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Abstract

Personalized PageRank is an algorithm to classify the improtance of web pages on a user-
dependent basis. We introduce two generalizations of Personalized PageRank with node-
dependent restart. The first generalization is based on the proportion of visits to nodes
before the restart, whereas the second generalization is based on the probability of visited
node just before the restart. In the original case of constant restart probability, the two
measures coincide. We discuss interesting particular cases of restart probabilities and restart
distributions. We show that the both generalizations of Personalized PageRank have an
elegant expression connecting the so-called direct and reverse Personalized PageRanks that
yield a symmetry property of these Personalized PageRanks.

1 Introduction and definitions

PageRank has become a standard algorithm to classify the importance of nodes in a network.
Let us start by introducing some notation. Let G = (V,E) be a finite graph, where V is the
node set and E ⊆ V × V the collection of (directed) edges. Then, PageRank can be interpreted
as the stationary distribution of a random walk on G that restarts from a uniform location
in V at each time with probability α ∈ (0, 1). Thus, in the Standard PageRank centrality
measure [7], the random walk restarts after a geometrically distributed number of steps, and the
restart takes place from a uniform location in the graph, and otherwise jumps to any one of the
neighbours in the graph with equal probability. Personalized PageRank [12] is a modification of
the Standard PageRank where the restart distribution is not uniform. Both the Standard and
Personalized PageRank have many applications in data mining and machine learning (see e.g.,
[2, 3, 7, 10, 11, 12, 14, 15]).

In the (standard) Personalized PageRank, the random walker restarts with a given fixed
probability 1 − α at each visited node. We suggest a generalization where a random walker
restarts with probability 1 − αi at node i ∈ V . When the random walker restarts, it chooses a
node to restart at with probability distribution vT . In many cases, we let the random walker
restart at a fixed location, say j ∈ V . Then the Personalized PageRank of node j corresponds
to jth Personalized PageRank and is a vector whose ith coordinate measures the importance of
node i to node j.

The above random walks (Xt)t≥0 can be described by a finite-state Markov chain with the
transition matrix

P̃ = AD−1W + (I −A)1vT , (1)

where W is the (possibly non-symmetric) adjacency matrix, D is the diagonal matrix with diago-
nal entries Dii =

∑n
j=1Wij , and A = diag(α1, . . . , αn) is the diagonal matrix of damping factors.
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The case of undirected graphs corresponds to the case when W is a symmetric matrix. In general,
Dii is the out-degree of node i ∈ V . Throughout the paper, we assume that the graph is weakly
connected and if some node does not have outgoing edges, we add artificial outgoing edges to all
the other nodes.

We propose two generalizations of the Personalized PageRank with node-dependent restart:

Definition 1 (Occupation-time Personalized PageRank) The Occupation-Time Personal-
ized PageRank is given by

πj(v) = lim
t→∞

P(Xt = j). (2)

By the fact that (πj(v))v∈V is the stationairy distribution of the Markov chain, we can interpret
πj(v) as a long-run frequency of visits to node j, i.e.,

πj(v) = lim
t→∞

1

t

t∑
s=1

1{Xs=v}. (3)

Our second generalization is based on the location where the random walker restarts:

Definition 2 (Location-of-Restart Personalized PageRank) The Location-of-Restart Per-
sonalized PageRank is given by

ρj(v) = lim
t→∞

P(Xt = j just before restart) = lim
t→∞

P(Xt = j | restart at time t+ 1). (4)

We can interpret ρj(v) as a long-run frequency of visits to node j which are followed immediately
by a restart, i.e.,

ρj(v) = lim
t→∞

1

Nt

t∑
s=1

1{Xt=j,Xt+1 restarts}, (5)

where Nt denotes the number of restarts up to time t. When the restarts occur with equal
probability for every node, we have that Nt ∼ Bin(t, 1 − α), i.e., Nt has a binomial distribution
with t trials and success probability 1 − α. When the restart probabilities are unequal, the
distribution of Nt is more involved. In general, however,

Nt/t
a.s.−→

∑
v∈V

(1− αv)πj(v), (6)

where
a.s.−→ denotes convergence almost surely.

Both generalized Personalized PageRanks are probability distributions, i.e., their sum over
j ∈ V gives 1. When vT = e(i), where ej(i) = 1 when i = j and ej(i) = 0 when i 6= j, then both
πj(v) and ρj(v) can be interpreted as the relative importance of node j from the perspective of
node i.

We see at least three applications of the generalized Personalized PageRank. The network
sampling process introduced in [5] can be viewed as a particular case of PageRank with a node-
dependent restart. We discuss this relation in more detail in Section 4. Secondly, the generalized
Personalized PageRank can be applied as a proximity measure between nodes in semi-supervised
machine learning [4, 11]. In this case, one may prefer to discount the effect of less informative
nodes, e.g., nodes with very large degrees. And thirdly, the generalized Personalized PageRank
can be applied for spam detection and control. It is known [8] that spam web pages are often
designed to be ranked highly. By using the Location-of-Restart Personalized PageRank and
penalizing the ranking of spam pages with small restart probability, one can push the spam pages
from the top list produced by search engines.
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In this paper, we investigate these two generalizations of Personalized PageRank. The paper
is organised as follows. In Section 2, we investigate the Occupation-Time Personalized PageRank.
In Section 3, we investigate the Location-of-Restart Personalized PageRank. In Section ??, we
investigate monotonicity properties of the our Personalized PageRank measures with respect to
αj . In Section 4, we specify the results for some particular interesting cases. We close in Section
5 with a discussion of our results and suggestions for future research.

2 Occupation-time Personalized PageRank

The Occupation-time Personalized PageRank can be calculated explicitly as follows:

Theorem 1 (Occupation-time Personalized PageRank Formula) The Occupation-time Per-
sonalized PageRank π(v) with node-dependent restart equals

π(v) =
1

vT [I −AP ]−11
vT [I −AP ]−1, (7)

with P = D−1W the transition matrix of random walk on G withour restarts.

Proof. By the defining equation for the stationary distribution of a Markov chain,

π(v)[AD−1W + (I −A)1vT ] = π(v), (8)

so that
π(v)[I −AD−1W ] = π(v)(I −A)1vT , (9)

and, since π(v)1 = 1,
π(v)[I −AD−1W ] = (1− π(v)A1)vT . (10)

Since the matrix AD−1W is substochastic and hence [I −AD−1W ] is invertible, we arrive at

π(v) = (1− π(v)A1)vT [I −AD−1W ]−1. (11)

Let us multiply the above equation from the right hand side by A1 to obtain

π(v)A1 = (1− π(v)A1)vT [I −AD−1W ]−1A1. (12)

This yields

π(v)A1 =
vT [I −AP ]−1A1

1 + vT [I −AP ]−1A1
, (13)

and, consequently, since A = diag(α1, ..., αn) is a diagonal matrix, so that A1 = (α1, ..., αn)T ,
and we arrive at

π(v) =
1

1 + vT [I −AP ]−1A1
vT [I −AP ]−1. (14)

Since vT 1 = 1, by the fact that vT is a probability mass function, we obtain

1 + vT [I −AP ]−1A1 = vT [I −AP ]−11, (15)

from which the required equation (7) follows. �

Formula (7) admits the following probabilistic interpretation in the form of renewal equation

πj(v) =
Ev[# visits to j before restart]

Ev[# steps before restart]
, (16)
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where Ev denotes expectation with respect to the Markov chain starting in v.
Denote for brevity πj(i) = πj(e

T
i ), where ei is the ith vector of the standard basis, so that

πj(i) denotes the importance of node i from the perspective of j. Similarly, πi(j) denotes the
importance of node j from the perspective of i. We next prove a relation between these “direct”
and “reverse” PageRanks in the case of undirected graphs.

Theorem 2 (Symmetry for undirected Occupation-time Personalized PageRank) When
W T = W and A > 0, the following relation holds

di
αiKi(A)

πj(i) =
dj

αjKj(A)
πi(j), (17)

with

Ki(A) =
1

eTi [I −AP ]−11
. (18)

Proof. Note that the denominator of (7) equals precisely Ki(A). Thus, using a matrix geometric
series expansion, we can rewrite equation (7) as

πj(i) = Ki(A)eTi

∞∑
k=0

(AD−1W )kej (19)

= Ki(A)eTi

∞∑
k=0

(AD−1W )kD−1AA−1Dej

= Ki(A)eTi AD
−1
∞∑
k=0

(WD−1A)kA−1Dej

= Ki(A)
αi
di
eTi

∞∑
k=0

(WD−1A)kej
dj
αj

=
Ki(A)

Kj(A)

αi
di

dj
αj
Kj(A)eTi [I −WD−1A]−1ej

=
Ki(A)

Kj(A)

αi
di

dj
αj
Kj(A)eTj [I −AD−1W ]−1ei,

which gives equation (17). �

We note that the term (AD−1W )k can be interpreted as the contribution corresponding to all
paths of length k, while Ki(A) can be interpreted as the reciprocal of the expected time between
two consecutive restarts if the restart distribution is concentrated on node i, i.e.,

Ki(A)−1 = Ei[# steps before restart], (20)

see also (21). Thus, a probabilistic interpretation of (7) is that

di
αi

Ei[# visits to j before restart] =
dj
αj

Ej [# visits to i before restart]. (21)

Since

Ei[# visits to j before restart] =

∞∑
k=1

∑
v1,...,vk

k−1∏
t=0

αvs
dvs

, (22)

where v0 = j, we immediately see that the expression for Ej [# visits to i before restart] is iden-
tical, except for the first factor of αi

di
, which is present in Ei[# visits to j before restart], but not in

Ei[# visits to j before restart], and the factor
αj

dj
, which is present in Ej [# visits to i before restart],

but not in Ej [# visits to i before restart]. This explains the factors di
αi

and
dj
αj

in (21) and gives

an alternative probabilistic proof of Theorem 2.
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3 Location-of-Restart Personalized PageRank

The Location-of-Restart Personalized PageRank can also be calculated explicitly:

Theorem 3 (Location-of-Restart Personalized PageRank Formula) The Location-of-Restart
Personalized PageRank ρ(v) with node-dependent restart is equal to

ρ(v) = vT [I −AP ]−1[I −A], (23)

with P = D−1W .

Proof. This follows from the formula

ρj(v) = Ev[# visits to j before restart]P(restart from j) (24)

= Ev[# visits to j before restart](1− αj).

Now we can use (22) and the analysis in the proof of Theorem 1 to complete the proof. �

Location-of-Restart Personalized PageRank admits an even more elegant relation between the
“direct” and “reverse” PageRanks in the case of undirected graphs:

Theorem 4 (Symmetry for undirected Location-of-Restart Personalized PageRank)
When W T = W and αi ∈ (0, 1), the following relation holds

1− αi
αi

di ρj(i) =
1− αj
αj

dj ρi(j). (25)

Proof. This follows from a series of equivalent transformations

ρj(i) = eTi [I −AP ]−1[I −A]ej = eTi [I −AP ]−1ej(1− αj) (26)

= eTi [AD−1(DA−1 −W )]−1ej(1− αj) = eTi [DA−1 −W ]−1ejdj
1− αj
αj

= eTi [(I −WD−1A)DA−1]−1ejdj
1− αj
αj

= eTi AD
−1[I −WD−1A]−1ejdj

1− αj
αj

=
αi
di
eTi [I −WD−1A]−1ejdj

1− αj
αj

=
αi
di

ρi(j)

1− αi
dj

1− αj
αj

.

Alternatively, Theorem 4 follows directly from (24) and (21). �

Interestingly, in (17), the whole graph topology has an effect on the relation between the
“direct” and “reverse” Personalized PageRanks, whereas in the case of ρ(v), see equation (25),
only the local end-point information (i.e., αi and di) have an effect on the relation between the
“direct” and “reverse” PageRanks. We have no intuitive explanation of this distinction.

4 Interesting particular cases

In this section, we consider some interesting particular cases for the choice of restart probabilities
and distributions.
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4.1 Constant probability of restart

The case of constant restart probabilities (i.e., αj = α for every j) corresponds to the original
or standard Personalized PageRank. We note that in this case the two generalizations coincide.
For instance, we can recover a known formula [16] for the original Personalized PageRank with
A = αI from equation (7). Specifically,

vT [I −AP ]−11 = αvT [I − αP ]−11 = vT
∞∑
k=0

αkP k1 =
1

1− α
, (27)

and hence we retrieve the well-known formula

π(v) = (1− α)vT [I − αP ]−1. (28)

We also retrieve the following elegant result connecting direct and “reverse” original Person-
alized PageRanks on undirected graphs (W T = W ) obtained in [4]:

diπj(i) = djπi(j), (29)

since in the original Personalized PageRank αi = α. Finally, we note that in the original Person-
alized PageRank, the expected time between restart does not depend on the graph structure nor
on the restart distribution and is given by

Ev[time between consecutive restarts] =
1

1− α
, (30)

which is just the mean of the geomatrically distributed random variable.

4.2 Restart probabilities proportional to powers of degrees

Let us consider a particular case when the restart probabilities are proportional to powers of the
degrees. Namely, let

A = I − aDσ, (31)

with adσmax < 1. We first analyse [I − AP ]−1 with the help of a Laurent series expansion. Let
T (ε) = T0− εT1 be a substochastic matrix for small values of ε and let T0 be a stochastic matrix
with associated stationary distribution ξT and deviation matrix H = (I − T0 + 1ξT )−1 − 1ξT .
Then, the following Laurent series expansion takes place (see Lemma 6.8 from [1])

[I − T (ε)]−1 =
1

ε
X−1 +X0 + εX1 + . . . , (32)

where the first two coefficients are given by

X−1 =
1

πTT11
1ξT , (33)

and
X0 = (I −X−1T1)H(I − T1X−1). (34)

Applying the above Laurent power series to [I − AP ]−1 with T0 = P , T1 = DσP and ε = a, we
obtain

[I −AP ]−1 = [I − (P − aDσP )]−1 =
1

a

1

πTT11
1ξT + O(a) =

1

a

1

ξTDσ1
1ξT + O(a). (35)

This yields the following asymptotic expressions for the generlized Personalized PageRanks

πj(a) = ξj + o(a), (36)
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and

ρj(a) =
dσj ξj∑
i∈V d

σ
i ξi

+ o(a). (37)

In particular, if we assume that the graph is undirected (W T = W ), we can further specify the
above expressions

πj(a) =
dj∑
i di

+ o(a), (38)

and

ρj(a) =
d1+σj∑
i∈V d

1+σ
i

+ o(a). (39)

We observe that using positive or negative degree σ we can significantly penalize or promote the
score ρ for nodes with large degrees.

As a by-product of our computations, we have also obtain nice asymptotic expression for the
expected time between restarts in the case of undirected graph:

Ev[time between consecutive restarts] =
1

a

∑
i∈V di∑

i∈V d
1+σ
i

+ O(a). (40)

One interesting conclusion from the above expression is that when σ > 0 the highly skewed
distribution of the degree distribution in G can significantly shorten the time between restarts.

4.3 Random walk with jumps

In [5], the authors introduced a process with artificial jumps. It is suggested in [5] to add artificial
edges with weights a/n between each two nodes to the graph. This process creates self-loops as
well. Thus, the new modified graph is a combination of the original graph and a complete graph
with self-loops. Let us demonstrate that this is a particular case of the introduce generalized
definition of Personalized PageRank. Specifically, we define the damping factors as

αi =
di

di + a
, i ∈ V, (41)

and as the restart distribution we take the uniform distribution (v = 1/n). Indeed, it is easy to
check that we retrieve the transition probabilities from [5]

pij =

{
a+n

n(di+a)
when i has an edge to j,

a
n(di+a)

when i does not have an edge to j.
(42)

As was shown in [5], the stationary distribution of the modified process, coinciding with the
Occupation-time Personalized PageRank, is given by

πi = πi(1/n) =
di + a

2|E|+ na
, i ∈ V. (43)

Since π(v) is the stationary distribution of P̃ with v = 1/n (see (1)), it satisfies the equation

π(AP + [I −A]1vT ) = π. (44)

Rewriting this equation as
π[I −A]1vT = π[I −AP ], (45)

and postmultiplying by [I −AP ]−1, we obtain

π[I −A]1vT [I −AP ]−1 = π (46)
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or
vT [I −AP ]−1 =

π∑n
i=1 πi(1− αi)

. (47)

This yields

ρj(v) =
πj(1− αj)∑n
i=1 πi(1− αi)

. (48)

In our particular case of αi = di/(di + a), the combination of (43) and (48) gives that πj(1− αj)
is independent of j, so that

ρj = 1/n. (49)

This is quite surprising. Since vT = 1
n1T , the nodes just after restart are distributed uniformly.

However, it appears that the nodes just before restart are also uniformly distributed! Such
effect has also been observed in [6]. Algorithmically, this means that all pages receive the same
generalized Personalized PageRank ρ, which, for ranking purposes, is rather uninformative. On
the other hand, this Personalized PageRank can be useful for sampling procedures. Note that
to compute it, we do not need to know how many nodes the graph has. The only thing that we
need to be able to do is to retrieve the neighbors of nodes. In pratice, this can be very useful!

5 Discussion

We have proposed two generalizations of Personalized PageRank when the probability of restart
depends on the node. Both generalizations coincide with the original Personalized PageRank when
the probability of restart is the same for all nodes. However, in general they show quite different
behavior. In particular, the Location-of-Restart Personalized Pagerank appears to be stronger
affected by the value of the restart probabilities. We have further suggested several applications
of the generalized Personalized PageRank in machine learning, sampling and information retrieval
and analized some particular interesting cases.

We feel that the analysis of the generalized Personalized PageRank on random graph model
is a promising future research directions. We have already obtained some indications that the
degree distribution can strongly affect the time between restarts. It would be highly interesting to
analyse this effect in more detail on various random graph models (see e.g., [13] for a introduction
into random graphs, and [9] for first results on directed configuration models).
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