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Abstract

The strip wetting model is defined by giving a (continuous space) one dimensionnal

random walk S a reward β each time it hits the strip R+ × [0, a] (where a is a given

positive parameter), which plays the role of a defect line. We show that this model

exhibits a phase transition between a delocalized regime (β < βa
c ) and a localized one

(β > βa
c ), where the critical point βa

c > 0 depends on S and on a. In this paper we

give a precise pathwise description of the transition, extracting the full scaling limits

of the model. Our approach is based on Markov renewal theory.

Keywords: scaling limits for physical systems, fluctuation theory for random walks,

Markov renewal theory .
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1 Introduction and main results

1.1 Definition of the models

We consider (Sn)n≥0 a random walk such that S0 := 0 and Sn :=
∑n

i=1Xi where the Xi’s

are i.i.d. and X1 has a density h(·) with respect to the Lebesgue measure. We denote by

P the law of S, and by Px the law of the same process starting from x. We will assume

that h(·) is continuous and bounded on R, that h(·) is positive in a neighborhood of the

origin, that E[X] = 0 and that E[X2] =: σ2 ∈ (0,∞). We fix a > 0 in the sequel.

The fact that h is continuous and positive in the neighborhood of the origin entails

that

n0 := inf
n∈N
{(P[Sn > a],P[−Sn > a]) ∈ (0, 1)2} <∞. (1) hypn

∗TU/e

1



We will assume that n0 = 1 (and thus that (P[−S1 > a],P[S1 > a]) ∈ (0, 1)2). We stress

that our work could be extended to the generic n0 ≥ 2 case, althought this should lead to

some specific technical difficulties.

For N a positive integer, we consider the event CN := {S1 ≥ 0, . . . , SN ≥ 0}. We define

the probability law (the free wetting model in a strip) Pf
N,a,β on RN by

dPf
N,a,β

dP
:=

1

ZfN,a,β
exp

(
β

N∑
k=1

1Sk∈[0,a]

)
1CN (2)

where N ∈ N, β ∈ R and ZfN,a,β is the normalization constant usually called the partition

function of the system. The second model we define is the constrained counterpart of the

above, that is

dPc
N,a,β

dP
:=

1

ZcN,a,β
exp

(
β

N∑
k=1

1Sk∈[0,a]

)
1CN1SN∈[0,a]. (3)

Note in particular that

Pc
N,a,β = Pf

N,a,β [ · |SN ∈ [0, a]] , (4)

that Pf
N,a,0 is the law of (S1, . . . , SN ) under the constraint CN := {S1 ≥ 0, . . . , SN ≥ 0}

and that Pc
N,a,0 is the law of the same vector under the additional constraint SN ∈ [0, a].

PN,a,β is a (1+1)−dimensional model for a linear chain of length N which is attracted

or repelled to a defect strip [0,∞) × [0, a]. By (1 + 1)−dimensional, we mean that the

configurations of the linear chain are described by the trajectories (i, Si)i≤N of the walk,

so that we are dealing with directed models. The strength of this interaction with the

strip is tuned by the parameter β. Regarding the terminology, note that the use of the

term wetting has become customary to describe the positivity constraint CN and refers to

the interpretation of the field as an effective model for the interface of separation between

a liquid above a wall and a gas, see
DGZ
[DGZ05].

It is an interesting problem to understand when the reward β is strong enough to pin

the chain near the defect strip, a phenomenon that we will call localization, and what

are the macroscopic effects of the reward on the system. In this paper, we choose to

characterize these effects through the scaling limits of the laws Pc
N,a,β and Pf

N,a,β. More

precisely, we first show the existence of a critical point βca > 0 depending on a, and then

we solve the full scaling limits of the system in the case where β 6= βca.
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We point out that these questions have been answered in depth in the case of the

standard wetting model, that is formally in the a = 0 case, and that extending these

results to our setup is an open problem which has been raised by Giacomin (
GB
[Gia07,

Chapter 3]).

1.2 The free energy.

A standard way to define localization for our models is by looking at the Laplace asymp-

totic behavior of the partition function ZcN,a,β as N → ∞. More precisely, we define the

free energy F a(β) by

F a(β) := lim
N→∞

1

N
log
(
ZfN,a,β

)
(5) DFR

where the existence of the limit will follow as a by-product of our approach.

The basic observation is the fact that the free energy is non-negative. The following

inequality holds:

ZfN,a,β ≥ E

[
exp

(
β

N∑
k=1

1Sk∈[0,a]

)
1Sk>a,k=1...N

]

≥ P [Sj > a, j = N0 . . . , N ] .

(6)

Integrating over S1, one gets:

P[Sj > a, j = 1 . . . , N ] ≥
∫

(a,∞)
h(t)Pt [S1 > a, . . . , SN−1 > a] dt. (7)

We prove then in Lemma
stayabove
2.2 below that for fixedM , the quantityN1/2Pt [S1 > a, . . . , SN−1 > a] ∈

[c, c′] for every N and every t ∈ [a,M ] where c, c′ are positive constants. Thus:

ZfN,a,β ≥
c

N1/2

∫
[a,M ]

h?N0(t)dt. (8)

Therefore F a(β) ≥ 0 for every β. Since the lower bound has been obtained by ignoring

the contribution of the paths that touch the strip, one is led to the following:

Definition 1.1 For g ∈ {c, f}, the model {Pg
N,a,β} is said to be localized if F a(β) > 0.

It is standard that F a(·) is a convex increasing function, and in particular it is a

continuous function as long as it is finite. Therefore, there exists a critical value βac ∈ R

such that the strip wetting model is localized for β > βac .
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1.3 Value of the critical point for the (p, q) random walk.
valcr

We point out that the effect of adding a layer of width a > 0 does affect the value of the

critical point in a drastic way with respect to the standard homogeneous pinning.

To illustrate this issue, we first stress that our techniques can be applied in the discrete

setup without too much effort. Let us then consider the simplest case of a discrete (p, q)

random walk S (that is a symmetric random walk with increments in {−1, 0, 1} such that

P[S1 = 1] = p = 1−P[S1=0]
2 = 1−q

2 with p ∈ (0, 1/2)) and a ∈ Z+. A byproduct of our

characterization of the critical point of Part
MRT
3 (see in particular (

DefFEE
40)) is the fact that in

this case, e−β
a
c is equal to the spectral radius of the matrix Ma which is a tridiagonal

(a+ 1)× (a+ 1) matrix defined by

Ma :=



q p 0 0 . . .

p q p 0 . . .

0
. . .

. . .
. . . 0

... 0 p q p

. . . 0 p 1+q
2


.

In the particular cases where a ∈ {1, 2} (recall that in the homogeneous pinning

case, that is a = 0, it is shown in
GB
[Gia07][Chapter 2], that β0

c = − log(1 − p)), this

characterization leads to the equality

β1
c = − log

(
1− 3−

√
5

2
p

)
. (9)

In particular, it is an interesting phenomenon that this explicit critical point satisfies

the strict (intuition matching) inequality β0
c > β1

c .

Another consequence of this characterization is the fact that in this particular case,

one gets directly the convergence βac → 0 as a→∞.

1.4 Scaling limits.

We define the map XN : RN 7→ C([0, 1]):

XN
t (x) :=

xbNtc

σN1/2
+ (Nt− bNtc)

xbNtc+1 − xbNtc
σN1/2

; t ∈ [0, 1] (10) X
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where bNtc denotes the integer part of Nt. Note that XN
t (x) is the linear interpolation

of the process {xbNtc/σN1/2}t∈N/N∩[0,1]. Then we define the measures

QcN,a,β := Pc
N,a,β ◦ (XN )−1 (11)

and in an analogous way QfN,a,β. These measures are defined on C([0, 1]) the space of real

continuous functions defined on [0, 1]. We consider the following standard processes:

? the Brownian motion (Bt)t∈[0,1].

? the Brownian meander (mt)t∈[0,1] which is the Brownian motion conditioned to stay

positive on [0, 1].

? the normalized Brownian excursion (et)t∈[0,1] which is the brownian bridge condi-

tioned to stay positive on [0, 1].

Our main result is the following:

MAIN Theorem 1.2 Both the free and the constrained models undergo a wetting transition at

β = βac . More precisely:

1. in the subcritical regime, that is if β < βac , then

• (QcN,a,β)N converges weakly in C([0, 1]) to the law of e.

• (QfN,a,β)N converges weakly in C([0, 1]) to the law of m.

2. in the supercritical regime, that is if β > βac , then both (QcN,a,β)N and (QfN,a,β)N

converge in C([0, 1]) to the measure concentrated on the constant function taking

value zero.

The following result shows that in the subcritical phase, the dry region reduces to a

finite number of points all being at a finite distance from zero in the free case, from zero

and from N in the constrained case.

TRLO Theorem 1.3 For β < βac , the following convergences hold:

lim
L→∞

lim sup
N→∞

Pf
N,β,a [maxA ≥ L] = 0 (12)
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and

lim
L→∞

lim sup
N→∞

Pc
N,β,a [max(A ∩ [1, N/2]) ≥ L] = 0

lim
L→∞

lim sup
N→∞

Pc
N,β,a [min(A ∩ [N/2, N ]) ≤ N − L] = 0.

(13) CCCCC

The proof of our main result mainly focuses on the delocalized phase. For the localized

phase, we show a Markov renewal theorem which seems to be new in this particular (con-

tinuous space) setup, from which one deduces in a standard way the asymptotic behavior

of the partition functions both in the free and in the constrained case, thus obtaining the

convergence of the process (without rescaling) towards the law of a positive recurrent irre-

ducible Markov chain ( see
GB
[Gia07][Chapter 3] for the corresponding result in the standard

homogeneous case). From this convergence result, we immediately deduce Theorem
MAIN
1.2 in

the localized phase.

A common feature shared by the strip wetting model and the classical homogeneous

one is the fact that the measure PN,a,β exhibits a remarkable decoupling between the

contact level set IN := {i ≤ N,Si ∈ [0, a]} and the excursions of S between two

consecutive contact points. More precisely, conditioning on IN = {t1, . . . , tk} and on

(St1 , . . . , Stk), the bulk excursions ei = {ei(n)}n :=
{
{Sti+n}0≤n≤ti+1−ti

}
are indepen-

dent under PN,a,β and are distributed like the walk (S′,PSti
) conditioned on the event{

S′ti+1−ti = Sti+1 , S
′
ti+j

> a, j ∈ {1, . . . , ti+1 − ti − 1}
}

. It is therefore clear that to extract

scaling limits on PN,a,β, one has to combine good control over the law of the contact set

IN and suitable asymptotics properties of the excursions. This decoupling turns out to

be the starting point of our proofs, see (
nine
61) and (

ten
60) for details.

Theorem
MAIN
1.2 characterizes the Brownian scaling of the model when β 6= βac . Infinite

scaling results like Theorem
MAIN
1.2 have been proved in different contexts involving polymer

measures. The first mathematical paper dealing with such an issue is
IY
[IY01] where the

authors proved an analogous convergence in the homogeneous pinning model for the case

where S is a symmetric random walk with increments taking values in {−1, 0, 1}. Their

results have been strongly generalized in
DGZ
[DGZ05] where the same assumptions are made

on S as in this paper, and a further generalization of their results in the case where S is

in the domain of attraction of the standard normal law has been obtained in
CGZ
[CGZ06].

Analogous results have also been obtained in
CGZ1
[CGZ07] in the case of inhomogeneous,

but periodic pinning models, and more recently in
CD2
[CD09] in the case where the interaction
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is of Laplacian type.

What is left by our analysis is the critical case. There are some specific issues related

to this case, and we point out that the scaling limit of these laws at the critical point have

been solved recently (although in a weak sense) in
Soh1
[Soh13]. Note also that related models

with a different characterization of the large scale limits have been considered recently
FuN
[Fun08]. Finally, a closely related pinning model in continuous time has been considered

and resolved in
CrKMV
[CKMV09]; we stress however that their techniques are very peculiar to

the continuous time setup.

1.5 Organization of the paper

The core of our approach is a precise pathwise description of the law Pc
N,a,β based on

Markov renewal theory. We stress the importance of Markov renewal theory to derive

fundamental results on the large scale behavior of the system. The other techniques we

use are local limit estimates issued from the theory of fluctuation for random walks, an

infinite version of the Perron Frobenius Theorem and two closely related scaling limit

theorems. Let us describe more in detail the content of this paper:

- in section
ShFT
2, we recall some fluctuation theory for random walk which will be of

basic importance; more precisely, we first recall some recent local limit estimates for

random walks conditioned to stay non negative, and we give the tails of the return

probability to the strip for large N which have been proved in
Soh1
[Soh13].

- in section
MRT
3 we show that the law Pc

N,a,β admits a description in terms of a Markov

renewal process. More precisely, we show that the set of contact points with the

strip under Pc
N,a,β is distributed according to the law of a Markov renewal process

conditioned to hit the strip at time N . This representation implies in particular a

very useful expression for the partition function ZcN,a,β which will be the key to our

main results.

- in sections
TLP
4, we make use of Markov renewal theorems in the finite mean case

and of a uniform equivalence result in the infinite mean case; these theorems imply

estimates on ZcN,a,β. Deducing the asymptotic behavior of ZfN,a,β in both phases is

then a standard procedure.

- section
TDP
5 is devoted to the proof of Theorems

TRLO
1.3 and

MAIN
1.2. These proofs are carried out
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exploiting the asymptotic estimates deduced from the Markov renewal representation

combined with powerful limit theorems which have been obtained in
Shi
[Shi83] (for the

free case) and much more recently in
CaCha
[CC13] (for the constrained case).

2 Some preliminary facts
ShFT

2.1 Some recurrent notations and terminology

For an, bn two positive sequences, we will write an ∼ bn if limn→∞ an/bn = 1. More

generally, for an(x) a positive sequence depending on a parameter x ∈ ∆ where ∆ is a

subset of Rd, d ≥ 1, α ∈ R and b(·) a measurable function on ∆, we will often say that the

equivalence

an(x) ∼ b(x)

nα
(14)

holds uniformly for x in ∆ if the following holds:

lim
n→∞

sup
x∈∆
|nαan(x)− b(x)| = 0. (15)

In this paper, we will deal with kernels of two kind. Kernels of the first kind are

just σ-finite kernels on R, that is functions A : R × B(R) 7→ R+ where B(R) denotes the

Borel σ-field of R and such that for each x ∈ R, Ax,· is a σ-finite measure on R and

A·,F is a Borel function for every F ∈ B(R). Given two such kernels A and B, their

composition is denoted by (A ◦ B)x,dy :=
∫
z∈RAx,dzBz,dy and of course A◦kx,dy denotes the

k-fold composition of A with itself where A◦0x,dy := δx(dy).

The second kind of kernels is obtained by letting a kernel of the first kind depend

on a further parameter n ∈ Z+, that is we consider objects of the form Ax,dy(n) with

x, y ∈ R, n ∈ Z+. Given two such kernels Ax,dy(n), Bx,dy(n) we define their convolution

(A ∗B)x,dy(n) :=
n∑

m=0

(A(m) ◦B(n−m))x,dy =
n∑

m=0

∫
R
Ax,dz(m)Bz,dy(n−m), (16)

and the k-fold convolution of the kernel A with itself will be denoted by A∗kx,dy where by

definition A∗0x,dy := δx(dy)1n=0. Finally given two kernels Ax,dy(n) and Bx,dy and a positive

sequence an, we will write

Ax,dy(n) ∼
Bx,dy
an

(17)
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to mean Ax,F (n) ∼ Bx,F
an

for every x ∈ R and for every bounded set F ⊂ R.

Natural and useful examples of the above kernels are the partition functions; namely,

for x, y ∈ [0, a]× R+, we define:

ZcN,a,β(x, dy) := Ex

[
exp

(
β

N∑
k=1

1Sk∈[0,a]

)
1Sk≥0,k=1...N1SN∈dy1y∈[0,a]

]
, (18)

and its free counterpart

ZfN,a,β(x, dy) := Ex

[
exp

(
β

N∑
k=1

1Sk∈[0,a]

)
1Sk≥0,k=1...N1SN∈dy

]
. (19)

2.2 Markov renewal and random walk fluctuation theory.
MRSS

Let us introduce the following transition kernel:

Fx,dy(n) := Px[S1 > a, S2 > a, . . . , Sn−1 > a, Sn ∈ dy]1x,y∈[0,a] if n ≥ 2,

Fx,dy(1) := h(y − x)1x,y∈[0,a]dy.
(20)

We write fx,y(n) for the density of Fx,dy(n) with respect to the Lebesgue measure.

Also, for notational convenience, in the sequel we will use the following notation:

1

dx
P[B,Sk ∈ dx] =: P[B,Sk = x]. (21)

We denote by (τn)n≥0 the times of return to [0, a] of S, that is τ0 := 0 and, for

n ≥ 1, τn := inf{k > τn−1|Sk ∈ [0, a]}. Note that (τn)n≥0 is not a true renewal process.

Introducing the process (Jn)n≥0 where Jn := Sτn , the process τ is a so called Markov

renewal process whose modulating chain is the Markov chain J . The topic of Markov

renewal theory is a classical one, a well known reference is
As
[Asm03].

We finally denote by lN the cardinality of {k ≤ N |Sk ∈ [0, a]}. With these notations,

we can write the joint law of (lN , (τn)n≤lN , (Jn)n≤lN ) under Pc
N,a,β under the following

form:

Pc
N,a,β[lN = k, τj = tj , Jj ∈ dyi, i = 1, . . . , k]

=
eβk

ZcN,a,β
F0,dy1(t1)Fy1,dy2(t2 − t1) . . . Fyk,dyk−1

(N − tk−1)
(22) HPP
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where k ∈ N, 0 < t1 < . . . < tk = N and (yi)i=1,...,k ∈ Rk.

It is then clear that getting asymptotic estimates on the partition functions ZcN,a,β

(and thus ZfN,a,β), requires an accurate control on the asymptotic behavior of F·,·(n) for

large n.

To achieve this, we collect some basic facts about random walk fluctuation theory.

For n an integer, we denote by Tn the nth ladder epoch; that is T0 := 0 and, for

n ≥ 1, Tn := inf{k ≥ Tn−1, Sk > STn−1}. We also introduce the so-called ascending ladder

heights (Hn)n≥0, which, for k ≥ 1, are given by Hk := STk . Note that the process (T,H)

is a bivariate renewal process on (R+)2. In a similar way, we write (T−, H−) for the strict

descending ladder variables process, which is defined by (T−0 , H
−
0 ) := (0, 0) and

T−n := inf{k ≥ Tn−1, Sk < STn−1} and H−k := −St−k . (23)

Let us consider the renewal function U(·) associated to the ascending ladder heights

process:

U(x) :=

∞∑
k=0

P[Hk ≤ x] = E[Nx] =

∫ x

0

∞∑
m=0

u(m, y)dy (24)

where Nx is the cardinality of {k ≥ 0, Hk ≤ x} and u(m, y) := 1
dyP[∃k ≥ 0, Tk = m,Hk ∈

dy] is the renewal mass function associated to (T,H). It follows in particular from this

definition that U(·) is a subadditive increasing function, and in our context it is also

continuous. Note also that U(0) = 1. We denote by V (x) the analogous quantity for

the process H−, and by v(m, y) the renewal mass function associated to the descending

renewal (T−, H−).

The following local limit estimates have been proved recently (
Do3
[Don10] and

CaCha
[CC13]):

fluctu Lemma 2.1 Uniformly on sequences xn, yn such that xn ∨ yn = o(
√
n), the following

equivalences hold:

Pxn [S1 ≥ 0, . . . , Sn ≥ 0] ∼ V (xn)P[T−1 > n] ∼ V (xn)√
2πσ
√
n

(25) pacons

and

Pxn [S1 ≥ 0, . . . , Sn ≥ 0, Sn = yn] ∼ V (xn)U(yn)

n
P[Sn = yn]. (26)

Note that making use of Gnedenko’s classical local limit theorem, for sequences (xn), (yn)
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satisfying the same assumptions as in Lemma
fluctu
2.1, one gets the equivalence

Pxn [S1 ≥ 0, . . . , Sn ≥ 0, Sn = yn] ∼ V (xn)U(yn)

σ
√

2πn3/2
. (27) const

A consequence of Lemma
fluctu
2.1 is the following result:

stayabove Lemma 2.2 For any x ∈ [0, a], one has the following convergence:

Px[S1 > a, . . . , Sn > a] ∼ P[H1 ≥ a− x]√
2πσn1/2

. (28)

Proof of Lemma
stayabove
2.2 We integrate over S1 to get:

Px[S1 > a, . . . , Sn > a] =

∫
u∈[a,∞)

Px[S1 = u, . . . , Sn > a]du

=

∫
u∈[a,∞)

h(u− x)Pu−a[S1 > 0, . . . , Sn−1 > 0]du

=

∫
u∈[a,n1/4]

h(u− x)Pu−a[S1 > 0, . . . , Sn−1 > 0]du

+

∫
u∈[n1/4,∞)

h(u− x)Pu−a[S1 > 0, . . . , Sn−1 > 0]du.

(29)

For the second term in the right hand side of the above equalities, we immediately get

that, for any n large enough:

∫
u∈[n1/4,∞)

h(u− x)Pu−a[S1 > 0, . . . , Sn1 > 0]du (30)

≤
∫
u∈[n1/4−a,∞)

h(u)du (31)

≤ 4

n1/2

∫
u∈[n1/4/2,∞)

u2h(u)du, (32)

(33)

and since E[X2] < ∞, it immediately follows that this term is o(n−1/2). On the other

hand, making use of Lemma
fluctu
2.1, we get that

∫
u∈[a,n1/4]

h(u− x)Pu−a[S1 > 0, . . . , Sn1 > 0]du ∼
∫
u∈[a,n1/4]

h(u− x)
V (u− a)√

2πσ
√
n
du. (34)

Then we recall that, using duality arguments (see for example
Soh1
[Soh13][Proof of Theo-
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rem 3.1] for a proof), one can show that

∫
u∈[a,∞)

h(u− x)V (u− a)du = P[H1 ≥ a− x], (35)

from which we finally deduce Lemma
stayabove
2.2. �

We define the following function:

Φa(x, y) :=
P[H−1 ≥ a− y]P[H1 ≥ a− x]

σ
√

2π
1x,y∈[0,a]. (36) DefPh

By using similar techniques as the ones we just developed for the proof of Lemma
stayabove
2.2,

in
Soh1
[Soh13] the author showed the following result, which will be the cornerstone of our

approach:

Pr Lemma 2.3 The following equivalence holds uniformly on (x, y) ∈ [0, a]2:

n3/2fx,y(n) ∼ Φa(x, y). (37) EQC

Since Φa is bounded on [0, a]2, a trivial consequence of the above result is the fact that

the left hand side in (
EQC
37) is dominated by a multiple of its right hand side.

3 An infinite dimensional problem
MRT

3.1 Defining the free energy

In this section, we define the free energy in a way that allows us to make use of the Markov

renewal structure we pointed at in the previous part. For λ ≥ 0, we introduce the following

kernel:

Bλ
x,dy :=

∞∑
n=1

e−λnFx,dy(n) (38)

and the associated integral operator

(Bλh)(x) :=

∫
[0,a]

Bλ
x,dyh(y). (39)

Making use of the asymptotics (
EQC
37), one can show as in

CD1
[CD08][Lemma 4.1] that

for any λ ≥ 0, Bλ
x,dy is a compact operator on the Hilbert space L2([0, a]). Using this

fact, we introduce δa(λ), the spectral radius of the operator Bλ, which is an isolated
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and simple eigenvalue of Bλ
x,dy (see Theorem 1 in

Ze
[Zer87]). The function δa(·) is non-

increasing, continuous on [0,∞) and analytic on (0,∞) because the operator Bλ
x,dy has

these properties. The analyticity and the fact that δa(·) is not constant (as δa(λ)→ 0 as

λ→∞) force δa(·) to be strictly decreasing.

We denote by (δa)−1(·) its inverse function, defined on (0, δa(0)]. We now define βac

and F a(β) by:

βac := − log(δa(0)), F a(β) := (δa)−1(exp(β)) if β ≥ βac and 0 otherwise. (40) DefFEE

Note that this definition entails in particular the analyticity of F (·) on R \ {βac }. Also,

one deduces from this expression the specific values of βac obtained in Part (
valcr
1.3).

Of course it is not clear a priori that the quantity we define in (
DefFEE
40) actually coin-

cides with the classical definition of the free energy, that is the limit of the quantity

1
N log

(
ZfN,a,β

)
. We will show in the next parts that this is the case. Indeed, this defini-

tion will entail a representation for the constrained partition function of the system which

is explicited in section
UREP
3.2, and this representation in turn will provide estimates on the

partition function of the system in both phases. These estimates will finally validate the

coherence of the definition given in equation (
DefFEE
40).

3.2 A useful representation for Zc
N,a,β

UREP

The fact that bF
a(β)(x, y) > 0 for every (x, y) ∈ [0, a] implies the uniqueness (up to a

multiplication by a positive constant) and the positivity almost everywhere of the right

(respectively the left) Perron Frobenius eigenfunctions vβ(·) (respectively wβ(·)) of B
Fa(β)
x,dy .

We refer to
CD1
[CD08][Section 4.2] for more details. In particular, one can show that the

function vβ(·) is positive everywhere (not only almost everywhere); hence we can define

the kernel

Kβ
x,dy(n) := eβFx,dy(n)e−F

a(β)n vβ(y)

vβ(x)
, (41)

and it is easy to check that

∫
y∈R

∑
n∈N

Kβ
x,dy(n) = 1 ∧ eβ

eβac
. (42) INVMP

Then we define the law Pβ under which the joint process (τk, Jk)k≥0 is an inhomoge-
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neous Markov chain (defective if β < βac ) on Z+ × [0, a] by:

Pβ [(τk+1, Jk+1) ∈ ({n}, dy)|(τk, Jk) = (m,x)] := Kx,dy(n−m). (43) Def

The sequence (τk)k≥0 is a Markov renewal, the process (Ji)i≥0 being its modulating

chain. We then have the following property, whose proof is contained in (
HPP
22):

RMRP Proposition 3.1 For any N ∈ N, the vector (lN , (τn)n≤lN , (Jn)n≤lN ) has the same law

under Pc
N,a,β as under the conditional law Pβ(·|AN ) where AN := {∃k ∈ N|τk = N}.

Equivalently:

Pc
N,a,β [lN = k, τj = tj , Jj ∈ dyi, i = 1, . . . , k]

= Pβ [lN = k, τj = tj , Jj ∈ dyi, i = 1, . . . , k|AN ] .
(44)

Proposition
RMRP
3.1 shows in particular that the partition ZcN,a,β can be interpreted as the

Green function associated to the Markov renewal τ , that is ZcN,a,β = Pβ[N ∈ τ ] and more

generally for x, y ∈ [0, a], ZcN,a,β(x, dy) = Pβ[∃k, τk = N, Jk ∈ dy|J0 = x]. Equivalently, we

have the equality

ZcN,a,β = exp(F a(β)N)

∫
[0,a]

vβ(0)

vβ(y)

∑
k≥0

(Kβ)∗k0,dy(N) (45) Rep

which is a consequence of the more general equality:

ZcN,a,β(x, dy) = exp(F a(β)N)
vβ(x)

vβ(y)

∑
k≥0

(Kβ)∗kx,dy(N) (46) FUN

which holds for x, y ∈ [0, a].

4 The localized phase
TLP

4.1 The key Markov renewal theorem

Let β > βac . In this case, the two functions wβ(·) and vβ(·) are uniquely defined up to a

multiplicative constant, and we use this degree of freedom to fix
∫
R vβ(x)wβ(x)1x∈[0,a] = 1.

Thus the measure µβ defined by

µβ(dx) := vβ(x)wβ(x)1x∈[0,a]dx (47)

14



is a probability measure. One easily checks that for β > βac , the probability µβ is invariant

for the kernel
∑

n≥1K
β
x,dy(n), and hence for the Markov process (Jn).

To get estimates on the partition function of the Markov renewal process, we are led

to show an analogous to the classical Markov renewal theorem (which can be found in
As
[Asm03]) in the case where the state space of the Ji’s is not countable. Surprisingly

enough, the author has not been able to find a proof of such a natural result in the

litterature, so that we prove it by making use of the ergodic properties of the forward

Markov chain naturally linked to the Markovian renewal.

We state the main result of this part:

FTCC Lemma 4.1 In the localized regime, for x ∈ [0, a] the following convergence holds in total

variation norm:

lim
N→∞

Pβ [∃k ∈ N, τk = N, JN ∈ dy|J0 = x] =
µβ(dy)∫

[0,a]2 µβ(du)
∑

n≥0 nK
β
u,dy(n)

. (48) Eq111

Proof of Lemma
FTCC
4.1 We consider the Markov process (Ak, J

′
k)k≥0 on N × [0, a] whose

transitions are given by:

Pβ
[
Aj = k, J ′j ∈ dy|Aj−1 = l, J ′j−1 = x

]
:= δk,l−1δx(dy) (49)

if l ≥ 2 (where δx(·) is the Dirac measure concentrated on {x}) and by

Pβ
[
Aj = k, J ′j ∈ dy|Aj−1 = 1, J ′j−1 = x

]
:= Kβ

x,dy(k). (50)

Note that this Markov chain is nothing but the well known forward recurrence chain

associated to the Markov renewal. In words, Ai denotes the time one has to wait from

time i until the next renewal happens (that is Ai = inf{k > i,∃j, τj = k}− i), the Markov

chain J ′ containing the last location of its modulating chain.

We introduce the probability measure on N× [0, a] defined by :

Πβ(i, dy) :=
1∫

[0,a]2 µβ(dx)
∑

k≥1 kK
β
x,du(k)

∫ a

0
µβ(dx)

∑
j≥i

Kβ
x,dy(j). (51)

Note that
∫

[0,a]2 µβ(dx)
∑

k≥1 kK
β
x,du(k) <∞ since β > βac , so that in particular Πβ(·, ·)

is non degenerate. Πβ(·, ·) is the invariant probability of the Markov process (Ak, J
′
k)k≥0.
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Indeed, for all (i, y) ∈ N× [0, a], we check:

ΠβPβ(i, dy) = Πβ(i+ 1, dy) +

∫ a

0
Πβ(1, dx)Kβ

x,dy(i) = Πβ(i, dy) (52) OEIY

where in the second equality we used the fact that µβ(·) is the invariant probability for

the Markov process (Jk)k≥1 (noting that Πβ(1, dx) is a multiple of µβ(dx), this is exactly

saying that
∫ a

0 µβ(dx)Kβ
x,dy(i) = µβ(dy), which is the second part of equation (

OEIY
52)).

We note that, making use of the positivity of µβ on [0, a]×N, the Markov chain (A, J ′)

satisfies the hypothesis of the classical ergodic Theorem, so that

||
∫
λ(dx)Pnβ (x, ·)−Πβ|| → 0 (53)

as n → ∞, where || · || denotes the total variation norm on N× [0, a] and λ(·) any initial

distribution. This implies in particular that, as j → ∞, the following convergence holds

in total variation norm :

Pβ
[
Aj = 1, J ′j ∈ dy|J0 = x

]
→

µβ(dy)∫
[0,a]2 µβ(du)

∑
k≥1 kK

β
u,dy(k)

=:
µβ(dy)

Cβ
(54) nu

and since Pβ

[
Aj = 1, J ′j ∈ dx

]
= Pβ [∃k ∈ N, τk = j, Jk ∈ dx], the proof is complete. �

4.2 Asymptotic of the partition functions

In the localized phase, this result provides an estimate for ZcN,a,β.

delest Theorem 4.2 For β > βac , for every x ∈ [0, a], y ∈ R+, as N → ∞, one has the conver-

gence :

ZcN,a,β(x, dy) ∼
vβ(x)vβ(y)

Cβ
exp(F a(β)N)dy (55)

where for a fixed x ∈ [0, a], the convergence of ZcN,a,β(x, dy) exp(−F a(β)N) towards
vβ(x)vβ(y)

Cβ
dy

holds in total variation norm.

These estimates imply in particular that there exist two positive constants Ca(β) and

Caf (β) such that, :

1. ZcN,a,β ∼ Ca(β) exp(F a(β)N)

2. ZfN,a,β ∼ C
a
f (β) exp(F a(β)N).
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As we noted right after Theorem
MAIN
1.2, this result readily implies a much finer result on

the scaling limits of the system than the one of Theorem
MAIN
1.2.

Proof of Theorem
delest
4.2 Combining identity (

FUN
46) and Lemma

FTCC
4.1, we get :

ZcN,a,β(x, dy) ∼ exp(F a(β)N)
vβ(x)

vβ(y)

µβ(dy)∫
[0,a]2 µβ(dx)

∑
k≥1 kK

β
x,dy(k)

. (56)

The free case follows; we have the relation:

ZfN,a,β = eF
a(β)N

N∑
t=0

ZN−t,a,β(dx)e−F
a(β)(N−t)Px[S1 > a, . . . , St > a]e−F

a(β)t. (57)

Using the total variation convergence part of Lemma
FTCC
4.1, this entails:

ZfN,a,β ∼ Ca(β)eF
a(β)N

∞∑
t=0

e−F
a(β)t

∫
[0,a]

µβ(dx)

Cβ
Px[τ1 > t+ 1]. (58)

�

5 The delocalized phase
TDP

5.1 Some results borrowed from the standard homogeneous wetting.

We stress that we can adapt in a straightforward way some of the techniques borrowed

from different papers on the topic of scaling limits linked to polymer models to our case of

interest. We first mention that, combining Proposition 7.2 in
CD1
[CD08], the considerations on

Markov renewal processes of Part
MRT
3 (see in particular (

Rep
45)) and the asymptotics of Lemma

Pr
2.3, we can prove the following asymptotics on the partition functions in the delocalized

phase:

esti Proposition 5.1 For β < βac ,as N →∞, we have the following:

1. ZcN,a,β(x, dy) ∼ C ′a(β)/N3/2Φa(x, y)dy

2. ZfN,a,β(x, dy) ∼ C ′af (β)/N1/2Φa(x, y)dy

where C ′a(β) and C ′af (β) are positive constants depending on β.

From Proposition
esti
5.1, we can describe the set of contact points in the subcritical

regime. Namely, we introduce a probability law pfβ,N (·, ·) on VN×(R+)N and a probability
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law pcβ,N (·, ·) on VN−1 × (R+)N which are defined by:

pfβ,N (A, dx) :=
1

ZfN,a,β
eβ|A|

|A|∏
j=1

Fxtj−1 ,dxtj
(tj − tj−1)1xtj∈[0,a],∀j∈{0,...,|A|} (59)

and

pcβ,N (A, dx) :=
1

ZcN,a,β
eβ(|A|+1)

|A|+1∏
j=1

Fxtj−1 ,dxtj
(tj − tj−1)1xtj∈[0,a],∀j∈{0,...,|A|} (60) ten

where t0 := 0, t|A|+1 := N , x0 := 0 and A := {t1 < t2 < . . . < t|A|}.

These laws are linked to the laws Pf
N,a,β and Pc

N,a,β in the following way; in the free

case, we can write

Pf
N,a,β(dx) =

∑
A⊂VN

∫
[0,a]|A|

pfβ,N (A, dy)PA,y(dx) (61) nine

where PA,y(·) is the law of (S1, . . . , SN ) conditioned on the event EN,A,y which is defined

by:

EN,A,y :=
{
Si = yi; i ∈ A ∪ {0}

}
∩
{
Si > a, i /∈ A

}
. (62) epscond

In the same way, for the constrained case, one readily realizes that

Pc
N,a,β(dx) =

∑
A⊂VN

∫
[0,a]|A|+1

pcβ,N (A, dy)PcA,y(dx) (63)

where for y ∈ (R+)N , PA,y(·) is the law of (S1, . . . , SN ) conditioned on the event EN,A,y

which is defined by:

EN,A,y :=
{
Si = yi; i ∈ A ∪ {0} ∪ {N}

}
∩
{
Si > a, i /∈ A ∪ {N}

}
. (64)

For A ∈ VN , we write L(A) := maxA and R(A) := min((A ∩ [N/2, N ]) ∪ {N}). The

following lemma implies Lemma
TRLO
1.3:

MLL Lemma 5.2 For β < βac , the following estimate holds:

lim
L→∞

lim sup
N→∞

sup
x∈RN

pfβ,N (L(A) ≥ L, x) = 0. (65) end
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The corresponding estimates in the constrained case read:

lim
L→∞

lim sup
N→∞

sup
x∈RN

pcβ,N (L(A) ≥ L, x) = 0 (66)

and

lim
L→∞

lim sup
N→∞

sup
x∈RN

pcβ,N (R(A) ≤ N − L, x) = 0. (67) env

The proof of these convergences follows by making use of the equivalences from Propo-

sition
esti
5.1 and goes along the same lines as the proof of

DGZ
[DGZ05][Proposition 7].

5.2 Scaling limits in the subcritical regime
IVLSR

The goal of this part is to prove Theorem
MAIN
1.2. We fix β < βac . We treat the free case and

the constrained case separately, the techniques we use for each case are quite similar but

the constrained case is technically more involved.

The main idea of both proofs is the same. Combining the estimates on the contact

set of Lemma
TRLO
1.3 and the representations of equations (

nine
61) and (

ten
60), we consider the

trajectories whose contacts with the strip are very close to {0} (and from the endpoint in

the constrained case). After integrating over the first step after the last contact with the

strip and making use of Markov’s property, the remaining process is simply the random

walk conditioned to stay over the strip (and to come back to it close to the endpoint for the

constrained case). Finally, in the free case, the convergence towards brownian meander

will be a consequence of a result due to Shimura
Shi
[Shi83] and of a recent result due to

Caravenna and Chaumont
CaCha
[CC13] for the constrained one.

We define τ(−∞,0) := inf{j ≥ 0, Sj < 0}.

The free case The main tool in the first part of the proof of Theorem
MAIN
1.2 will be the

following result which has been proved in
Shi
[Shi83, Example 4.1]:

ShiTT Theorem 5.3 Let xN be a positive sequence such that xNN
−1/2 → 0 as N → ∞. One

has the following functional limit convergence:

PxN

[
·
∣∣∣τ(−∞,0) > N

]
◦
(
XN

)−1
=⇒ m(·). (68)

For clarity, we summarize the steps of the proof of Theorem
MAIN
1.2 in the next key lemma;

then we show that we may apply Lemma
KEYLEm
5.4 to our setup, and finally we go to its proof.
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KEYLEm Lemma 5.4 Let lN be the random variable L(A) under Pf
N,a,β and let L be a positive

integer. Assume the following assumptions hold:

1. for any ε > 0, one has

lim
N→∞

QfN,a,β

 sup
t∈[0,

lN
N

]

ωt ≥ ε

 = 0. (69)

2. for every A ⊂ VN such that L(A) = L and for every x ∈ RN , if X follows the law

PA,x, one has the convergence in law:

(√
1− L

N
XN

L
N

+t(1− L
N

)

)
t∈[0,1]

⇒ m (70)

where m denotes the law of the brownian meander.

Then one has the weak convergence

QfN,a,β ⇒ m. (71)

Proof of Theorem
MAIN
1.2 for the free case

First point of Lemma
KEYLEm
5.4. We write :

QfN,a,β

 sup
t∈[0,

lN
N

]

ωt ≥ ε

 = Pf
N,a,β

[
max

j=1,...,lN
Sj ≥ εσ

√
N ; lN > L

]
(72)

+Pf
N,a,β

[
max

j=1,...,lN
Sj ≥ εσ

√
N ; lN ≤ L

]
,

so that choosing L0 large enough and making use of Lemma
TRLO
1.3, for any fixed η > 0, we

can get the following bound which holds for every N and for every L ≥ L0:∣∣∣∣∣∣QfN,a,β
 sup
t∈[0,

lN
N

]

ωt ≥ ε

−Pf
N,a,β

[
max

j=1,...,lN
Sj ≥ εσ

√
N ; lN ≤ L

]∣∣∣∣∣∣ ≤ η/2. (73)

Then we note that:

Pf
N,a,β

[
max

j=1,...,lN
Sj ≥ εσ

√
N ; lN ≤ L

]
=

E
[
1maxj=1,...,lN

Sj≥εσ
√
Ne

β
∑N
i=1 1Si∈[0,a]1lN≤L1T−1 >N

]
ZfN,a,β

(74)
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so that using the estimates on ZfN,a,β from Proposition
esti
5.1 and Lemma

fluctu
2.1, we get that

there exists a constant C > 0 such that :

Pf
N,a,β

[
max

j=1,...,lN
Sj ≥ εσ

√
N ; lN ≤ L

]
≤ CN1/2eβLE

[
1maxj=1,...,L Sj≥εσ

√
N1lN≤L1T−1 >N

]
≤ CeβLP

[
max

j=1,...,L
Sj ≥ εσ

√
N |T−1 > N

]
.

(75)

Then we consider some γ > 0. As soon as N is large enough, we have of course the

bound:

P

[
max

j=1,...,L
Sj ≥ εσ

√
N
∣∣∣T−1 > N

]
≤ P

[
max

j=1,...,γN
Sj ≥ εσ

√
N
∣∣∣T−1 > N

]
. (76)

We can rewrite the right hand side above as:

P

[
sup
t∈[0,γ]

SNt ≥ ε
∣∣∣T−1 > N

]
. (77) EEE

where SN is the image of (Sj)j≤N under the map XN . Making use of Theorem
ShiTT
5.3, for

every bounded continuous function Φ(·) on C([0, 1]), one has the convergence

E
[
Φ
(
(SNt )t∈[0,1]

) ∣∣∣T−1 > N
]
→ m(Φ). (78)

Finally, we note that the set of discontinuities of the functional

C([0, 1],R) → R

f 7→ 1sup[0,γ] f≥ε
(79)

is of null m-measure, so that by the continuous mapping theorem (see
Bil
[Bil68]) the quantity

(
EEE
77) converges towards m(supt∈[0,γ] ωt > ε) which can be made arbitrarily small when γ

is chosen accordingly. �

The second point of Lemma
KEYLEm
5.4 is fulfilled.

We first prove the second statement in the case where A = ∅. Let ε > 0. We consider

a Lipschitz bounded functional Φ on C([0, 1],R), that is such that there exist two positive
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constants c1 and c2 verifying that for every f, g ∈ C([0, 1],R), one has:

|Φ(f)| < c1 and |Φ(f)− Φ(g)| ≤ c2||f − g||∞. (80) Ph

Here, the event EN,A,x appearing in (
epscond
62) is the event {S1 > a, . . . , SN > a}; conditioning

on S1 and using Markov’s property, one gets:

EfA
[
Φ
(
(XN

t )t∈[0,1]

) ]
=

∫ ∞
a

E
[
Φ
(
XN (t, S2, . . . , SN )

)
, S1 = t, S2 > a, . . . , SN > a

]
P[S1 > a, . . . , SN > a]

dt.

(81) I

Then we use the Markov property and the invariance by translation of S to get that

for any t ≥ a:

E
[
Φ
(
XN (t, S2, . . . , SN )

)
, S1 = t, S2 > a, . . . , SN > a

]
= h(t)Et−a

[
Φ
(
XN (t, S1 + a, . . . , SN−1 + a)

)
, τ(−∞,0) > N − 1

]
.

(82)

For any (x1, . . . , xN−1) ∈ (R+)N−1 and t ∈ [a,N1/4], one has

∣∣∣Φ (XN (t, x1 + a, . . . , xN−1 + a)
)
− Φ

(
XN−1(x1, . . . , xN−1)

) ∣∣∣
≤
c2 supj=1,...,N−1 |xj − xj−1|√

N
+ c2

a+N1/4

√
N

.
(83) Ko

Theorem
ShiTT
5.3 implies that for t ∈ (a,N1/4),Et−a

[
·
∣∣∣τ(−∞,0) > N − 1

]
◦
(
XN−1

)−1

converges towards m(·). In particular, using the tightness criterion of Kolmogorov, this

implies the fact that
supj=1,...,N−1 |Sj−Sj−1|√

N
+ a+N1/4

√
N

=: YaN converges towards zero in prob-

ability when (Sj)j≤N is distributed according to Et−a

[
·
∣∣∣τ(−∞,0) > N − 1

]
.

Thus, one has:

∣∣∣Et−a

[
Φ
(
XN (t, S1 + a, . . . , SN−1 + a)

) ∣∣∣τ(−∞,0) > N − 1
]

−Et−a

[
Φ
(
XN−1(S1, . . . , SN−1)

) ∣∣∣τ(−∞,0) > N − 1
]∣∣∣ (84) Pi
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≤ Et−a

[∣∣∣Φ (XN (t, S1 + a, . . . , SN−1 + a)
)

− Φ
(
XN−1(S1, . . . , SN−1)

) ∣∣∣1YaN>ε∣∣∣τ(−∞,0) > N − 1
]

+ Et−a

[∣∣∣Φ (XN (t, S1 + a, . . . , SN−1 + a)
)

− Φ
(
XN−1(S1, . . . , SN−1)

) ∣∣∣1YaN≤ε∣∣∣τ(−∞,0) > N − 1
]

≤ 2c1Pt−a

[
YaN > ε

∣∣∣τ(−∞,0) > N − 1
]

+ c2ε

where in the last inequality we made use of (
Ko
83). We finally choose N0 large enough such

that the last term above is smaller than say ε.

We then rewrite (
I
81) as

EfA
[
Φ
(
(XN

t )t∈[0,1]

) ]
=

∫ N1/4

a
h(t)

Pt−a[τ(−∞,0) > N − 1]

P[S1 > a, . . . , SN > a]
Et−a

[
Φ
(
XN (t, S1 + a, . . . , SN−1 + a)

) ∣∣∣τ(−∞,0) > N − 1
]
dt

+

∫ ∞
N1/4

h(t)
Pt−a[τ(−∞,0) > N − 1]

P[S1 > a, . . . , SN > a]
Et−a

[
Φ
(
XN (t, S1 + a, . . . , SN−1 + a)

) ∣∣∣τ(−∞,0) > N − 1
]
dt.

(85) abat

Combining (
Pi
84), Theorem

ShiTT
5.3 and the dominated convergence theorem (in particular

we use the fact that
∫∞
a h(t)

Pt−a[τ(−∞,0)>N−1]

P[S1>a,...,SN>a] dt = 1 for every N), we get that the first

term in the right hand side of the above equality converges as N →∞ towards m(Φ). On

the other hand, the second term is smaller than

c2

∫ ∞
N1/4

t2h(t)

N1/2P[S1 > a, . . . , SN > a]
dt. (86) sma

By Lemma
stayabove
2.2, the sequence (N1/2P[S1 > a, . . . , SN > a])N converges towards a

positive limit as N →∞.

Then we make use of this convergence and of the fact that E[X2] <∞ to get that the

term in (
sma
86) vanishes as N →∞; hence the A = ∅ case is resolved.

For a generic A ⊂ VN and x ∈ (R+)N , we make use of the Markov property and of

what we just proved. More precisely, since for such A, we have A ∩ [0, L] = A, using
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Markov’s property, for every function H : RN−L → R, we get the equality

E [H ((SL, . . . , SN )) , EN,A,x] = E
[
H ((SL, . . . , SN )) , EL,A∩[0,L],x ∩ {SL+1 > a, . . . , SN > a}

]
= P

[
EL,A∩[0,L],x

]
Px|A| [H(S0, . . . , SN−L)S1 > a, . . . , SN−L > a] .

(87)

From this we deduce:

EA,x

Φ

(√1− L

N
SNL
N

+t(1− L
N

)

)
t∈[0,1]


= Ex|A|

[
Φ
(

(SN−Lt )t∈[0,1]

) ∣∣∣S1 > a, . . . , SN−L > a
]

(88)

Finally, we note that for all x ∈ [0, a], one has the equality:

Ex

[
Φ
(
SN−Lt )t∈[0,1]

) ∣∣∣S1 > a, . . . , SN−L > a
]

= E{0},x
[
Φ
(
SN−Lt )t∈[0,1]

) ]
. (89)

We already proved that the right hand side in the above equality converges towards

m(Φ) in the particular case x = 0. Getting the same convergence for any x ∈ [0, a] works

in the same way, and hence we get the second point of Lemma
KEYLEm
5.4. �

5.2.1 Proof of Lemma
KEYLEm
5.4

We consider ε, η > 0, L0 a positive integer and Φ a continuous function on C([0, 1],R).

We write:

QfN,a,β

[
Φ(ω)

]
=

L0∑
l=0

∑
A⊂VN ;L(A)=l

∫
[0,a]|A|

pfβ,N (A, dx)PA,x
[
Φ(XN )

]
+QfN,a,β

[
Φ(ω)1L(A)>L0

]
.

(90) Fin

Then we note that for each A and x appearing in the right hand side above, the

convergence PA,x
[
Φ(XN )

]
→ m(Φ) holds. We note L for the quantity L(A) and for

notational convenience we write fN (t) := L/N + t(1 − L/N) and gN (t) := (t−L/N)
1−L/N its

inverse (and we set f0(t) = g0(t) = t).

We first note that for every n > 0, for every t1 < t2 < . . . < tn ∈ [0, 1]n and for every
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continuous bounded function F : [0, 1]n → R, one has the convergence

PA,x
[
F (XN

t1 , X
N
t2 , . . . , X

N
tn)
]
→ m [F (ωt1 , . . . , ωtn)] . (91)

Indeed, making use of the second assumption of Lemma
KEYLEm
5.4, we get:

∣∣∣∣∣PA,x[F (XN
t1 , X

N
t2 , . . . , X

N
tn

) ]
− PA,x

[
F

(√
1− L

N
XN
fN (t1), . . . ,

√
1− L

N
XN
fN (tn)

)] ∣∣∣∣∣→ 0 (92)

as N → ∞ by dominated convergence because F (·) is continuous and bounded; as the

convergence of the second term above towards m(F (ωt1 , . . . , ωtn)) is the hypothesis, the

finite dimensional convergence is proven.

We are left with proving the tightness of the sequence XN under the law PA,x for

A ⊂ VN such that L(A) ≤ L0. For this, for η > 0 and for a continuous function f on

[0, 1] → R+ verifying supt∈[0,η] f(t) ≤ ε, we introduce its η-cut counterpart f (η); namely,

f (η)(x) = xf(η)
η 1x∈[0,η] + f(x)1x≥η. Clearly, we have ||f (η) − f ||∞ ≤ ε.

Using standard properties of the brownian motion, for C large enough, one hasm(BC) ≥

1− ε where

BC :=
{
f ∈ C([0, 1],R), sup

x,y∈[0,1]
|f(x)− f(y)| ≤ C|x− y|2/3

}
. (93)

Therefore for such a C and for N large enough, we have:

PA,x

(√1− L

N
XN
fN (t)

)
t∈[0,1]

∈ BC

 ≥ 1− 2η. (94)

Now we are ready to prove the Kolmogorov criterion for XN under the law PA,x. We

have to show that given δ > 0, there exists N0 such that:

PA,x
[

sup
s,t,|s−t|≤δ

|XN
s −XN

t | ≥ ε
]
≤ η, N ≥ N0. (95) AMPBB

Using the first hypothesis of Lemma
KEYLEm
5.4, we can restrict ourselves to show (

AMPBB
95) by

replacing XN by its L/N -cut counterpart, which we denote by X̃N . As the modulus of
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continuity of X̃N is under control on [0, L/N ], we have to show that there exists δ > 0

such that for N large enough, one has:

PA,x
[

sup
s,t>L/N,|s−t|≤δ

|X̃N
s − X̃N

t | ≥ ε
]
≤ η. (96) A

Now we write:

∣∣∣X̃N
s − X̃N

t

∣∣∣ ≤ ∣∣∣X̃N
fN (s) − X̃

N
fN (t)

∣∣∣+
∣∣∣X̃N

fN (s) − X̃
N
s

∣∣∣+
∣∣∣X̃N

fN (t) − X̃
N
t

∣∣∣ (97)

so that, for every δ > 0,

PA,x
[

sup
s,t>L/N,|s−t|≤δ

∣∣∣X̃N
s − X̃N

t | ≥ ε
]

≤ PA,x
[

sup
|s−t|≤δ

∣∣∣X̃N
fN (s) − X̃

N
fN (t)

∣∣∣ ≥ ε/3]+ 2PA,x
[

sup
s∈[0,1]

∣∣∣X̃N
fN (s) − X̃

N
s

∣∣∣ ≥ ε/3]. (98)

The first term in the right hand side of the above inequality can be made smaller than

η/2 for δ small enough as soon as N is large enough using the second hypothesis of Lemma
KEYLEm
5.4. For the left hand side, we get

PA,x
[

sup
s∈[0,1]

∣∣∣X̃N
fN (s) − X̃

N
s

∣∣∣ ≥ ε/3]
= PA,x

[
sup
s∈[0,1]

∣∣∣X̃N
fN (s) − X̃

N
gN (fN (s))

∣∣∣ ≥ ε/3;
(
X̃N
fN (t)

)
t∈[0,1]

∈ BC
]

+ PA,x
[

sup
s∈[0,1]

∣∣∣X̃N
fN (s) − X̃

N
gN (fN (s))

∣∣∣ ≥ ε/3;
(
X̃N
fN (t)

)
t∈[0,1]

∈ BcC
]
.

(99) UNDERNIER

The last term of equation (
UNDERNIER
99) above can be made smaller than η/3 for N large enough

since BC is an m continuity set (that is a set whose boundary is of null m measure) and

by using the Porte-Manteau theorem, which states that in this case

PA,x
[
(X̃N

fN (t))t∈[0,1] ∈ BC
]
→ m(BC) (100)

as N →∞.

Finally, for (X̃N
fN (t))t∈[0,1] ∈ BC , we have

sup
s∈[0,1]

∣∣∣X̃N
fN (s) − X̃

N
gN (fN (s))

∣∣∣ ≤ C sup
s∈[0,1]

∣∣∣s− gN (s)
∣∣∣2/3 (101)
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and sups∈[0,1]

∣∣∣s− gN (s)
∣∣∣2/3 ≤ (L/N)2/3. Thus for N large enough, one has:

PA,x
[

sup
s∈[0,1]

∣∣∣X̃N
fN (s) − X̃

N
gN (fN (s))

∣∣∣ ≥ ε/3;
(
X̃N
fN (t)

)
t∈[0,1]

∈ BC
]
≤ η/3 (102)

which proves (
A
96). Thus we have shown that PA,x

[
Φ(XN )

]
→ m(Φ).

Now we make use of equation (
Fin
90) and the triangle equality to get that

∣∣∣QfN,a,β[Φ(ω)
]
−m(Φ)

∣∣∣
≤

L0∑
l=0

∑
A⊂VN ;L(A)=l

∫
[0,a]|A|

pfβ,N (A, x)
∣∣∣PA,x[Φ (XN )

)
−m (Φ)

∣∣∣
+m(|Φ|)QfN,a,β

[
1L(A)>L0

]
+QfN,a,β

[∣∣∣Φ(ω)
∣∣∣1L(A)>L0

]
.

(103)

As Φ(·) is bounded, recalling that

∞∑
l=0

∑
A⊂VN ;L(A)=l

∫
[0,a]|A|

pfβ,N (A, x) = 1, (104)

using dominated convergence and the fact that PA,x
[
Φ(XN )

]
→ m(Φ)), we are done by

considering L0 large enough and by using Lemma
TRLO
1.3. �

5.3 The constrained case

The strategy in this part is similar to the one of the preceeding section, and we choose to

skip some of the proofs for lightness. We first mention that the analogous of Shimura’s

result has been recently shown for the normalized excursion in
CaCha
[CC13][Corollary 2.5].

CC Theorem 5.5 Let xN and yN two positive sequences such that both xN/
√
N and yN/

√
N

vanish as N →∞. One has the following weak convergence:

PxN

[
·
∣∣∣SN = yN , τ(−∞,0) > N

]
◦
(
XN

)−1
⇒ e(·). (105)

Like we did in the free case, we first give a technical lemma which immediately implies

the convergence in the constrained case of Theorem
MAIN
1.2.

ccas1 Lemma 5.6 Let (lN , rN ) denote the random variables (L(A), R(A)) under Pc
N,a,β. As-

sume the following holds:
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1. For any ε > 0, one has

lim
N→∞

QcN,a,β

[
sup

t∈[0,lN/N ]∪[rN/N,1]
wt ≥ ε

]
= 0. (106)

2. For every A ⊂ VN−1 such that (L(A), R(A)) = (L,R) and for every x ∈ RN , if X

follows the law PcA,x, one has the convergence in law:

(√
R− L
N

XN
L
N

+t(R−L
N

)

)
t∈[0,1]

⇒ e. (107)

Then one has the second convergence of Theorem
MAIN
1.2.

The proof of Lemma
ccas1
5.6 closely follows the one of Lemma

KEYLEm
5.4, so that we choose to

skip it.

5.3.1 Proof of Theorem
MAIN
1.2 in the constrained case.

We show that the hypothesis of Lemma
ccas1
5.6 are fulfilled.

The first point of Lemma
ccas1
5.6 is fulfilled. Combining the equivalence:

P[SN ∈ [0, a];Sj > 0, j ≤ N ] ∼
∫ a

0 U(u)du
√

2πσN3/2
(108) App

which follows from (
const
27) and the asymptotics on ZcN,β,a in Proposition

esti
5.1, the proof of this

point goes very much along the same lines as in the constrained case by using standard

facts on the normalized excursion instead of the meander, so that once again we choose

to skip it.

The second point of Lemma
ccas1
5.6 is fulfilled. Here we make use of Theorem

CC
5.5 in

a crucial way. We first treat the A = ∅ case. Once again we consider ε > 0 and Φ a

Lipschitz bounded functional on C([0, 1],R) verifying the same properties as in (
Ph
80). We
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write:

EcA,x
[
Φ
(
XN
t

)
t∈[0,1]

]
=

∫
t,t′∈[a,∞)2,u∈[0,a]

E
[
Φ
(
XN (t, S2, . . . , SN−2, t

′, u)
)
, S1 = t, S2 > a, . . . , SN−2 > a, SN−1 = t′, SN = u

]
P
[
S1 > a, . . . , SN−1 > a, SN ∈ [0, a]

] dtdt′du.

(109) asplit

For t, t′ ≥ a, u ∈ [0, a], we use twice Markov’s property to get:

E
[
Φ
(
XN (t, S2, . . . , SN−2, t

′, u)
)
, S1 = t, S2 > a, . . . , SN−2 > a, SN−1 = t′, SN = u

]
= h(t)Et−a

[
Φ
(
XN (t, S1 + a, . . . , SN−2 + a, t′, u)

)
, τ(−∞,0)>N−2, SN−2 = t′

]
h(u− t′)

(110)

= h(t)h(u− t′)Et−a

[
Φ
(
XN (t, S1 + a, . . . , SN−2 + a, t′, u)

)
|τ(−∞,0)>N−2, SN−2 = t′

]
×Pt−a

[
τ(−∞,0)>N−2, SN−2 = t′

]
.

(111)

As in (
Ko
83), for any (x1, . . . , xN−2) ∈ (R+)N−2, (t, t′) ∈ (a,N1/4)2, u ∈ [0, a], we have:

∣∣∣Φ (XN (t, x1 + a, . . . , xN−2 + a, t′, u)
)
− Φ

(
XN−2(x1, . . . , xN−2)

) ∣∣∣
≤
c2 supj=1,...,N−2 |xj − xj−1|√

N
+ c2

a+ 2N1/4

√
N − 2

.
(112) Ko1

Since Theorem
CC
5.5 asserts that

Et−a

[
Φ
(
XN−2(S1, . . . , SN−2)

)
|τ(−∞,0)>N−2, SN−2 = t′

]
→ e(Φ), (113)

we can deduce from (
Ko1
112) as in the free case that

Et−a

[
Φ
(
XN (t, S1 + a, . . . , SN−2 + a, t′, u)

)
|τ(−∞,0)>N−2, SN−2 = t′

]
→ e(Φ). (114) exc

We first recall that a consequence of Lemma
Pr
2.3 is the fact that

N3/2P
[
S1 > a, . . . , SN−1 > a, SN ∈ [0, a]

]
→
∫

[0,a]2
Φa(x, y)dxdy > 0 (115) cccon
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as N →∞. We split the integral over [a,∞)2 appearing in (
asplit
109):

EcA,x
[
Φ
(
XN
t

)
t∈[0,1]

]
=

∫
u∈[0,a]

(∫
(t,t′)∈DN1

. . .+

∫
(t,t′)∈DN2

. . .

)
(116)

where, given ε > 0 and C > 0, we defined

DN1 = {(t, t′) ∈ [a, ε
√
N ]2},

DN2 = {(t, t′) ∈ R+, t ∨ t′ ≥ ε
√
N}.

(117)

As we proceeded in the free case, making use of the equivalence (
const
27) and of the con-

vergence (
exc
114), we deduce that

lim
ε→0+

lim
N→∞

∫
u∈[0,a]

∫
(t,t′)∈DN1

h(t)h(u− t′)
Pt−a

[
τ(−∞,0)>N−2, SN−2 = t′

]
P
[
S1 > a, . . . , SN−1 > a, SN ∈ [0, a]

]
×Et−a

[
Φ
(
XN (t, S1 + a, . . . , SN−2 + a, t′, u)

)
|τ(−∞,0)>N−2, SN−2 = t′

]
dtdt′du

→ e(Φ).

(118)

Φ being bounded, we are left with showing that

lim
ε→0+

lim
N→∞

∫
u∈[0,a]

∫
(t,t′)∈DN2

h(t)h(u− t′)
Pt−a

[
τ(−∞,0)>N−2, SN−2 = t′

]
P
[
S1 > a, . . . , SN−1 > a, SN ∈ [0, a]

]dtdt′du = 0.

(119) lastconv

We show (
lastconv
119) pointwise for u ∈ [0, a] (and indeed we just show it for u = 0), the

general case follows by dominated convergence arguments.

Since h(·) is bounded, by Gnedenko’s local limit theorem, we have

sup
n∈N

sup
t∈R

√
nP[Sn = t] <∞. (120)

Recalling (
cccon
115), we are then left with showing that

lim
ε→0+

lim
N→∞

N

∫
DN2

h(t)h(t′)dtdt′ = 0. (121) d2

Since ∫
DN2

h(t)h(t′)dtdt′ ≤ 1

ε2N

∫ ∞
ε
√
N
v2h(v)dv, (122)

recalling that E[X2] <∞, we immediately get (
d2
121).
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To conclude the proof of Theorem
MAIN
1.2, we are left with dealing with the generic case

A ⊂ VN , which is done similarly to the free case.

�
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