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UNIVERSALITY FOR FIRST PASSAGE PERCOLATION

ON SPARSE RANDOM GRAPHS

SHANKAR BHAMIDI1, REMCO VAN DER HOFSTAD2, AND GERARD HOOGHIEMSTRA3

Abstract. We consider first passage percolation on the configuration model with n vertices,
and general independent and identically distributed edge weights assumed to have a density.
Assuming that the degree distribution satisfies a uniform X2 logX-condition, we analyze the
asymptotic distribution for the minimal weight path between a pair of typical vertices, as well
the number of edges on this path namely the hopcount.

The hopcount satisfies a central limit theorem (CLT). Furthermore, writing Ln for the weight
of this optimal path, then we shown that Ln−(logn)/αn converges to a limiting random variable,
for some sequence αn. This sequence αn and the norming constants for the CLT are expressible
in terms of the parameters of an associated continuous-time branching process that describes the
growth of neighborhoods around a uniformly chosen vertex in the random graph. The limit of
Ln − (logn)/αn equals the sum of the logarithm of the product of two independent martingale
limits, and a Gumbel random variable. Till date, for sparse random graph models, such results
have been shown only for the special case where the edge weights have an exponential distribution,
wherein the Markov property of this distribution plays a crucial role in the technical analysis of
the problem.

The proofs in the paper rely on a refined coupling between shortest path trees and continuous-
time branching processes, and on a Poisson point process limit for the potential closing edges of
shortest-weight paths between the source and destination.

1. Introduction and results

1.1. Motivation. First passage percolation (FPP) is an important topic in modern probability
theory, motivated by questions in a number of fields including disordered systems in statistical
physics, where it arises as a building block in the analysis of complicated interacting particle
systems such as the contact process, branching random walk and various epidemic models.

Let us start by describing the basic model. Let G be a connected graph on n vertices. Assign
independent and identically distributed (i.i.d.) random edge weights or lengths to the edges of
the graph. These random edge weights generate geodesics on the graph. Think of the graph as a
disordered random system carrying flow between pairs of vertices in the graph via shortest paths
between them. Choose two vertices in the graph uniformly at random amongst the n vertices.
We will call these two vertices “typical” vertices. Two functionals of interest are the minimal
weight Ln of a path between the two vertices and the number of edges Hn on the minimal path,
often referred to as the hopcount. We assume that the common distribution of the edge weights
is continuous, so that the optimal paths are a.s. unique and one can talk about objects such as
the number of edges in the optimal path.

This model has been studied intensively, largely in the context of the integer lattice [−N,N ]d

(see e.g. [19, 22, 29, 38]). For the power of this model to analyze more complicated interacting
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particle systems, see [32] and [16] and the references therein. In the modern context, FPP
problems take on an added significance. Many real-world networks (such as the Internet at the
router level or various road and rail networks) are entrusted with carrying flow between various
parts of the network. These networks have both a graph theoretic structure as well as weights
on edges, representing for example congestion. In the applied setting, understanding properties
of both the hopcount and the minimal weight are crucial, since whilst routing is done via least
weight paths, the actual time delay experienced by users scales like the hopcount (the number of
“hops” a message has to perform in getting from the source to the destination). Simulation-based
studies (see e.g. [13]) suggest that random edge weights have a marked effect on the geometry
of the network. This has been rigorously established in various works [3, 8–10], in the specific
situation of exponential edge weights.

In this paper, we study the behavior of the hopcount and minimal weight in the setting of
random graphs with finite variance degrees and general continuous edge weights. Since in many
applications, the distribution of edge weights is unknown, the assumption of general weights is
highly relevant. From a mathematical point of view, working with general instead of exponential
edge weights implies that our exploration process is non-Markovian. This is the first paper that
studies first passage percolation on random graph models in this general setting. In a forthcoming
paper [7] we will show that, due to the flexible choice of degree distribution, our results carry
over to various other random graph models, including rank-1 inhomogeneous random graphs as
introduced in [12].

Organization of this section. We start by introducing the configuration model in Section 1.2,
where we also state our main result, Theorem 1.2. In Section 1.3, we discuss a continuous-time
branching process approximation, which is necessary to identify the limiting variables in Theorem
1.2; this identification is done in Theorem 1.3. In Section 1.4, we study some examples that allow
us to relate our results to existing results in the literature. We close with Section 1.5 where we
present a discussion of our results and pose some open problems.

Throughout this paper, we make use of the following standard notation. We let
a.s.−→ denote

convergence almost surely,
L1

−→ denote convergence in mean,
d−→ denote convergence in distri-

bution, and
P−→ convergence in probability. For a sequence of random variables (Xn)n≥1, we

write Xn = OP(bn) when |Xn|/bn is a tight sequence of random variables, and Xn = oP(bn) when

|Xn|/bn
P−→ 0, as n→∞. We write D ∼ F to denote that the random variable D has distribu-

tion function F . For non-negative functions n 7→ f(n), n 7→ g(n), we write f(n) = O(g(n)) when
f(n)/g(n) is uniformly bounded, and f(n) = o(g(n)) when limn→∞ f(n)/g(n) = 0. Furthermore,
we write f(n) = Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)). Finally, we say that a sequence
of events (En)n≥1 occurs with high probability (whp) when P(En)→ 1.

1.2. Configuration model and main result. The configuration model (CM) is a random
graph with vertex set [n] := {1, 2, . . . , n} and with prescribed degrees. Let d = (d1, d2, . . . , dn)
be a given degree sequence, i.e., a sequence of n positive integers with total degree

`n =
∑
i∈[n]

di, (1.1)

assumed to be even. The CM on n vertices with degree sequence d is constructed as follows:
start with n vertices and di half-edges adjacent to vertex i ∈ [n]. Randomly choose pairs of
half-edges and match the chosen pairs together to form edges. Although self-loops may occur,
these become rare as n→∞ (see e.g. [11,25]). We denote the resulting graph on [n] by CMn(d),
with corresponding edge set En.

Regularity of vertex degrees. Let us now describe our regularity assumptions on the degree
sequence d as n→∞. We denote the degree of a uniformly chosen vertex V in [n] by Dn = dV .
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The random variable Dn has distribution function Fn given by

Fn(x) =
1

n

∑
j∈[n]

1{dj≤x}, (1.2)

where 1A denotes the indicator of the event A. We write log(x)+ = log(x) for x ≥ 1 and
log(x)+ = 0 for x ≤ 1. Then our regularity condition is as follows:

Condition 1.1 (Regularity conditions for vertex degrees).

(a) Weak convergence of vertex degree.
There exists a cumulative distribution function F of a discrete random variable D, taking
values in N such that

lim
n→∞

Fn(x) = F (x), (1.3)

for any continuity point x of F ; i.e., Dn
d−→ D.

(b) Convergence of second moment.

lim
n→∞

E[D2
n] = lim

n→∞

1

n

∑
j∈[n]

d2
j = E[D2], (1.4)

where Dn and D have distribution functions Fn and F , respectively, and we assume that

ν = E[D(D − 1)]/E[D] > 1. (1.5)

(c) Uniform X2 logX-condition. For every Kn →∞,

lim
n→∞

E[D2
n log (Dn/Kn)+] = lim

n→∞

1

n

∑
j∈[n]

d2
j log (dj/Kn)+ = 0. (1.6)

By Condition 1.1(c), the random degree Dn satisfies a uniform X2 logX-condition. The degree
of a vertex incident to a half-edge that is chosen uniformly at random from all half-edges has the
same distribution as the random variable D?

n given by

F ?n(x) = E[Dn1{Dn≤x}]/E[Dn], x ∈ R, (1.7)

which is the size-biased version of Dn. The latter random variable satisfies a uniform X logX-
condition if and only if Dn satisfies a uniform X2 logX-condition. As explained in more detail in
Section 1.3 below, D?

n is closely related to a branching-process approximation of neighborhoods
of a uniform vertex, and Condition 1.1(c) implies that this branching process satisfies a uniform
X logX condition. By uniform integrability, Condition 1.1(c) follows from the assumption that
limn→∞ E[D2

n log (Dn)+] = E[D2 log (D)+].

Note that that Conditions 1.1(a) and (c) imply that E[Di
n]→ E[Di], i = 1, 2. When the degrees

are random themselves, then the distribution function Fn as well as the left-hand side of (1.4) and
(1.6), are random and we assume that the convergence in (1.3), (1.4) and (1.6) to the respective
(deterministic) right-hand sides holds in probability. Thus, in this case, we require that, with
En[Di

n] = 1
n

∑
j∈[n] d

i
j (which is now a random variable) and for every ε > 0 and i ∈ {1, 2},

lim
n→∞

P(|Fn(x)− F (x)| ≥ ε) = 0, ∀x ∈ R, lim
n→∞

P(|En[Di
n]− E[Di]| ≥ ε) = 0. (1.8)

A similar condition replaces (1.6).
Condition (1.5) is equivalent to the existence of a giant component in CMn(d), see e.g. [27,34,

35]. Let F be a distribution function of a random variableD, satisfying (1.5) and E[D2 log (D)+] <
∞. We give two canonical examples in which Condition 1.1 holds. The first is when there are
precisely nk = dnF (k)e − dnF (k− 1)e vertices having degree k ≥ 1. The second is when (di)i∈[n]

is an i.i.d. sequence of random variables with distribution function F (in the case that
∑

i∈[n] di
is odd, we increase dn by 1, this does not affect the results).
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Edge weights and shortest paths. Once the graph has been constructed, we attach an edge
weight ξe to every edge e, where (ξe)e∈En are i.i.d. continuous random variables with density
fξ : [0,∞) → [0,∞) and corresponding distribution function Fξ. Pick two vertices U1 and U2 at
random from [n] and let Γ12 denote the set of all paths in CMn(d) between these two vertices.
For any path π ∈ Γ12, the weight of the path is defined as∑

e∈π
ξe. (1.9)

Let
Ln = min

π∈Γ12

∑
e∈π

ξe, (1.10)

denote the weight of the optimal (i.e., minimal weight) path between the U1 and U2 and let Hn

denote the number of edges or the hopcount of this path. If the two vertices are in different
components of the graph, then we let Ln, Hn = ∞. We are ready to state our main result. Due
to the complexity of the various constants and limiting random variables arising in the theorem,
we defer their complete description to the next section.

Theorem 1.2 (Joint convergence of hopcount and weight). Consider the configuration model
CMn(d) with degrees d satisfying Condition 1.1, and with i.i.d. edge weights distributed according
to the continuous distribution Fξ. Then, there exist constants α, γ, β ∈ (0,∞) and αn, γn with
αn → α, γn → γ, such that the hopcount Hn and weight Ln of the optimal path between two
uniformly chosen vertices, conditioned on being connected, satisfy(Hn − γn log n√

β log n
, Ln −

1

αn
log n

)
d−→ (Z,Q), (1.11)

as n → ∞, where Z and Q are independent and Z has a standard normal distribution, while Q
has a continuous distribution.

This is the first time that FPP on sparse random graphs with general edge weights has been
studied; for the particular case where the edge weights have an exponential distribution see e.g. [9].

In Remark 1.4 below, we will state conditions that imply that we can replace αn and γn
by their limits α and γ, respectively. Theorem 1.2 shows a remarkable degree of universality.
For CMn(d) satisfying Condition 1.1, the hopcount always satisfies a central limit theorem with
mean and variance proportional to log n. Also, the weight of the shortest weight path between two
uniformly chosen vertices always is of order log n, and the fluctuations around log n/αn converge
in distribution. We will see that even the limit Q has a large degree of universality. For this,
as well as to define the parameters α, αn, β, γ, γn, we first need to describe a continuous-time
branching process approximation.

1.3. Continuous-time branching processes. In this section, we define the limiting
continuous-time branching process (CTBP) that describes the neighborhood structure of first
passage percolation on CMn(d). Define the size-biased distribution F ? of the random variable D
with distribution function F by

F ?(x) = E[D1{D≤x}]/E[D], x ∈ R. (1.12)

When Condition 1.1(a)-(b) holds, the function F ? is the weak limit as n → ∞ of F ?n in (1.7).
Now let (BP?(t))t≥0 denote the following CTBP: (a) At time t = 0, we start with one individual
which we refer to as the original ancestor or the root of the branching process.
(b) Each individual v in the branching process lives for a random amount of time which has
distribution Fξ, i.e., the edge weight distribution, and then dies. At the time of death the
individual gives birth to D? − 1 children, where D? ∼ F ?. Lifetimes and number of offspring
across individuals are independent.

Note that in the above construction, by Condition 1.1(b), if we let Xv = D?−1 be the number
of children of an individual, then the expected number of children satisfies

E[Xv] = E[D? − 1] = ν > 1. (1.13)
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Further, by Condition 1.1(c), for D? ∼ F ?,
E[D? log (D?)+] <∞. (1.14)

The CTBP defined above is a standard Bellman-Harris process, with lifetime distribution Fξ
and offspring distributed as D? − 1 [4, 20, 23]. The Malthusian parameter α of the branching
process BP? is the unique solution of the equation

µ̂(α) = ν

∫ ∞
0

e−αtdFξ(t) = 1. (1.15)

Since ν > 1, we obtain that α ∈ (0,∞). We also let αn be the solution to (1.15) with ν replaced
by

νn = E[Dn(Dn − 1)]/E[Dn]. (1.16)

Clearly, αn → α when Condition 1.1 holds, and further |αn − α| = O(|νn − ν|).
Standard theory (see e.g., [4,20,23]) implies that under our assumptions on the model, namely

(1.13) and (1.14), there exists a random variable W? such that

e−αt|BP?(t)| a.s.,L
1

−→ W?. (1.17)

Here the limiting random variable W? satisfies W? > 0 a.s. on the event of non-extinction of the
branching process and is zero otherwise. Thus α measures the true rate of exponential growth of
the branching process.

By (1.15), we can define the cumulative distribution function F̄ξ, often referred to as the
stable-age distribution, as

F̄ξ(x) = ν

∫ x

0
e−αydFξ(y). (1.18)

Let ν̄ be the mean and σ̄2 the variance of F̄ξ, i.e.,

ν̄ = ν

∫ ∞
0

xe−αx dFξ(x), σ̄2 = ν

∫ ∞
0

(x− ν̄)2e−αx dFξ(x). (1.19)

Then ν̄, σ̄2 ∈ (0,∞), since α > 0. We also define F̄n,ξ to be the distribution function F̄ξ in
(1.18) with ν and α replaced by νn and αn, and we let ν̄n and σ̄2

n be the corresponding mean and
variance.

We need a small variation of the above standard CTBP, where the root of the branching
process dies immediately giving birth to a D number of children where D has distribution F ,
the original (i.e., non size-biased) degree distribution as in Condition 1.1(a). The details for
every other individual in this branching process remain unchanged from the original description,
namely each individual survives for a random amount of time with distribution Fξ giving rise to
a D?−1 number of children where D? ∼ F ?, the size-biased distribution function F ? as in (1.12).
Writing |BP(t)| for the number of alive individuals at time t, it is easy to see here as well that

e−αt|BP(t)| a.s.,L
1

−→ W̃. (1.20)

Further, conditionally on D = k,

W̃ d
= W̃?,(1) + · · ·+ W̃?,(k),

where D ∼ F , and W̃?,(i) are i.i.d. with the distribution of the limiting random variable in (1.17).

LetW denote a random variable distributed as W̃ conditioned to be positive, i.e., for every x ≥ 0,

P(W ≤ x) = P(W̃ ≤ x | W̃ > 0). (1.21)

To simplify notation in the sequel, we will use (BP(t))t≥0 to denote a CTBP with the root having
offspring either one (as for the standard CTBP), D or D? − 1. It will be clear from the context
which setting we are in.

We are now in a position to identify the limiting random variable Q as well as the parameters
α, β, γ, αn, γn:
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Theorem 1.3 (Identification of the limiting variables). The parameters α, αn, β, γn, γ in Theorem
1.2 satisfy that α is the Malthusian rate of growth defined in (1.15) and αn is the solution to (1.15)
with νn replacing ν, while

γ =
1

αν̄
, γn =

1

αnν̄n
, β =

σ̄2

ν̄3α
. (1.22)

Further, Q can be identified as

Q =
1

α

(
− logW (1) − logW (2) − Λ + c

)
, (1.23)

where P(Λ ≤ x) = e−e−x
(so that Λ is a standard Gumbel random variable), W (1),W (2) are two

independent copies of the variable W in (1.21), also independent from Λ, and c is the constant

c = log(E[D](ν − 1)2/(ναν̄)). (1.24)

Remark 1.4 (Asymptotic mean). In (1.11), we can replace αn and γn by their limits α and γ
precisely when γn = γ + o(1/

√
log n) and αn = α + o(1/ log n). Since |αn − α| = O(|νn − ν|),

|ν̄n − ν̄| = O(|νn − ν|), these conditions are equivalent to νn = ν + o(1/
√

log n) and νn =
ν + o(1/ log n), respectively.

Theorem 1.3 implies that also the random variable Q is remarkably universal, in the sense that
it always involves two independent martingale limit variables corresponding to the branching
processes, and a Gumbel distribution.

Let Ln(i) denote the weight of the ith shortest path, so that Ln = Ln(1), and let Hn(i) denote
its length. Further let H̄n(i) and L̄n(i) denote the re-centered and normalized quantities as in
Theorem 1.2. The same proof for the optimal path easily extends to prove asymptotic results for
the joint distribution of the weights and hopcount of these ranked paths. To keep the study to a
manageable length, we shall skip a proof of this easy extension.

Theorem 1.5 (Multiple paths). Under the conditions of Theorem 1.2, for every m ≥ 1,

((H̄n(i), L̄n(i)))i∈[m]
d−→ ((Zi, Qi))i∈[m], (1.25)

as n→∞, where for i ∈ [m], Zi and Qi are independent and Zi has a standard normal distribu-
tion, while

Qi =
1

α

(
− logW (1) − logW (2) − Λi + c

)
, (1.26)

where (Λi)i∈[m] are the ordered (minimal) points of an inhomogeneous Poisson point process with

intensity λ(t) = et.

1.4. Examples. We treat some examples of edge-weight distributions that have appeared in the
literature and have been treated via distribution-specific techniques.

(i) We start with exponential edge weights [3, 8–10]. In this case, it is immediate from (1.15)
and (1.18) that

α = ν − 1, ν̄ = σ̄ = 1/ν,

hence Theorems 1.2-1.3 show that Hn converges to a normal distribution, with asymptotic
mean and asymptotic variance both equal to ν

ν−1 log n. Furthermore, Theorem 1.2 induces

the convergence of the minimal weight in [9, 10]. Observe that the random variable M ,
which appears in [9, (C.19)], is equal to −Λ. In [10], the special case of the Erdős-Rényi
random graph with exponential edge weights was tackled. There is a small error in the
expression of the limiting random variable in [10, (4.16)].

(ii) By studying weights of the form ξe = 1+Ee/k, where (Ee) are i.i.d. exponentials with mean
1, and consecutively sending k → ∞, one would expect to obtain results which are close
to limiting results on the graph distance between a pair of uniformly chosen vertices in [n],
conditioned to be connected. Indeed, the results match up nicely with those in [17] for the
Norros-Reittu model and [21] for the CM. For the sake of brevity we leave the derivation to
the reader.
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(iii) As a third example one can consider the CM with fixed degrees r, and where each edge is
given an edge weight Es, s > 0, where E ∼ Exp(1), a variant of the weak disorder models
in statistical physics [13]. One can formally consider the case r = n− 1, although this does
not satisfy the conditions of our theorem. Here the CM with fixed degrees n− 1 resembles
a complete graph on [n] and the results match up nicely with those in [6], namely, a central
limit theorem for Hn with asymptotic mean s log n and asymptotic variance s2 log n, while
ns[Ln − 1

λ log n] converges in distribution, where λ = Γ(1 + 1/s)s. We refer to [6] for the
derivation of these parameters.

1.5. Discussion. In this section, we give a brief discussion of our results, possible extensions and
open problems.

(a) Universality. Our results are universal in the sense that, as Theorems 1.2-1.3 demonstrate,
the CLT for the hopcount depends only on the first two moments of the size-biased offspring
distribution and on the edge-weight distribution, but not on any other property of the network
model. Further, the form of the limit random variable has a universal form in terms of the
martingale limits of branching processes and a Gumbel random variable.

(b) Infinite-variance configuration model. In [9], we have investigated the CM with ex-

ponential edge weights, but with i.i.d. degrees with P(D ≥ x) ≈ cx−(τ−1) and τ ∈ (2, 3),
so that E[D2] = ∞. In this case, the result for Ln is markedly different, in the sense that
Ln converges in distribution without re-centering. Further, Hn satisfies a central limit with
asymptotic mean and variance equal to a multiple of log n. It would be of interest to inves-
tigate whether Hn always satisfies a central limit theorem, and, if so, whether the order of
magnitude of its variance is always equal to that of its mean.

(c) The X logX-condition. In Condition 1.1(c), we assume that the degrees satisfy a second
moment condition with an additional logarithmic factor. This is equivalent to the CTBP
satisfying an X logX-condition (uniformly in the size n of the graph). It would be of interest
to investigate what happens when this condition fails.

(d) Flooding and diameter. In [3], the flooding time and diameter, i.e.,
maxj∈[n] : Ln(U1,j)<∞ Ln(U1, j), respecively maxi,j∈[n] : Ln(i,j)<∞ Ln(i, j), where Ln(i, j) is
the minimal weight between the vertices i and j and U1 is, as before, a randomly selected
vertex, is investigated in the context of the CM with exponential edge weights. It would be
of interest to investigate the flooding time for general edge weights.

(e) Superconcentration and chaos. Analogous to various problems in statistical physics such
as random polymers or FPP on the lattice, our results suggest that the FPP optimal path
problem is chaotic. This means that there exists εn → 0 such that refreshing a fraction εn of
the edge weights with new random variables with the same distribution would entirely change
the actual optimal path, in the sense that the new optimal path would be “almost” disjoint
of the original optimal path, see e.g. [14]. Such questions have also arisen in computer science
wherein one is interested in judging the “importance” and fair price of various edges in the
optimal path; if an edge being deleted causes a large change in the cost of the new optimal
path, then that edge is deemed very valuable. These form the basis of various “truth and
auction mechanisms” in computer science (see e.g. [5, 18,33]).

(f) Pandemics, gossip and other models of diffusion. First passage percolation models as
well as models using FPP as a building block have started to play an increasingly central role
in the applied probability community in describing the flow of materials, ranging from viral
epidemics [15], gossip algorithms [2] and more general finite Markov interchange processes
[1]. Models with more general edge weight distributions have also arisen in understanding
the flow of information and reconstruction of such information networks in sociology and
computer science, see e.g. [30, 31] for examples in this vast field.

Organization of this paper. In Section 2, we describe the coupling between the first-passage
percolation neighborhoods in CMn(d) and a CTBP. In Section 3, we state our main technical
result that describes a Poisson process limit for the occurrence of short paths between U1 and
U2 which then proves our main theorem. In Section 4, we extend results for CTBPs, as proved
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in [20,23,37], to the case of infinite-variance offspring distributions, using truncation. In Section
5, we prove bounds on our coupling. In Section 6, we give a novel proof of the asymptotics
for the number of alive individuals in a CTBP in an given generation and with a given residual
lifetime. This proof is tailored to deal with CTBPs observed till some time t that have an offspring
distribution that depends on n where n → ∞ and t = tn → ∞ simultaneously. In Section 7, we
prove our main technical result on the Poisson process limit.

2. Coupling

In this section, we describe a coupling between FPP on CMn(d) and continuous-time branching
processes. We start with an informal description.

2.1. Informal description of shortest weight trees. The model CMn(d) with edge set En
together with i.i.d. lengths (also referred to as weights) (ξe)e∈En on the edges, was introduced
in Section 1.2. Here ξe ∼ Fξ, with density fξ. Our ultimate goal is to calculate the limit
distribution of the hopcount Hn and weight Ln of the shortest path between a uniformly chosen
pair of connected vertices U1 and U2, when Condition 1.1 is satisfied.

To obtain a proper understanding of the shortest path between two vertices, we imagine a
liquid that percolates through the edges of the CM at rate one. We start percolating the liquid
simultaneously from both vertices U1 and U2 and we interpret the edge weight ξe on edge e as
the distance between the two vertices incident to e. For any t ≥ 0, the set of half-edges that
are currently being wetted by the liquid, as well as the residual time to completely wet them,
starting from Ui will be informally denoted as the shortest weight tree SWT(i), i = 1, 2. A precise
definition of these SWT’s will be given in the next section. When the liquid has reached two
vertices that are incident to a connecting edge between the two SWT’s, then a possible shortest
path has been found. Since at that moment the connecting edge has not yet been filled, we can
not be sure whether the given path between U1 and U2 is indeed the shortest one. Hence we
have to find all connecting edges between the two SWT’s and take the minimum of all these path
weights to determine Ln and Hn.

In the mathematical description in the next section, we build the CM simultaneously with
the liquid percolating through the edges. Since we will construct the process sequentially, it is
easier to index the sequence of new edge-weights added to the system as (ξj)j≥1. The half-edges
emanating from the wetted vertices are called the alive half-edges AH(t) at time t. During the
building process, we form two SWT’s consisting of ‘alive’ half-edges and vertices attached to Ui,
for i = 1, 2. In order to perform the building process properly, we put the i.i.d. weights (ξj)j≥1 on
the half-edges instead of on the edges. Technically one has to be extremely careful in constructing
the process in this fashion. Imagine a situation where the liquid reaches both a and b for some
edge e formed by merging the half-edges e = (a, b). Assigning independent half-edge weights ξa
and ξb is then not the same as first passage percolation. Instead we put the weight on the half-
edge that is found first by the liquid. We initiate the construction by putting weights ξ1, . . . , ξdU1

on the half-edges incident to U1 and weights ξdU1
+1, . . . , ξdU1

+dU2
on the half-edges incident to

U2. Of course, this creates a problem when these half-edges are paired to one another, which we
have to take into account properly.

We construct a sequence of epoch times (Tk)k≥0 that track when a decision has to be made.
Start with T0 = 0 and wait until the end point of the first of the dU1 + dU2 half-edges is reached.
This time is called T1 and successive times at which further end points of ‘alive’ half-edges are
reached are called T2, T3, . . . . At t = T1, we pair the exhausted half-edge, which we call r1, with
one of the `n − 1 other half-edges at random; the found half-edge is called Pr1 . The formed edge
(r1, Pr1) receives the weight of the exhausted half-edge r1 and we connect the siblings of Pr1 to
the newly found vertex. The sibling half-edges receive i.i.d. weights from the sequence (ξj)j≥1,
whereas the weights of the other ‘alive’ half-edges are updated by subtracting T1. We repeat the
whole procedure by finding the minimum of the ‘alive’ half-edges, and after adding this minimal
weight to T1 we find the second epoch time T2. We continue this procedure until all half-edges
are attached to one of the SWT’s.
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In general, the formed edge (r1, Pr1) at time t = T1 receives a weight with the correct distri-
bution. However, this only occurs when r1 pairs with one of the `n − (dU1 + dU2) so-called ‘free’
half-edges, i.e., half-edges connected to vertices which are not yet wetted. When r1 pairs with
one of its dUi − 1 sibling half-edges (and hence a self-loop occurs) or when r1 pairs with one of
the dU3−i half-edges incident to vertex U3−i (and hence a ‘collision’ edge occurs), then we do not
know what weight we should assign to the self-loop or collision edge, because the half-edge to
which r1 is paired is an alive half-edge and already had a weight. In order to resolve this issue,
in the next section, we shall make sure that a weight is only assigned to one of the half-edges
of an edge. This will be achieved by first investigating whether a half-edge is paired to a ‘free’
half-edge or to an ‘alive’ half-edge. In particular, we will change the order in which half-edges are
paired. We are free to pair half-edges in any order we like and this property is used to remove
self-loops, edges that close a cycle and collision edges beforehand. This way, all paths receive
weights with the correct distribution, and after the completion of the entire construction we take
the minimum of all connecting paths to find Ln and Hn.

The removal of self-loops, edges that close a cycle and collision edges is done at the epoch times
T0, T1, T2, . . .. Conditionally on the number of ‘alive’ half-edges and ‘free’ half-edges, we know
the success probabilities of Bernoulli random variables that determine whether a pairing results
in attaching to a ‘free’ half-edge or to an ‘alive’ half-edge.

We will couple SWT(·) both to an n-dependent continuous-time branching process (CTBP)
denoted by BPn(·) and to a CTBP BP(·) whose driving offspring distribution is the size-biased
degree distribution as in (1.12) and lifetimes having distribution Fξ. This results in a coupling
(SWT(t),BPn(t),BP(t))t≥0 on the same probability space (Ω,F ,P), where SWT(t) consists of the
alive half-edges that are connected to U1 and U2 by paths of weights at most t, as well as their
residual lifetimes, while BPn(t) contains the same information for the n-dependent CTBP and
BP(t) for the n-independent CTBP.

Since there are a number of ingredients in this coupling, let us start by giving the reader an
intuitive mental picture of the key actors in this coupling. In the first step of the coupling, which is
explained in full detail in Section 2.2, we couple the forward degrees in the SWT(t) to the number
of offspring in the branching processes BPn(t) and BP(t). On one and the same probability
space (Ω,F ,P), we introduce sequences of random variables (B(n)

k )k≥1, (Bk)k≥1, (Y (n)

k )k≥1 and

(X(n)

k )k≥1, and a sequence of stopping times (τk)k≥1.

The sequences (B(n)

k )k≥1 and (Bk)k≥1 are i.i.d. and will be used as the number of offspring
in a branching process, where the first branching process depends on n, while the second one is
independent of n. In the coupling, there is a strong dependence between B(n)

k and Bk for any

k. The sequence (Y (n)

k )k≥1 will correspond to the sequence of forward degrees, i.e., the degree

minus one, as the liquid in SWT percolates through the graph, while X(n)

k will be equal to Y (n)

k
minus the number of pairings that result in either a self-loop, a cycle or a collision edge. Using
the stopping times τk, the kth variable X(n)

k will be successfully coupled to B(n)
τk precisely when

X(n)

k = Y (n)

k and Y (n)

k = B(n)
τk .

Since this coupling is not perfect, in the second step of the coupling performed in Section 2.3,
we discuss the evolution of the processes (SWT(t),BPn(t),BP(t))t≥0, including the evolution of
the children of the alive half-edges that are miscoupled. Finally, in Section 2.4, we state the
main bounds on our coupling. After this high-level explanation, let us now give the details of our
coupling construction.

2.2. Coupling forward degrees of the SWT. Before we start with the definition of the SWT’s
on one probability space, we introduce an abstract procedure involving two sets, and a recursive
sequence of samples drawn without replacement. This procedure is used repeatedly during the
building of the SWT’s to remove occurring self-loops, edges that close a cycle and collision edges.
The idea is as follows. Consider a partition of a set [m] into A and B = Ac. One can achieve
a uniform draw from [m] in two steps, first by performing a Bernoulli experiment with success
probability pA = |A|/m; if the outcome of this experiment is one, then we draw an object
uniformly from A, otherwise we draw a uniform object from B. In fact, we do not even have to
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actually draw the latter uniform element. We will perform such a construction repeatedly, with
A denoting the set of alive half-edges at appropriate stopping times and where the set [m] is
recursively defined. When doing so, we can think of this as ‘testing’ whether a half-edge creates
a self-loop, cycle or collision edge, or whether it connects to a ‘free’ half-edge. This is formalized
in the following procedure. We first need to set up some notation.

The procedure takes as its input one non-empty set, the “alive” set AS = {a1, a2, . . . , as} having
s elements, and the size of the “free” set N. The elements aj ∈ AS, j = 1, 2, . . . , r for r ≤ s are
special. We will view them as a list (namely an ordered set) TS = (a1, a2, . . . , ar), of r elements.
Abusing notation, the procedure initializes with AS(0) := AS, TS(0) := TS and N(0) := N and we
will sequentially update these sets and this number as follows using a sequence of conditionally
independent Bernoulli random variables (βi)1≤i≤r and a sequence of sets (Si)i≥1:

Procedure 2.1 (Preprocessing the matchings). (a) Initialization: Define the success probabil-
ity and set S1 as

p1 =
|AS(0)| − 1

|AS(0)|+ N(0)− 1
and S1 = AS \ {a1} = {a2, . . . , as}. (2.1)

Let β1 ∼ Bernoulli(p1).
(i) If β1 = 1, then select element b1 uniformly at random from the set S1 and update the

sets as AS(1) = AS(0) \ {a1, b1} and if b1 ∈ TS(0) then TS(1) = TS(0) \ {a1, b1}, else
TS(1) = TS(1) \ {a1}. We do not change N(1) := N(0).

(ii) If β1 = 0, then we do not select any element from S1 and we update the sets as AS(1) =
AS(0) \ {a1} and TS(1) = TS(0) \ {a1}, while N(1) = N(0)− 1.

(b) Recursion: For k ≥ 1 we proceed recursively as above, taking the first element at the front
of the list TS(k) which, abusing notation, we still call ak+1 (note, this element may not be
ak+1 in TS(0), if that element is already drawn at a previous time step) now defining

pk+1 =
|AS(k)| − 1

|AS(k)|+ N(k)− 1
and Sk+1 = AS(k) \ {ak}, (2.2)

generating βk+1 ∼ Bernoulli(pk+1) and proceeding as in (i) and (ii) above, with a1, b1,S1

replaced by ak+1, bk+1,Sk+1, respectively.
(c) Termination: We stop when the list equals the empty set, i.e., TS(k) = ∅.

Let us give a brief and informal sketch of how we use Procedure 2.1. Consider the infomal
description in Section 2.1 of the liquid percolating through a network started from two vertices
U1 and U2 simultaneously. Assume that at some time t, the liquid from vertex Ui, where i = 1, 2,
hits a new vertex V . The set of half-edges incident to V , called HEV , except the one used by
V to connect to SWT(i), are now deemed active since the flow has encountered this new vertex
V . Write AS = AH(1)(t) ∪ AH(2)(t) ∪ HEV for the collection of alive half-edges at this time, and
TS = (HEV ) for the set of half edges incident to V . Then the above procedure tests for each one
of these newly added half-edges whether it pairs to a half-edge in AH(t), which corresponds to
the “βk = 1” events, or instead connects to a new half-edge not in SWT(1)(t) ∪ SWT(2)(t), which
corresponds to the “βk = 0” events. In the latter case, we actually do not connect the half-edge,
but only record that the half-edge is paired to a free half-edge and thus decrease the number
of free half-edges N(k) by 1. Further note that in each “βk = 1” event, the new edge created
could either be (a) a self-loop or cycle when the half-edge pairs to an alive half-edge in SWT(i)(t),
namely the same cluster that sees V for the first time or (b) arguably more importantly, creates
a collision edge when it is paired to a half edge in SWT(3−i)(t), the other cluster. These collision
edges are the ones that potentially create the shortest path.

Let us now turn to the precise definition of the probability space for the coupling of the forward
degrees of SWT and the associated branching processes. We start on one and the same probability
space (Ω,F ,P) with the following ingredients:

(i) Two vertices U1 and U2 chosen at random from [n];
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(ii) Label the `n half-edges by [`n] with the half-edges of vertex 1 labelled 1, 2, . . . d1, the half-
edges of vertex 2 labelled d1 + 1, . . . , d1 + d2, etc. We will require repeated draws with
replacement from [`n], which results in an i.i.d. sequence (σi)i≥1. We will also require a
second sequence of i.i.d. draws (σ̌i)i≥1 that is independent of the draws (σi)i≥1;

(iii) To each σi and σ̌i, we associate random variables B(n)

i and B̌(n)

i that correspond to the

forward degree of the vertices incident to the half-edges σi and σ̌i. To each B(n)

i and B̌(n)

i ,

we associate random variables Bi and B̌i, whose distributions only depend on B(n)

i and B̌(n)

i
and not on any of the other randomness involved;

(iv) An i.i.d. sequence (ξi)i≥1 of edge-weights with distribution Fξ, and a second sequence of

i.i.d. weights (ξ̌i)i≥1 that is independent of the edge-weights (ξi)i≥1;
(v) Recall that vertex j ∈ [n] had degree dj . Recall the uniform choices b1, b2, . . . in Procedure

2.1 modulated by the values of the Bernoulli sequence β1, β2, . . .. Analogously, we construct
random variables (bj(1), . . . , bj(dj)), taking values in the set of half-edges [`n] modulated
by a sequence of Bernoulli random variables βj(1), . . . , βj(dj). The distribution of both
these random variables will depend on

(
U1, U2, (σi)i≥1, (ξi)i≥1

)
. The precise laws of these

ingredients will be specified as we sequentially apply Procedure 2.1 below.

Before using the above ingredients to construct SWT, let us first describe how they are used
to construct the offspring of the branching processes BPn and BP. We define, for i ≥ 1,

B(n)

i =

n∑
j=1

(dj − 1)1{d1+...+dj−1<σi≤d1+...+dj}, (2.3)

i.e., when σi chooses one of the half-edges incident to vertex j, B(n)

i is the forward degree (i.e.,

degree minus one) of that vertex j. Obviously, the sequence (B(n)

i )i≥1 is i.i.d. with common
distribution given by

g(n)

k = P(B(n)

i = k) =
k + 1

`n

n∑
j=1

1{dj=k+1}, k ≥ 0. (2.4)

Note that g(n)

k = P(D?
n = k+ 1), where D?

n has the same distribution as the size-biased version of
Dn, the degree of a randomly selected vertex, see (1.7). Assuming Condition 1.1, we have that
g(n)

k → gk, as n→∞, where

gk =
(k + 1)fk+1∑∞

j=1 jfj
, k ≥ 0, (2.5)

and where fj = F (j)− F (j − 1).
We next construct an i.i.d. sequence (Bi)i≥1 with common distribution (2.5) by using the

already constructed (B(n)

i )i≥1 sequence as follows: For each i ≥ 1, Bi depends only on B(n)

i and
is generated via the conditional distribution

P(Bi = k | B(n)

i = l) =
p(n)

kl∑∞
j=0 p

(n)

jl

, (2.6)

where

p(n)

kl =


min{gk, g(n)

k }, for k = l,

(gk −min{gk, g(n)

k })(g
(n)

l −min{gl, g(n)

l })
1
2

∑∞
j=0 |gj − g

(n)

j |
, for k 6= l.

(2.7)

It is easy to check that (Bi)i≥1 is an i.i.d. sequence of random variables having probability mass

function (gk)k≥0 in (2.5). In fact, the joint distribution (p(n)

kl )k,l≥0 is the one that maximizes the

coupling probability between the two probability mass functions (gk)k≥0 and (g(n)

k )k≥0 (alterna-
tively, the coupling that minimizes the total variation distance between the two distributions
[39]).
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Let us now proceed to the more involved construction of the shortest weight tree SWT using
the above probabilistic ingredients. The main ingredient of our construction are the continuous-
time processes of ‘alive’ half-edges (AH(t)t≥0 and ‘free’ half-edges (F(t))t≥0. We also introduce

two new random sequences (Y (n)

k )k≥1 and (X(n)

k )k≥0. We will need an additional superscript i

to denote whether Y (n)

k and/or X(n)

k belongs to the SWT of Ui, i = 1, 2. The continuous-time
processes (AH(t))t≥0 and (F(t))t≥0 only change at random times T0 = 0 < T1 < T2 < . . . and
therefore a full description of the continuous-time evolution can be given by a specification of
how the random times above are constructed and how these processes “jump” at each of these
times.

At time t = T0, we start by testing whether any of the half-edges dUi incident to Ui, i = 1, 2,
are paired to one another. This is performed vertex by vertex, and we start with U1. Let us
define HEj , for j ∈ [n], as the set of dj half-edges that belong to vertex j. We define Y (n,1)

0 as the
number of half-edges incident to U1, i.e.,

Y (n,1)

0 = dU1
= |HEU1

|. (2.8)

Now put AS = HEU1 , TS = (AS), where the parentheses (·) indicate that we consider a list instead
of a set, and N = `n− dU1

, and apply Procedure 2.1 to remove all half-edges from the total set of
dU1

half-edges that are part of a self-loop. We then define RHEU1
as the set of unpaired half-edges

after the self-loops incident to U1 are removed and

X(n,1)

0 = |RHEU1
|, (2.9)

as the number of unpaired half-edges of U1 after the self-loops have been removed. We attach
i.i.d. weights to each of the half-edges in RHEU1

by taking the first X(n,1)

0 weights from (ξi)i≥1.
We continue with the dU2

half-edges incident to U2, and test whether they are paired to one

of the X(n,1)

0 remaining half-edges incident to U1, or any of the dU2
half-edges incident to U2. We

do this by applying Procedure 2.1 with AS = RHEU1
∪ HEU2

, TS = (HEU2) and

N = `n − dU1
− dU2

−X(n,1)

0 , (2.10)

which equals the total number of half-edges that are still available to be connected to (noting
that the ones that are paired to the half-edges incident to U1 are no longer available). A self-loop
is formed when during this test a half-edge is paired to one of the dU2 sibling half-edges. A
so-called collision edge is formed when during this test a half-edge is paired to one of the X(n,1)

0
remaining half-edges incident to vertex U1. The weight of this collision edge is the weight of the
half-edge incident to U1, which it has already obtained in the previous step. A collision produces
a path between vertices U1 and U2, which possibly is the minimal weight path between U1 and
U2. We define RHEU2

as the set of unpaired half-edges incident to vertex U2 after the removal of
the self-loops and collision edges. Furthermore, we define

Y (n,2)

0 = dU2
, (2.11)

and
X(n,2)

0 = |RHEU2
|, (2.12)

i.e., X(n,2)

0 denotes the number of unpaired half-edges of vertex U2 after the test for collision edges
and self-loops has been performed. We attach i.i.d. weights to each of the half-edges in RHEU2

by

taking the first X(n,2)

0 available weights from the i.i.d. sequence (ξi)i≥1 (note that the first X(n,1)

0
weights have already been assigned to the half edges in RHEU1

). By construction, the remaining

X(n,1)

0 +X(n,2)

0 half-edges incident to the vertices U1, U2 are paired to fresh vertices, i.e., vertices
distinct from U1 and U2.

For the moment, we collect the possible collision edges at time T0, together with their weights,
which is equal to the weight of the half-edge incident to U1 that forms one half of the collision
edge, and continue with the description. All half-edges that are not paired to one of the other
dU1

+ dU2
− 1 half-edges incident to either U1 or U2 together form the set AH(0), the set of active

half-edges at time 0, i.e.,
AH(0) = RHEU1

∪ RHEU2
. (2.13)
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For y ∈ AH(0), we define the height H(y) = 1 and its index I(y) = i, if the half-edge y is connected
to Ui, i = 1, 2, and R0(y) for the weight with distribution Fξ that the half edge received earlier.
This initiates the construction with

SWT(0) = (y,H(y), I(y), R0(y))y∈AH(0), (2.14)

and we let SWT(i)(0) = (y,H(y), R0(y))y∈AH(0),I(y)=i, be the subset of SWT(0) that is connected
to vertex Ui, i = 1, 2.

After the above initialization, let us now describe how to construct the process SWT(t) =
SWT(1)(t) ∪ SWT(2)(t) and SWT(i) with i = 1, 2, for general t > 0. Abusing notation,
we call SWT(i)(t) the shortest path tree emanating from vertex Ui. Using the information
(SWT(i)(s))0≤s≤t, we can construct the genealogical tree representing how the liquid percolates
from the source Ui but this process contains much more information including edge lengths en-
countered by the process. As for t = 0, the process SWT(t) has a set of ‘alive’ half-edges AH(t),
which we formally define below. For y ∈ AH(t), we record its index I(y) ∈ {1, 2} if y ∈ SWT(I(y))

and we let H(y) denote the graph distance of y to UI(y) (viewing (SWT(i)(s))s∈[0,t] as a tree).
Further, for y ∈ AH(t), we let Rt(y) denote the residual lifetime of y at time t. Then, we let

SWT(t) = (y,H(y), I(y), Rt(y))y∈AH(t) (2.15)

denote the set of alive half-edges together with their indices, their heights and residual lifetimes.
At a later state, we will also define BPn(t) and BP(t), the CTBP analogs of SWT(t).

We next recursively define the evolution of (SWT(t))t≥0. Define T1 = miny∈AH(0)R0(y) and de-
note the half-edge equal to the argument of this minimum by y?0, henceR0(y?0) = miny∈AH(0)R0(y).
Since the distribution of the weights (lifetimes) admits a density fξ, y

?
0 is a.s. unique. Now set

AH(t) = AH(0), 0 ≤ t < T1, (2.16)

i.e., the active set remains unchanged during the interval [0, T1). This defines the shortest weight
tree in (2.15) for 0 ≤ t < T1, where I(y) and H(y) are defined above and Rt(y) = R0(y)− t, 0 ≤
t < T1, denotes the remaining lifetime of half-edge y at time t.

At time t = T1, we continue by describing the pairing of the half-edge y?0 with z0 = Py?0 and

at this place we will introduce the coupling between Y (n)

1 and B(n)

1 (see (2.3)). For a half-edge y,
let Vy denote the vertex incident to it. By construction, z0 = Py?0 is chosen such that Vz0 is not
equal to Ui, i = 1, 2. This is achieved by taking

τ1 = min{m ≥ 1: Vσm 6= U1, Vσm 6= U2}, (2.17)

and we define

Y (n)

1 = B(n)
τ1 and z0 = στ1 . (2.18)

When τ1 = 1, we see that Y (n)

1 = B(n)

1 , while when τ1 > 1, the forward degree Y (n)

1 of the chosen

vertex Vz0 is not successfully coupled to the random variable B(n)

1 .
At time t = T1, we remove y?0 from the set AH(t−). Then, for each of the dVz0 − 1 other

half-edges incident to vertex Vz0 we test, using Procedure 2.1, with

AS = AH(t−) ∪ (HEVz0 \ {z0}), TS = (HEVz0 \ {z0}) (2.19)

and

N = `n − dU1
− dU2

− dVz0 − |AH(0)|, (2.20)

which again has the interpretation of the number of available half-edges at the time of finding
Vz0 , whether it is part of a self-loop or paired to a half-edge from the set AH(t−). All half-edges
incident to Vz0 that are part of a self-loop or incident to AH(t−) are removed from vertex Vz0 ; we
also remove the involved half-edges from the set AH(t−). For all the remaining sibling half-edges
x of z0 we do the following: x is added to AH(t−), I(x) = I(y?0), H(x) = H(y?0) + 1, while RT1(x)
is the next available i.i.d. lifetime from the sequence (ξi)i≥1. We now set

AH(t) = AH(T1−), T1 ≤ t < T2,

where T2 = T1 + miny∈AH(T1)RT1(y), and where the minimizing half-edge is called y?1.
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We continue using induction, by defining AH(t) and SWT(t) during the random interval
[Tk, Tk+1) for k ≥ 1, given that the processes are defined on [0, Tk). By construction, we know
that zk−1 = Py?k−1

is chosen such that Vzk−1
is not equal to Ui, i = 1, 2 or one of the previously

chosen vertices Vzj , 1 ≤ j ≤ k − 2 (for k = 1, the latter is an empty condition). Therefore, we
take

τk = min
{
m ≥ τk−1 + 1: Vσm /∈ {U1, U2, Vz0 , . . . , Vzk−2

}
}
, (2.21)

and we define
Y (n)

k = B(n)
τk

and zk−1 = στk . (2.22)

When τk = τk−1 + 1, we see that Y (n)

k = B(n)

τk−1+1, while for τk > τk−1 + 1, the forward degree Y (n)

k

of the chosen vertex Vzk−1
is not coupled to the random variable B(n)

τk−1+1 and we call the vertex

Vzk−1
degree-miscoupled. At time t = Tk, we remove y?k−1 from the set AH(t−). Then, for each of

the dVzk−1
− 1 other half-edges incident to vertex Vzk−1

, we use Procedure 2.1, with

AS = AH(t−) ∪ (HEVzk−1
\ {zk−1}), TS = (HEVzk−1

\ {zk−1}), (2.23)

and

N = `n − dU1
− dU2

−
k−1∑
j=0

dVzj − |AH(Tk−1)|, (2.24)

to test whether it is part of a self-loop or paired to a half-edge from the set AH(t−). It is part
of Procedure 2.1 that all half-edges incident to Vzk−1

that are part of a self-loop or incident
to AH(t−) are removed from vertex Vzk−1

; we also remove the involved half-edges from the set
AH(t−). We will discuss the role of the half-edges incident to Vzk−1

that are paired to half-edges
in AH(t−) in more detail below.

We sequentially order the remaining siblings half-edges of zk−1 in an arbitrary order. In this
order, we do the following: Let x be one such half-edge of Vzk−1

, then add x to AH(t−), and set
I(x) = I(y?k−1) and H(x) = H(y?k−1) + 1, while RTk(x) is the next in line of the i.i.d. sequence
(ξi)i≥1. We now set

AH(t) = AH(Tk−), Tk ≤ t < Tk+1, (2.25)

where Tk+1 = Tk + miny∈AH(Tk)RTk(y), and where the minimizing half-edge is called y?k.
For t ∈ [Tk, Tk+1), we define SWT(t) by (2.15), where Rt(y) = RTk(y) − (t − Tk). Finally, we

denote the number of the dVzk−1
− 1 other half-edges incident to vertex Vzk−1

that do not form

a self-loop and that are not paired to a half-edge from the set AH(t−) by X(n)

k . We say that the
vertex Vzk−1

is successfully degree-coupled to the corresponding individual in a branching process

that has offspring B(n)

τk−1+1 (this will show up again in the next section) when both

Y (n)

k = B(n)

τk−1+1 and X(n)

k = Y (n)

k , (2.26)

and otherwise call is degree-miscoupled.
We finally denote S(n)

k = |AH(Tk)|, so that S(n)

0 = X(n,1)

0 +X(n,2)

0 , while Sk satisfies the recursion

S(n)

k = S(n)

k−1 +X(n)

k − 1. (2.27)

This describes the evolution of (SWT(t))t≥0.

Cycle edges and collision edges. At time Tk, k ≥ 1, we find the half-edge y?k−1 that is paired to
zk−1 = Py?k−1

, and for each of the other half-edges x incident to Vzk−1
, we check, using Procedure

2.1, whether or not a self-loop has been formed or whether or not Px ∈ AH(Tk−). The newly
found half-edges that are paired to already alive half-edges in AH(Tk−) are special. Indeed, the
edge (x, Px) creates a cycle when I(x) = I(Px), while (x, Px) completes a path between U1 and
U2 when I(x) = 3−I(Px). Precisely the latter edges can create the shortest-weight path between
U1, U2. Let us describe these collision edges in more detail.

At time Tk and when we create a collision edge consisting of x and Px, then we record(
Tk, I(x), H(x), H(Px), RTk(Px)

)
, (2.28)
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where

I(x) = I(y?k−1), H(x) = H(y?k−1) + 1. (2.29)

Order the times at which collision edges occur as (T (col)

j )j≥1, and let (xj , Pxj ) be the corresponding

collision edge (so that Pxj is in the other SWT as xj). If multiple collision edges are created at
the same time, then order them arbitrarily. We will see that the probability of such events in the
time scale of interest converges to zero as n→∞. Write

C :=
(
T (col)

j , I(xj), H(xj), H(Pxj ), RT (col)
j

(Pxj ))j≥1, (2.30)

for the collection of all collision edges collected by the process.
It is possible (albeit unlikely) that multiple half-edges incident to Vzk−1

create collision edges,
and if so, we collect all of them in the list in (2.30). With some abuse of notation we denote the
jth collision edge by (xj , Pxj ); here Pxj is an alive half-edge and xj the half-edge which pairs to
Pxj . Note that, at the time t of creation of the collision edge, the weight of the half-edge has
already been assigned to the half-edge Pxj , and the half-edge Pxj has residual lifetime equal to
Rt(Pxj ).

The weight of the (unique) path between U1 and U2 that passes through the edge (xj , Pxj )

equals 2T (col)

j +R
T

(col)
j

(Pxj ) and its hopcount is equal to H(xj) +H(Pxj ) + 1, so that the shortest

weight equals

Ln = min
j≥1

[2T (col)

j +R
T

(col)
j

(Pxj )]. (2.31)

Let I? denote the minimizer of j 7→ 2T (col)

j +R
T

(col)
j

(Pxj ), then

Hn = H(xI?) +H(PxI? ) + 1. (2.32)

Of course, (2.31) and (2.32) need a proof, which we give now:

Proof that Ln in (2.31), and Hn in (2.32) yield the minimal weight and hopcount, respectively.
Observe that the weight of each path between U1 and U2 with weight L can be written in the form
L = 2T (col)

i + R
T

(col)
i

(Pxi), for some i ≥ 0. Indeed, let (i0 = U1, i1, i2, . . . , ik = U2) form a path

with weight L, and denote the weight on (ij−1, ij) by ξej , for 1 ≤ j ≤ k. For k = 1, we obviously
find ξe1 = 2T0 + ξe1 . For general k ≥ 1, take the maximal j ≥ 0 such that ξe1 + · · ·+ ξej ≤ L/2.

Then, since L =
∑k

s=1 ξes , we have that
∑j

s=1 ξes ≤
∑k

s=j+1 ξes , so that

L = 2

j∑
s=1

ξes + [

k∑
s=j+1

ξes −
j∑
s=1

ξes ],

which is of the form L = 2T (col)

j + R
T

(col)
j

(y), for some j ≥ 0 and some half-edge y. Note that in

the construction of the SWT’s, instead of putting weight on the edges, we have given weights to
half-edges instead. In the representation (2.31) full edge weight is given to the active half-edges
and weight 0 to the ones to which they are paired. At time T (col)

j when a collision edge has
been found, the path-weight of the edges belonging to the same vertex Ui as half-edge y∗ add up
to T (col)

j , the path-weight of all completed edges connected to 3 − Ui together with the residual

lifetime R
T

(col)
j

(Px) of the half-edge Px has to be added to T (col)

j in order to yield the total weight

of the path between U1 and U2.
The proof of (2.32) follows because the number of edges of the path between U1 and U2 that

passes through the collision edge (xj , Pxj ) is equal to the sum of the heights of the vertices incident
to xj , Pxj , respectively, and we add 1 for the edge (xj , Pxj ) itself. This completes the proof of
the claim.
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2.3. Coupling: Process level. In the above, we have described the coupling between reduced
forward degrees (X(n)

i )i≥1 in SWT and i.i.d. random variables ((B(n)

i , Bi))i≥1, where (B(n)

i )i≥1 has
marginal distribution (2.4) and (Bi)i≥1 has marginal distribution (2.5), and they are coupled as
in (2.7). We have used this coupling to describe the evolution of (SWT(t))t≥0, and at the end of
this process, we know of each vertex that is found by the liquid, whether it is successfully degree-
coupled or not. As long as no degree-miscouplings occur, this can be thought of as a coupling
between SWT and two CTBPs with lifetimes having distribution Fξ and offsprings (B(n)

i )i≥1 and
(Bi)i≥1, respectively, but the evolutions will start to diverge as soon as degree-miscouplings start
to appear. We now extend this coupling.

Recall that the SWT(i) consists of half-edges and their attributes, connected to Ui, for i =
1, 2. We aim to couple each SWT(i), i = 1, 2, to an independent CTBP BP(i)

n , so that SWT is
coupled to BPn which consists of two independent CTBPs, i.e., BPn = (BP(1)

n ,BP
(2)
n ), as well

as to an n-independent limiting CTBP BP that also consists of two independent CTBPs, i.e.,
BP = (BP(1),BP(2)). If Y (n)

k is the forward degree of vertex Vzk−1
, then I(y?k−1) indicates to

which SWT the vertex belongs. We recall that we say that the vertex Vzk−1
in the SWT is

degree-miscoupled to the corresponding individual (which we also refer to as vertex) if

Y (n)

k 6= B(n)

τk−1+1 or if X(n)

k 6= Y (n)

k . (2.33)

Vertices that are degree-miscoupled will appear both in the SWT as well as in the CTBP BPn.
However, after being degree-miscoupled, the evolution of vertices in the CTBP and SWT diverge,
as we explain now. For the SWT, we say that an alive half-edge is miscoupled if the shortest-
weight path to the vertex incident to that half-edge uses at least one degree-miscoupled vertex.
In particular, the evolution of the SWT is such that half-edges of degree-miscoupled vertices are
by definition attached to miscoupled half-edges. The same is true for the CTBP BPn, that is,
offspring of degree-miscoupled individuals are by definition miscoupled.

The weights assigned to half-edges incident to miscoupled vertices in the SWT and individuals
in the CTBP are independent. For this, we have introduced a second sequence of i.i.d. weights
(ξ̌i)i≥1 that is independent of the edge-weights of correctly coupled half-edges (ξi)i≥1. Each time
that a half-edge is found by the SWT, we perform Procedure 2.1 and the coupling to the CTBPs
BPn and BP. When, instead, a half-edge is found by (one of the) CTBPs only, we pair it to a
uniformly chosen half-edge chosen from [`n] without replacement. These choices are determined
by the i.i.d. sequence (σ̌i)i≥1, and, from these, the random variables B̌(n)

i and B̌i are obtained

as explained in (2.3) and (2.7). We use the variables B̌(n)

i for the evolution of BPn, and B̌i for
the evolution of BP. Thus, the evolution of miscoupled individuals in the CTBPs BPn and BP
is completely independent of the evolution of SWT. When differences arise in BPn and BP, also
their evolutions are mutually independent.

We close this section by defining the sets of alive individuals in the coupling of
(SWT(t),BPn(t),BP(t))t≥0. Both BPn(t) as well as BP(t) each have their sets of alive indi-
viduals that we denote by AIn(t) and AI(t), respectively. For BPn(t), we can think of these alive
individuals as corresponding to repeated draws of half-edges. By our coupling, these sets of alive
individuals in BPn(t) and BP(t) are effectively coupled to the alive half-edges in AH(t). The
successfully coupled half-edges in SWT(t) and BPn(t) at time t form AH(t) ∩ AIn(t), the suc-
cessfully coupled individuals in BPn(t) and BP(t) form AIn(t) ∩ AI(t). We note that each alive
half-edge, individual y in AH(t), AIn(t) and AI(t) has a residual lifetime Ry(t), as well as an index
I(y) indicating which subtree y is an element of and a height H(y) denoting the generation of y.
Similarly to (2.15), we then define

BPn(t) = (y, I(y), H(y), Rt(y))y∈AIn(t), BP(t) = (y, I(y), H(y), Rt(y))y∈AI(t). (2.34)

Since the objects in (2.34) are coupled to (SWT(t))t≥0 in (2.15), this completes the coupling of the
FPP processes (SWT(t),BPn(t),BP(t))t≥0 and defines the probability space (Ω,F ,P) on which
this coupling of (SWT(t),BPn(t),BP(t)) lives. We let (Ft)t≥0 be the filtration generated by all
the randomness used in the construction up to time t, i.e., Ft contains all the information needed
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to construct (SWT(s),BPn(s),BP(s))s∈[0,t]. Under this coupling law, we can speak of convergence
in probability, and we shall frequently do this in the sequel.

Summary of the coupling. For completeness and future references, we resume how differences
arise in the coupling. Degree-miscouplings arise due to three effects:

(1) MISC-miscouplings occur between the forward degree Y (n)

k (which are not i.i.d. due to

draws being without replacement) and the i.i.d. draws (B(n)

i )i≥1, because τk > τk−1 + 1;
and

(2) cycle-events occur referring to self-loops or cycles that makes X(n)

k < Y (n)

k . In these cases
we remove the self-loop or the edge that gives rise to a cycle from the set of alive half-
edges. This amounts to removing up to at most Y (n)

k −X(n)

k half-edges incident to vertex

Vzk−1
, as well as up to at most Y (n)

k −X
(n)

k half-edges to which they are paired from SWT.
(3) collision edges are found. In this case, precisely one of the vertices to which the colli-

sion edge is incident is degree-miscoupled. We want to emphasize here that the degree-
miscoupling caused by finding the collision edge at time T (col)

j does not effect the coupling
of the shortest-weight paths. When the collision edge is removed, we are left with two
paths connecting Ui to one of the vertices incident to the two half-edges of which the
collision edge consists. It should be checked that at any time prior to T (col)

j each of these
paths is not miscoupled, i.e., does not contain any earlier degree-miscoupled vertices.

In all these three cases, the vertices involved are called degree-miscoupled, and any further
offspring of degree-miscoupled vertices (in the SWT or in the CTBP) are called miscoupled. Thus,
any miscoupling gives rise to a tress of miscoupled children half-edges in the SWT, respectively,
offspring in the CTBP.

2.4. Main coupling results. We consider the process coupling (SWT(t),BPn(t),BP(t))t≥0 de-
fined in the previous section, as well as the associated filtration (Ft)t≥0. We recall that
BPn(t) = (BP(1)

n (t),BP(2)
n (t)) are two independent CTBPs starting with offspring distribution

Dn in the first generation and offspring law B(n) = D?
n− 1 in the second and further generations,

and BP(t) = (BP(1)(t),BP(2)(t)) which are two independent CTBPs starting with offspring distri-
bution D in the first generation and offspring distribution B = D? − 1 in the second and further
generations. For this coupling (SWT(t),BPn(t),BP(t))t≥0, we let AH(t)4AIn(t) denote the set of
miscoupled half-edges at time t. With a slight abuse of notation, we write |SWT(t)| = |AH(t)|
and |SWT(t)4BPn(t)| = |AH(t)4AIn(t)|. Finally, we denote the set of all miscoupled half-edges
and individuals up to time t by ⋃

s∈[0,t]

SWT(s)4BPn(s). (2.35)

In this section, we state two key propositions concerning the coupling. Proposition 2.2(a) shows
that there exists some sn → ∞ such that, whp, there are no miscouplings up to time sn. In
Proposition 2.2(b) and Proposition 2.3, we investigate the size of SWT(t) for t close to tn =
log n/(2αn).

Proposition 2.2 (Coupling the SWT to a BP).

(a) There exists sn →∞ such that, for the coupling defined in Sections 2.2-2.3,

P
(

(SWT(s))s∈[0,sn] = (BPn(s))s∈[0,sn] = (BP(s))s∈[0,sn]

)
= 1− o(1). (2.36)

Consequently, with W (i)
sn = e−αnsn |SWT(i)(sn)|, i = 1, 2,

lim
ε↓0

lim
n→∞

P
(
W (1)
sn ∈ [ε, 1/ε],W (2)

sn ∈ [ε, 1/ε]
∣∣∣W (1)

snW
(2)
sn > 0

)
= 1. (2.37)

(b) Let tn = log n/(2αn). For the coupling of (SWT(s))s≥0 and (BPn(s))s≥0 defined in Sections
2.2-2.3, there exist sequences εn → 0 and Bn → ∞ such that, conditionally on Fsn, and for
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every t ≤ tn +Bn,

P
(∣∣∣ ⋃
s∈[0,t]

SWT(s)4BPn(s)
∣∣∣ ≥ εn√n | Fsn) P−→ 0. (2.38)

The proof of Proposition 2.2 is deferred to Section 5. We warn the reader to beware for
confusion between the (large) constant Bn and the i.i.d. random variables (Bi)i≥1. Fix the
deterministic sequence sn →∞ from Proposition 2.2. Now let

tn =
1

2αn
log n, t̄n =

1

2αn
log n− 1

2αn
log
(
W (1)
snW

(2)
sn

)
. (2.39)

Note that eαntn =
√
n; it will turn out that both |SWT(i)(tn)|, for i = 1, 2, are of order

√
n.

Further, it will turn out that collision edges start to appear when these clusters grow to be of
this size. Consequently, the variable tn denotes the typical time at which collision edges start
appearing, and the time t̄n incorporates for stochastic fluctuations in the size of the SWT’s.

For i ∈ {1, 2}, k ≥ 0, and s, t ≥ 0, we define

|SWT(i)

k [t, t+ s)| =
∣∣∣{y ∈ AH(t) : I(y) = i,H(y) = k,Rt(y) ∈ [0, s)}

∣∣∣, (2.40)

as the number of alive half-edges at time t that (i) are in the SWT of vertex Ui, (ii) have height
k, and (iii) have remaining (or residual) lifetime at most s. We further write

|SWT(i)
≤k[t, t+ s)| =

∣∣∣{y ∈ AH(t) : I(y) = i,H(y) ≤ k,Rt(y) ∈ [0, s)}
∣∣∣, (2.41)

for the number of alive half-edges that have height at most k. To formulate the CLT for the
height of vertices, we will choose

kn(t, x) =
t

ν̄n
+ x

√
t
σ̄2

ν̄3
, (2.42)

where ν̄n, ν̄ and σ̄2 are defined in (1.19).
Define the residual life-time distribution FR to have density fR given by

fR(x) =

∫∞
0 e−αyfξ(x+ y) dy∫∞

0 e−αy[1− Fξ(y)] dy
=

αν

ν − 1

∫ ∞
0

e−αyfξ(x+ y) dy. (2.43)

Below, we let Φ denote the standard normal distribution function. Finally, for a half-edge y ∈
AH(t), we let X?

y = dVy − 1.

Proposition 2.3 (Ages and heights in SWT). Fix j ∈ {1, 2}, and numbers x, y, t ∈ R, s1, s2 > 0,
all independent of n. Then, conditionally on Fsn and W (1)

snW
(2)
sn > 0,

(a) we have

e−2αntn |SWT(j)

≤kn(tn,x)[t̄n + t, t̄n + t+ s1)||SWT(3−j)

≤kn(tn,y)[t̄n + t, t̄n + t+ s2)| (2.44)

P−→ e2αtΦ(x)Φ(y)FR(s1)FR(s2),

(b) further

e−2αntn |SWT(j)

≤kn(tn,x)[t̄n + t, t̄n + t+ s1)|
∑
v

X?
v1{v∈SWT

(3−j)
≤kn(tn,y)

[t̄n+t,t̄n+t+s2)} (2.45)

P−→ νe2αtΦ(x)Φ(y)FR(s1)FR(s2).

The proof of Proposition 2.3 is deferred to Section 6.
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3. Main ingredient: Poisson Point Process limit

In this section, we state our main result that implies Theorems 1.2-1.3. To state this result we
need some additional definitions.

Recall the collection of collision edges C from (2.30). Here the jth collision edge is given by
(xj , Pxj ), where Pxj is an alive half-edge and xj the half-edge which pairs to Pxj . Rescaling time
by t̄n (see (2.39)), we define

T̄ (col)

j = T (col)

j − t̄n, H̄ (or)

j =
H(xj)− tn/ν̄n√

σ̄2tn/ν̄3
, H̄ (de)

j =
H(Pxj )− tn/ν̄n√

σ̄2tn/ν̄3
, (3.1)

and write the random elements (Ξj)j≥1 with Ξj ∈ S := R× {1, 2} × R× R× [0,∞), by

Ξj =
(
T̄ (col)

j , I(xj), H̄
(or)

j , H̄ (de)

j , R
T

(col)
j

(Pxj )
)
. (3.2)

Then, for sets A in the Borel σ-algebra of the space S, we define the point process

Πn(A) =
∑
j≥1

δΞj (A), (3.3)

where δx gives measure 1 to the point x. Let M(S) denote the space of all simple locally-
finite point processes on S equipped with the vague topology (see e.g. [28]). On this space one
can naturally define the notion of weak convergence of a sequence of random point processes
Πn ∈M(S). This is the notion of convergence referred to in the following theorem.

Theorem 3.1 (PPP limit of collision edges). Consider the distribution of the point process
Πn ∈ M(S) defined in (3.3) conditioned on Fsn and W (1)

snW
(2)
sn > 0, for sn as in Proposition 2.2.

Then, as n→∞, Πn converges in distribution to a Poisson Point Process (PPP) Π with intensity
measure

λ(dt× i× dx× dy × dr) =
2νfR(0)

E[D]
e2αtdt⊗ {1/2, 1/2} ⊗ Φ(dx)⊗ Φ(dy)⊗ FR(dr). (3.4)

Theorem 3.1 will be proved in Section 7.

Completion of the proof of Theorems 1.2 and 1.3. Let us now prove Theorem 1.2 subject
to Theorem 3.1. First of all, by (3.1), (2.31) and (2.32),(Hn − 1

αnν̄n
log n√

σ̄2

ν̄3α
log n

,Ln −
1

αn
log n

)
(3.5)

is a continuous function of the point process Πn, and, therefore, by the continuous mapping
theorem, the above random vector converges in distribution to some random limit (Z,Q).

Recall that I? denotes the minimizer of i 7→ 2T (col)

i +R
T

(col)
i

(Pxi). By (2.31), the weight Ln as

well as the value of I?, are functions of the first and the last coordinates of Πn. The hopcount Hn

is a function of the third and the fourth, instead. By the product form of the intensity in (3.4),
we obtain that the limits (Z,Q) are independent. Therefore, it suffices to study their marginals.

We start with the limit distribution of the hopcount. By (3.1) and (2.32),

Hn − 1
αnν̄n

log n√
σ̄2

ν̄3α
log n

=
1

2

√
2H̄ (or)

I? +
1

2

√
2H̄ (de)

I? + oP(1). (3.6)

By Theorem 3.1, the random variables (H̄ (or)

I? , H̄
(de)

I? ), converge to two independent standard nor-
mals, so that also the left-hand side of (3.6) converges to a standard normal.

The limit distribution of the weight Ln is slightly more involved. By (2.39), (2.31) and (3.1),

Ln −
1

αn
log n = Ln − 2tn = Ln − 2t̄n −

1

αn
log(W (1)

snW
(2)
sn ) (3.7)

= − 1

αn
log(W (1)

snW
(2)
sn ) + min

i≥1
[2T̄ (col)

i +R
T

(col)
i

(Pxi)].
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By Proposition 2.2, (W (1)
sn ,W

(2)
sn )

d−→ (W (1),W (2)), which are two independent copies of the random
variable in (1.21). Hence,

Ln −
1

αn
log n

d−→ − 1

α
log(W (1)W (2)) + min

i≥1
[2πi +Ri], (3.8)

where (πi)i≥1 is a PPP with intensity 2νfR(0)
E[D] e2αtdt, and (Ri)i≥1 are i.i.d. random variables with

distribution function FR independently of (πi)i≥1.
We next identify the distribution of M = mini≥1[2πi + Ri]. First, (2πi)i≥1 forms a Poisson

process with intensity νfR(0)
E[D] eαtdt. According to [36, Example 3.3 on page 137] the point pro-

cess (2πi + Ri)i≥1 is a non-homogeneous Poisson process with mean-measure the convolution of

µ(−∞, x] =
∫ x
−∞

νfR(0)
E[D] eαt dt and FR. Hence P(M ≥ x) equals the Poisson probability of 0, where

the parameter of the Poisson distribution is (µ ∗ FR)(x), so that

P(M ≥ x) = exp{−νfR(0)

E[D]
eαx

∫ ∞
0

FR(z)e−αz dz}. (3.9)

Let Λ have a Gumbel distribution, i.e., P(Λ ≤ x) = e−e−x
, x ∈ R, then, from (3.9),

M = min
i≥1

(2πi +Ri)
d
= −α−1Λ− α−1 log(νfR(0)B/E[D]), (3.10)

with B =
∫∞

0 FR(z)e−αz dz. In the following lemma, we simplify these constants:

Lemma 3.2 (The constant). The constants B =
∫∞

0 FR(z)e−αz dz and fR(0) are given by

B = ν̄/(ν − 1), fR(0) = α/(ν − 1). (3.11)

Consequently, the constant c in the limit variable (1.23) equals

c = − log(νfR(0)B/E[D]) = log(E[D](ν − 1)2/(ανν̄)). (3.12)

Proof. According to (2.43) and (1.15),

fR(0) =
αν

ν − 1

∫ ∞
0

e−αyfξ(y) dy = α/(ν − 1). (3.13)

For B, we use partial integration and substitution of (2.43). This yields

B =

∫ ∞
0

FR(z)e−αz dz =
1

α

∫ ∞
0

fR(z)e−αz dz =
ν

ν − 1

∫ ∞
0

e−αz
∫ ∞

0
e−αyfξ(y + z) dy dz

=
ν

ν − 1

∫ ∞
0

sfξ(s)e
−αs ds =

1

(ν − 1)

∫ ∞
0

sF̄ξ(ds) = ν̄/(ν − 1). (3.14)

This completes the proof of Theorems 1.2 and 1.3 subject to Theorem 3.1.

4. Height CLT and residual lifetime for CTBP

In this section, we set the stage for the proof of Proposition 2.3 for CTBPs. We make use
of second moment methods similar to the ones in [20, 23, 24, 37], but with a suitable truncation
argument to circumvent the problem of infinite-variance offspring distributions.

As in the first part of Section 1.3, we consider a (standard) CTBP process [20, Chapter 6], with
lifetime distribution Fξ admitting a density fξ, and random offspring X = Xv satisfying (1.13)
and the X logX in (1.14). We define

η = ν

∫ ∞
0

e−2αs dFξ(s), and mj = Kη−j , j ≥ 1, (4.1)

for some K > 1. Note that η ∈ (0, 1), since α is such that ν
∫∞

0 e−αs dFξ(s) = 1. The truncated

CTBP BP(~m) has for each individual in generation j offspring (X ∧mj) instead of X.
We denote the number of alive individuals in the CTBP at time t by |BP(t)|. By |BPk(t)|,

|BPk[t, t + s)|, we denote the number of alive individuals in generation k at time t, number of
alive individuals in generation k at time t with residual lifetime at most s, respectively. We
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warn the reader that |BPk(t)| refers to the number of individuals in generation k, and not to
the n-dependence. When dealing with n-dependent CTBPs, we will use the notation |BPn,k(t)|
instead.

Here the generation of the first individual equals 0, and the generation of its offspring is equal
to 1, etc. For the truncated process BP(~m)(t), we define, analogously to the definitions above,
|BP(~m)(t)|, |BP(~m)

k (t)|, and |BP(~m)

k [t, t+ s)|. Furthermore,

|BP(~m)
≤k [t, t+ s)| =

k∑
j=0

|BP(~m)

j [t, t+ s)|, |BP(~m)[t, t+ s)| =
∞∑
j=0

|BP(~m)

j [t, t+ s)|. (4.2)

A key ingredient to the proof of Proposition 2.3 is Proposition 4.1 below:

Proposition 4.1 (First and second moment CLT). Consider the branching process BP(t) in-
troduced above, with i.i.d. lifetimes Fξ admitting a density and random offspring X satisfy-
ing ν = E[X] > 1, and E[X log(X)+] < ∞. Choose mj = Kη−j as in (4.1). Then, with
A = (ν − 1)/(ανν̄),
(a)

lim
t→∞

e−αtE
[
|BP(t)|

]
= A, lim

K→∞
lim sup
t→∞

e−αtE
[
|BP(t)| − |BP(~m)(t)|

]
= 0, (4.3)

(b) there exists a constant C > 0, such that uniformly in t ∈ [0,∞),

e−2αtE
[
|BP(~m)(t)|2

]
≤ CK, (4.4)

(c)

lim
K→∞

lim
t→∞

e−αtE
[
|BP(~m)

≤k(t,x)[t, t+ s)|
]

= AΦ(x)FR(s), (4.5)

where FR is defined through (2.43) and k(t, x) = t/ν̄ + x
√
tσ̄2/(ν̄)3 .

(d) Replace in the above statements BP by BPn, with offspring Xn, depending on n in such a

way that Xn
d−→ X, νn = E[Xn] → E[X] and limn E[Xn log(Xn/Kn)+] = 0, for any Kn → ∞.

Furthermore, now define mj by mj = Knη
−j
n , with ηn = νn

∫∞
0 e−2αns dFξ(s), and replace k(t, x)

by kn(t, x) defined in (2.42). Then Part (a) and Part (c) hold with α = αn and t = tn and with
the limits replaced by limn→∞, for any sequence tn → ∞. Similarly, under these conditions and
substitutions, Part (b) holds for all n ≥ 1, with K replaced by Kn, uniformly in t.

Proof. We start by proving Proposition 4.1(a). The first claim of Part (a) is proved in [20,
Theorem 17.1]. We bound the first moment of the difference between the truncated and the
original branching process. Let ν(j) = E[(X ∧mj)]. We compute that for t > 0,

e−αtE
[ ∞∑
k=0

[|BPk(t)| − |BP(~m)

k (t)|]
]

= e−αt
∞∑
k=0

[νk −
k∏
j=1

ν(j)]
[
F ?kξ (t)− F ?(k+1)

ξ (t)
]
, (4.6)

where F ?kξ is the k-fold convolution of Fξ, where, by convention, F ?0ξ (t) = 1 for every t ≥ 0. In

order to bound the differences νk −
∏k
j=1 ν

(j), we rely on the following lemma:

Lemma 4.2 (Effect of truncation on expectation CTBP). Under the conditions of Proposition
4.1, uniformly in k ≥ 1,

[1−
k∏
j=1

ν(j)

ν
] ≤ (log(1/η))−1E

[
X log (X/K)+

]
= oK(1), (4.7)

where oK(1) denotes a quantity that converges to zero as K →∞.

Proof. Since ν(j) ≤ ν, for all j ≥ 1, it is easily shown by induction that

1−
k∏
j=1

ν(j)

ν
≤

k∑
j=1

(
1− ν(j)

ν

)
≤
∞∑
j=1

(
1− ν(j)

ν

)
. (4.8)
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Now, using that ν > 1,
∞∑
j=1

(
1− ν(j)

ν

)
≤
∞∑
j=1

E[X1{X>mj}] = E
[
X

∞∑
j=1

1{mj<X}
]
, (4.9)

and we note that the number of j for which mj = Kη−j < x is at most [log (x/K)/ log (1/η)]∨ 0.
Therefore, the inequality in (4.7) holds. Since E

[
X log (X/K)+

]
= oK(1), the equality in (4.7)

follows.

By Lemma 4.2 and (4.6),

e−αtE
[ ∞∑
k=1

[|BPk(t)| − |BP(~m)

k (t)|]
]

= oK(1)e−αtE
[ ∞∑
k=1

|BPk(t)|
]

= oK(1), (4.10)

which completes the proof of Proposition 4.1(a).
We continue with the proof of the second moment estimate in Proposition 4.1(b). We follow

the proof in [37], keeping attention to the truncation. We introduce the generating functions

h(s) = E[sX ], hj(s) = E[s(X∧mj)], (4.11)

where mj is given by (4.1). Parallel to calculations in the proof of [37, Lemma 4],

E[|BP(~m)|2] = h′′1(1)(E[|BP( ~m1)|])2 ∗ Fξ + h′1(1)E[|BP( ~m1)|2] ∗ Fξ, (4.12)

where ~m1 = (m2,m3, . . .) is ~m with the first element removed, and where for simplicity of reading
the argument t has been left out. Transforming to

|BP(~m)
(t)| = e−αt|BP(~m)(t)|, (4.13)

we obtain, after multiplying both sides of (4.12) by e−2αt,

E[|BP(~m)|2] =
ηh′′1(1)

ν
(E[|BP( ~m1)|])2 ∗Q+

ηh′1(1)

ν
E[|BP( ~m1)|2] ∗Q, (4.14)

where

F̄ξ(t) = ν

∫ t

0
e−αy dFξ(y), Q(t) = η−1

∫ t

0
e−αy dF̄ξ(y) = η−1ν

∫ t

0
e−2αy dFξ(y), (4.15)

and where we recall that η =
∫∞

0 e−αy dF̄ξ(y) < 1 and ν = h′(1). Iteration of (4.14) yields

E[|BP(~m)|2] =

∞∑
j=1

f1 · · · fj−1ej(E[|BP(~mj)|])2 ∗Q?j , (4.16)

where

ej =
ηh′′j (1)

ν
, fj =

ηh′j(1)

ν
, (4.17)

and where ~mj = (mj+1,mj+2, . . .). Obviously,

E[|BP(~m)
(t)|] ≤ E[|BP(~mj)(t)|] ≤ E[|BP(t)|]→ A, (4.18)

by Part (a). Hence, provided that the sum
∑

j≥1 f1 · · · fj−1ej converges, which we will establish
in Lemma 4.3 below, we have that, uniformly in t,

E[|BP(~m)
(t)|2] ≤ C

∞∑
j=1

f1 · · · fj−1ej , (4.19)

for some constant C ≥ A2.

Lemma 4.3 (Effect of truncation on variance CTBP). For mj = Kη−j, and with ν = E[X] > 1,

∞∑
j=1

f1 · · · fj−1ej ≤
2νK

1− η
. (4.20)
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Proof. We bound fj ≤ η, and

ej ≤ ηE[(X ∧mj)
2] = η

(
m2
jP(X > mj) + E[X2

1{X≤mj}]
)
, (4.21)

so that
∞∑
j=1

f1 . . . fj−1ej ≤
∞∑
j=1

m2
jP(X > mj)η

j +
∞∑
j=1

E[X2
1{X≤mj}]η

j . (4.22)

We bound both terms separately. The first contribution equals

K2
∞∑
j=1

P(X > Kη−j)η−j = K2E[
∞∑
j=1

η−j1{Kη−j<X}] = K2E
[η−a(X) − 1

1− η
]
, (4.23)

where a(x) = max{j : Kη−j < x} = blog (x/K)/ log (1/η)c. Therefore, η−a(X) ≤ X/K, so that
∞∑
j=1

m2
jP(X > mj)η

j ≤ K2

1− η
E[X/K] =

Kν

1− η
. (4.24)

The second contribution is bounded in a similar way as
∞∑
j=1

E[X2
1{X≤mj}]η

j = E
[ ∞∑
j=1

X2ηj1{X≤Kη−j}

]
= E

[
X2

∞∑
j=b(X)

ηj
]

= E
[X2ηb(X)

1− η

]
, (4.25)

where b(x) = min{j : Kη−j ≥ x}, so that ηb(X) ≤ K/X. Therefore,
∞∑
j=1

E[X2
1{X≤mj}]η

j ≤ KE[X]

1− η
=

Kν

1− η
. (4.26)

Proposition 4.1 (b) follows by combining (4.19) and (4.20).
For Proposition 4.1(c), we start by showing that

e−αt
k(t,x)∑
j=0

E[|BPj [t, t+ s)|]→ AΦ(x)FR(s). (4.27)

Observe that |BP[t, t+ s)| =
∑∞

j=0 |BPj [t, t+ s)| is the total number of alive individuals at time

t, with residual lifetime at most s, so that from [20, Lemma 2, Appendix Chapter VI], on the
renewal equation

E[|BP[t, t+ s)|] = Fξ(t+ s)− Fξ(t) + ν

∫ ∞
0

E[|BP(t− y, t+ s− y)|] dFξ(y), (4.28)

we readily obtain (compare the derivation of [20, Theorem 24.1]),

lim
t→∞

e−αtE[|BP[t, t+ s)|] = lim
t→∞

e−αt
∞∑
j=0

E[|BPj [t, t+ s)|] = AFR(s),

with A = (ν − 1)/(ανν̄) as given in the proposition. For fixed s > 0, define

|BP>m[t, t+ s)| =
∞∑

j=m+1

|BPj [t, t+ s)| =
∞∑

j=m+1

e−αt|BPj [t, t+ s)|. (4.29)

Then, (4.27) follows if we show that

E[|BP>k(t,x)[t, t+ s)|]→ AFR(s)−AFR(s)Φ(x) = AFR(s)Φ(−x). (4.30)

Conditioning on the lifetime (with cumulative distribution function equal to Fξ) of the first
individual,

E[|BPj [t, t+ s)|] = ν

∫ t

0
E[|BPj−1[t− y, t+ s− y)|] dFξ(y). (4.31)
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Changing to BPj and F̄ξ and iteration of (4.31) yields

E[|BP>k(t,x)[t, t+ s)|] =

∫ t

0
E[|BP[t− y, t− y + s)|] dF̄ ?(k(t,x)+1)

ξ (y), (4.32)

where F̄ ?j

ξ is the j-fold convolution of F̄ξ, and hence the distribution function of the independent

sum of j copies of a random variable each having cumulative distribution function. F̄ξ. This is
the point where we will use the CLT. Take an arbitrary ε > 0 and take t0 so large so that for
t > t0,

|E[|BP[t, t+ s)|]−AFR(s)| ≤ ε. (4.33)

Then,∣∣∣E[|BP>k(t,x)[t, t+ s)|]−AFR(s)Φ(−x)
∣∣∣ ≤ εF̄ ?(k(t,x)+1)

ξ (t) +AFR(s)
∣∣F̄ ?(k(t,x)+1)

ξ (t)− Φ(−x)
∣∣

+

∫ t

t−t0

∣∣∣E[|BP[t− y, t− y + s)|]−AFR(s)
∣∣∣ dF̄ ?(k(t,x)+1)

ξ (y). (4.34)

The last term vanishes since E[|BP[t, t+s)|] is uniformly bounded and F̄ ?k(t,x)

ξ (t)−F̄ ?k(t,x)

ξ (t−t0) =

o(1), as t→∞. Furthermore, with m = k(t, x)→∞,

k(t, x) ∼ t

ν̄
+ x

√
t
σ̄2

ν̄3
⇐⇒ t ∼ mν̄ − xσ̄

√
m. (4.35)

As a result, by the CLT and the fact that ν̄ and σ̄2 are the mean and the variance of the
distribution function F̄ξ,

lim
t→∞

F̄ ?k(t,x)

ξ (t) = Φ(−x). (4.36)

Together with (4.34), this proves the claim in (4.30), and hence (4.27). Finally we use the second
statement of Part (a) to show that

e−αt
k(t,x)∑
j=0

E[|BPj [t, t+ s)|]− e−αt
k(t,x)∑
j=0

E[|BP(~m)

j [t, t+ s)|] (4.37)

≤ e−αt
(
E[|BP(t)|]− E[|BP(~m)(t)|]

)
→ 0,

as first t→∞ and then K →∞. This shows Proposition 4.1(c).
We continue with the proof of Proposition 4.1(a) for the n-dependent CTBP. We denote the

number of alive individals at time t in the n-dependent CTBP by |BPn(t)|. We then have to show
that for any sequence tn →∞, as n→∞,

e−αntnE[|BPn(tn)|]→ A, (4.38)

where A = (ν − 1)/ανν̄ . Denote by ϕ(s) =
∫∞

0 e−syfξ(y) dy, the Laplace transform of fξ, the
density of the lifetime distribution Fξ. Then∫ ∞

0
e−stE[|BPn(t)|] dt =

1− ϕ(s)

s(1− νnϕ(s))
. (4.39)

This equation follows directly from [20, Equation 16.1], with m replaced by νn and is valid when
the real part of s satisfying Re(s) > αn, where αn > 0 is defined as the unique solution to
νnϕ(αn) = 1 (compare (1.15)). From the inversion formula for Laplace transforms, we obtain

E[|BPn(t)|] =
1

2πi

∫
Γ

est
1− ϕ(s)

s(1− νnϕ(s))
ds, (4.40)

where Γ is the path (c0 − i∞, c0 + i∞), with c0 > αn. Since αn → α and νn → ν > 1 and ϕ(s)
is the Laplace transform of a probability density, the function s(1 − νnϕ(s)) has a simple zero
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s = αn, but no other zeros in a small strip |s−αn| < ε, for some ε > 0. It is then easy to conclude
from Cauchy’s theorem, calculating the residue at s = αn, that

E[|BPn(tn)|] = eαntn 1− ϕ(αn)

αn · (−νnϕ′(αn))

(
1 +O(e−εtn)

)
= Aneαntn

(
1 +O(e−εtn)

)
, (4.41)

where

An =
νn − 1

αnν2
n

∫∞
0 ye−αnyfξ(y) dy

=
νn − 1

αnνnν̄n
. (4.42)

Since An → A, the claim (4.38) follows.
For the second statement in Proposition 4.1(a) for the n-dependent CTBP, we replace the

inequality in (4.7) by the equivalent n-dependent statement, uniformly in k ≥ 1,

1−
k∏
j=1

ν(j)
n

νn
≤ (log(1/ηn))−1E

[
Xn log (Xn/Kn)+]

]
. (4.43)

Since limn→∞ E
[
Xn log(Xn/Kn)+]

]
= 0, as n→∞, the statement follows as in (4.10).

For the n-dependent case of Proposition 4.1(b), we need to show that for all n ≥ 1 and
uniformly in t,

e−2αntE
[
|BP(~m)

n (t)|2
]
≤ CKn, (4.44)

for some constant C, and where Kn is the cut-off variable used in mj = Knη
−j
n . Copying the

derivation which leads to (4.16), we obtain

E[|BP(~m)

n |2] =
∞∑
j=1

f (n)

1 · · · f
(n)

j−1e
(n)

j

(
E[|BPn

(~mj)|]
)2 ∗Qj?

n , (4.45)

where

e(n)

j =
ηnE[(Xn ∧mj)

2]

νn
, f (n)

j =
ηnE[(Xn ∧mj)]

νn
, (4.46)

and

F̄n,ξ(t) = νn

∫ t

0
e−αny dFξ(y), Qn(t) = η−1

n νn

∫ t

0
e−2αny dFξ(y). (4.47)

From the proof of Lemma 4.3, we readily obtain that

∞∑
j=1

f (n)

1 . . . f (n)

j−1e
(n)

j ≤
∞∑
j=1

m2
jP(Xn > mj)η

j
n +

∞∑
j=1

E[X2
n1{Xn≤mj}]η

j
n ≤

2Knνn
1− ηn

. (4.48)

Since, νn → ν and ηn → η, as n→∞, we find, by combining (4.45) and (4.48), that given ε > 0,
there is an n0 so that for n > n0, and uniformly in t,

e−2αntE
[
|BP(~m)

n (t)|2
]
≤ 2Kn(ν + ε)(A2 + ε)

(1− η − ε)
≤ CKn. (4.49)

By enlarging the constant C we see that (4.44) holds for all n ≥ 1 and uniformly in t.
Finally, we will give the proof of Proposition 4.1(c) for the n-dependent CTBP. We denote by

|BPn,j [t, t + s)| the number of individuals in generation j having residual lifetime at most s at
time t of the CTBP with offspring given by Xn. Then, we obtain, similarly as in (4.32),

E[|BPn,>k[t, t+ s)|] =

∫ t

0
E[|BPn[t− y, t+ s− y)|] dF̄ ?(k+1)

n,ξ (y). (4.50)

The expectation E[BPn[t, t+ s)|] satisfies the renewal equation

E[|BPn[t, t+ s)|] = Fξ(t+ s)− Fξ(t) + νn

∫ t

0
E[|BPn(t− y, t+ s− y)|] dFξ(y). (4.51)
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For s > 0 fixed, we denote by

K̃n(v, s) =

∫ ∞
0

e−vtE[|BPn[t, t+ s)|] dt, f̃(v, s) =

∫ ∞
0

e−vt[Fξ(t+ s)− Fξ(t)] dt, (4.52)

the Laplace transforms of E[|BPn[t, t+s)|] and [Fξ(t+s)−Fξ(t)], respectively. Then (4.51) yields

K̃n(v, s) = f̃(v, s)/(1 − νnϕ(v)). From the inversion theorem for Laplace transforms we obtain
(compare (4.40)),

E[|BPn[t, t+ s)|] =
1

2πi

∫
Γ

evt
f̃(v, s)

(1− νnϕ(v))
dv, (4.53)

where Γ is the same path as in (4.40), so that from the theory of residues, for some ε > 0,

E[|BPn[tn, tn + s)|] =
eαntn f̃(αn, s)

−νnϕ′(αn)

(
1 +O(e−εtn)

)
= eαntnAnFn,R(s)

(
1 +O(e−εtn)

)
, (4.54)

with An defined in (4.42) and with

Fn,R(s) =
αnνn
νn − 1

∫ ∞
0

e−αny[Fξ(y + s)− Fξ(y)] dy. (4.55)

Since An → A and Fn,R(s)→ FR(s) for n→∞, we obtain that, for any sequence tn →∞,

lim
n→∞

E[|BPn[tn, tn + s)|] = lim
n→∞

e−αntnE[|BPn[tn, tn + s)|] = AFR(s).

The n-dependent definition kn(tn, x) yields that m = kn(tn, x)→∞ implies tn ∼ mν̄n − xσ̄
√
m,

so that since σ̄n → σ̄,

F̄
?kn(tn,x)
n,ξ (tn)→ Φ(−x). (4.56)

Since νn → ν, αn → α,we obtain, similarly as in (4.30) and for any sequence tn →∞, that

E[|BPn,>kn(tn,x)[tn, tn + s)|] =

∫ tn

0
E[|BPn[tn − y, tn − y + s)|] dF̄ ?(kn(tn,x)+1)

n,ξ (y)→ AFR(s)Φ(−x).

(4.57)
The remaining details of the proof follow from Part (a) and an argument as in (4.37).

5. Bounds on the coupling: Proof of Proposition 2.2

5.1. Some simple lemmas concerning miscouplings. In (2.26), we have coupled the forward
degrees in the SWT (Y (n)

k )k≥1, as well as the (possibly) reduced forward degrees (X(n)

k )k≥1, to an

i.i.d. sequence (B(n)

k )k≥1 with distribution equal to that of D?
n − 1 given in (2.5).

We next investigate some simple consequences of this coupling. For this, it will be useful
to note that when Dn, having distribution function Fn in (1.2), satisfies Condition 1.1(c), the
maximal degree ∆n = maxi∈[n] di satisfies

∆n = o(
√
n/ log n). (5.1)

Indeed, suppose that ∆n ≥ ε
√
n/ log n. Then, pick Kn = n1/4 to obtain that

E[D2
n log (Dn/Kn)+] =

1

n

n∑
k=1

d2
k log(dk/n

1/4)+ ≥
∆2
n

n
log(∆n/n

1/4)

≥ n−1(ε
√
n/ log n)2 log(n1/4/(log n)1/2) ≥ ε2/8. (5.2)

This is in contradiction to Condition 1.1(c), so we conclude that (5.1) holds.
On (Ω,F ,P) we define the sigma-algebra Gk by

Gk = σ(dU1
, dU2

, τj , X
(n)

j , Y (n)

j , (B(n)
τi )i≤j)j≤k. (5.3)

In the following lemma, we investigate the conditional probability of Y (n)

k 6= B(n)

τk−1+1 given Gk−1.

In its statement, we recall the definition of S(n)

k in (2.27).
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Lemma 5.1 (Miscoupling of forward degree). Assume that Condition 1.1(c) holds. For all
k ≤ mn, and assuming that mn ≤

√
n log n,

P(Y (n)

k 6= B(n)

τk−1+1 | Gk−1) ≤ 1

`n(1− o(1))

(
S(n)

0 +
k−1∑
s=1

(Y (n)
s + 1)

)
= oP(1). (5.4)

Proof. We have that Y (n)

k 6= B(n)

τk−1+1 precisely when we pair the half-edge y?k−1 to a half-edge

of a previously chosen vertex. Now let Vz0 , . . . , Vzk−2
be the previously chosen vertices and let

Y (n)
s = B(n)

τs , for s ≤ k − 1, be the forward degree of vertex Vzs−1 , s ≤ k − 1. Then the total
number of half-edges incident to chosen vertices is at most

S(n)

0 +

k−1∑
s=1

(Y (n)
s + 1).

By (5.1), ∆n = o(
√
n/ log n), so that

S(n)

0 +

k−1∑
s=1

(Y (n)
s + 1) ≤ (k + 1)∆n ≤ (mn + 1)∆n = o(n). (5.5)

From (5.5), it is clear that we draw each time from at least `n − o(n) = `n(1 − o(1)) half-edges.
This shows (5.4).

Lemma 5.2 (Probability of drawing at least one alive half-edge). Assume that Condition 1.1(c)
holds. For all k ≤ mn, and assuming that mn ≤

√
n log n,

P(X(n)

k < Y (n)

k | Gk−1) ≤
E[Y (n)

k | Gk−1]

`n(1− o(1))

(
S(n)

0 +
k−1∑
s=1

Y (n)
s

)
. (5.6)

Proof. Recall the definition of S(n)

k in (2.27). We have that X(n)

k < Y (n)

k when we pair at

least one of the Y (n)

k half-edges to a half-edge incident to {U1, U2, Vz0 , . . . , Vzk−2
}. Since there

are precisely Y (n)

k half-edges that need to be paired, and the number of half-edges incident to

{U1, U2, Vz0 , . . . , Vzk−2
}, given Gk−1, equals S(n)

k−1, we find

P(X(n)

k < Y (n)

k | Gk−1, Y
(n)

k ) ≤
Y (n)

k · S(n)

k−1

`n −
∑k−1

s=1(Y (n)
s − 1)− S(n)

0 − 1
. (5.7)

Clearly, S(n)

k−1 ≤ S(n)

0 +
∑k−1

s=1 Y
(n)
s . Consequently we obtain (5.6) from the tower-property for

conditional expectations.

5.2. Proof of Proposition 2.2(a). The i.i.d. sequences (B(n)

i )i≥1 and (Bi)i≥1 have probability

mass functions (g(n)

k )k≥0 and (gk)k≥0 given in (2.4) and (2.5), respectively. Since (g(n)

k )k≥0 and

(gk)k≥0 are discrete distributions and since by Condition 1.1, the distribution (g(n)

k )k≥1 converges
as n→∞ in distribution to (gk)k≥1, it follows that

dTV(B(n)

1 , B1) =
1

2

∞∑
k=0

|gk − g(n)

k | → 0, (5.8)

where dTV denotes the total variation distance, see for instance [39, Theorem 6.1].
Take sn →∞ such that

e2αsndTV(B(n)

1 , B1)→ 0. (5.9)

According to (1.20), and with i ∈ {1, 2}, we then obtain

e−αsn |BP(i)(sn)| a.s.−→ W̃ (i), (5.10)

where W̃ (i) are two independent copies of W̃. Since P(W̃ (i) <∞) = 1 and eαsn →∞, we conclude
that |BP(sn)| ≤ kn, whp, if we take kn = be2αsnc. If this kn does not satisfy kn = o(

√
n), then

we lower sn so that the corresponding value of kn = be2αsnc does satisfy kn = o(
√
n).
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Recall the definition of Gk in (5.3). By Boole’s inequality,

P(X(n)

k 6= B(n)

k | Gk−1) ≤ P(X(n)

k < Y (n)

k | Gk−1) + P(Y (n)

k 6= B(n)

k | Gk−1). (5.11)

Using Lemmas 5.1–5.2, and by taking the expectation, a lower bound for the probability of all
forward-degree-couplings being successful during the first kn = o(

√
n) pairings is

P
( kn⋂
k=1

{X(n)

k = B(n)

k }
)

= 1− P
( kn⋃
k=1

{X(n)

k 6= B(n)

k }
)

(5.12)

≥ 1− 1

`n(1− o(1))

kn∑
k=1

E[S(n)

0 +

k−1∑
s=1

(Y (n)
s + 1)]

− 1

`n(1− o(1))

kn∑
k=1

E[E[Y (n)

k | Gk−1]
(
S(n)

0 +
k−1∑
s=1

Y (n)
s

)
]

≥ 1− ck2
n/n→ 1,

where we rely on the inequality

E[Y (n)

k | Gk−1] ≤
∑
j∈[n]

dj(dj − 1)

`n − 2kn∆n
= νn(1 + o(1)), (5.13)

whenever kn∆n = o(n), which follows from (5.1).
The lower bound (5.12) implies that, whp, the number of half-edges (|AH(s)|)s∈[0,sn] is perfectly

coupled to the number of (alive) individuals of the n-dependent CTBP (|AIn(s)|)s∈[0,sn], in turn,
(5.9) shows that (BPn(s))s≤sn is whp perfectly coupled to (BP(s))s≤sn . This proves Proposition
2.2(a).

We close this section by investigating moments of the size-biased random variables (Y (n)

k )k≥1,
which play a crucial role in the remainder of the paper:

Lemma 5.3 (Moments of size-biased samplings). Assume that Condition 1.1 (a-c) holds. For
all k ≤ mn, and assuming that mn ≤

√
n log n, and for any Kn →∞ such that K2

n = o(n/mn),

E[Y (n)

k 1{Y (n)
k ≤Kn}

| Gk−1] = (1 + oP(1))νn, (5.14)

E[Y (n)

k 1{Y (n)
k >Kn}

| Gk−1] = oP(1). (5.15)

Proof. We use the upper bound

E[Y (n)

k 1{Y (n)
k ≥a} | Gk−1] ≤ 1

`n(1− o(1))

∑
l∈[n]

dl(dl − 1)1{dl≥a}, (5.16)

where we again use that, since mn ≤
√
n log n,

`n − S(n)

0 −
k−1∑
j=1

Y (n)

j ≥ `n − (mn + 1)∆n = `n(1− o(1)). (5.17)

This provides the necessary upper bound in (5.14) by taking a = 0 and from the identity νn =∑
l∈[n] dl(dl − 1)/`n. For (5.15), this also proves the necessary bound, since by Condition 1.1(c),

1

`n

∑
l∈[n]

dl(dl − 1)1{dl≥Kn} = o(1). (5.18)

For the lower bound in (5.14), we bound, instead,

E[Y (n)

k 1{Y (n)
k ≤Kn}

| Gk−1] ≥ 1

`n(1− o(1))

[∑
l∈[n]

dl(dl−1)1{dl≤Kn}−
∑
l∈[n]

dl(dl−1)1{dl≤Kn}1{l is chosen}

]
.

(5.19)
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where the event ‘l is chosen’ means that vertex l belongs to the set of already chosen vertices
U1, U2, Vz0 , . . . , Vzmn−2 . The first term equals νn(1 + o(1)). The second term is a.s. bounded by

mnK
2
n/`n = o(1), since K2

n = o(n/mn).

5.3. Completing the coupling: Proof of Proposition 2.2(b). In this section, we use Propo-
sition 4.1 to prove Proposition 2.2(b). In order to bound the difference between BP(t) and SWT(t),
we will introduce several events. Let Bn, Cn, εn,mn,mn denote sequences of real numbers for
which Bn, Cn →∞ and εn → 0 arbitrarily slowly, and mn �

√
n,mn �

√
n. Later in this proof,

we will formulate precisely how to choose these sequences.
Define the event An by

An =
{∣∣∣ ⋃

s∈[0,tn+Bn]

SWT(s)4BPn(s)
∣∣∣ < εn

√
n
}
, (5.20)

where we recall that SWT(s)4BPn(s) is the set of alive half-edges at time s that are miscoupled,
and where we recall further that an alive half-edge is miscoupled if the shortest-weight path
from the root to the vertex incident to that half-edge uses at least one degree-miscoupled vertex.
Similarly an alive individual is miscoupled if at least one of its ancestors is degree miscoupled.
Note that when An holds, then

∣∣⋃
s∈[0,t] SWT(s)4BPn(s)

∣∣ < εn
√
n for any t ≤ tn + Bn by

monotonicity in t (see Definition (2.35)).
In terms of the above notation, Proposition 2.2(b) can be reformulated as

P(Acn | Fsn) = oP(1). (5.21)

Hence only a tiny fraction of the alive half-edges or individuals is miscoupled and the alive half-
edges that are not miscoupled are connected to the root via a path containing only successfully
coupled vertices.

In order to prove (5.21), we introduce the following events:

Bn = {Y (BP)(tn +Bn) ≤ mn} ∩ {Y (SWT)(tn +Bn) ≤ mn}
∩ {Y (BP)(tn −Bn) ≤ mn} ∩ {Y (SWT)(tn −Bn) ≤ mn}, (5.22)

Cn = {|SWT(t)| = |BPn(t)|, ∀t ≤ tn −Bn}, (5.23)

Dn = {@ i such that Ti ≤ tn +Bn, X
(n)

i 6= B(n)

τi−1+1, dVzi ≥ Cn}, (5.24)

where

Y (BP)(t) = |{v : v ∈ BPn(s) for some s ≤ t}|, (5.25)

denotes the total number of individuals ever born into the BPn before time t and

Y (SWT)(t) = |{v : v ∈ AH(s) for some s ≤ t}|, (5.26)

denotes the number of half-edges in the SWT that have ever been alive before time t. Informally,
on Bn, the total number of half-edges in SWT and individuals in the CTBP are not too large.
On Cn, there is no early degree-miscoupled vertex, while on Dn, there is no degree miscoupling
involving a vertex that has high degree, until a late stage.

Obviously,

P(Acn | Fsn) (5.27)

≤ P(Bcn | Fsn) + P(Ccn ∩ Bn | Fsn) + P(Dcn ∩ Bn ∩ Cn | Fsn) + P(Acn ∩ Bn ∩ Cn ∩ Dn | Fsn).

To bound conditional probabilitites of the form P(Ec | Fsn) as appearing in (5.21), we note that
it suffices to prove that P(Ec) = o(1), since then, by the Markov inequality and for every ε > 0,

P
(
P(Ec | Fsn) ≥ ε

)
≤ E[P(Ec | Fsn)]/ε = P(Ec)/ε = o(1). (5.28)

Thus, we are left to prove that

P(Bcn) = o(1), P(Ccn∩Bn) = o(1), P(Dcn∩Bn∩Cn) = o(1), P(Acn∩Bn∩Cn∩Dn) = o(1). (5.29)

We will do so in the above order.
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Lemma 5.4 (Expected number of particles born). For all t ≥ 0,

E[Y (BP)(t)] = 2
(

1−
E[Dn]Fξ(t)

νn − 1

)
+

νn
νn − 1

E[|BPn(t)|]. (5.30)

Moreover, when eαn(tn+Bn) = o(mn) and eαn(tn−Bn) = o(mn),

P(Bcn) = o(1). (5.31)

Proof. Note that we grow two sets of alive half-edges and two BP’s, which explains the factor
2 in (5.30). As is well known, the expected number of descendants in generation k of a BP equals
νkn, where νn denotes the mean offspring. Here, we deal with a delayed BPn where in the first
generation the mean number of offspring equals E[Dn]; the factor F ?k

ξ (t) − F ?(k+1)

ξ (t) represents

the probability that an individual of generation k is alive at time t. Together this yields

E[|BPn(t)|] =

∞∑
k=1

2E[Dn]νk−1
n [F ?k

ξ (t)− F ?(k+1)

ξ (t)], E[Y (BP)(t)] = 2 +

∞∑
k=1

2E[Dn]νk−1
n F ?k

ξ (t).

(5.32)
It is not difficult to deduce (5.30) from the two identies above.

To bound P(Bcn), we note that we have to bound events of the form P(Y (BP)(t) ≥ m) and
P(Y (SWT)(t) ≥ m) for various choices of m and t. We use the Markov inequality and (5.30) to
bound

P(Y (BP)(t) ≥ m) ≤ E[Y (BP)(t)]/m ≤ νn
m(νn − 1)

E[|BPn(t)|] +
2

m
. (5.33)

According to (4.41), after conditioning on the offspring of the first individual, E[|BPn(tn)|] =
E[Dn]Aneαntn(1 + o(1)), so that, since E[Dn]→ E[D],

P(Y (BP)(tn) ≥ mn) = Θ(eαntn/mn). (5.34)

The conditions on t and m in Lemma 5.4 have been chosen precisely so that eαn(tn−Bn)/mn → 0,

and eαn(tn+Bn)/mn → 0.
We continue with P(Y (SWT)(t) ≥ m). We use the same steps as above, and start by computing

E[Y (SWT)(t)] = 2 + 2

∞∑
k=0

F ?k
ξ (t)E[P ?k ], k ≥ 1, (5.35)

where P ?0 = `n/n and

P ?k =
∑

|π|=k,π⊆CMn(d)

(dπ − 1)/n, k ≥ 1,

is the sum of the number of half-edges at the ends of paths of lengths k in CMn(d), from a
uniformly selected starting point. Following [26, Proof of Lemma 5.1], we find that

E[P ?k ] =
1

n

∑
v0,...,vk

dv0

k∏
i=1

dvi(dvi − 1)

`n − 2i+ 1
≤ E[Dn]νkn, (5.36)

where the sum is taken over distinct vertices in [n]. Note that our definition of νn deviates from
the one given in [26, (2.3)], which explains the difference between the right-hand side of (5.36)
and the result in [26]. We obtain,

E[Y (SWT)(t)] ≤ 2 + 2

∞∑
k=0

F ?k
ξ (t)E[Dn]νkn ≤ 2E[Dn] + νnE[Y (BP)(t)], (5.37)

and we can repeat our arguments for E[Y (BP)(t)].

Lemma 5.5 (No early degree-miscoupling). When mn = o(
√
n), then

P(Ccn ∩ Bn) = o(1). (5.38)

Proof. On Bn, the inequality Y (SWT)(tn−Bn) ≤ mn holds. By (5.12), the probability that there
exists a degree-miscoupling before the draw of the mnth half-edge is o(1) when mn = o(

√
n).
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Lemma 5.6 (No late miscouplings of high degree). If mn ≤
√
n log n, and Cn satisfies

m2
n

`n

∑
i∈[n]

d2
i1{di≥Cn} = o(n), (5.39)

then
P(Dcn ∩ Bn ∩ Cn) = o(1). (5.40)

Proof. On Bn, we have that Y (SWT)(tn +Bn) ≤ mn, and hence for a degree-miscoupling, when
Dcn holds, one of the vertices i ∈ [n] with di ≥ Cn has to be chosen twice during the first mn

pairings. By Boole’s inequality and (5.39), an upper bound for this probability is

m2
n

∑
i∈[n]

d2
i

(`n − o(n))2
1{di≥Cn} =

m2
n

(`n − o(n))2
· `no(n)

m2
n

= o(1). (5.41)

Proposition 5.7 (Degree-miscoupled half-edges have small offspring). If mn ≤
√
n log n and

e2αnBnCnm
2
n/`n = o(εn

√
n), then

P(Acn ∩ Bn ∩ Cn ∩ Dn) = o(1). (5.42)

Proof. We split the proof into the contribution of the degree-miscoupled vertices in |BPn(t) \
SWT(t)| and those in |SWT(t) \ BPn(t)|, t ≤ tn +Bn.

A bound on |BPn(t) \ SWT(t)|. Recall that at time Tk, the vertex Vzk−1
is degree-miscoupled

when one of the equalities in (2.26) fails.
When Y (n)

k 6= B(n)

τk−1+1, we can give an upper bound on the contribution to BPn(·) of the tress

of miscoupled individuals by drawing from the i.i.d. sequence (B(n)

i )i≥1. As a result, the total
contribution to |BPn(t) \ SWT(t)|, t ≤ tn +Bn can be bounded above by

Y (BP)

k (tn +Bn − Tk), (5.43)

where, for different k ≥ 1, (Y (BP)

k (t))t≥0 are independent CTBPs. On Cn, we have that Tk ≥ tn−Bn
so that tn+Bn−Tk ≤ 2Bn, while on Dn, each degree-miscoupling starts with a vertex with degree
at most Cn. Therefore, from (4.41),

E
[
Y (BP)

k (tn +Bn − Tk)1Cn∩Dn

]
≤ CnAne2αnBn(1 + o(1)). (5.44)

On Bn, the expected number of miscoupling is at most O(m2
n/`n), hence

E
[ ∑
{k : Tk≤tn+Bn}

Y (BP)

k (tn +Bn − Tk)1Bn∩Cn∩Dn

]
≤ O

(m2
n

`n

)
Cne2αnBn . (5.45)

By assumption, the right-hand side is o(εn
√
n). Therefore, by the Markov inequality,

P
(
|{BPn(s)s∈[0,tn+Bn] \ SWT (s)s∈[0,tn+Bn]}| ≥ εn

√
n} ∩ Bn ∩ Cn ∩ Dn ∩MISC

)
= o(1), (5.46)

where the intersection with MISC indicates that we only deal with degree-miscouplings of the
form Y (n)

k 6= B(n)

τk−1+1.

When Y (n)

k 6= X(n)

k , a self-loop or cycle-creating event occurs and the two half-edges that form
the last edge in the cycle are removed from SWT(t), but they are kept in BPn(t). In case of a
removal of a collision edge, only one individual is kept in BPn(t). Whether one or two individuals
are kept in the BPn(t) is of no consequence for the argument below.

Again, on the event Bn ∩ Cn, the expected number of degree miscouplings is bounded by
O(m2

n/`n). Furthermore, on the event Bn ∩ Cn, the expected offspring of the half-edges involved
in cycle-creating events is at most

νnE[Y (BP)(2Bn)], (5.47)

where (Y (BP)(t))t≥0 is the total number of individuals that have ever been alive in a CTBP where

all individuals have i.i.d. offspring with law (g(n)

k )k≥0. Indeed, we have no information about the

remaining lifetime of the half-edge involved in an event that is caused by Y (n)

k 6= X(n)

k . As a result,



32 BHAMIDI, VAN DER HOFSTAD, AND HOOGHIEMSTRA

rather than waiting for the residual life-time to be completed, we instantaneously take as offspring
an i.i.d. draw from (g(n)

k )k≥0, and start the various BPn(t) from there (on the average there are νn of
these BPn). The total number of individuals ever alive only increases by this change. On the event
Dn, we have that E[Y (BP)(2Bn)] ≤ CnAne2αnBn(1 + o(1)). By assumption, m2

nCnAne2αnBn/`n =
o(εn
√
n). Therefore, the total contribution to |BPn(t) \ SWT(t)|, t ≤ tn + Bn, due to degree

miscouplings of the kind Y (n)

k 6= X(n)

k events is oP(εn
√
n), as required.

A bound on |SWT(t) \ BPn(t)|. By construction, the number of miscoupled half-edges in
SWT(s)s∈[0,t] at any time t is bounded from above by

MIS(t)∑
j=1

Y (SWT)

j (t− Tj), (5.48)

where MIS(t) denotes the number of degree-miscoupled vertices and Y (SWT)

j (t−Tj) is the number

of half-edges reached by the liquid during [Tj , t), and which are in the tree with root Vzj−1 . On
the event Cn, we have that T1 ≥ tn −Bn. Therefore, on the event Cn,

|SWT(t)t∈[0,tn+Bn] \ BPn(t)t∈[0,tn+Bn]| ≤
MIS(tn+Bn)∑

j=1

Y (SWT)

j (2Bn). (5.49)

By the Markov inequality,

P
(
{|SWT(t)t∈[0,tn+Bn] \ BPn(t)t∈[0,tn+Bn]| ≥ εn

√
n} ∩ Bn ∩ Cn ∩ Dn

)
≤ (εn

√
n)−1E

[
1Bn∩Dn

MIS(tn+Bn)∑
j=1

Y (SWT)

j (2Bn)
]
. (5.50)

We rewrite

E
[
1Bn∩Dn

MIS(tn+Bn)∑
j=1

Y (SWT)

j (2Bn)
]

(5.51)

≤ (1 + o(1))
∑
j∈[n]

P(j is degree-miscoupled,Bn ∩ Dn)E[Y (SWT)(2Bn)]

≤ (1 + o(1))
∑
j∈[n]

(djmn

`n

)2
1{dj<Cn}E[Y (SWT)(2Bn)],

where we use that, upon degree-miscoupling of vertex j, we redraw a vertex from the size-
biased distribution, for which the number of half-edges found before time 2Bn is equal to
E[Y (SWT)(2Bn)](1 + o(1)) since mn ≤

√
n log n and Bn occurs. Since E[Y (SWT)(t)] ≤ 2E[Dn] +

νnE[Y (BP)(t)], we obtain that

E[Y (SWT)(2Bn)] ≤ νnAne2αnBn(1 + o(1)). (5.52)

Therefore, we arrive at

E
[
1Bn∩Dn

MIS(tn+Bn)∑
j=1

Y (SWT)

j (2Bn)
]
≤ νnAne2αnBn(1 + o(1))

∑
j∈[n]

(djmn

`n

)2
1{dj<Cn}. (5.53)

Bounding
∑

j∈[n] d
2
j1{dj<Cn} ≤ Cn`n, the right-hand side of (5.53) is bounded by νnAe2αnBn(1 +

o(1))Cnm
2
n/`n = o(εn

√
n). Combining this with (5.50) proves that |SWT(t)t∈[tn+Bn] \

BPn(t)t∈[tn+Bn]| = oP(εn
√
n) on {Bn ∩ Cn ∩ Dn}.

Proof of Proposition 2.2(b). Take

mn =
√
n/(log log n)α/2, mn =

√
n(log n)1/4, (5.54)
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and
Bn = log log log n, Cn = n1/4, εn = 1/ log n. (5.55)

By Condition 1.1(c) applied with Kn =
√
Cn/e, and using that log

√
Cn ≤ log(eDn/

√
Cn)+ when

Dn ≥ Cn,

1

n

∑
i∈[n]

d2
i1{di≥Cn} = E[D2

n1{Dn≥Cn}] ≤ E
[D2

n log(e ·Dn/
√
Cn)+

log
√
Cn

]
= o((log n)−1), (5.56)

which verifies (5.39). All other conditions in Lemmas 5.4–5.6 and Proposition 5.7 are straight-
forward. Therefore, (5.21) follows, which completes the proof of Proposition 2.2(b).

6. Height CLT and stable age: Proof of Proposition 2.3

We first prove Proposition 2.3(a). Throughout this proof, we abbreviate kn = kn(tn, x) as in
(2.42). The proof contains several key steps:

Reduction to a single BP. We start by showing that, in order for Proposition 2.3(a) to hold,
it suffices to prove that for j ∈ {1, 2}, x, t ∈ R and s > 0, such that t+ s < Bn, conditionally on
Fsn and on W (1)

snW
(2)
sn > 0,

e−αntn |BP(j)

n,≤kn [t̄n + t, t̄n + t+ s)| P−→ eαtΦ(x)FR(s)
√
W (j)/W (3−j), (6.1)

where we use (2.37) in Proposition 2.2(a) to see that
√
W (j)/W (3−j) ∈ [ε, 1/ε] whp. Indeed, by

Proposition 2.2(b) and the fact that e−αn t̄n = ΘP(n
−1/2), (6.1) implies that for t+ s < Bn,

e−αntn |SWT(j)
≤kn

[t̄n + t, t̄n + t+ s)| = e−αntn |BP(j)

n,≤kn [t̄n + t, t̄n + t+ s)|+ e−αntnoP(εn
√
n)

P−→ eαtΦ(x)FR(s)
√
W (j)/W (3−j), (6.2)

which proves Proposition 2.3(a) by the independence of the two CTBPs involved.

Using the branching property. To prove (6.1), we note that (BP(j)
n (s))s≥sn is the collection

of alive individuals in the different generations of a CTBP, starting from the alive particles in
(BP(j)

n (sn)). Then, conditionally on Fsn ,

|BP(j)

n,≤kn [t̄n + t, t̄n + t+ s)| =
∑

i∈BP(j)
n (sn)

kn−G(j)
i∑

k=1

|BP(i,j)

n,k [t̄n + t− sn−Ri, t̄n + t+ s− sn−Ri)|, (6.3)

where G(j)

i is the generation of individual i ∈ BP(j)
n (sn), while Ri = Ri(sn) is its remaining lifetime

at time sn, and (BP(i,j)(t))t≥0 are i.i.d. CTBPs for different i, for which the offspring for each

individual has distribution (g(n)

k )k≥0, and where the branching process starts with one individual

that dies immediately and has offspring distributed as (g(n)

k )k≥0.

Truncating the branching process. We continue by proving that we can truncate the branch-
ing process at the expense of an error term that converges to zero in probability. We let BP(i,j,~m)

n

denote the branching process BP(i,j)
n obtained by truncating particles in generation l (measured

from the root i) by ml = Knη
−l
n . We take Kn → ∞ such that Kne−αnsn = o(1). We first show

that, as tn →∞, we can replace e−αntn |BP(i,j)

n,≤kn [t̄n, t̄n + s)| by e−αntn |BP(i,j,~m)

n,≤kn [t̄n, t̄n + s)|, at the

expense of a oP(1)-term. Indeed, with

|BP(i,j)
n (t)| =

∞∑
k=1

|BP(i,j)

n,k (t)|, |BP(i,j,~m)
n (t)| =

∞∑
k=1

|BP(i,j,~m)

n,k (t)|, (6.4)

by the n-dependent version of Proposition 4.1(a) in Proposition 4.1(d), which we apply to each
of the individuals born at time sn +Rj , and for each sequence un →∞, we have that

e−αnunE
[
|BP(i,j)

n,≤k(un)| − |BP(i,j,~m)

n,≤k (un)|
]

≤ e−αnunE
[
|BP(i,j)

n (un)| − |BP(i,j,~m)
n (un)|

]
= o(1).
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Therefore, using that the law of (BP(i,j)

n,≤kn(t))t≥0 only depends on Fsn through Ri, t̄n,

e−αntn
∑

i∈BP(j)
n (sn)

kn−G(j)
i∑

k=1

E
[
|BP(i,j)

n,k (t̄n + t− sn −Ri)| − |BP(i,j,~m)

n,k (t̄n + t− sn −Ri)| | Fsn
]

≤ e−αntn
∑

i∈BP(j)
n (sn)

E
[
|BP(i,j)

n,≤kn(t̄n + t− sn −Ri)| − |BP(i,j,~m)

n,≤kn(t̄n + t− sn −Ri)| | Ri, t̄n
]

= o(1)
∑

i∈BP(j)
n (sn)

eαn(t̄n−tn+t−sn−Ri) = oP(1)e−αsn
∑

i∈BP(j)
n (sn)

e−αRi , (6.5)

since the random variable |t̄n−tn| is tight, and assuming that sn →∞ so slowly that sn|αn−α| =
o(1). Since Ri ≥ 0,

e−αsn
∑

i∈BP(j)
n (sn)

e−αRi ≤ e−αsn |BP(j)
n (sn)| d−→ W̃ (j) = OP(1), (6.6)

by the ‘perfect’ coupling between BPn and BP at time sn stated in Proposition 2.2(a), and using
that (see (1.20)),

e−αsn |BP(j)(sn)| d−→ W̃ (j). (6.7)

We conclude that

e−αntn |BP(j)

n,≤kn [t̄n + t, t̄n + t+ s)| (6.8)

= e−αntn
∑

i∈BP(j)
n (sn)

kn−G(j)
i∑

k=1

|BP(i,j,~m)

n,k [t̄n + t− sn −Ri, t̄n + t+ s− sn −Ri)|+ oP(1).

A conditional second moment method: expectation. We next use a conditional second
moment estimate on the sum on the right-hand side of (6.8), conditionally on Fsn . By the n-
dependent version of Proposition 4.1(c) in Proposition 4.1(d), t̄n →∞, and for each i ∈ BP(j)

n (sn),

e−αn t̄nE
[
|BP(i,j,~m)

n,≤kn [t̄n, t̄n + s)|
]
→ AΦ(x)FR(s). (6.9)

Observe that also m = kn − kn → ∞, with kn = o(
√

log n), implies tn ∼ mν̄n − xσ̄
√
m, so

that we can conclude from (4.56) that (6.9) also holds with kn replaced by kn − kn, as long as

kn = o(
√

log n). As a result, when t̄n + t− sn −Ri
P−→∞ and kn = o(

√
log n) and for each i,

e−αn(t̄n+t−sn−Ri)E
[
|BP(i,j,~m)

n,≤kn−kn
[t̄n + t− sn −Ri, t̄n + t+ s− sn −Ri)| | Fsn

]
(6.10)

= e−αn(t̄n+t−sn−Ri)E
[
|BP(i,j,~m)

n,≤kn−kn
[t̄n + t− sn −Ri, t̄n + t+ s− sn −Ri)| | Ri, t̄n

]
= AΦ(x)FR(s)[1 + oP(1)].

Further, we use the general theory of vertex characteristics in [23, Theorem 6.10.1] to conclude
that ∑

i∈BP(j)(sn)

e−αn(sn+Ri) P−→ W̃ (j)/A. (6.11)

Indeed, consider Z(t) =
∑

i∈BP(t) e−αRi =
∑

i∈BP(t) 1[τ̃i≤t≤τ̃i+ξi]e
−α(ξi+τ̃i−t), where the second

sum is taken over all individuals and where τ̃i, ξi are the birthtime and lifetime of individual i,
respectively. Then with the terminology of [23, Section 6.9], Z(t) = Zχ(t) =

∑
i∈BP(t) χi(t− τ̃i),

where the random characteristic χi of individual i is defined by

χi(t) = 1[0,ξi](t)e
−α(ξi−t). (6.12)

According to the aforementioned [23, Theorem 6.10.1],

e−αtZ(t)
a.s.−→ cgW̃/k(∞), (6.13)
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where cg =
∫∞

0 e−αuE[χ(u)] du/
∫∞

0 e−αuuµ(du), k(∞) =
∫∞

0 e−αu[1− Fξ(u)] du/
∫∞

0 e−αuuµ(du)

and where µ(t) = νFξ(t). This yields cg = 1/ν, and k(∞) = (ν − 1)/(αν2ν̄), so that cg/k(∞) =
1/A. The whp ‘perfect’ coupling between (BPn(s))s≤sn with (BP(s))s≤sn stated in Proposition
2.2(a) and using that we may take sn →∞ so slowly that sn(α− αn) = o(1) implies that (6.13)
implies (6.11).

This yields that, conditionally on Fsn and W (1)
snW

(2)
sn > 0, and when G(j)

i = oP(
√

log n) (which
happens whp when sn is sufficiently small),

e−αntn
∑

i∈BP(j)
n (sn)

E
[ kn−G(j)

i∑
k=1

|BP(i,j,~m)

n,k [t̄n + t− sn −Ri, t̄n + t+ s− sn −Ri)|
]

(6.14)

= AeαtΦ(x)FR(s)[1 + oP(1)]
∑

i∈BP(j)(sn)

eαn(t̄n−tn−sn−Ri)

= AeαtΦ(x)FR(s)[1 + oP(1)]eαn(t̄n−tn)
(

e−αnsn
∑

i∈BP(j)(sn)

e−αnRi

)
P−→ eαtΦ(x)FR(s)

√
W (j)/W (3−j),

by (6.11), again taking sn → ∞ sufficiently slowly, and since eαn(tn−t̄n) =
√
W (j)
snW

(3−j)
sn

P−→
√
W (j)W (3−j) (see (2.39)). Notice that in (6.14), we condition on W (j)

sn > 0, so that the limit W̃ (j)

has to be replaced by W̃ (j)|W̃ (j) > 0 which is equal in distribution to W (j).

A conditional second moment method: variance. We next bound, conditionally on Fsn , the
variance of the sum on the right-hand side of (6.8). By conditional independence of (BP(i,j)

n )i≥1,

e−2αntnVar
( ∑
i∈BP(j)

n (sn)

kn−G(j)
i∑

k=1

|BP(i,j,~m)

n,k [t̄n + t− sn −Ri, t̄n + t+ s− sn −Ri)| | Fsn
)

(6.15)

= e−2αntn
∑

i∈BP(j)
n (sn)

Var
( kn−G(j)

i∑
k=1

|BP(i,j,~m)

n,k [t̄n + t− sn −Ri, t̄n + t+ s− sn −Ri)| | Fsn
)
.

We bound

Var
( kn−G(j)

i∑
k=1

|BP(i,j,~m)

n,k [t̄n + t− sn −Ri, t̄n + t+ s− sn −Ri)| | Fsn
)

(6.16)

≤ E
[( kn−G(j)

i∑
k=1

|BP(i,j,~m)

n,k (t̄n + t− sn −Ri)|
)2
| Fsn

]
≤ E

[
|BP(i,j,~m)

n (t̄n + t− sn −Ri)|2 | Fsn
]

= E
[
|BP(i,j,~m)

n (t̄n + t− sn −Ri)|2 | Ri, t̄n
]
.

By the n-dependent version of Proposition 4.1(b) in Proposition 4.1(d), for each n ≥ 1,

sup
t≥0
{e−2αntE

[
|BP(i,j,~m)

n (t)|2
]
} ≤ CKn. (6.17)
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As a result,

e−2αntnVar
( ∑
i∈BP(j)

n (sn)

kn−G(j)
i∑

k=1

|BP(i,j,~m)
n,k [t̄n + t− sn −Ri, t̄n + t+ s− sn −Ri)| | Fsn

)
(6.18)

≤ e−2αntn
∑

i∈BP(j)
n (sn)

E
[
|BP(i,j,~m)

n (t̄n + t− sn −Ri)|2 | Ri, t̄n
]

≤ CKne−2αntn
∑

i∈BP(j)(sn)

e2αn(t̄n+t−sn−Ri)

= CKne2αn(t̄n−tn)e−2αnsn+2αnt
∑

i∈BP(j)(sn)

e−2αnRi = OP(1)Kne−2αnsn
∑

i∈BP(j)(sn)

e−2αnRi ,

since e2αn(t̄n−tn)+2αnt = OP(1). We can bound this further as in (6.6) and (6.7) by

Kne−2αnsn
∑

i∈BP(j)
n (sn)

e−2αnRi ≤ Kne−αnsn
(

e−αnsn |BP(j)
n (sn)|

)
= OP(1)Kne−αnsn , (6.19)

which is oP(1) precisely when Kne−αnsn = o(1). Since we are free to choose Kn, we can choose it
such that Kne−αnsn = o(1) indeed holds. By (6.18) and (6.19), the sum on the right-hand side
of (6.8) is, conditionally on Fsn , concentrated around its asymptotic conditional mean given in
(6.14). As a result, (6.1) follows. This completes the proof of Proposition 2.3(a).

Proof of Proposition 2.3(b). In order to prove Proposition 2.3(b), we compare the statement of
Proposition 2.3(b) with that of Proposition 2.3(a). Let m = |SWT(j)

≤k(tn,y)[t̄n+t, t̄n+t+s2)|, so that

m
P−→ ∞ on the event that W (1)

snW
(2)
sn > 0, and consider the sum

∑m
i=1X

?
i , where X?

i = dVi − 1
are forward degrees of free vertices after time t̄n + t, i.e., from the vertices [n], we remove the
set Sm of all vertices of which at least one half-edge appeared in (SWT(s))s≤t̄n+t. We will prove
that, conditionally on Ft̄n+t with t < Bn,

1

mνn

m∑
i=1

X?
i

P−→ 1, (6.20)

and then the proof of Proposition 2.3(b) follows from the proof of Proposition 2.3(a) and the fact
that νn → ν.

Without loss of generality, we may assume that Bn in (5.22) holds, so that t < Bn implies that

|Sm| ≤ mn, where mn =
√
n(log n)1/4 as in (5.54). As a result the sequence (di)i∈[n]\Sm satisfies

Condition 1.1 whenever (di)i∈[n] does. Hence, Lemma 5.3 holds with Bi replaced by X?
i , so that

in particular, from the Markov inequality, conditionally on Ft̄n+t and for every sequence Kn →∞
satsfying K2

n = o(n/mn),

1

m

m∑
i=1

X?
i 1{X?

i >Kn}
P−→ 0. (6.21)

We use a conditional second moment method on
∑m

i=1X
?
i 1{X?

i ≤Kn}, conditionally on Ft̄n+t. By

(5.14) in Lemma 5.3,

E
[ m∑
i=1

X?
i 1{X?

i ≤Kn} | Ft̄n+t

]
= mνn(1 + oP(1)). (6.22)

This gives the asymptotics of the first conditional moment of
∑m

i=1X
?
i 1{X?

i ≤Kn}. For the second
moment, we start by bounding the covariances. We note that, for 1 ≤ i < j ≤ m,

Cov
(
X?
i 1{X?

i ≤Kn}, X
?
j 1{X?

j≤Kn} | Ft̄n+t

)
(6.23)

= E
[
X?
i 1{X?

i ≤Kn}

(
E[X?

j 1{X?
j≤Kn} | Ft̄n+t, X

?
1 , . . . , X

?
i ]− E[X?

j 1{X?
j≤Kn} | Ft̄n+t]

)
| Ft̄n+t

]
.
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By (5.14) in Lemma 5.3, as well as the fact that i ≤ mn = o(n),

E[X?
j 1{X?

j≤Kn} | Ft̄n+t, X
?
1 , . . . , X

?
i ]− E[X?

j 1{X?
j≤Kn} | Ft̄n+t] = oP(1), (6.24)

so that also

Cov
(
X?
i 1{X?

i ≤Kn}, X
?
j 1{X?

j≤Kn} | Ft̄n+t

)
= oP(1). (6.25)

Further, a trivial bound on the second moment together with (5.14) in Lemma 5.3 yields that

Var
(
X?
i 1{X?

i ≤Kn} | Ft̄n+t

)
≤ KnE[X?

i | Ft̄n+t] = Knνn(1 + oP(1)). (6.26)

As a result, whenever Knm = o(m2), and k2
n = o(n/mn),

Var
( m∑
i=1

X?
i 1{X?

i ≤Kn} | Ft̄n+t

)
= oP(m

2), (6.27)

which together with (6.22) proves that, conditionally on Ft̄n+t,

1

mνn

m∑
i=1

X?
i 1{X?

i ≤Kn}
P−→ 1. (6.28)

Together with (6.21), this proves (6.20), as required.

7. The PPP limit for collision edges: Proof of Theorem 3.1

Recall that (Ft)t≥0 is the filtration generated by all the randomness used in the construction
up to time t, i.e.,

Ft = σ
(

(SWT(s),BPn(s),BP(s))s∈[0,t]

)
.

We will investigate the number of collision edges (xi, Pxi) with I(xi) = j ∈ {1, 2}, H(xi) ≤
kn(tn, x), H(Pxi) ≤ k(tn, y) and R

T
(col)
i

(Pxi) ∈ [0, s) created in the time interval [t̄n+ t, t̄n+ t+ε),

where ε > 0 is small. We let I = [a, b) × {j} × (−∞, x] × (−∞, y] × [0, s] be a subset of S, and
we prove that

P(Πn(I) = 0 | Fsn)
P−→ exp

{
−
∫ b

a

2νfR(0)

E[D]
e2αtΦ(x)Φ(y)FR(s)dt

}
. (7.1)

By [28, Theorem 4.7], this proves the claim.
We split

I =
N⋃
`=1

I(ε)

` , (7.2)

where I(ε)

l = [t(ε)`−1, t
(ε)

` )×{j}×(−∞, x]×(−∞, y]×[0, s), with t(ε)` = a+`ε and ε = (b−a)/N , with
N ∈ N. We will let ε ↓ 0 later on. For a fixed ε > 0, we say that a collision edge (xi, Pxi) is a first
round collision edge when there exists l ∈ [N ] and a half-edge y ∈ AH(t(ε)l−1) such that y is found

by the liquid in the time interval I(ε)

` , y is paired to the half-edge Py whose sibling half-edge xi is

paired to Pxi ∈ AH(t(ε)`−1) with I(y) = j 6= I(Pxi) = 3− j. We call all other collision edges second
round collision edges. The second round collision edges are such that a half-edge y is found by
the liquid in the time interval I(ε)

` (the first round), y is paired to the half-edge Py, one of the

sibling half-edges xi of y is then also found by the liquid in the time interval I(ε)

` (the second

round) and is paired to a half-edge Pxi , whose sibbling half-edge z is paired to Pz ∈ AH(t(ε)`−1)
with I(xi) = j 6= I(Pz) = 3− j. When ε > 0 is quite small, the latter seems less likely, which is
why we start with the first round collision edges.

Denote the point processes of first and second round collision edges by Π(FR)
n and Π(SR)

n , so that
Πn = Π(FR)

n + Π(SR)
n . The next two lemmas investigate the point processes Π(FR)

n and Π(SR)
n :
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Lemma 7.1 (PPP limit for the first round collision edges). For every s ≥ 0, x, y ∈ R, j ∈ {1, 2},
ε > 0 and ` ∈ [N ], as n→∞,

P
(
Π(FR)
n (I(ε)

` ) = 0 | F
t
(ε)
`−1

) P−→ exp
{
− 2ν

E[D]
e2αt

(ε)
`−1Φ(x)Φ(y)FR(s)FR(ε)

}
. (7.3)

Proof. The number of half-edges z ∈ AH(t̄n+ t(ε)`−1) that are found by the liquid having I(z) = j
and H(z) ≤ kn(tn, x) is equal to

|SWT(j)

≤kn(tn,x)[t̄n + t(ε)`−1, t̄n + t(ε)`−1 + ε)|. (7.4)

Fix such a half-edge z, and note that it is paired to Pz that has X?
z = dVPz

− 1 sibling half-edges.

For each of these half-edges we test whether it is paired to a half-edge in AH(t̄n + t(ε)`−1) or not.

Therefore, the total number of tests performed in the time interval [t(ε)`−1, t
(ε)

` ) is equal to∑
z

X?
z1{z∈SWT

(j)
≤kn(tn,x)

[t̄n+t
(ε)
`−1,t̄n+t

(ε)
` )}. (7.5)

By construction, we test whether these half-edges are paired to half-edges that are incident to
the SWT or not. Each of these edges is paired to a half-edge w ∈ AH(t̄n+ t(ε)`−1) with I(w) = 3− j
(and thus creating a collision edge) and H(w) ≤ k(tn, y) and R

t̄n+t
(ε)
`−1

(w) ∈ [0, s) with probability

equal to
1

`n − o(n)
|SWT(3−j)

≤k(tn,y)[t̄n + t(ε)`−1, t̄n + t(ε)`−1 + s)|. (7.6)

Therefore, for ε > 0, conditionally on F
t̄n+t

(ε)
`−1

, the probability that none of the half-edges found

in the time interval in between [t̄n + t(ε)`−1, t̄n + t(ε)` ) creates a collision edge is asymptotically equal
to ∏

v∈SWT
(j)
≤k(tn,x)

[t̄n+t
(ε)
`−1,t̄n+t

(ε)
` )

(
1− 1

`n − o(n)
|SWT(3−j)

≤k(tn,y)[t̄n + t(ε)`−1, t̄n + t(ε)`−1 + s)|
)X?

v
(7.7)

P−→ exp
{
− ν

E[D]
e2αt

(ε)
`−1Φ(x)Φ(y)FR(s)FR(ε)

}
,

where we use (2.45), that e2αntn = n−1, and that `n = nE[Dn] with E[Dn]→ E[D]. The factor 2
in (7.3) is caused by the two possibilities j ∈ {1, 2}.

Lemma 7.2 (A bound on the second round collision edges). For x, y ∈ R, j ∈ {1, 2}, ε > 0 and
` ∈ [N ], as n→∞,

P
(
Π(SR)
n (I(ε)

` ) ≥ 1 | F
t
(ε)
`−1

)
= OP(1)FR(ε)Fξ(ε). (7.8)

Proof. By analogous arguments as above, the expected number of second round collision edges
is of order

OP(1)e2αtΦ(x)Φ(y)FR(s)FR(ε)Fξ(ε), (7.9)

since one of the half-edges z that is found by the liquid in the time interval [t̄n + t(ε)`−1, t̄n + t(ε)` )
needs to satisfy that one of the dVPz

− 1 half-edges has weight at most ε, and which, upon being
found, needs to create a collision edge.

Now we are ready to complete the proof of Theorem 3.1. We use that

P
(
Πn(I) = 0 | Fsn

)
= E

[ N∏
`=1

P
(
Πn(I(ε)

` ) = 0 | F
t
(ε)
`−1

)
| Fsn

]
. (7.10)

We start with the upper bound, for which we use that

P
(
Πn(I(ε)

` ) = 0 | F
t
(ε)
`−1

)
≤ P

(
Π(FR)
n (I(ε)

` ) = 0 | F
t
(ε)
`−1

)
(7.11)

P−→ exp
{
− 2ν

E[D]
e2αt

(ε)
`−1Φ(x)Φ(y)FR(s)FR(ε)

}
,
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by Lemma 7.1. We conclude that

P
(
Πn(I) = 0 | Fsn

)
≤ E

[ N∏
`=1

exp
{
− 2ν

E[D]
e2αt

(ε)
`−1Φ(x)Φ(y)FR(s)FR(ε)

}
| Fsn

]
(7.12)

= exp
{
−

N∑
`=1

2ν

E[D]
e2αt

(ε)
`−1Φ(x)Φ(y)FR(s)FR(ε)

}
→ exp

{
− 2ν

E[D]
fR(0)

∫ b

a
e2αtΦ(x)Φ(y)FR(s)dt

}
,

since limε↓0 FR(ε)/ε = fR(0), and the Riemann approximation

ε

N∑
`=1

e2αt
(ε)
`−1 →

∫ b

a
e2αtdt. (7.13)

This proves the upper bound.
For the lower bound, we instead bound

P
(
Πn(I) = 0 | Fsn

)
≥ E

[ N∏
`=1

P
(
Π(FR)
n (I(ε)

` ) = 0 | F
t
(ε)
`−1

)
| Fsn

]
(7.14)

− E
[( N∑

`=1

P
(
Π(SR)
n (I(ε)

` ) ≥ 1 | F
t
(ε)
`−1

))
∧ 1 | Fsn

]
.

The first term has already been dealt with, the second term is, by Lemma 7.2, bounded by

E
[(
OP(1)

N∑
`=1

FR(ε)Fξ(ε)
)
∧ 1 | Fsn

]
= oP(1), (7.15)

as ε ↓ 0, by dominated convergence, since FR(ε) = εfR(0)(1 + o(1)) and Fξ(ε) = o(1).
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