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It is generally believed that, for physical systems in the thermodynamic limit, the microcanonical
description as a function of energy coincides with the canonical description as a function of temper-
ature. However, various examples have been identified for which the microcanonical and canonical
ensembles are not equivalent. A complete theory of this intriguing phenomenon is still missing.
Here we show that ensemble nonequivalence can manifest itself also in discrete enumeration prob-
lems. We show that, for discrete systems, ensemble equivalence reduces to equivalence of the large
deviation properties of microcanonical and canonical probabilities of a single microstate. As specific
examples, we consider ensembles of graphs with topological constraints. We find that, while graphs
with a given number of links are ensemble-equivalent, graphs with a given degree sequence (includ-
ing random regular graphs, sparse scale-free networks, and core-periphery networks) are not. This
mathematical result provides a theoretical explanation for various ‘anomalies’ that have recently
been observed in networks, namely, the non-vanishing of canonical fluctuations in the configura-
tion model and of the difference between microcanonical and canonical entropies of random regular
graphs. While it is generally believed that ensemble nonequivalence is associated with long-range
interactions, our findings show that it may naturally arise in systems with local constraints as well.

PACS numbers: 05.20.Gg,02.10.Ox,89.75.Hc

Background. In statistical physics, calculating the equi-
librium properties of a system with a given energy re-
quires averaging over the so-called microcanonical ensem-
ble [1, 2], i.e., the uniform distribution on the set of all
particle configurations having a prescribed energy. Apart
from trivial examples, this is a mathematically challeng-
ing task. Moreover, it is difficult to physically realize
a situation where there is no uncertainty in the energy
of the system. Therefore, it is often preferable to work
with the so-called canonical ensemble [2], i.e., a proba-
bility distribution with maximal entropy on the set of all
particle configurations that does allow for the ‘wrong’ en-
ergy, but in such a way that the average energy matches
a prescribed value. This is achieved through the selection
of an appropriate temperature, mathematically arising as
the Lagrange multiplier enforcing the average energy.

Starting with the work of Gibbs [2], the microcanonical
and canonical ensembles have been shown to be equiva-
lent in the thermodynamic limit (i.e., when the number
of particles in the system tends to infinity) for physical
systems with short-range interactions. The original argu-
ment is that in the canonical ensemble at fixed tempera-
ture the energy fluctuations are negligible with respect to
the average energy, so that in the thermodynamic limit
the canonical ensemble is effectively microcanonical with
a sharp value of the energy. Today, most textbooks in
statistical physics still convey the message that the equiv-
alence of ensembles holds universally for every physical
system, justifying the use of energy and temperature as
two different parameters giving an equivalent description.

However, in the past 15 years various studies have high-
lighted that ensemble equivalence breaks down for cer-

tain many-body systems encountered in models of fluid
turbulence [3, 4], quantum phase separation [5–7], star
formation [8, 9], nuclear fragmentation [10], and spin in-
teraction [11]. Physically, it is believed that one of the
main causes of ensemble nonequivalence is the presence of
long-range interactions. However, a complete theoretical
understanding of this intriguing problem is still missing.

Mathematically, ensemble non-equivalence has been
approached in various ways [12, 13]. In particular, the
microcanonical and canonical ensembles are said to be
thermodynamically equivalent [7] when the entropy and
the free energy of the system are one-to-one related via
a Legendre transform. The ensembles are said to be
macrostate equivalent [12] when the sets of equilibrium
values of the macrostate (energy, magnetization, etc.) are
the same. Finally, a recent and mathematically appealing
definition is that of measure equivalence [13], according
to which the ensembles are said to be equivalent when
the canonical probability distribution converges to the
microcanonical probability distribution in the thermody-
namic limit. Under certain hypotheses, the three defini-
tions have been shown to be equivalent [13]. Moreover,
large deviation theory [14] shows that the ensembles are
nonequivalent on all three levels when the microcanonical
entropy function is nonconcave as a function of the energy
density in the thermodynamic limit [13]. This provides
important new insight, because for a long time physicists
believed that entropy is always strictly concave.

Here we study ensemble nonequivalence for dis-
crete enumeration problems, in particular, for networks
with topological constraints [15–17]. Usually, ensem-
ble nonequivalence is studied for systems in which the
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Boltzmann distribution describes a certain physical in-
teraction that is encapsulated in the energy (including
e.g. spin interactions on random graphs [11]). How-
ever, as shown by Jaynes [18], the Boltzmann distri-
bution describes much more general ensembles of sys-
tems with given constraints, namely, all solutions to the
information-theoretic maximum-entropy problem of in-
ference from partial information (where the available in-
formation plays the role of the constraint). Building on
this fact, we argue that, for any discrete enumeration
problem where we need to count microcanonical config-
urations compatible with a given constraint, there exists
a ‘dual’ problem involving canonical configurations in-
duced by the same constraint. In this article, we prove a
general result relating measure equivalence to the equiv-
alence of the large deviation properties of microcanonical
and canonical probabilities, and provide examples of net-
works with constraints that exhibit nonequivalence.
Relative entropy and large deviations. Using the
measure-based definition of ensemble equivalence [13], we
say that the microcanonical and canonical ensembles are
equivalent if and only if their specific relative entropy is
zero. Since we are considering discrete systems, we need
the following discrete version of the relative entropy:

SN (Pmic||Pcan) ≡
∑

G∈GN

Pmic(G) ln
Pmic(G)

Pcan(G)
, (1)

where GN denotes the set of all configurations (in our
later examples, graphs) with N particles (nodes), and
Pmic, Pcan denote the microcanonical and canonical prob-
ability distributions respectively. Following [13], we say
that the ensembles are measure equivalent if and only if

s ≡ lim
N→∞

SN (Pmic||Pcan)

N
= 0. (2)

Before considering specific cases, we first prove an im-
portant general result. Any discrete enumeration prob-
lem naturally induces a microcanonical distribution

Pmic(G) =

{
1/Ω~C∗ , if ~C(G) = ~C∗,
0, else,

(3)

where Ω~C∗ ≡ |{G ∈ GN : ~C(G) = ~C∗}| is the number

of configurations that realize a given hard constraint ~C∗

(which we take to be a vector because it may concern sev-
eral topological constraints simultaneously). Following
Jaynes [18], we introduce a ‘dual’ enumeration problem
involving a canonical probability distribution Pcan(G)
defined as the solution of the maximization of the Shan-
non entropy S ≡ −

∑
G∈GN Pcan(G) lnPcan(G) subject

to the soft constraint 〈~C〉 = ~C∗, where 〈·〉 denotes the
average w.r.t. Pcan, and to the normalization condition∑

G∈GN Pcan(G) = 1 [15]. This gives

Pcan(G) =
e−H(G,~θ∗)

Z(~θ∗)
, (4)

where H(G, ~θ) ≡ ~θ · ~C(G) is the Hamiltonian and Z(~θ) ≡∑
G∈GN e

−H(G,~θ) is the partition function. Note that in

eq.(4) the parameter ~θ must be set to the particular value
~θ∗ that realizes 〈~C〉 = ~C∗ [17]. This value also maximizes
the likelihood of the data [19].

We now make a simple but crucial observation. Not-
ing from the form of H(G, ~θ) that Pcan(G1) = Pcan(G2)

when ~C(G1) = ~C(G2) (i.e., the canonical probability is
the same for all configurations having the same value of
the constraint), we may rewrite eq.(1) as

SN (Pmic||Pcan) = ln
Pmic(G

∗)

Pcan(G∗)
, (5)

where G∗ is any configuration in GN such that ~C(G∗) =
~C∗. The condition for equivalence in eq.(2) then becomes

lim
N→∞

1

N
lnPmic(G

∗) = lim
N→∞

1

N
lnPcan(G∗), (6)

which shows that the breaking of ensemble equivalence
coincides with Pmic(G

∗) and Pcan(G∗) having different
large deviation properties [14]. Importantly, this lo-
cal condition involves the microcanonical and canonical
probabilities of a single configuration G∗ realizing the
hard constraint. Apart from its theoretical importance,
this result greatly simplifies mathematical calculations.
Examples. To illustrate the above concepts, we con-
sider specific classes of random graphs. We begin with
an example of equivalence, namely, graphs with a fixed
number of links, i.e., ~C ≡ L. Writing L = λM , where
M ≡ N(N − 1)/2 is the number of pairs of nodes and λ
is the fraction of realized links, we have

ΩL∗ =

(
M

L∗

)
=

(
M

λ∗M

)
, 0 < λ∗ < 1. (7)

The canonical ensemble can be obtained from eq.(4) by

setting H(G, θ) = θL(G) and p∗ ≡ e−θ
∗

1+e−θ∗
= λ∗ [17].

This produces the Erdős-Rényi random graph where each
pair of nodes is connected with probability p∗:

Pcan(G) = (p∗)L(G)(1− p∗)M−L(G). (8)

We can now compute the relative entropy from eq.(5) as

S(Pmic||Pcan) = −λ∗M lnλ∗ − (1− λ∗)M ln(1− λ∗) +

− ln

(
M

λ∗M

)
= ln

√
2πλ∗(1− λ∗)M +O(1/M), (9)

where we have used Stirling’s formula n! = (n/e)n
√

2πn
[1 +O(1/n)], n→∞ [20]. This gives

s = lim
N→∞

ln
√

2πλ∗(1− λ∗)M
N

= 0, (10)

proving ensemble equivalence in this case.
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We next consider three examples of networks with a
given degree sequence, i.e., ~C ≡ ~k = (k1, . . . , kN ). This
coincides with the configuration model, where every node
has a given degree [15]. The microcanonical number Ω~k
is not known in general, but asymptotic results exist.
• We first treat the ‘sparse case’ where

kmax ≡ max
1≤i≤N

ki = o(
√
N). (11)

In this regime it is known that [21, 22]

Ω~k∗ =

√
2 ( 2L∗

e )L
∗∏N

i=1 k
∗
i !

e−f(
~k∗)+ 1

4+o(N
−1k∗

3
), (12)

where k = N−1
∑N
i=1 ki (average degree), L = Nk/2

(number of links), and f(~k) ≡ (k2/2k)2 with k2 =

N−1
∑N
i=1 k

2
i . The canonical ensemble is described by

eq.(4) where H(G, ~θ) = ~θ ·~k(G) and ~θ∗ is the solution of∑
j 6=i

e−θ
∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

= k∗i ∀ i (13)

as proved in [17]. Setting p∗ij ≡ e−θ
∗
i−θ

∗
j /(1 + e−θ

∗
i−θ

∗
j ),

Pcan(G) =

N∏
i=1

∏
j<i

(p∗ij)
gij (1− p∗ij)1−gij , (14)

where gij is the (i, j)-entry of the adjacency matrix of

the graph G. Eq.(11) ensures that kmax = o(
√
L), a

condition under which eq.(13) is solved as [17]

p∗ij ∼ e−θ
∗
i−θ

∗
j =

k∗i k
∗
j

2L∗
= o(1), (15)

where ∼ means that the quotient tends to 1. This implies
θ∗i ∼ − ln(k∗i /

√
2L∗) and ln(1−p∗ij) ∼ −k∗i k∗j /2L∗. Thus

lnPcan(G∗) =

N∑
i=1

∑
j<i

[g∗ij ln p∗ij + (1− g∗ij) ln(1− p∗ij)]

=
N∑
i=1

∑
j<i

[−g∗ij(θ∗i + θ∗j ) + ln(1− p∗ij)]

= −
N∑
i=1

k∗i θ
∗
i +

N∑
i=1

∑
j<i

ln(1− p∗ij)

∼
N∑
i=1

k∗i ln k∗i − L∗ ln(2L∗)− L∗. (16)

Combining eqs.(5), (12) and (16), we obtain

S(Pmic||Pcan) ∼ −L∗ ln(2L∗) + L∗ +
N∑
i=1

ln(k∗i !)

+ f(~k∗)− 1
4 + o

(
N−1k∗

3)
−

N∑
i=1

k∗i ln k∗i + L∗ ln(2L∗) + L∗ (17)

which leads to

S(Pmic||Pcan) ∼
N∑
i=1

[
ln(k∗i !)− k∗i ln k∗i + k∗i

]
+ f(~k∗)− 1

4 + o
(
N−1k∗

3)
. (18)

Abbreviating ξ ≡ limN→∞ f(~k∗)/N , and using bars to
denote limiting averages over nodes, we arrive at

s = ln[k∗!/(k∗/e)k∗ ] + ξ ≥ ln
√

2πk∗ + ξ, (19)

where the inequality holds for every k∗ ≥ 1 [20]. Since
ξ ≥ 0, we have s > 0, proving ensemble nonequivalence.

We consider two examples in the sparse regime. The
first case is that of sparse regular networks, where every
node has the same degree, i.e., ki ≡ k∗ with k∗ = o(

√
N).

Then ξ = 0 and ln k∗ = ln k∗, and so eq.(19) becomes

s ≥ ln
√

2πk∗, k∗ = o(
√
N). (20)

The nonequivalence for regular graphs can be traced back
to the fact that the canonical ensembles for the two ex-
amples considered so far, namely, ~C = L and ~C = ~k,
coincide via the identification p∗ = L∗/M = k∗/(N − 1).
Since the microcanonical ensembles are different, at most
one of the two examples can show ensemble equivalence.
As we proved ensemble equivalence for ~C = L, there can-
not be ensemble equivalence for ~C = ~k as well. Inciden-
tally, note that if k∗ grows with N , then s diverges like
ln k∗, which signals an extreme violation of equivalence.

The second case is the class of sparse scale-free net-
works [23], defined by a truncated power-law degree dis-

tribution of the form FN (k) = N−1
∑N
i=1 1{ki=k} =

Akck
−γ for 1 ≤ k < kc and FN (k) = 0 for k ≥ kc,

with 2 < γ < 3 (a typical range for real-world networks)
and 1/kc = o(1). The cut-off kc = o(

√
N) [23] ensures

eq.(11), so that eq.(15) is valid. Approximating FN (k)
by a continuous distribution, we see that the normaliza-

tion of FN implies that Akc ≈ (γ − 1)/(1 − k
−(γ−1)
c ).

Computing ka ≈ Akc
∫ kc
1
kak−γdk, a = 1, 2, we get

f(~k∗) ≈
(

γ − 2

2(3− γ)

k3−γc − 1

1− k−(γ−2)c

)2

= o(N3−γ), (21)

which leads to ξ = 0. Similarly, computing ln k ≈
Akc

∫ kc
1

(ln k)k−γdk, we get

ln k∗ ≈ 1

γ − 1
− ln kc

kγ−1c − 1
, kc = o(

√
N) (22)

and so eq.(19) becomes

s ≥ ln
√

2πk∗ ≈ 1

2(γ − 1)
+ ln
√

2π. (23)

This shows that sparse scale-free networks display non-
equivalence. Also note that as γ decreases, the hetero-
geneity of the degree distribution increases and the vio-
lation of non-equivalence gets more severe.
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• We next treat a class of extremely heterogeneous net-
works, for which eq.(11) is violated and therefore eq.(12)
cannot be used. Specifically, we consider h-star graphs
with a fully connected core of h hubs and a periphery
of N − h leaves, each with a single connection to one of
the hubs. The periphery is divided into h sets of equal
size (N − h)/h, such that every leaf in a set is connected
to the same hub. The microcanonical number of such
graphs is the multinomial coefficient

Ω~k∗ =

(
N − h

N−h
h . . . N−hh

)
=

(N − h)!(
N−h
h !
)h . (24)

Applying Stirling’s approximation [20], we get

Pmic(G
∗) = hh−N [2π(N − h)]

h−1
2 h−

h
2 [1 + o(1)]. (25)

The canonical distribution is still described by eqs.(13)
and (14). Since the degree of a periphery node is kP = 1
and that of a core node is kC = h − 1 + N−h

h , eq.(13)
reduces to only two independent equations

h p∗CP + (N − h− 1) p∗PP = 1, (26)

(h− 1) p∗CC + (N − h) p∗CP = (h− 1) +
N − h
h

, (27)

where p∗CC , p∗PP and p∗CP denote the connection proba-

bility (evaluated at ~θ = ~θ∗) between two core nodes, two
periphery nodes, and a core node and a periphery node,
respectively. The implicit (for ~θ∗) solution is

p∗CC = 1, p∗PP = 0, p∗CP = h−1. (28)

Therefore the canonical distribution is

Pcan(G∗) =

(
1

h

)N−h(
1− 1

h

)(h−1)(N−h)

, (29)

the relative entropy is

S(Pmic||Pcan) = (N − h)(h− 1) ln

(
h

h− 1

)
(30)

+ (h− 1) ln
√

2π(N − h)− h ln
√
h,

and the specific relative entropy is

s = (h− 1) ln

(
h

h− 1

)
. (31)

So we again find nonequivalence for all h > 1. (For h =
1, both ensembles admit only one star-like configuration
and are therefore equivalent.)
Conclusion. Our results show that, while it is generally
believed that ensemble nonequivalence is associated with
long-range interactions, it may naturally arise in systems
with local (topological) constraints as well, and more in
general in discrete enumeration problems. Our findings

contribute to the theoretical understanding of nonequiv-
alence in discrete systems, by linking it to the nonequiva-
lence of the large deviation properties of microcanonical
and canonical probabilities of a single microstate. Our
proof of the breakdown of ensemble equivalence in graphs
with given degree sequence provides a theoretical expla-
nation for some otherwise anomalous recent observations,
namely the fact that the canonical and microcanonical
entropies of random regular graphs are different even in
the thermodynamic limit [16] and the non-vanishing of
canonical fluctuations in the configuration model [24].
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[23] M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Eur.

Phys. J. B 38, 205-9 (2004).
[24] T. Squartini, R. Mastrandrea, and D. Garlaschelli,

arXiv:1406.1197 (2014).


