G ⊂ S, we define the exterior boundary ∂G of G and the ground F (G)

of G respectively as

∂G := {y ∈ S \G,∃x ∈ G, q(x, y) > 0} and F (G) := {x ∈ G,H(x) = min
G
H}

For a subset G ⊂ S and x ∈ S, we say that x is a neighbor of G if x ∈ ∂G.

Definition 2.2 The set A ⊂ S is a non–trivial path cycle of S if and only if it is a connected

subset of S verifying

max
A

H < min
∂A

H (2.2)

We say that a subset A ⊂ S is a cycle if and only if A is a singleton or A is a non–trivial

path cycle.

In other words, a singleton is a trivial path cycle if and only if it is not a local minimum

of H.

Lemma 2.3 (Proposition 6.7 [50]) Given a state x ∈ S and a real number c ≥ H(x), the

set of all points connected to x by paths whose points have energy smaller or equal to c is

either the trivial path cycle {x} or is a non–trivial path cycle containing x.
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In the particular case c = H(x) we denote by U≤x the path cycle whose existence is ensured

by the above lemma. In words, Ux is the path cycle made of all the points in S connected

to x via a path whose points are at energy smaller or equal to H(x).

Lemma 2.4 (Proposition 6.8 [50]) Let A1, A2 ⊂ S be two path cycles such that A1∩A2 6= ∅.
Then either A1 ⊂ A2 or A2 ⊂ A1.

As a trivial consequence of these two lemmas, note that given a cycle A and x ∈ A, one has

the inclusion U≤x ⊂ A. On the other hand, as soon as x ∈ A satisfies H(x) = maxAH, one

gets the equality U≤x = A.

We remark, now, the following interesting property: two non–trivial disjoint cycles cannot

be connected. More precisely we state the following lemma.

Lemma 2.5 Let A1, A2 ⊂ S be two path cycles. If A1 and A2 are connected, then either

|A1| = 1 or |A2| = 1.

Proof. By contradiction, assume that both |A1| > 1 and |A2| > 1 (and hence that they both

satisfy equation (2.2)).

Since the two path cycles A1 and A2 are connected, there exists x1 ∈ A1∩∂A2 and, thus,

it follows that

max
A1

H ≥ H(x1) ≥ min
∂A2

H > max
A2

H

where in the last bound we used (2.2)). But similarly, there exists x2 ∈ A2 ∩ ∂A1, which

implies

max
A2

H ≥ H(x2) ≥ min
∂A1

H > max
A1

H

which contradicts the above inequality. �

Definition 2.6 Given a non–trivial path cycle A, we let the depth Γ(A) and the resistance

height Γ̃(A) of the cycle be respectively

Γ(A) := min
∂A

H −min
A
H = H(F (∂A))−H(F (A))

and

Γ̃(A) := max
A

H −min
A
H = max

A
H −H(F (A))

The following result describes the way the Markov chain exits a cycle A at very low tem-

perature. As a matter of fact, it is known in a more general, not reversible setup satisfying

suitable hypotheses called the Freidlin–Wentzell conditions.

MetropolisCycles.tex – 14 gennaio 2014 8 10:56



Theorem 2.7 (Theorem 6.23 in [50]) Given a non–trivial cycle A and ε > 0, for any

x, x′ ∈ A, the following properties hold in the asymptotic β →∞:

Px [exp{β(Γ(A) + ε)} > τ∂A > exp{β(Γ(A)− ε)}] = 1− o(1) (2.3)

and

Px
[
τx′ < τ∂A, τx′ < exp{β(Γ̃(A) + ε)}

]
= 1− o(1) (2.4)

Roughly speaking, equation (2.3) states that, starting from any point of the cycle A, the exit

time from A is of order exp{βΓ(A)} in the large β asymptotic. On the other hand, starting

from any point in A, equation (2.3) says that, before exiting A, the Markov chain visits all

the configurations in A within a time of order exp{βΓ̃(A)}.

3. Graph cycles

The construction of graph cycles due to Freidlin Wentzell [28] is performed recursively. Here,

we recall this construction following [57, Part 2]. In Section 3.2 we discuss an example.

3.1. Construction of graph cycles.

Before starting with the recursive construction we need to recall some general definitions:

given a not empty set M we denote by P(M) the collection of all the subsets of M . Moreover,

a function f : M ×M → R+ ∪ {∞}, namely, a function associating each pair of elements of

M with a (not necessarily finite) not negative real number will be called a cost function on

M . A path of elements of M is an element (m1, . . . ,mn) ∈ Mn for some n positive integer.

We shall misuse the notation by also writing

f(m) =
n−1∑
i=1

f(mi,mi+1)

for any path m = (m1, . . . ,mn) ∈Mn.

The following recursive construction can be read together with the example developped

in Section 3.2.

Recalling that the setup is the one introduced in Section 1.5, we define the zero–order set

of graph cycles E0 := {{i}, i ∈ S} and the associated zero order cost function V 0({i}, {j}) :=

(H(j)−H(i))+ if i and j are connected and V 0({i}, {j}) :=∞ otherwise.

It is important to remark that graph cycles [28] are usually introduced in a more general setup. For

Markov chain it is usually assumed the so called Freidlin–Wentzel assumption, namely, there exists κ > 1

such that

(1/κ)q(x, y) exp{−βV (x, y)} ≤ pβ(x, y) ≤ κq(x, y) exp{−βV (x, y)}

Note that the Metropolis dynamics is just a particular case.
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Assume, then, that the k–order set of graph cycles Ek ⊂ P(S) is constructed and

equipped with the k–order cost function V k. To implement the recursion, we proceed in

five steps:

1. for A ∈ Ek, let

Hk
e (A) := min{V k(A,A′), A′ ∈ Ek}. (3.5)

Moreover, we define the renormalized cost function V k
∗ on Ek by setting

V k
∗ (A,B) := V k(A,B)−Hk

e (A) (3.6)

for all A,B ∈ Ek.

2. For A,A′ elements of Ek, define the
k−→ relation by A

k−→ A′ if and only if there exists

a path ω of elements of Ek starting from A and ending in A′ such that the cost of ω

with respect to V k
∗ is zero, in short V k

∗ (ω) = 0.

3. For A,A′ elements of Ek, define the relation of equivalence Rk by ARk A
′ if and only if

both A
k−→ A′ and A′

k−→ A. Then we stick together all the distinct classes of equivalence

and define the set Dk+1 := {
⋃
A′:ARkA′ A′, A ∈ Ek}.

4. On the set Dk+1, define the (partial) order ≥k+1 by A ≥k+1 A′ if and only if there exist

B,B′ ∈ Ek, B ⊂ A,B′ ⊂ A′ such that B
k−→ B′. Then we introduce Dk+1

? the set of

minimal elements for the order relation ≥k+1.

5. Define Ek+1 as being the union of the set Dk+1
? and of the elements of Ek which are

not subsets of Dk+1
? , namely

Ek+1 := Dk+1
?

⋃
{A,A ∈ Ek, ∃B ∈ Dk+1 \Dk+1

? , A ⊂ B}. (3.7)

For A ∈ Ek+1, define

Hk+1
m (A) := max{Hk

e (A′), A′ ∈ Ek, A′ ⊂ A}. (3.8)

6. Finally define the cost function V k+1 on Ek+1 by

V k+1(A,A′) := Hk+1
m (A) + min{V k

? (B;B′), B,B′ ∈ Ek, B ⊂ A,B′ ⊂ A′}. (3.9)

The construction continues until Ek = {S}. As noted in [57], the recursive procedure

described here is not stationary until iteration nS, where nS is the first iteration such that

EnS = S.
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We remark that for any k ≥ 0, Ek is a partition of S and more precisely the procedure

gives a hierarchical decomposition of the state space as a tree starting from the singletons

and ending with the whole space.

We define the set of graph–cycles C :=
⋃
k≥0E

k and call any element of C a graph–cycle.

Definition 3.8 Let A ∈ C. We set

He(A) := sup
k≥0
{Hk

e (A)}

if A 6= S and He(S) =∞.

The above definition is based on the following remark (see [57]): for A ∈ C, it is easy to

see that, whenever A ∈ Ek ∩ Ek+1, one has

Hk+1
m (A) = Hk+1

e (A) = Hk
e (A) (3.10)

and thus Hk
e (A) = He(A) as soon as A ∈ Ek.

Definition 3.9 Let A ∈ C such that A 6= S and |A| > 1. We set

– C?A := {B ∈ C, B ⊂ A,B 6= A};

– M?(A) := {B ∈ C, B is a maximal element in C?A} (maximal proper partition of A);

– Hm(A) := sup{He(B), B ∈ C?A} ∨ 0.

We now state the analogous of Theorem 2.7 in the framework of graph–cycles. The proof is

given, for instance, in [16].

Theorem 3.10 (Propositions 4.19, 4.20 and 5.1 [16]) Let A be a graph cycle. For any

ε > 0, for any x, x′ ∈ A, as β →∞, one has the asymptotic:

Px
[

exp{β(He(A) + ε)} > τ∂A > exp{β(He(A)− ε)}
]

= 1− o(1) (3.11)

and

Px
[
τx′ < τ∂A, τx′ < exp{β(Hm(A) + ε)}

]
= 1− o(1). (3.12)

We note that this result strongly suggests the equalities Hm(A) = Γ(A) and He(A) = Γ̃(A).

In the next section we shall prove that this fact is indeed true.
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Figure 3.1: The energy landscape on S = {a, b, c, d, e, f, g, h, i, j, k}

3.2. An example.

In this part, we run the algorithm described above in a simple case. We consider the state

space S = {a, b, c, d, e, f, g, h, i, j, k} with connectivities and energy landscape described in

Figure 3.1. For example, H(a) = H(d) = 2, H(i) = 0, q(d, e) > 0, q(e, f) > 0 and q(e, g) = 0.

Iteration 1. To start our construction, we first recall that

E0 = {{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}, {j}, {k}} .

For two singletons which are not connected (say for example a and c), we then have by

definition the equality V 0({a}, {c}) =∞. Else, it is easy to see that V 0(·, ·) is equal to zero

for connected singleton except in the following cases:

V 0({a}, {b}) = 3, V 0({c}, {b}) = 4, V 0({c}, {d}) = 1, V 0({f}, {g}) = 2,

V 0({h}, {g}) = 1, V 0({i}, {j}) = 1, V 0({i}, {h}) = 3, and V 0({j}, {k}) = 4.

One can then compute the following quantities using (3.5)

H0
e ({a}) = 3, H0

e ({c}) = 1, H0
e ({i}) = 1,

and

H0
e ({b})=H0

e ({d})=H0
e ({e})=H0

e ({f})=H0
e ({g})=H0

e ({h})=H0
e ({j})=H0

e ({k})=0.
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By making use of equation (3.10) and of the remark after it, we note that, for every x ∈ S
and for all k ≥ 0, Hk

e ({x}) = H0
e ({x}) = He({x}). In other words the remark above gives

the value of the functions He and Hk
e , for k ≥ 1, computed at any singleton, namely He({x})

and Hk
e ({x}) for k ≥ 1 and x ∈ S. A similar observation will apply in the next steps of the

algorithm.

Using (3.6), we now compute V 0
? (·, ·), which is infinite for not connected singletons and

zero for all connected singletons apart from the following cases:

V 0
? ({c}, {b}) = 3, V 0

? ({f}, {g}) = 2, V 0
? ({h}, {g}) = 1, V 0

? ({i}, {h}) = 2, V 0
? ({j}, {k}) = 4.

(3.13)

Applying the third step of the construction of Section 3.1, we then deduce that

D1 = {{a, b}, {c, d, e, f}, {g}, {h}, {i, j}, {k}} .

For example, to see that {a, b} is a subset ofD1, one notes that {a}R0{b} since V 0
? ({a}, {b}) =

V 0
? ({b}, {a}) = 0 and {b} is not in relation for R0 with {c} since V 0

? ({c}, {b}) = 3 6= 0.

The set {a, b} is not a minimal element for ≥1 because {b} 0−→ {c}, which implies that

{a, b}≥1{c, d, e, f}. On the other hand, one checks readily that both {c, d, e, f} and {i, j}
are minimal elements for ≥1, and we deduce:

D1
? = {{c, d, e, f}, {i, j}}. (3.14)

Combining (3.7) and (3.14), we obtain:

E1 = {{a}, {b}, {c, d, e, f}, {g}, {h}, {i, j}, {k}} . (3.15)

We then get immediately by (3.8) : H1
m({x}) = He({x}) = 0 for x ∈ {b, g, h, k} and

H1
m({a}) = 3, H1

m({c, d, e, f}) = 1, H1
m({i, j}) = 1.

We can now compute V 1 making use of (3.9), (3.15) and (3.13). Once again, V 1(A,B)

is infinite as soon as A and B are disconnected, and V 1(A,B) = V 0(A,B) as soon as

A ∈ E0, B ∈ E0. For the remaining cases, the cycle pairs with not zero V 1 are:

V 1({c, d, e, f}, {b}) = 4, V 1({c, d, e, f}, {g}) = 3, V 1({i, j}, {h}) = 3, V 1({i, j}, {k}) = 5,

V 1({b}, {c, d, e, f}) = V 1({g}, {c, d, e, f}) = V 1({h}, {i, j}) = V 1({k}, {i, j}) = 0.

Iteration 2. For the second iteration of the algorithm, one proceeds as in Iteration 1

replacing the state space E0 equipped with the cost function V 0 by the space E1 equipped

with the cost function V 1. Applying again (3.5) and the remark below (3.10), we compute:

He({i, j}) = H1
e ({i, j}) = 3, He({c, d, e, f}) = 3.
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Once again, V 1
? (A,B) is infinite as soon as A and B are not connected, identically null

otherwise except in the following cases:

V 1
? ({c, d, e, f}, {b}) = 1, V 1

? ({i, j}, {k}) = 2, V 1
? ({h}, {g}) = 1,

and hence we deduce

D2 = {{a, b}, {c, d, e, f, g}, {h, i, j}, {k}} .

Since neither {a, b} nor {c, d, e, f, g} are minimal elements for the order relation ≥2, we

obtain

E2 = {{a}, {b}, {c, d, e, f}, {g}, {h, i, j}, {k}} .

Finally we get

Hm({h, i, j}) = 3.

Iteration 3. Similarly, for the third iteration of the algorithm, one shows that:

He({h, i, j}) = 4,

D3 = {{a, b}, {c, d, e, f, g, h, i, j}, {k}} ,

E3 = {{a}, {b}, {c, d, e, f, g, h, i, j}, {k}} ,

Hm({c, d, e, f, g, h, i, j}) = 4.

Iteration 4. After the fourth iteration, the procedure is complete (that is nS = 4), and

we get:

He({c, d, e, f, g, h, i, j}) = 5,

D4 = E4 = S,

Hm(S) = 5, He(S) =∞.

We finally deduce the set of graph-cycles of S:

C(S) = {{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}, {j}, {k},
{c, d, e, f}, {i, j}, {h, i, j}, {c, d, e, f, g, h, i, j}, S}.

We remark on this toy example that the set of graph cycles coincides with the set of path

cycles. We show in the next section that this is indeed always the case.

4. Equivalence of definitions

In this section we prove that path and graph–cycle decompositions are equivalent. As a

byproduct of the proof we shall also give a physical interpretation, in terms of differences of

energy, of the quantities He and Hm defined in the framework of the graph theory.
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Theorem 4.11 With the notations introduced above:

1. any graph–cycle A ∈ C is a path–cycle. Furthermore the following equality holds:

He(A) =
(

min
∂A

H −min
A
H
)
∨ 0. (4.16)

One also has

Hm(A) = max
A

H −min
A
H (4.17)

when |A| > 1 and Hm(A) = He(A) when |A| = 1.

2. Any path–cycle is a graph–cycle.

In particular, starting from anywhere inside a cycle, the exit time of the cycle on an

exponential scale is essentially given by the depth of the cycle. Note that as soon as A ∈ C
is a non trivial path cycle, then He(A) = min∂AH − minAH. More precisely, we have the

equivalence between Theorems 2.7 and 3.10.

In order to proof item 1 of the theorem we shall proceed recursively. In particular we

shall introduce the condition Hn and prove that it holds for any n ≥ 0.

Condition Hn. For any A ∈ En the following properties hold true:

(I)n A is a path cycle;

(II)n if A (where |A| > 1) and {a} are connected and belong to

En, thenV n(A, {a}) = H(a)−minAH andV n({a}, A) = 0;

(III)n Hn
e (A) = (min∂AH −minAH) ∨ 0;

(IV )n Hn
m(A) = maxAH −minAH when |A| > 1.

Before turning to the proof of the theorem, we make a few remarks which hold provided

Hk is true for any k = 0, 1, . . . , n− 1, and that will be used throughout the proof.

R1. One important point in the proof will be to compute V n(A,B) for any element

A,B ∈ En. Note that if both |A| > 1 and |B| > 1, then it follows from Lemma 2.5 that A

and B are not connected, and from (3.9) follows that V n(A,B) =∞. On the other hand, if

two singletons {a} and {b} belonging to En are connected, then it follows immediately from

the definition of V n that V n({a}, {b}) = (H(b) − H(a))+. The other cases are covered by

assumption (II)n.

R2. We state that

En+1 \ En = Dn+1
? . (4.18)

Indeed, given the definition (3.7) of En+1, for (4.18) to hold, we have to show that an element

B ∈ Dn+1
? cannot belong to En. Assume by contradiction that B ∈ En; there exists at least
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one element B′ ∈ En connected to B such that B
n−→ B′ (and hence B ≥n B′). Since

B ∈ Dn+1
? , it is a minimal element for ≥n, and hence one gets B′ ≥n B. This implies that

both B and B′ are in the same equivalence class for Rn, which is contradictory in view of

the construction of Dn+1
? .

This remark is very useful, indeed, to prove the implication Hn ⇒ Hn+1, we show the

four properties defining Hn+1 restricting the analysis to the case A ∈ Dn+1
? .

R3. We state an important decomposition of any A ∈ En+1 \ En which may be viewed

as the analogous of [50, Proposition 6.19] in the graph–cycle context.

We write A as the disjoint union

A =

jA⊔
j=1

Aj (4.19)

where jA ≥ 1 and, for all j ≤ jA, Aj ∈ En. This decomposition is in fact the decomposition

M?(A) which we rewrite in a more tractable way.

Of course A not belonging to En implies in fact that jA ≥ 2. In the remaining of the

proof, we will refer to the elements appearing in the decomposition of the right hand side of

(4.19) as subcycles of A.

For j ∈ [1, jA], whenever there exists a ∈ S such that Aj = {a} and b ∈ S a neighbor of

a such that H(b) ≤ H(a), we say that the singleton Aj is a good singleton of A. In words,

a good singleton {a} of A is a trivial path cycle because a is not a local minimum of H(·).
We denote by jsA the number of subcycles of A which are good singletons of A. Note that

whereas the notion of trivial path cycles depends only on the energy landscape, the notion

of good singleton of A strongly depends on the cycle decomposition of A.

R4. (I)n implies that, as soon as Aj
n−→ {a}, where |Aj| > 1 and {a} is a subcycle of A

such that a ∈ ∂Aj, then necessarily {a} is good.

R5. For singletons which are not good, say that Aj = {a} where j > jsA, we can remark

that all the subcycles of A which are connected to {a} are good singletons and have the

same energy. Indeed, all these subcycles are path cycles by (I)n. Since a non–trivial path

cycle cannot be connected to a local minimum for H(·) in view of (2.2), it follows that all

these subcycles are good singletons. To see that they have the same energy, consider any

b ∈ ∂{a} ∩ A satisfying {a} n−→ {b}. By the definition of
n−→, we then get that H(b) =

H(a) +He({a}).
R6 Combining R4, R5 and Lemma 2.5, we note the important fact that jsA ≥ 1. Up to

reordering, we assume from now on that for 1 ≤ j ≤ jsA, Aj is a good singleton.

R7. We then show the following equalities:
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H

 ⋃
1≤j≤jsA

Aj

 = max
A

H (4.20)

and

H (∂Aj ∩ A, j ∈ [jsA + 1, jA]) = max
A

H. (4.21)

Of course, equations (4.20) and (4.21) implicitly state that H(Aj) does not depend on

j ∈ [1, jsA] and that H (∂Aj ∩ A) does not depend on j ∈ [jsA + 1, jA].

To prove (4.20) and (4.21), we distinguish the cases jsA = 1 and jsA ≥ 2.

If jsA = 1, then for every j ∈ [2, jA], it follows from Lemma 2 and remark R4 that Aj is

connected to A1 and Aj
n−→ A1 for j ∈ [2, jA]. As a consequence, considering (II)n, we get

both (4.20) and (4.21).

Assume now that jsA ≥ 2 and consider two elements Ai and Aj (where 1 ≤ i, j ≤ jsA
and i 6= j). We consider a path ω = (ω1, . . . , ωn) of connected subcycles of A such that for

ω1 = Ai, ωn = Aj and for any k ∈ [1, n− 1], ωk
n−→ ωk+1.

Let us consider k0 ∈ [1, n− 2] such that ωk0 = Al where l ≤ jsA, or in words ωk0 is a good

singleton of A. We claim that either ωk0+1 or ωk0+2 is a good singleton of A, and moreover

that in both cases the energy of this good singleton is equal to the energy of ωk0 .

Indeed, if ωk0+1 is not a good singleton, then either |ωk0+1| > 1 or ωk0+1 is a local

minimum for H. When |ωk0+1| > 1, it follows from remark R4 that necessarily ωk0+2 is a

good singleton. Also, it follows from (II)n that H(ωk0) = H(ωk0+2). On the other hand, in

the case where ωk0+1 is a local minimum for H, we saw in remark R5 that necessarily ωk0+2

is a singleton and that its energy is the same as the one of ωk0 .

It follows easily from these considerations that H(Ai) = H(Aj), and hence H(Aj) does

not depend on j ∈ [1, jsA].

The equalities (4.20) and (4.21) then follow readily from Lemma 2.5, from (II)n and

(I)n.

Proof of Theorem 4.11. Proof of item 1: we shall prove recursively that Condition Hn holds

for any n ≥ 0, which implies item 1. Since singletons are path–cycles, H0 is trivially true.

Note in particular that for any x ∈ S, the equality Hm({x}) = He({x}) holds true.

Let us now assume that Hn holds for a given n ≥ 0 and prove that Hn+1 holds. Consid-

ering R2, we restrict ourselves to the case where A ∈ Dn+1
? (and in particular |A| > 1); in

the remaining of the proof of Theorem 4.11, A will be such an element.

(IV )n+1 is a consequence of (4.20), (III)n and (II)n. Indeed, since |A| > 1, combining

the definition (3.8) of Hm and the induction hypothesis, we get the identity

Hn+1
m (A) = max{

(
min
∂A′

H −min
A′

H
)
∨ 0, A′ ∈ En, A′ ⊂ A}. (4.22)
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In the case where jsA = jA, then (4.22) immediately gives that Hm(A) = 0, which implies

(IV )n+1 using (4.20).

Assume now that jA > jsA. We note that one can restrict the optimization appearing

in the right hand side of (4.22) to subcycles A′ of A verifying A′ = Aj for j ∈ [jsA + 1; jA];

indeed, it follows from (I)n (in the case where |Aj| > 1) and from remark R5 (when |Aj| = 1)

that the quantity min∂A′ H −minA′ H is positive for such cycles and it is identically null as

soon as A′ is a good singleton.

For such an A′, the equality (4.21) implies that the quantity min∂A′ H does not depend

on A′ and is equal to maxAH. Hence one gets

Hn+1
m (A) = max

A
H − min

j∈[jsA+1,jA]
min
Aj

H.

Since En is a partition of S and since maxAH is reached on A \
⋃

1≤j≤jsA
Aj as shown in

(4.20), one gets minj∈[jsA+1,jA] minAj
H = minAH, and hence the equality (IV )n+1 holds in

this case as well.

(III)n+1 is a direct consequence of (II)n and (I)n. By Lemma 2.5, we get that all the

neighbors of A in En are singletons, and hence we have:

Hn+1
e (A) = inf

{a}∈En,a∈∂A
V n(A, {a}) = inf

{a}∈En,a∈∂A
H(a)−min

A
H

= min
∂A

H −min
A
H

where in the second equality we made use of (II)n.

(I)n+1 is a consequence of (III)n+1 and (IV )n+1. Indeed, we have to show that maxAH <

H(F (∂A)). Note that this is equivalent to showing that Hn+1
m (A) < Hn+1

e (A), which in turn

by definition of He(·) is equivalent to the fact that, for every A′ ∈ En+1:

min{V n
? (B,B′), B,B′ ∈ En, B ⊂ A,B′ ⊂ A′} > 0.

By contradiction, assume that there exist A′ ∈ En+1, A′ 6= A,B,B′ ∈ En, B ⊂ A,B′ ⊂ A′

such that V n
? (B,B′) = 0 (and of course A 6= A′); this implies that A ≥n+1 A′, which

contradicts the minimality of A for the order relation ≥n+1 (given the construction of A, this

minimality is necessarily strict).

(II)n+1 is a consequence of (IV )n+1, (III)n+1 and (II)n. Indeed, for a ∈ ∂A such that

{a} ∈ En+1, using the definition (3.9) of Vn, of (IV )n+1 and of (I)n, we get that:

V n+1(A, {a}) = max
A

H −min
A
H + min{V n

∗ (B, {a}), B ∈ En, B ⊂ A}. (4.23)

Note that we restricted the set on which we minimize V n
∗ in the right hand side of (4.23)

since in all other cases this quantity is infinite.
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Now we distinguish two cases.

In the case where the min in the right hand side of (4.23) is attained on a subcycle Aj0
of A such that j0 > jA, making use of (II)n and (III)n, we get:

min{V n
∗ (B, {a}), B ∈ En, B ⊂ A} = H(a)−min

Aj0

H − (min
∂Aj0

H −min
Aj0

H) = H(a)−min
∂Aj0

H.

(4.24)

Then we already noted that min∂Aj0
H = maxAH holds because j0 > jA and of equality

(4.21).

When the min in the right hand side of (4.23) is attained on a good singleton Aj1 with

j1 ∈ [1, jsA], one gets that

min{V n
∗ (B, {a}), B ∈ En, B ⊂ A} = (H(a)−H(Aj1))

+ = H(a)−max
A

H. (4.25)

Equation (4.25) holds because A satisfies (2.2), and hence (H(a) −H(Aj1))
+ = H(a) −

H(Aj1), and on the other hand H(Aj1) = maxAH from (4.20).

Finally, we have that V n+1({a}, A) = Hm({a})+min{V n({a}, Aj)−He({a}), j ∈ [1, jA]} =

min{V n({a}, Aj), j ∈ [1, jA]}. When this minimum is attained on a non–trivial subcycle of

A, one gets V n+1({a}, A) = 0 by (II)n, and when it is attained on a singleton {b0} involved in

the decomposition (4.19), using (I)n+1, one gets that V n+1({a}, A) = ((H(b0)−H(a))+ = 0,

thus in any case

V n+1({a}, A) = 0. (4.26)

Combining (4.23), (4.25), (4.24) and (4.26), we get (II)n+1, and hence the recursion is

completed. As noted above this completes the proof of item 1.

Now we prove item 2 of the theorem. Let us consider A a connected subset of S which

is not a singleton, and such that maxAH < min∂AH.

We introduce k0 := inf{k ≥ 1,∃A′ ∈ Ek, A ⊂ A′} and we denote by A′ the element of Ek0

such that A ⊂ A′. Since the recursion of section 3 is not stationary, k0 is well defined. To

show Theorem 4.11, it is enough to show that the reciprocal inclusion holds. We introduce

the decomposition of A′ into disjoint elements of Ek0−1 as we did in (4.20):

A′ =

jA′⊔
j=1

A′j, (4.27)

and we define jsA′ for A′ as we defined jsA for A in R3.

The inclusion A′ ⊂ A will hold as soon as we show that there exists an element a ∈ S
such that {a} is a good singleton for A′ and a ∈ A; indeed, we already proved in item 1

that A′ is a path cycle, hence combining Lemma 2.3 and equality (4.20), we remark that

A′ = U≤a. From Lemma 2.4, we thus get A′ ⊂ A.
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By the minimality of k0, A is not contained in any of the (A′j)j≤jA′ , and thus there exist

j1 and j2 in [1; jA′ ] such that both A ∩ A′j1 6= ∅ and A ∩ A′j2 6= ∅. A being connected, there

exists a path ω = (ω1, . . . , ωn) contained in A joining A ∩ A′j1 to A ∩ A′j2 (say ω1 ∈ Aj1 and

ωn ∈ Aj2); we then consider three cases:

1. either A′j1 or A′j2 is a good singleton, and then we are done.

2. either Aj1 or Aj2 is not a singleton, and then we assume by symmetry that |Aj1| > 1.

Let us consider l = infj≥1{ωj /∈ Aj1}; by Lemma 2.5, {ωl} is necessarily a subcycle of

A′, and by R4, {ωl} is a good singleton.

3. in the case where both Aj1 and Aj2 are not good singletons, then it follows from R5

that they cannot be connected and hence n ≥ 3. It follows from R5 as well that {ω2}
is necessarily a good singleton.

�
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[56] A. Trouvé, “Cycle decomposition and simulated annealing”, SIAM J. control and op-

timization 34, 966–986 (1996).
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