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Abstract

We consider a class of two-queue polling systems with exhaustive service, where the order in which the
server visits the queues is governed by a discrete-time Markov chain. For this model, we derive an expression
for the probability generating function of the joint queue length distribution at polling epochs. Based on these
results, we obtain explicit expressions for the Laplace-Stieltjes transforms of the waiting-time distributions and
the probability generating function of the joint queue length distribution at an arbitrary point in time. We also
study the heavy-traffic behaviour of properly scaled versions of these distributions, which results in compact and
closed-form expressions for the distribution functions themselves. The heavy-traffic behaviour turns out to be
similar to that of cyclic polling models, provides insights into the main effects of the model parameters when the
system is heavily loaded, and can be used to derive closed-form approximations for the waiting-time distribution
or the queue length distribution.

Keywords: Markovian routing, waiting-time distribution, queue length distribution, descendant set ap-
proach, heavy-traffic behaviour

1 Introduction
In this paper, we study a class of queueing systems that consist of two queues, which are attended by a single
server. The server visits the queues in order to provide service to customers there, and incurs positive random
switch-over times when it moves from one queue to the next. Such systems are commonly called polling systems,
and find their origin in a wealth of real-life applications, such as manufacturing environments and computer-
communication systems. For an overview of the literature on polling systems, their applications and standard
results on their analysis, we refer to surveys such as [2, 15, 20, 27].

Many studies in the literature assume that the server visits the queues in a cyclic (or in the case of two queues,
an alternating) order. This might in some cases, however, not be a realistic assumption, as the queue to be visited
next is determined by an external random environment. As such, we study the case where the order in which the
server visits the queues is governed by a Markov chain. Note that as a consequence, after a visit to a certain queue,
it is now possible for the server to resume service at the same queue, after having incurred a switch-over time.
Polling models with this Markovian routing mechanism occur for instance naturally in the modelling of cellular
data services that implement so-called opportunistic scheduling to profit from multi-user diversity [11, 26], which
is aimed to utilize fading and shadowing of cellular users within a single cell to optimize bandwidth efficiency [10].
The basic idea of opportunistic scheduling is that a time-slot (representing the right for transmission) is assigned
to the user with the highest instantaneous signal-to-noise ratio among all users in a cell. In this way, access to the
medium is randomly assigned to the multitude of users in a cell. Another example can be found in the context
of wireless random-access networks. So-called Carrier-Sense Multiple-Access Collision-Avoidance (CSMA-CA)
algorithms provide a common mechanism for governing the use of such a shared wireless medium in a distributed
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fashion. As is illustrated in [8], the dynamics of networks using these algorithms are under certain assumptions
probabilistically equivalent to polling systems with a Markovian routing mechanism. Apart from many other
applications that can be found in the field of computer-communication systems (see e.g. [13]), Markovian polling
systems may also be particularly useful in the modelling of production systems with machines processing multiple
product types. The type of product that a machine should prioritise for processing at a certain point (equivalently,
the queue that should be visited by the server at that point), may be dependent on the levels of external demand
for each product type, and is thus better modelled by a random environment than a round-robin assumption.

It is surprising that in the wide body of literature on polling systems hardly any studies can be found that
concern themselves with these so-called Markovian polling models. The reason for this may lie in the fact that
the analysis of Markovian polling systems is generally considered to be much more complex than that of cyclic
polling models. In particular, it is shown in [18] that the analysis of polling systems of which the queue length
vectors at appropriately chosen points in time do not constitute a multi-type branching process with immigration
(cf. [1]), is far less tractable than that of systems which do satisfy this so-called branching property. The few
studies that can be found include [7], in which an expression for the expected amount of work in the system at an
arbitrary moment is derived for a few service disciplines. This work is extended in [28], where expressions for the
moments of the (joint) queue lengths for the same service disciplines are found. More recently, these performance
measures have been derived for a much more general class of service disciplines in [8]. Results for a slightly more
general form of Markovian routing, where the routing probabilities may depend on the event whether a queue
is empty or not, are derived in [19]. In this paper, we consider the special setting of two-queue polling models,
where the queues are served exhaustively (i.e., the server will only start a switch-over period if the current queue
is completely empty). Although the branching property as described above does not hold for the complete class
of Markovian polling models, it does hold for this special setting, as will be described in greater detail in Remark
4.3. This allows for the derivation of explicit expressions for (transforms of) the complete waiting-time and queue
length distributions. To the best of the authors’ knowledge, this is the first explicit analysis of these distributions
in the context of Markovian polling models.

Initially, we will be concerned with the waiting-time and queue length distributions when the workload offered
to the server is such that the queues are stable. Studies on two-queue polling systems that do not satisfy the above-
mentioned branching property, mostly involve non-branching service disciplines, such as the k-limited service
discipline. The analysis in these papers, such as [5], oftentimes includes a solution to a Riemann-Hilbert boundary
value problem. We, however, follow an approach similar to the analysis of [29], which uses a recursive iteration
of a functional equation for the probability generating function (PGF) of the joint queue-length distribution at
moments the server starts a visit period, and as such avoids such a boundary value problem. We consider the case
of exhaustive service, meaning that the server will only conclude a visit period, if there are no more customers to
serve at the current queue. Although the exhaustive service discipline in principle fits the branching property, it
is the lack of a fixed visiting order that generally breaks down the branching property in the Markovian polling
setting.

We also study the behaviour of the system in a heavy-traffic regime, i.e., when the workload offered to the
server is scaled to such a proportion that the queues are on the verge of instability. Many techniques have been
proposed to obtain the heavy-traffic behaviour of polling models. In [22], several heavy-traffic limits have been
established by taking limits in known expressions for the Laplace-Stieltjes transform (LST) of the waiting-time
distribution. Alternatively, [16] provides similar results, by studying the behaviour of the descendant set approach
(a numerical computation method, cf. [14]) in the heavy-traffic limit. Another tool in the heavy-traffic analysis
of polling models is branching theory, theorems of which led to heavy-traffic results in [23]. Other methods for
obtaining heavy-traffic behaviour include perturbation techniques, which have been exploited in [3] to study a
specific class of non-branching polling models, and mean-value analysis (cf. [24]). In the heavy-traffic analysis
of this paper, we partly use the key ideas of [16].

The main contributions of this paper can be summarised as follows. Under the assumption of a stable system,
we obtain explicit expressions for several performance measures of the two-queue Markovian polling model with
exhaustive service. In particular, we derive explicit expressions for (transforms of) the waiting-time distributions
and the joint queue length distribution. Although these expressions consist of infinite products and are thus not
in closed form, the products converge fast so that truncation leads to accurate approximations. We also consider
the behaviour of the waiting-time and queue length distributions in a heavy-traffic regime. It turns out that, except
for some minor adjustments, the heavy-traffic behaviour of two-queue Markovian polling models with exhaustive
service is similar to that of cyclic polling models as derived in the literature. From a theoretical perspective, this
is interesting, because Markovian polling systems in their full generality do not satisfy the branching property.
From a practical perspective, this result is useful, as it not only provides closed-form approximations for several
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performance measures that perform well when the system is heavily loaded (as is usual in practice), but also gives
insights into the key effects of the model parameters on the waiting times and queue lengths.

The remainder of this paper is structured as follows. In Section 2, we provide a detailed model description
and the necessary notation. Section 3 derives the expressions for the mentioned performance measures under the
assumption of a stable system, by taking a functional equation for the PGF for the joint queue length distribution
at polling epochs as a starting point. Building on these results, we obtain the heavy-traffic behaviour of the system
in Section 4. Finally, we formulate our conclusions and provide directions for further research in Section 5.

2 Model description and notation
In this section, we give a description of the polling system that we consider, and we introduce the notation required.
We study a queueing system that consists of two infinite-buffer queues,Q1 andQ2, and a single server. Customers
arriving at Qi, also referred to as type-i customers, do so according to a Poisson process with intensity λi. The
generic service requirement of a type-i customer is represented by the random variable Bi, of which the LST is
given by B̃i(s) = E[e−sBi ] and the first two moments E[Bi] and E[B2

i ] are finite. The workload that Qi brings to
the system is denoted by ρi = λiE[Bi]. The aggregate workload offered to the server is denoted by ρ = ρ1 + ρ2.
Initially, we study the system in case the aggregate workload is less than one, so that the queues are stable. After
that, we study the system in the so-called heavy-traffic regime: the case where ρ tends to one, i.e., the point at
which the queues are at the verge of instability.

The single server can only serve customers of one queue at a time. Hence, after serving a given number of
customers at one queue (a visit period), the server will commence a switch-over period, also called a setup period,
to initiate a new visit period at any queue. Such a setup takes a random amount of time. In most studies on
two-queue polling systems, it is assumed that the server visits the queues in an alternating order. We, however,
adopt a more general server routing mechanism. We assume that when the server completes a visit period at Q1,
it commences with probability p1 ∈ [0, 1) a switch-over period to set up for yet another visit period at Q1. In the
other case (which occurs with probability 1− p1), the server sets up for a visit to Q2. Similarly, after visiting Q2,
the server prepares for another visit period at Q2 with probability p2 ∈ [0, 1), otherwise it will set up for service at
Q1. This particular routing regime captures the often-assumed alternating routing regime by taking p1 = p2 = 0.

Observe that this routing mechanism falls in the class of so-called Markovian routing mechanisms: the position
of the server is governed by a two-state discrete-time Markov chain of which the transition matrix has diagonal
elements p1 and p2. By calculating the limiting distribution of this Markov chain, one finds that a fraction π1 =

1−p2
2−p1−p2 of the switch-overs correspond to setups to Q1, and the remaining fraction π2 = 1−p1

2−p1−p2 are setups
to Q2. The probability ri,j that, provided the server is currently visiting Qj , the server visited Qi during the
previous visit period follows straightforwardly from these computations. It is trivial to see that r1,1 + r2,1 = 1

and r1,2 + r2,2 = 1. In particular, we have that r1,1 = p1π1

p1π1+(1−p2)π2
= p1, r1,2 = (1−p1)π1

(1−p1)π1+p2π2
= 1 − p2,

r2,1 = (1−p2)π2

p1π1+(1−p2)π2
= 1− p1 and r2,2 = (1−p1)π1

(1−p1)π1+p2π2
= p2.

Over the course of a visit period, the server serves the queues in an exhaustive manner. In other words, the
server will completely empty the queue, before it commences a switch-over period. To gain more insight in the
dynamics of the exhaustive service discipline, let Pi denote the duration of a busy period in an M/G/1 queue
with the same arrival process and service-time distribution as Qi. This busy period consists of the service of its
first customer, the services of the customers arriving during the service of the first customer (i.e., the children),
the services of the customers arriving during the service of the children (i.e., the grandchildren), and so forth. The
LST of Pi, denoted by P̃i(s) = E[e−sPi ], is well-known to satisfy the functional equation

P̃i(s) = B̃i(s+ λi(1− P̃i(s))). (1)

We denote the number of customers that arrive at Qj over the course of a busy period at Qi with Ki,j . Its PGF
K̃i,j(z) = E[zKi,j ] is given by

K̃i,j(z) =
∞∑
k=0

zk
∫ ∞
t=0

e−λjt
(λjt)

k

k!
dP(Pi < t) = P̃i(λj(1− z)).

If a server starts a visit period at Qi when there are n customers in that queue, the duration of that visit period
is the n-fold convolution of Pi. It is important to note that if the server sets up for service at the same queue
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afterwards, Qi is not necessarily empty at the start of the new visit period, as customers may have arrived over the
course of the intermediate switch-over period.

We assume the distribution of the durations of the switch-over periods to depend on the queue the server
just visited as well as the destination queue. In particular, we assume that a switch-over from Qi to Qj takes
a continuously distributed stochastic amount of time Si,j , of which the LST is given by S̃i,j(s) = E[e−sSi,j ],
i, j ∈ {1, 2}. The average duration of an arbitrary switch-over period incurred by the server is given by σ =∑2
i=1

∑2
j=1 ri,jπjE[Si,j ]. Let M (k)

i,j be the number of arriving type-k customers over a switch-over period from

Qi to Qj . Similar to the computations above, it can then be derived that the two-dimensional PGF M̃i,j(z1, z2) =

E[
∏2
k=1 z

M
(k)
i,j

k ] is given by

M̃i,j(z1, z2) =

∫ ∞
t=0

∞∑
n1=0

∞∑
n2=0

2∏
k=1

(
znkk e−λk

λnkk
nk!

)
dP(Si,j < t) = S̃i,j(λ1(1− z1) + λ2(1− z2)).

We assume all interarrival times, service times and switch-over times to be independent.
In the remainder of this article, we are interested in the waiting-time distributions and the queue length distri-

butions (including any customer in service) at several time epochs. Let Fi,j be the number of customers present
(waiting and in service) at Qj when the server starts a visit period at Qi (i.e., a polling epoch at Qi). The joint
distribution of Fi,1 and Fi,2 is represented by the two-dimensional PGF F̃i(z1, z2) = E[z

Fi,1
1 z

Fi,2
2 ]. Similarly,

Gi represents the number of type-i customers at a polling epoch of Qi, provided that the previous visit period
of the server was at Q3−i, and its PGF is given by G̃i(z) = E[zGi ]. The random variable Lj represents the
number of customers at Qj at an arbitrary point in time and the corresponding two-dimensional PGF is given by
L̃(z1, z2) = E[zL1

1 zL2
2 ]. The waiting time of a type-i customer that arrives at an arbitrary point in time is given by

Wi, and its LST is given by W̃i(s) = E[e−sWi ].
We analyse the system under stability conditions (ρ < 1) and heavy-traffic conditions (ρ ↑ 1). More specifi-

cally, in the latter regime we scale the total arrival rate λ1 + λ2 while the ratio λ2

λ1
remains fixed. In this way, the

heavy-traffic limit is uniquely defined. It is moreover convenient, for any variable x that is a function of ρ, to de-
note its value evaluated at ρ = 1 as x̂. For example, ρ̂i = ρi

ρ , so that ρ̂ = ρ̂1 + ρ̂2 = 1 and λ̂i = ρ̂i
E[Bi] . The waiting

times and queue lengths tend to infinity in heavy traffic, and as such their distributions are not well-defined in the
limiting case. Therefore, we study the distributions of the scaled waiting timesWi = (1 − ρ)Wi and the scaled
queue lengths Li = (1− ρ)Li. The LST of the scaled waiting time is given by W̃i(s) = E[e−sWi ]. Likewise, the
PGF of the scaled queue length is given by L̃i(z) = E[zLi ].

Finally, we use λ(z) throughout this article as short-hand notation for λ1(1− z1) + λ2(1− z2). Furthermore,
1{A} represents the indicator function of the event A. Any expression for an LST C̃(s) = E[e−sC ] that we derive
in this paper corresponding to any random variable C, holds for <(s) > 0. Likewise, any one-dimensional PGF
C̃(z1) = E[zC1 ] or two-dimensional PGF C̃(z1, z2) = E[

∏2
k=1 z

Ck
k ] derived in this paper holds for any z1 and z2

for which |z1| and |z2| do not exceed one.

3 Analysis for arbitrarily loaded systems
In this section, we derive explicit expressions for the waiting-time distributions of either queue and the joint queue
length distribution. In Section 3.1, we first obtain expressions for F̃i(z2, z2), the joint queue length PGF at a
polling epoch at Qi. These results ultimately lead in Section 3.2 to expressions for the quantities W̃1(s), W̃2(s)

and L̃(z1, z2). Throughout this section, we assume that ρ < 1, i.e., the case where the queues are stable. In
Section 4, we will study the limiting case ρ ↑ 1, the case where the system becomes critically loaded.

3.1 Joint queue length at polling epochs

To obtain explicit expressions for the PGF F̃i(z1, z2), we start with a functional equation for this function. Such a
functional equation has already been derived in [8] and [28] for a setting consisting of multiple queues and a wide
class of service disciplines. Applying these results to our case, we obtain

F̃1(z1, z2) = r1,1F̃1(K̃1,2(z2), z2)M̃1,1(z1, z2) + r2,1F̃2(z1, K̃2,1(z1))M̃2,1(z1, z2). (2)
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This equation can be seen to hold by the following observations. With probability ri,1, a visit to Q1 is preceded
by a visit period at Qi, during which each type-i customer initially present and all of its offspring is served (i.e.,
not only the customer himself, but also his children, grandchildren, and so on). Over the course of each service
of a type-i customer, a number of type-j customers, represented by the PGF K̃i,j(zj), arrives at Qj . During the
switch-over period Si,1 between the two visits, the population of customers in the system grows with a number of
arriving customers that is represented by M̃i,1(z1, z2). By similar observations, we have that

F̃2(z1, z2) = r1,2F̃1(K̃1,2(z2), z2)M̃1,2(z1, z2) + r2,2F̃2(z1, K̃2,1(z1))M̃2,2(z1, z2). (3)

We now develop explicit expressions for F̃1(K̃1,1(z2), z2) and F̃2(z1, K̃2,1(z1)), so that (2) and (3) in turn offer
explicit expressions for F̃1(z1, z2) and F̃2(z1, z2). To this end, we note that substituting z1 = K̃1,2(z2) in (2)
leads to

F̃1(K̃1,2(z2), z2) =
r2,1M̃2,1(K̃1,2(z2), z2)

1− r1,1M̃1,1(K̃1,2(z2), z2)
F̃2(K̃1,2(z2), K̃2,1(K̃1,2(z2))). (4)

Similarly, a substitution of z2 = K̃2,1(z1) in (3) leads to

F̃2(z1, K̃2,1(z1)) =
r1,2M̃1,2(z1, K̃2,1(z1))

1− r2,2M̃2,2(z1, K̃2,1(z1))
F̃1(K̃1,2(K̃2,1(z1)), K̃2,1(z1)). (5)

A combination of (4) and (5) gives

F̃1(K̃1,2(z2), z2) = a1(z2)F̃1(K̃1,2(f1(z2)), f1(z2)), (6)

where

a1(z2) =
r2,1M̃2,1(K̃1,2(z2), z2)

1− r1,1M̃1,1(K̃1,2(z2), z2)

r1,2M̃1,2(K̃1,2(z2), f1(z2))

1− r2,2M̃2,2(K̃1,2(z2), f1(z2))
and f1(z2) = K̃2,1(K̃1,2(z2)). (7)

Observe that (6) constitutes an expression for F̃1(K̃1,2(z2), ·) in terms of F̃1(K̃1,2(z2), ·) itself. Therefore, itera-
tion of (6) leads to

F̃1(K̃1,2(z2), z2) = F̃1(K̃1,2(f
(∞)
1 (z2)), f

(∞)
1 (z2))

∞∏
j=0

a1(f
(j)
1 (z2)), (8)

where f (0)1 (z2) = z2 and f (j)1 (z2) = f1(f
(j−1)
1 (z2)). By repeating the analysis above for F̃2(z1, K̃2,1(z1)), we

obtain that

F̃2(z1, K̃2,1(z1)) = F̃2(f
(∞)
2 (z1), K̃2,1(f

(∞)
2 (z1)))

∞∏
j=0

a2(f
(j)
2 (z1)), (9)

where

a2(z1) =
r1,2M̃1,2(z1, K̃2,1(z1))

1− r2,2M̃2,2(z1, K̃2,1(z1))

r2,1M̃2,1(f2(z1), K̃2,1(z1))

1− r1,1M̃1,1(f2(z1), K̃2,1(z1))
and f2(z1) = K̃1,2(K̃2,1(z1)), (10)

f
(0)
2 (z1) = z1 and f (j)2 (z1) = f2(f

(j−1)
2 (z1)).

Now that we have derived two explicit expressions for F̃1(K̃1,2(z2), z2) and F̃2(z1, K̃2,1(z1)), we show in the
following two lemmas that F̃1(K̃1,2(f

(∞)
1 (z2)), f

(∞)
1 (z2)) and F̃2(f

(∞)
2 (z1), K̃2,1(f

(∞)
2 (z1))) are well-defined

constants and that the infinite products actually converge.

Lemma 3.1. For z1, z2 ∈ {z ∈ C : |z| ≤ 1}, F̃1(K̃1,2(f
(∞)
1 (z2)), f

(∞)
1 (z2)) and F̃2(f

(∞)
2 (z1), K̃2,1(f

(∞)
2 (z1)))

are well-defined constants equal to one.

Proof. See Appendix A.
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Lemma 3.2. For z1, z2 ∈ {z ∈ C : |z| ≤ 1}, the products
∏∞
j=0 a1(f

(j)
1 (z2)) and

∏∞
j=0 a2(f

(j)
2 (z1)) converge.

Proof. See Appendix B.

Now that we have analysed F̃1(K̃1,2(z2), z2) and F̃2(z1, K̃2,1(z1)), we can derive expressions for F̃1(z1, z2)

and F̃2(z1, z2) as follows.

Theorem 3.3. Explicit expressions for F̃1(z1, z2) and F̃2(z1, z2) involving converging infinite products are given
by

F̃1(z1, z2) = r1,1M̃1,1(z1, z2)
∞∏
j=0

a1(f
(j)
1 (z2)) + r2,1M̃2,1(z1, z2)

∞∏
j=0

a2(f
(j)
2 (z1)) (11)

and

F̃2(z1, z2) = r1,2M̃1,2(z1, z2)
∞∏
j=0

a1(f
(j)
1 (z2)) + r2,2M̃2,2(z1, z2)

∞∏
j=0

a2(f
(j)
2 (z1)). (12)

Proof. The lemma follows by combining (2), (3), (8), (9) and Lemmas 3.1 and 3.2.

We use the expressions of Theorem 3.3 to obtain the (PGF of the) joint queue length distribution at an arbitrary
point in time in Section 3.2. We conclude this section with several remarks.

Remark 3.1. The infinite products that arise in (11) and (12) have a clear interpretation. To see this, observe
that when substituting z2 = 1 in (11), one obtains F̃1(z1, 1) = E[z

F1,1

1 ], the generating function of the type-1
customers currently present at a polling epoch of Q1. This yields

F̃1(z1, 1) = r1,1M̃1,1(z1, 1) + r2,1M̃2,1(z1, 1)

∞∏
j=0

a2(f
(j)
2 (z1)), (13)

since a1(1) = f1(1) = 1. This expression can be interpreted as follows. At the end of the previous visit period at
Q1, there are no type-1 customers in the system. Thus, with probability r1,1, the number of type-1 customers that
have arrived since the previous visit period atQ1, did so over the course of a switch-over period S1,1. This number
of customers is represented by the generating function M̃1,1(z1, 1). With probability r2,1, the previous visit period
was at Q2, so that F̃1(z1, 1) equals G1 in this case, i.e., the number of type-1 customers present at a polling epoch
of Q1 given that the server’s previous visit was at Q2. This number of type-1 customers present not only consists
of type-1 customers that arrived during a switch-over period S2,1, but also type-1 customers that arrived between
the end of the previous visit period at Q1 and the end of the latest visit period at Q2. As the former number of
customers is evidently represented by M̃2,1(z1, 1), the infinite product

∏∞
j=0 a2(f

(j)
2 (z1)) must be the PGF of the

latter category of customers. From this it also follows that G̃1(z) = M̃2,1(z, 1)
∏∞
j=0 a2(f

(j)
2 (z)).

Another way to see that the infinite product
∏∞
j=0 a2(f

(j)
2 (z1)) represents the number of arriving type-1 cus-

tomers between the last visit period end at Q1 and subsequently the last visit period end at Q2 is the following.
Any type-1 customer currently present (i.e., at a polling epoch of Q1) is a customer that either arrived during a
switch-over period (an ancestor) or belongs to the offspring of another type-1 or type-2 customer that arrived dur-
ing a switch-over period in the past (a descendant). The currently present type-1 customers that are (descendants
of) ancestors that arrived during a particular period in the past are referred to as the contribution of that period
to the current polling epoch. The expression a2(z1) (cf. (10)) now represents the complete contribution of the
period that lasted until the end of the last visit to Q2, and started at the most recent visit to Q2 before that time that
directly preceded a Q1 visit. This period starts with a switch-over period S2,1, of which the contribution is easily
seen to be given by M̃2,1(f2(z1), K̃2,1(z1)). After that, a geometric number of switch-over periods from Q1 to
Q1 occur, of which the (PGF of the) contribution is given by

∞∑
k=0

r2,1r
k
1,1M̃

k
1,1(f2(z1), K̃2,1(z1)) =

r2,1

1− r1,1M̃1,1(f2(z1), K̃2,1(z1))
.

Similarly, the contribution of the succeeding switch-over period S̃1,2 and the geometric number of switch-over
periods from Q2 to Q2 are given by M̃1,2(z1, K̃2,1(z1)) and r1,2

1−r2,2M̃2,2(z1,K̃2,1(z1))
, respectively. The product
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of these expressions forms a2(z1) = a2(f
(0)
2 (z1)), the contribution of the latest ‘inter visit-end period’ of Q2.

Based on this, it not hard to see, by the nature of f2(z1), that a2(f
(1)
2 (z1)) represents the contribution of the inter

visit-end period preceding the latest inter visit-end period. Extending this observation, a2(f
(j)
2 (z1)) represents

the contribution of the j-th to last inter visit-end period of Q2. As the customers currently present at Q1 can be
the contribution of any inter visit-end period of Q2 in the past, the number sought is given by

∏∞
j=0 a2(f

(j)
2 (z1)),

which represents the contribution of all inter visit-end periods that have past. An interpretation for a1(f
(j)
1 (z2))

can be derived in a similar way.

Remark 3.2. Views similar to the contribution interpretation as presented in Remark 3.1 have in the past led
to numerical methods for several systems, such as the descendant set approach as developed in [14] for cyclic
polling systems. It is shown there that by truncating the infinite products, accurate approximations of (the PGFs
of) the marginal queue length distribution arise. This supports numerical observations that the infinite-product
expressions as derived in this paper give rise to efficient numerical means of computing queue length distributions.

3.2 Expressions for the waiting-time distribution and the joint queue length distribution

Now that we have derived an expression for the PGF F̃i(z1, z2) pertaining to the queue length at a polling epoch
of Qi, we use these results to obtain W̃i(s), the LST of the waiting-time distribution of type-i customers, and
L̃(z1, z2), the PGF of the joint queue length at an arbitrary point in time.

3.2.1 Analysis of W̃i(s)

To extract an expression for W̃i(s) from the expressions found in Section 3.1, we use the observation given in [28,
pp. 90–91] that the analysis found in [20, Section 4.3] applied to Markovian polling systems leads to

W̃1(λ1(1− z)) =
π1(1− ρ)(1− F̃1(z, 1))

σλ1(B̃1(λ1(1− z))− z)
and W̃2(λ2(1− z)) =

π2(1− ρ)(1− F̃2(1, z))

σλ2(B̃2(λ2(1− z))− z)
. (14)

where σ, as defined in Section 2, denotes the average duration of an arbitrary switch-over period. This observation
leads to expressions for W̃i(s) as stated in the following theorem.

Theorem 3.4. An explicit expression for W̃j(s) involving converging infinite products is given by

W̃j(s) =
πj(1− ρ)

σ(s− λj(1− B̃j(s)))

(
1−

2∑
i=1

ri,jS̃i,j(s)

(
1{i=j} + 1{i6=j}

∞∏
k=0

ai

(
f
(k)
i (1− s

λj
)

)))
. (15)

Proof. By substituting s = λ1(1− z) and s = λ2(1− z), respectively, in (14), we obtain

W̃1(s) =
π1(1− ρ)(1− F̃1(1− s

λ1
, 1))

σ(s− λ1(1− B̃1(s)))
and W̃2(s) =

π2(1− ρ)(1− F̃2(1, 1− s
λ2

))

σ(s− λ2(1− B̃2(s)))
. (16)

Combining these expressions with (13) and its equivalent for F̃2(1, z2) leads to the theorem.

3.2.2 Analysis of L̃(z1, z2)

To obtain L̃(z1, z2), we use an approach that is introduced in [6] and already applied in [8] to Markovian polling
systems with an arbitrary number of queues. Before we derive a PGF of the joint queue length at an arbitrary point
in time, we first regard X̃i(z1, z2) = E[z

Xi,1
1 z

Xi,2
2 ], the PGF of the queue lengths Xi,1 and Xi,2 of Q1 and Q2 at

an arbitrary point during a visit period at Qi. By applying the results of [8, Section 3.2] to our setting, we obtain
that

X̃1(z1, z2) =
π1(1− ρ)

ρ1σ

z1(F̃1(z1, z2)− F̃1(K̃1,2(z2), z2))

z1 − B̃1(λ(z))

1− B̃1(λ(z))

λ(z)
(17)
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and

X̃2(z1, z2) =
π2(1− ρ)

ρ2σ

z2(F̃2(z1, z2)− F̃2(z1, K̃2,1(z1)))

z2 − B̃2(λ(z))

1− B̃2(λ(z))

λ(z)
. (18)

Furthermore, the results of [8, Section 3.2] reveal that Ỹi,j(z1, z2) = E[z
Yi,j,1
1 z

Yi,j,2
2 ], the PGF of the queue lengths

Yi,j,1 and Yi,j,2 of Q1 and Q2 at an arbitrary point during a switch-over period from Qi to Qj is given by

Ỹ1,j(z1, z2) = F̃1(K̃1,2(z2), z2)
1− M̃1,j(z1, z2)

λ(z)E[S1,j ]
(19)

and

Ỹ2,j(z1, z2) = F̃2(z1, K̃2,1(z1))
1− M̃2,j(z1, z2)

λ(z)E[S2,j ]
. (20)

We now combine the expressions (17)–(20) into one expression for L̃(z1, z2), the PGF of the joint queue length
at an arbitrary point in time. Observe that the server serves Qi a fraction ρi of the time. In the remaining fraction
1 − ρ of the time, the server is setting up for service at another queue. Of the time the server is in a switch-over
period, he spends a fraction ri,jπjE[Si,j ]

σ setting up from Qi to Qj . Therefore, we have that

L̃(z1, z2) =

2∑
i=1

ρiX̃i(z1, z2) +
1− ρ
σ

2∑
j=1

ri,jπjE[Si,j ]Ỹi,j(z1, z2)

 . (21)

This leads to the following theorem.

Theorem 3.5. An explicit expression for L̃(z1, z2) involving converging infinite products is given by

L̃(z1, z2) =
1− ρ
λ(z)σ

2∑
i=1

2∑
j=1

πj

(zj(1− B̃j(λ(z)))

zj − B̃j(λ(z))
(ri,jM̃i,j(z1, z2)− 1{i=j})

+ ri,j(1− M̃i,j(z1, z2))
) ∞∏
k=0

ai(f
(k)
i (z3−i)).

Proof. The theorem follows by combining (8), (9), Lemma 3.1 and Theorem 3.3 with (17)–(21).

4 Heavy-traffic asymptotics

In Section 3, we have derived expressions for the LSTs of the waiting-time distributions and the PGF of the
joint queue length distribution. These expressions are suitable for computational purposes, as theoretical and
numerical evidence shows that the infinite products contained in these expressions converge very fast. However,
the expressions are not in closed form, and the PGFs and the LSTs found are hard to invert. In an effort to obtain
closed-form expressions for the distributions themselves, we consider the heavy-traffic asymptotics of the system,
i.e. the behaviour of the system when ρ ↑ 1. Recall that we study the case where the heavy-traffic limit ρ ↑ 1 is
taken by scaling the total arrival rate λ1+λ2 such that the ratio λ2

λ1
remains fixed, so that λ̂2

λ̂1
= λ2

λ1
, with λ̂i as defined

in Section 2. In this regime, the waiting times and the queue lengths tend to infinity. Therefore, we now study
the scaled waiting timesWi and the scaled queue lengths Li and obtain closed-form expressions directly for their
distributions. These expressions are not only easy to implement, but they also give insight into the primary effects
of the model parameters on the waiting times and queue lengths, when the system operates under a heavy load.
In Section 4.1 we pose conjectures concerning the heavy-traffic behaviour of the waiting times and queue lengths
incurred by the customers based on previous results for cyclic polling systems and some insightful observations.
Subsequently, we prove in Section 4.2 that the conjectures posed in fact hold.
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4.1 Initial study of the heavy-traffic behaviour

Before we study the heavy-traffic behaviour of the model in its full generality, we first consider the degenerate
case p1 = p2 = 0 of our model. Based on this, we will pose a conjecture for the general case. Note that for
p1 = p2 = 0, the server always switches from Q1 to Q2 or from Q2 to Q1. Thus, in this particular case, the server
follows a fixed alternating (or cyclic) routing mechanism. The heavy-traffic behaviour of cyclic polling models
that are of a branching type and consist of an arbitrary number of queues has already been established in e.g.
[16, 22, 23]. Translating this to our setting with two queues, exhaustive service and cyclic routing (p1 = p2 = 0),
these results readily imply the following.

Proposition 4.1. For p1 = p2 = 0, the LST of the limiting scaled waiting-time distribution is given by

lim
ρ↑1
W̃i(s) =

1

s(1− ρ̂i)(E[S1,2] + E[S2,1])

(
1−

(
µi

cyc

µicyc + s

)αcyc)
,

where

αcyc =
2ρ̂1ρ̂2(E[S1,2] + E[S2,1])

λ̂1E[B2
1 ] + λ̂2E[B2

2 ]
and µicyc =

2ρ̂i

λ̂1E[B2
1 ] + λ̂2E[B2

2 ]
.

Equivalently,

lim
ρ↑1

P(Wi ≤ t) = P(UI ≤ t),

where U is a uniformly [0, 1] distributed random variable, I is a Gamma distributed random variable with shape
parameter αcyc + 1 and scale parameter µcyc

i , and U and I are independent.

The given distribution function immediately follows from inversion of the limiting LST. We observe that for
the cyclic system, the complete heavy-traffic distribution of the waiting time only depend on the switch-over times
through their first moments. In fact, the scaled waiting-time distribution only depends on E[S1,2] + E[S2,1], the
first moment of the total switch-over time incurred between two polling epochs at Q1.

Next, we observe for the general case (i.e. 0 ≤ p1, p2 < 1) the following. A period between two polling
epochs at Q1 can be divided in a number of subperiods:

(a) The first visit period at Q1 after having visited Q2;

(b) A geometric (p1) number of switch-over periods from Q1 to Q1 and subsequent ‘revisit’ periods at Q1;

(c) The switch-over period from Q1 to Q2;

(d) The first visit period at Q2 after having visited Q1;

(e) A geometric (p2) number of switch-over periods from Q2 to Q2 and subsequent ‘revisit’ periods at Q2;

(f) The switch-over period from Q2 to Q1.

The subperiods (a), (c), (d), (f) are also present in the cyclic case of p1 = p2 = 0. We thus focus on the
subperiods (b) and (e). As a revisit period at Qi only consists of the time needed to serve all type-i customers
(and their offspring) that arrived during the preceding switch-over period, its LST is easily seen to be given by
S̃i,i(λi(1− P̃i(s))). However, the duration of the revisit period, even if ρ ↑ 1, is finite, since the number of type-i
customers that arrive during the previous switch-over period (the duration of which is obviously finite) is finite as
well. As such, the contribution of the duration of the revisit period to the scaled waiting time is negligibly small.
In mathematical terms, this is tantamount to realising that limρ↑1 S̃i,i(λi(1− P̃i((1− ρ)s))) = 1. In other words,
in heavy traffic, the significance of the subperiods (b) and (e) can be reduced to simply the geometric (pi) number
of switch-over periods from Qi to Qi.

Note that, if one would indeed exclude the revisit periods from the subperiods (b) and (e), the system can be
interpreted as a cyclic polling model. The switch-over period fromQ1 toQ2 in this cyclic equivalent then consists
of a geometric (p1) number of switch-over periods from Q1 to Q1 and a switch-over period from Q1 to Q2 of
our model. Similarly, the switch-over period from Q2 to Q1 in the cyclic equivalent consists of a geometric (p2)
number of switch-over periods from Q2 to Q2 and a subsequent switch-over period from Q2 to Q1.
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Finally, we observe the first moment of the total switch-over time incurred between two polling epochs at Q1

in our case is given by

E[Stot] =
∞∑
i=0

∞∑
j=0

(iE[S1,1] + E[S1,2] + E[S2,1] + jE[S2,2])(1− p1)pi1(1− p2)pj2

=
p1

1− p1
E[S1,1] + E[S1,2] + E[S2,1] +

p2
1− p2

E[S2,2]. (22)

Combining all of the observations above, it is reasonable to conjecture that the heavy-traffic behaviour of the
general case is very similar to the heavy-traffic behaviour as derived in Proposition 4.1 for the cyclic case, except
that the term E[S1,2] + E[S2,1] should be replaced by E[Stot]. We formulate the conjecture more precisely below,
but we present it as a theorem, as a rigorous proof of this statement will be given in Section 4.2.

Theorem 4.2. For 0 ≤ p1, p2 < 1, the LST of the limiting scaled waiting-time distribution is given by

lim
ρ↑1
W̃i(s) =

1

s(1− ρ̂i)E[Stot]

(
1−

(
µi

µi + s

)α)
, (23)

where

α =
2ρ̂1ρ̂2E[Stot]

λ̂1E[B2
1 ] + λ̂2E[B2

2 ]
, µi =

2ρ̂i

λ̂1E[B2
1 ] + λ̂2E[B2

2 ]
(24)

and E[Stot] is given in (22). Equivalently,

lim
ρ↑1

P(Wi ≤ t) = P(UI ≤ t), (25)

where U is a uniformly [0, 1] distributed random variable, I is a Gamma distributed random variable with shape
parameter α+ 1 and scale parameter µi, and U and I are independent.

Based on this conjecture concerning the scaled waiting-time distribution, we also pose a conjecture for the
scaled queue length distribution. From Little’s law, it is immediate that E[Li] = λ̂iE[Wi]. Furthermore, in
many queueing models under heavy-traffic conditions, the scaled virtual waiting time processes and queue length
processes exhibit so-called state-space collapse: the one process is in heavy traffic essentially the same as the
other process multiplied by a scalar constant (cf. [17]). It is thus reasonable to conjecture that in heavy traffic the
distribution of Li equals the distribution ofWi scaled by a factor λ̂i. This leads to the following statement, which
is again stated as a theorem, since a rigorous proof will be given in Section 4.2.

Theorem 4.3. For 0 ≤ p1, p2 < 1, the limiting scaled marginal queue length distribution is given by

lim
ρ↑1

P(Li ≤ t) = P(UI ≤ t),

where U is a uniformly [0, 1] distributed random variable, I is a Gamma distributed random variable with shape
parameter α+ 1 and scale parameter µi

λ̂i
(α and µi as defined in (24)). Furthermore, the random variables U and

I are independent.

Remark 4.1. Besides the distribution of a Uniform times a Gamma random variable, the limiting distribution of
(1 − ρ)Wi as given in Theorem 4.2 can also be interpreted as the residual (overshoot) of a Gamma distribution.
To see this, observe that (23) can be rewritten as

lim
ρ↑1
W̃i(s) =

1−
(

µi
µi+s

)α
s αµi

.

As ( µi
µi+s

)α is the LST of a Gamma (α, µi) distribution with first moment α
µi

, the limiting distribution constitutes
the residual of a Gamma distribution with shape parameter α and scale parameter µi. A similar observation holds
for the limiting distribution of (1− ρ)Wi in the cyclic case as provided in Proposition 4.1.
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Remark 4.2. Theorems 4.2 and 4.3 immediately can be used as approximations for the waiting-time distributions
and queue length distributions in stable systems with a load ρ̄ < 1:

P(Wi <
t

1− ρ̄
) ≈ lim

ρ↑1
P(Wi < t) and P(Li <

x

1− ρ̄
) ≈ lim

ρ↑1
P(Li < x).

As shown in [16], approximations of this type are reasonably accurate for heavily loaded polling models (i.e. a
load close to one). This is not surprising, as the approximation becomes exact by construction as ρ̄ tends to one.
Moreover, it is interesting to note that the limiting distributions of the scaled waiting times and queue lengths only
depend on the first two moments of the service-time distribution as well as the first moment of the total switch-over
time between two polling epochs at Q1. They do not require higher moments, and are thus useful for practical
purposes, as in reality information about third- and higher-order moments is often hard to get.

4.2 Proofs of Theorems 4.2 and 4.3
In this section, we prove Theorems 4.2 and 4.3. For the former theorem, we rely in part on the results found
in [16]. That paper provides an analysis of the heavy-traffic behaviour of periodic polling systems, of which
the marginal queue length distribution at polling epochs can be (numerically) computed by the descendant set
approach (cf. [14]), by analysing the mechanics of this technique in the heavy-traffic regime. The results that we
particularly rely on are [16, Theorems 3 and 4], which give the limiting behaviour of a marginal queue length H
of Q1 observed at predefined epochs in time, of which the PGF H̃(z) = E[zH ] can be written as

H̃(z) =
∞∏
c=0

R̃1

(
λ1(1− Ã1,c−1(z)) + λ2(1− Ã2,c(z))

)
R̃2

(
λ1(1− Ã1,c−1(z)) + λ2(1− Ã2,c−1(z))

)
, (26)

where R̃1(s) and R̃2(s) are LSTs of two arbitrary positive random variables R1 and R2,

Ã1,c(z) = P̃1(λ2(1− Ã2,c(z))) = K̃1,2(Ã2,c(z)), Ã1,−1(z) = z,

Ã2,c(z) = P̃2(λ1(1− Ã1,c−1(z))) = K̃2,1(Ã1,c−1(z)), Ã2,−1(z) = 1, (27)

and P̃i(s) as defined in Section 2. The results of [16] state that under these conditions, (1 − ρ)H converges
in distribution, as ρ ↑ 1, to a Gamma distribution with shape parameter 2ρ̂1ρ̂2(E[R1]+E[R2])

λ̂1E[B2
1 ]+λ̂2E[B2

2 ]
and scale parameter

2ρ̂i
λ̂i(λ̂1E[B2

1 ]+λ̂2E[B2
2 ])

. Furthermore, it is stated that limρ↑1 E[(1 − ρ)kHk] coincides with the k-th moment of this
distribution.

We have now only stated the results of [16] applied to two-queue polling systems with alternating and exhaus-
tive service. A more general statement for polling systems with a general number of queues and periodic routing
is shown to hold in [16] by exploiting several useful observations based on the descendant set approach.

As noted in Remark 3.2, however, the expressions that we obtained for the PGF of the queue length distribution
in Section 3 allow for an interpretation in the spirit of the descendant set approach. As such, the results of [16] as
stated above almost directly lead to the following lemma pertaining to Gi, the number of type-i customers in the
system at a polling epoch of Qi that follows a visit period at Q3−i.

Lemma 4.4. The distribution of (1 − ρ)Gi converges, as ρ ↑ 1, in distribution to a Gamma distribution with
shape parameter α and scale parameter µi

λ̂i
, where α and µi are defined in (24). Furthermore, we have that

limρ↑1 E[(1− ρ)kGki ] coincides with the k-th moment of this distribution.

Proof. We focus on the limiting distribution of (1 − ρ)G1. In Remark 3.1, we already concluded that G̃1(z) =

M̃2,1(z, 1)
∏∞
j=0 a2(f

(j)
2 (z)). With some effort, it is straightforward to see that alternatively this can be written as

G̃1(z) = H̃(z)
1− r1,1M̃1,1(z, 1)

r2,1M̃2,1(z, 1)
, (28)

with H̃(z) as in (26), where

R̃j(s) = S̃j,3−j(s)
rj,3−j

1− r3−j,3−jS̃3−j,3−j(s)
,
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i.e., Rj is chosen to be the convolution of a switch-over time from Qj to Q3−j and a geometric (r3−j,3−j) number
of switch-over times from Q3−j to Q3−j . From this definition, it is easily verified that E[R1] + E[R2] = E[Stot].
As limρ↑1 M̃1,1(z1−ρ, 1) = limρ↑1 M̃1,2(z1−ρ, 1) = 1, it is clear by (28) that the PGF of the scaled distribution
G̃1(z1−ρ) = E[z(1−ρ)G1 ] satisfies limρ↑1 G̃1(z1−ρ) = limρ↑1 H̃(z1−ρ). Thus, the distributions of the scaled
versions of G1 and H coincide in the heavy-traffic limit. For i = 1, the lemma now follows from the results of
[16] as described above. For i = 2, the lemma follows by interchanging indices.

Now that we have established the heavy-traffic behaviour of Gi, we are able to prove Theorem 4.2 by making
use of (16).

Proof of Theorem 4.2. Again, we focus on the case i = 1 with the understanding that the proof for the case i = 2
follows by interchanging indices. By (13) and (16), we have that

lim
ρ↑1
W̃1((1− ρ)s) = lim

ρ↑1

π1(1− ρ)

σ((1− ρ)s− λ1(1− B̃1((1− ρ)s)))

× lim
ρ↑1

(
1− r1,1M̃1,1

(
1− (1− ρ)s

λ1
, 1

)
− r2,1G̃1

(
1− (1− ρ)s

λ1

))
. (29)

By applying L’Hôpital’s rule and observing that π1

σ = (r2,1E[Stot])−1, we obtain that

lim
ρ↑1

π1(1− ρ)

σ((1− ρ)s− λ1(1− B̃1((1− ρ)s)))
= lim

ρ↑1

−π1
σs(−1 + λ1E[B1e−(1−ρ)sB1 ])

=
1

r2,1s(1− ρ̂1)E[Stot]
.

Furthermore, it is clear that limρ↑1 M̃1,1(1− (1−ρ)s
λ1

, 1) = 1. Deriving limρ↑1 G̃1(1− (1−ρ)s
λ1

) however takes a bit
more effort. By invoking a Taylor expansion in G1, we have that

lim
ρ↑1

G̃1(1− (1− ρ)s

λ1
) = lim

ρ↑1
E[(1− (1− ρ)s

λ1
)G1 ] = lim

ρ↑1
E[
∞∑
k=0

logk(1− (1−ρ)s
λ1

)Gk1

k!
].

To further reduce this expression, observe that a Taylor expansion in ρ yields log(1−(1−ρ)c) = −
∑∞
j=1

(1−ρ)jcj
j

for any c ∈ R. As such,

lim
ρ↑1

G̃1(1− (1− ρ)s

λ1
) = lim

ρ↑1
E[
∞∑
k=0

(−1)k(
∑∞
j=1(1− ρ)jsjλ−j1 /j)kGk1

k!
]. (30)

Note, however, that due to Lemma 4.4, we have for any j > k that limρ↑1 E[(1 − ρ)jGk1 ] = limρ↑1(1 −
ρ)j−k limρ↑1 E[(1 − ρ)kGk1 ] = 0. Therefore, second- and higher order terms of the inner sum of (30) disap-
pear in the limit, so that the expression as a whole reduces to

lim
ρ↑1

G̃1(1− (1− ρ)s

λ1
) = lim

ρ↑1
E[
∞∑
k=0

(−1)k(1− ρ)kskλ−k1 Gk1
k!

] = lim
ρ↑1

E[e−(1−ρ)
s
λ1
G1 ]

=

(
µ1

µ1 + s

)α
,

where the last equality follows from Lemma 4.4. By combining the limits found above, we can reduce (29) to

lim
ρ↑1
W̃1(s) =

1

r2,1s(1− ρ̂1)E[Stot]

(
1− r1,1 − r2,1

(
µ1

µ1 + s

)α)
,

which is equivalent to (23). Equation (25) then follows by inversion of the LST.

Now that Theorem 4.2 is proved, Theorem 4.3 follows almost immediately by the proof below.

Proof of Theorem 4.3. We make use of the distributional form of Little’s law (cf. [12]), which states that

L̃i(z) = W̃i(λi(1− z))B̃i(λi(1− z)).
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As such, we have that

lim
ρ↑1
L̃i(z) = lim

ρ↑1
L̃i(z

1−ρ) = lim
ρ↑1

W̃i(λi(1− z1−ρ))B̃i(λi(1− z1−ρ)) = lim
ρ↑1
W̃i

(
λi(1− z1−ρ)

1− ρ

)
. (31)

As limρ↑1
λi(1−z1−ρ)

1−ρ = −λ̂i log(z), a combination of Theorem 4.2 and (31) now implies that

lim
ρ↑1
L̃i(z) =

1

−λ̂i log(z)(1− ρ̂i)E[Stot]

(
1−

(
µi

µi − λ̂i log(z)

)α)
.

The latter expression is the PGF of the distribution mentioned in the theorem and this concludes the proof.

Remark 4.3. The striking similarity between the heavy-traffic asymptotics of cyclic polling systems and those of
the class of systems that we consider may in part be explained by the following. Despite the fact that Markovian
polling systems generally do not satisfy the branching property as introduced in Section 1, the subset of two-queue
exhaustive models does actually satisfy this property. More specifically, in the model that we consider in this pa-
per, the joint queue length process observed at Qi polling epochs constitutes a multi-type branching process with
immigration (see e.g. [1]). As a consequence, this model fits in the framework considered in [23], and Lemma
4.4 follows alternatively from [23, Theorem 5] by taking the particle offspring functions f (i)(z1, z2) and the im-
migration function g(z1, z2) as introduced in [23, Equations (3) and (4)] equal to f (1)(z1, z2) = K̃1,2(K̃2,1(z1)),

f (2)(z1, z2) = K̃2,1(z1) and g(z1, z2) = a2(z1)
M̃2,1(z1,z2)

M̃2,1(f2(z1),K̃2,1(z1))
.

5 Conclusions and topics for further research

In this paper, we have obtained expressions for (the LSTs of) the waiting-time distributions of type-i customers
and (the PGF of) the joint queue length distribution for two-queue Markovian polling systems with exhaustive
service. Although these expressions are of independent interest and are suitable for implementation purposes, we
have also used these expressions as a basis to obtain the heavy-traffic behaviour of the system. The established
heavy-traffic asymptotics provide insights into the key effects of the model parameters when the system is heavily
loaded and turn out to be very similar to the heavy-traffic asymptotics of cyclic polling models. This analysis
provides closed-form heavy-traffic approximations directly for the distribution functions of the waiting times and
the queue lengths.

The results obtained give rise to a variety of directions for further research. These avenues of further research
include the study of the model with more than two queues. Although an equivalent of Theorem 3.3 seems hard
to find for this case, functional equations similar to (2) and (3) exist for a larger number of queues. A heavy-
traffic analysis may be found by carefully inspecting the behaviour of this functional equation under heavy-traffic
scalings.

Another assumption that one might wish to relax is the assumption of exhaustive service at both queues.
Although an analysis in the spirit of Section 3 also seems hard to perform when steering away from the exhaustive
assumption, preliminary investigations of the authors suggest that the heavy-traffic limits of the waiting times
and queue lengths still allow for compact and closed-form expressions. For instance, in the case of two-queue
Markovian models with gated service (where, during a visit period, the server only serves the customers that
were present at the start of it), the heavy-traffic limits seem to coincide with the heavy-traffic limits of a cyclic
polling model in a similar way as established in this paper for the exhaustive case. The service discipline of
this cyclic model, however, amounts to the κ-gated discipline as introduced in [25], but where κ is a geometric
random variable rather than a constant. As this ‘geometric gated’ service discipline defies the branching property,
heavy-traffic asymptotics for the cyclic equivalent are not readily available in the literature, and thus require more
study.

A final suggestion for further research is the refinement of the closed-form approximations as given in Remark
4.2. These approximations perform very well for heavily loaded models due to their exact behaviour in the heavy-
traffic limit, but their performance degrades when the load offered to the system is only moderate. To this end,
one may consider to construct approximations by interpolating between the found heavy-traffic asymptotics and
light-traffic behaviour based on the actual offered load in the spirit of [4] and [9].
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A Proof of Lemma 3.1
Proof. We first focus on the value of

∣∣∣1− f (∞)
1 (z2)

∣∣∣ = limj→∞

∣∣∣1− f (j)1 (z2)
∣∣∣. For arbitrary j > 0, we have for

any z2 in the unit circle that∣∣∣1− f (j)1 (z2)
∣∣∣ =

∣∣∣1− f1(f j−11 (z2))
∣∣∣

=

∣∣∣∣∫ ∞
t=0

(1− e−λ1(1−K̃1,2(f
(j−1)
1 (z2)))t)dP(P2 < t)

∣∣∣∣
≤
∫ ∞
t=0

∣∣∣1− e−λ1(1−K̃1,2(f
(j−1)
1 (z2)))t

∣∣∣ dP(P2 < t),

where the inequality constitutes the triangle inequality. Note that |1− e−x| ≤ |x| for any x ∈ {z ∈ C : <(z) >
0}, so that

∣∣∣1− f (j)1 (z2)
∣∣∣ ≤ ∫ ∞

t=0

λ1t
∣∣∣1− K̃1,2(f

(j−1)
1 (z2))

∣∣∣ dP(P2 < t)

= λ1E[P2]
∣∣∣1− K̃1,2(f

(j−1)
1 (z2))

∣∣∣
≤ λ1E[P2]

∣∣∣∣∫ ∞
t=0

(1− e−λ2(1−f(j−1)
1 (z2))t)dP(P1 < t)

∣∣∣∣
≤ λ1E[P2]λ2E[P1]

∣∣∣1− f (j−1)1 (z2)
∣∣∣ . (32)

Iteration of (32) leads to∣∣∣1− f (j)1 (z2)
∣∣∣ ≤ (λ1E[P2]λ2E[P1])

j |1− z2| . (33)
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By (1) we have that E[Pi] = E[Bi](1− ρi)−1, so that

λ1E[P2]λ2E[P1] =
ρ1

1− ρ2
ρ2

1− ρ1
< 1. (34)

The inequality follows since the queues are assumed to be stable, i.e. 0 ≤ ρ < 1. Therefore, ρ1 = ρ−ρ2 < 1−ρ2,
and similarly ρ2 < 1− ρ1. A combination of (32) and (34) now leads to

0 ≤ lim
j→∞

∣∣∣1− f (j)1 (z2)
∣∣∣ ≤ lim

j→∞
(λ1E[P2]λ2E[P1])

j |1− z2| = 0.

Since limj→∞

∣∣∣1− f (j)1 (z2)
∣∣∣ = 0, we must have that f (∞)

1 (z2) = limj→∞ f
(j)
1 (z2) = 1.

By similar arguments, it can be shown that f (∞)
2 (z1) = 1 for any z1 in the unit circle. Finally, it is evident that

K̃1,2(1) = K̃2,1(1) = F̃1(1, 1) = F̃2(1, 1) = 1. The lemma now follows.

B Proof of Lemma 3.2
Proof. We initially focus on the product

∏∞
j=0 a1(f

(j)
1 (z2)). By the theory of infinite products (see e.g. [21,

Chapter 1]), we have that
∏∞
j=0 a1(f

(j)
1 (z2)) converges iff

∑∞
j=0(1 − a1(f

(j)
1 (z2))) converges. To establish the

latter, it is enough to prove that
∑∞
j=0

∣∣∣1− a1(f
(j)
1 (z2))

∣∣∣ converges. We observe that∣∣∣1− a1(f
(j)
1 (z2))

∣∣∣
=

∣∣∣∣∣1− r2,1M̃2,1(K̃1,2(f
(j)
1 (z2)), f

(j)
1 (z2))

1− r1,1M̃1,1(K̃1,2(f
(j)
1 (z2)), f

(j)
1 (z2))

r1,2M̃1,2(K̃1,2(f
(j)
1 (z2)), f

(j)
1 (z2))

1− r2,2M̃2,2(K̃1,2(f
(j)
1 (z2)), f

(j)
1 (z2))

∣∣∣∣∣
=

∣∣∣∣∣
∑2
i=1A1,i(f

(j)
1 (z2))(1− M̃i,1(K̃1,2(f

(j)
1 (z2)), f

(j)
1 (z2)))

D(z2)

+

∑2
i=1A2,i(f

(j)
1 (z2))(1− M̃i,2(K̃1,2(f

(j)
1 (z2)), f

(j)
1 (z2)))

D(z2)

∣∣∣∣∣ , (35)

where

A1,1(z2) =r1,1(1− r2,2),

A1,2(z2) =(1− r1,1)(1− r2,2),

A2,1(z2) =(1− r1,1)(1− r2,2)M̃1,2(K̃1,2(z2), z2),

A2,2(z2) =r2,2(1− r1,1M̃1,1(K̃1,2(z2), z2)) and

D(z2) =(1− r1,1M̃1,1(K̃1,2(f
(j)
1 (z2)), f

(j)
1 (z2)))(1− r2,2M̃2,2(K̃1,2(f

(j)
1 (z2)), f

(j)
1 (z2))).

Using the triangle inequality and similar arguments as those in the proof of Lemma 3.1, we note that for 1 ≤
i, k ≤ 2 and j > 0,

|1− M̃i,k(K̃1,2(f
(j)
1 (z2)), f

(j)
1 (z2))

∣∣∣
≤
∫ ∞
t=0

∣∣∣1− e−(λ1(1−K̃1,2(f
(j)
1 (z2)))+λ2(1−f(j)

1 (z2)))t
∣∣∣ dP(Si,k < t)

≤ E[Si,k](λ1

∣∣∣1− K̃1,2(f
(j)
1 (z2))

∣∣∣+ λ2

∣∣∣1− f (j)1 (z2)
∣∣∣)

≤ E[Si,k]λ2(λ1E[P1] + 1)
∣∣∣1− f (j)1 (z2)

∣∣∣ .
Moreover, it is trivially seen that |Ai,k(z2)| ≤ 1 for 1 ≤ i, k ≤ 2 and any z2 in the unit circle. Furthermore, since∣∣∣M̃i,k(K̃1,2(z2), z2)

∣∣∣ ≤ 1, we have that |D(z2)| ≥ (1− r1,1)(1− r2,2). Therefore, a combination of (33) and (35)
with the triangle inequality leads to∣∣∣1− a1(f

(j)
1 (z2))

∣∣∣ ≤ E[S1,1] + E[S1,2] + E[S2,1] + E[S2,2]

(1− r1,1)(1− r2,2)
λ2(λ1E[P1] + 1) (λ1E[P2]λ2E[P1])

j |1− z2|
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This result obviously shows, in combination with (34), that
∑∞
j=0

∣∣∣1− a1(f
(j)
1 (z2))

∣∣∣ is bounded from above by

a converging geometric sum. As such,
∑∞
j=0

∣∣∣1− a1(f
(j)
1 (z2))

∣∣∣ converges, so that
∏∞
j=0 a1(f

(j)
1 (z2)) converges.

The convergence of the product
∏∞
j=0 a2(f

(j)
2 (z1)) can be established similarly.

17


