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Abstract

We consider a bivariate risk reserve process with the special feature that each insurance company agrees to
cover the deficit of the other. It is assumed that the capital transfers between the companies are instantaneous
and incur a certain proportional cost, and that ruin occurs when neither company can cover the deficit of the
other. We study the survival probability as a function of initial capitals and express its bivariate transform
through two univariate boundary transforms, where one of the initial capitals is fixed at 0. We identify these
boundary transforms in the case when claims arriving at each company form two independent processes. The
expressions are in terms of Wiener-Hopf factors associated to two auxiliary compound Poisson processes.
The case of non-mutual (reinsurance) agreement is also considered.

Keywords: Two-dimensional risk model, survival probability, coupled processor model, Wiener-Hopf
factorization

1. Introduction

Insurance companies cannot operate in isolation from financial markets or from other insurance and
reinsurance companies. Multivariate risk models, however, present a serious challenge with few explicit
results up to date, see [1, Ch. XIII.9]. This paper focuses on a nonstandard, but rather general and appealing,
bivariate risk model and provides an exact analytic study of the corresponding survival probability, borrowing
some ideas from the analysis of a somewhat related queueing problem in [7].

We consider a bivariate Cramér-Lundberg risk process as a model of surplus of two insurance companies
(or two lines of one insurance business). The special feature of our model is that the companies have a
mutual agreement to cover the deficit of each other. More precisely, if company 1 gets ruined, with its
capital decreasing to a value —x < 0, then company 2 compensates this deficit, bringing the capital of
company 1 back to 0. However, this comes at a price; a unit of capital received by company 1 requires
r1 > 1 from company 2 (cf. Figure 1). If this would cause the capital of company 2 to go below 0, then both
companies are said to be ruined. Similarly, if company 2 gets a deficit —y < 0, company 1 compensates this
deficit, but its capital reduces by roy > y; and if this would cause the capital of company 1 to go below 0,
then again both companies are said to be ruined. Finally, ruin may also be caused by a single event bringing
surplus processes of both companies below 0.

Our main goal in this study is to provide an exact analysis of the probability of survival (i.e., ruin
never occurs) ¢(u,v), as a function of the vector (u,v) of initial capitals. We do this by (i) expressing the
two-dimensional Laplace transform F(s1, s2) of ¢(u,v) in terms of the transforms of ¢(u,0) and ¢(0,v), and
(ii) determining the latter two transforms by solving a Wiener-Hopf boundary value problem in the case of
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Figure 1: Illustration of mutual deficit coverage (no common shocks).

independent claim streams. In the latter step, a key role is played by the Wiener-Hopf factorization of two
auxiliary compound Poisson processes.

In our terminology, if one company cannot save the other then both are declared ruined, whereas in
practice it is more likely that the company with a positive capital pays out all it has, but then continues its
operation. Hence it may be more appropriate to call ¢ the probability of survival of both companies, or the
probability that external help is never needed, see Remark 3. One may also notice that it is clearly better
(with respect to survival) to merge the two lines eliminating transaction costs. There may be cases, however,
where a merger is not possible due to legal, regulatory or other issues. Outside of an insurance context, the
two lines may be two separate physical entities such as water reservoirs or energy sources. Furthermore,
one may consider the case where r; < 1 for at least one company, see Remark 2, so that merging may not
be optimal. This may correspond to the case where part of the deficit is written off or is covered by some
other fund.

The above-sketched risk model bears some resemblance to a two-dimensional queueing model of two
coupled processors. This model features two M/G/1 queues, each of which, in isolation, is known to be
the dual of a Cramér-Lundberg insurance risk model, cf. [1, Ch. I.4a]. Just like in our risk model, the two
processors are coupled by the agreement to help each other. When one of the two M/G/1 queues becomes
empty, the service speed of the other server — say, server i — increases from 1 to r; > 1, i.e. server i is
being helped by the idle server. It should be stressed that this similarity is rather loose and that there is
no clear duality relation between these bivariate risk and queueing models. Strikingly, the crucial ideas of
the analysis of the coupled processor model in [7] apply to our present setup as well. Moreover, solutions
to both problems are based on the same Wiener-Hopf factors, which hints that there might be a certain
duality relation between the two.

1.1. Related literature and motivation

Despite their obvious relevance, exact analytic studies of multidimensional risk reserve processes are
scarce in the insurance literature. A special, important case is the setting of proportional reinsurance, which
was studied in Avram et al. [3]. There it is assumed that there is a single arrival process, and the claims
are proportionally split among two reserves. In this case, the two-dimensional exit (ruin) problem becomes
a one-dimensional first-passage problem above a piece-wise linear barrier. Badescu et al. [4] have extended
this model by allowing a dedicated arrival stream of claims into only one of the insurance lines. They show
that the transform of the time to ruin of at least one of the reserve processes can be derived using similar
ideas as in [3].

An early attempt to assess multivariate risk measures can be found in Sundt [21], where multivariate
Panjer recursions are developed which are then used to compute the distribution of the aggregate claim
process, assuming simultaneous claim events and discrete claim sizes. Other approaches are deriving integro-
differential equations for the various measures of risk and then iterating these equations to find numerical
approximations [10, 15], or computing bounds for the different types of ruin probabilities that can occur in
a setting where more than one insurance line is considered, see [8, 9]. In an attempt to solve the integro-
differential equations that arise from such models, Chan et al. [10] derive a Riemann-Hilbert boundary value
problem for the bivariate Laplace transform of the joint survival function (see [5] for details about such
problems arising in the context of risk and queueing theory and the book [11] for an extended analysis of
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similar models in queueing). However, this functional equation for the Laplace transform is not solved in
[10]. In [5] a similar functional equation is taken as a departure point, and it is explained how one can
find transforms of ruin related performance measures via solutions of the above mentioned boundary value
problems. It is also shown that the boundary value problem has an explicit solution in terms of transforms,
if the claim sizes are ordered. In [6] this is generalized to the case in which the claim amounts are also
correlated with the time elapsed since the previous claim arrival.

Bivariate models where one company can transfer its capital to the other have already been considered
in the literature. Recently, Avram et al. [2] proposed a model of an insurance company which splits its
premiums between a reinsurance/investement fund and a reserves fund necessary for paying claims. In their
setting only the second fund receives claims, and hence all capital transfers are one way: from the first
fund to the second. Another example is a capital-exchange agreement from [19, Ch. 4], where two insurers
pay dividends according to a barrier strategy and the dividends of one insurer are transferred to the other
unless the other is also fully capitalized. This work resulted in systems of integro-differential equations for
the expected time of ruin and expected discounted dividends, which are hard to solve even in the case of
exponential claims.

Finally, we briefly list related contributions in the queueing context. The joint queue length distribution
of the coupled processor model has been derived by Fayolle and Iasnogorodski [14], in the case that the
service time distributions at both queues are exponential. In their pioneering paper, they showed how the
generating function of the joint steady-state queue length distribution can be obtained by solving a Riemann-
Hilbert boundary value problem. Cohen and Boxma [11] generalized this queueing model by allowing general
service time distributions. They obtained the Laplace-Stieltjes transform of the joint steady-state workload
distribution by solving a Wiener-Hopf boundary value problem. In [7] the model of [11] was extended by
considering a pair of coupled queues driven by independent spectrally positive Lévy processes and a compact
solution was obtained. There the model was also linked to a two-server fluid network.

1.2. Organization of the paper

In Section 2 we describe the model in detail. In Section 3 we derive an integral equation for the survival
probability ¢(u,v), as a function of the vector (u,v) of initial amounts of capital. Section 4 is devoted
to the derivation of a so-called kernel equation for the two-dimensional Laplace transform of ¢(u,v), see
Proposition 1. After a brief discussion of the net profit condition, in Section 5, we solve the kernel equation
in the case of independent claim streams in Section 6. The main result is given in Theorem 1, which is
then illustrated by two simple examples. In Section 7 we specialize to a model of reinsurance, where help is
provided by only one company. Some open problems are discussed in Section 8.

2. The model

Consider a bivariate Cramér-Lundberg risk process (u + Xi(t),v + X2(t)),t > 0 with initial capitals
u,v > 0, premium rates ¢; > 0, claim arrival rate A and a joint claim size distribution p(dxy,dzs). In other

words,
N(t)

(X1(t), X2(t)) = (c1,c2)t — Z(Cl,hCQ,i)a
i=1
where (C1,4,Ca,:),% € N are iid distributed according to p, and N(t) is an independent Poisson process of
rate A\. Without loss of generality we can assume that p does not have mass at (0,0). Next, we define the
corresponding bivariate Laplace exponent by

Y(s1,82) 1= (1)

logEelel(lH&X?(l) = 51¢1 + S3C9 — A (1 — / e‘slxl_s"‘”"‘u(dxl,dwg)> .
R
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Remark 1. Note that this model incorporates the case of two independent risk processes with claim arrival
rates \; and claim size distributions p;(dx) with the relation

A A
A=A+ g, plda, dy) = 5~ +1A2 p(de)do(dy) + 5- f 35 12 (d9)do (),

where 8y denotes the Dirac point mass at 0. This yields 1(s1,s2) = ¥1(s1) + ¥2(s2) with

¥i(s) == log Be?X () = s¢; — \; (1 - / e_sxui(dx)> , 1=1,2.
Ry

Throughout this work we assume that the companies have a mutual agreement of deficit coverage: when
a claim brings the surplus of a company ¢ € {1,2} below 0 then the other company j = 3 — i transfers just
enough capital to bring it to 0 so that company 7 can continue its operation. If company j has not enough
capital then ruin occurs. We also assume that a capital transfer incurs some proportional cost: a unit of
capital received by 4 requires r; > 1 capital from j. It is noted that in the case of no transaction costs our
risk problem reduces to a classical one-dimensional problem obtained by considering the total surplus, see
Section 6.2.

Remark 2. All of the results below hold for any r; > 0 such that riro > 1. Even the latter condition can

be removed, except that then the second statement in Proposition 2 may no longer be true.

It is convenient to consider a more general model defined for all times ¢t > 0, where ruin is avoided using
capital from external sources. More precisely, if company j has insufficient funds to save ¢ then it transfers
to 7 all its capital and the rest of the required capital is taken from the shareholders of company 4 (or some
other external source). Mathematically, we can describe the bivariate surplus process (S1(t), S2(t)) in the
following way:

S1 (t) =u-+ X1<t) — ’I"QLQ(t) + Ll(t) + E‘l(t)7
So(t) = v+ Xao(t) —riLa(t) + La(t) + Ea(t), (2)

where L;(t) and E;(t) are the cumulative amounts of capital received by the i-th company from the other
company and from an external source respectively; L;(0) = E;(0) = 0. Note that the time of ruin in the
original model is given by

T =inf{t > 0: Ey(t) + E2(t) > 0}. (3)

In this work we only address the probability of survival ¢(u, v) := P, (T = 00). Note that in our setup the
concepts of ruin and survival have unambiguous meaning, which should be compared to various possible
ruin concepts in standard bivariate risk models, see [10]. In the following we provide two mathematical
definitions of the processes involved in (2): A recursive definition and a definition as a modified Skorokhod
problem.

Remark 3. We note that the external sources E; are introduced only for modeling convenience. Throughout
this work survival means survival in the original model which corresponds to never using external capital
in the extended model. Hence E; never appear in the following apart from the discussion of the net profit
condition in Section 5 and direct calculations in Section 6.2. Nevertheless, we believe that it is important to
have an explicit model definition as given by (2) and (3), see also Section 8.

2.1. Recursive definition

Let us remark that the processes L;, E; are piece-wise constant and non-decreasing, and can have jumps
at claim arrival times t1, %o, ... only. One may define these processes recursively by considering their jumps
at time ¢, for n = 1,2,... More precisely, with z; = S;(t,—) + (X;(tn) — X;(t,—)) we have the following
cases:

e 21,29 > 0: L;, E; have no jumps (at ¢,),



e z1 < 0,29 +r12; > 0: Ly has a jump —z; (and no other jumps at t,),

e 19 < 0,21 +1roxs > 0: Lo has a jump —xo,

e 1 < 0,29 > 0,29 + 121 <0: Ly has a jump zo/r; and F has a jump —x1 — z2/71,
o 29 < 0,21 > 0,21 + rexe < 0: Ly has a jump z1/re and Fs has a jump —xo — 1 /79,
e 11 < 0,29 <0: F; has a jump —zx; for i = 1,2.

2.2. Modified Skorokhod problem definition

The following equivalent specification of our model closely resembles a multidimensional Skorokhod
problem, see [16, 17] building upon Skorokhod’s one dimensional construction [20]. It is noted that for the
classical bivariate Skorokhod problem one must assume that r172 < 1 which is clearly violated in our setup.

We consider the equations in (2) with the following additional requirements:

e S; >0 and L;, E; are piece-wise constant and non-decreasing,

e the jump times of L; are contained in {t > 0: .S;(t) = 0},

e the jump times of F; are contained in {t > 0: Sy (t) = Sa2(t) = 0},

e out of Ly, Lo, Fy, E the only pairs which can jump simultaneously are (L1, E1), (L2, Es) and (Eq, E3).

It is easy to check that these requirements are satisfied by the recursive construction from Section 2.1, and
that no other choices of L;, E; and thus .S; satisfy these conditions.

A few words about the above requirements. The second states that a company receives capital when in
need, and the third states that external capital can be used only when both companies are in need (or one is
at 0 after trying to save the other). The final condition is necessary to prevent redundant capital transfers.

3. The survival probability

As stated in Remark 3, we now ignore the possibility of funding by external sources. Consider ¢(u,v) =
Py (7 = 00), the probability of survival for the initial capitals u,v > 0, and put for convenience ¢(u,v) =0
if u<0orwv<0. It is immediate from sample path comparison that ¢(u,v) is non-decreasing in both u,v.
Furthermore, ¢(u, v) is a (Lipschitz) continuous function on R?, which follows from ¢(u,v) > (1 —Ah)¢p(u+
c1h, v+ cah) + o(h) as h | 0 implying

d(u+ crh,v + cah) — d(u,v) < Ah + o(h), (4)
where o(h) does not depend on u,v. Moreover, our model definition implies the following equation
d(u,v) = o(h) + (1 — Ah)d(u + c1h,v + coh) (5)
+ Ah // d(u — z,v — y)u(de, dy)

z€[0,u],y€[0,v]

+ AR // $(u -+ a0 — ), 0)p(dz, dy)

z€[0,u],y>v

+ AR // $(0,v — g+ 11 (u — 2))p(dz, dy).

z>u,y€[0,v]

In fact, this equation requires some careful considerations, and so its proof is given in the Appendix.



Equation (5) implies that the directional derivative

d(u+ crh,v + coh) — ¢(u,v)
h

D(cl,62)¢(u7v) = 1}5}01

exists and the following equation holds true.

o(u,v) = %D(Chw)d)(u,v) + // d(u—x,v —y)u(de, dy)
€[0,u],y€[0,v]
// O — @ + ra(v — ), 0)p(de, dy)
€l0,ul,y>v
/ ?(0,v —y + 7r1(u — x))pu(de, dy).
z>u,y€[0,v]

Remark 4. If the partial derivatives ¢1 and ¢o exist and are continuous at (u,v) then D, c,)¢(u,v) =
c1¢1(u,v) + capa(u,v). This can not hold in general when u has an atom at (u,v), as can be seen from (5).
4. The kernel equation

Equation (5) can be equivalently formulated in terms of Laplace transforms. This results in a very simple
identity given by the following Proposition.

Proposition 1. Let F(sy,s2) : fR2 e s1um82v gy v)dudv and

Fitsy) = [ em*o(u,0)du. Fas2) = [ (0. 0)dv.
0 0
Then for all s1,s2 > 0 it holds that

Y(s1,52) — ¢(5177”251)F (1) + P(s1,82) — P(r152,82)
S2 —T'281 e §1 —T1S2

Y(s1,52)F(s1,82) =

FQ(SQ). (6)

This result identifies the transform of ¢(u, v) up to the unknown functions F;(s;). Equation (6) resembles
the so-called basic adjoint relation in the semimartingale reflected Brownian motion (SRBM) literature, see
e.g. [22, Eq. (3.2)], with the class of functions f(u,v) = e™5t%752Y, In the queueing literature this type of
functional equation is sometimes called ‘kernel equation’, see e.g. [11, Ch. I11.3] and [7, Prop. 1].

Proof of Proposition 1. We simply take the transform of (5) and let h J 0. Let us first consider the transform
of ¢(u+ crh,v + coh) — P(u, v):

/ 6—51u—82v¢(u+clh,v—i—th)dudv - F(31732)

RQ

= 65101h+8202h/ 1{u>01h,v>czh}6_slu_szv¢(ua U)dUdU - F(Sl’ 82)
&

= <681C1h+8202h - 1)F(31a 52) - /2 1{u§clh or vSCQh}e_Slu_SQU(b(u7 U)dUdv'
R
T

By dominated convergence and continuity of ¢ we have

lim — / / e 172V g (u, v)dudv
hio b Juso Ju<eon (u.0)

- o e~ (u, v)dudv = ey F
cz/uzoe 0 ol /<th é(u,v)dudv = coFy(s1).
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Similarly, we have
1

1. - —S1U—S82v d d — F
}g%h/ugclh/vzoe é(u, v)dudv = c1F(s2)

and fugclh veepn € T2 ¢(u, v)dudv = o(h). Combining these we obtain
1

lim

lim. /2 (d(u+ c1h,v+ coh) — d(u,v))dudv = (s1¢1 + s2c2)F (81, 82) — caF1(s1) — c1 Fa(s2).
RY

It is left to consider the transforms of the integrals in (5). Using Fubini’s theorem we get

J

= / 1{u2z,v2y}6_51u_82v¢(u —Z,V = y)dUdUN(d% dy)
R

2 2
1 U/RY

e TR /2 1{x§u,yﬁv}¢(“ — 2,0 — y)p(dz, dy)dudv
R

2
+

= / / e st =s2(v49) 44y ) dudvp(da, dy) = G(sy1, s2)F(s1, 52),
R? JR?

where G(s1, s2) = Sz €552 pu(dz, dy).
+
Next, using the substitution ' = u — x 4+ ro(v — y) we obtain

J

= / 1{u2x,v<y}6_81u_szv¢(u —r+ TQ(U - y)7 O)dudvu(dm, dy)
R

2 2
1Ry
/R

1
= [ R ) (1 e, dy)
R2 82 — 8172

= M(G‘(sh $172) — G(sl, 52)),

S — 8172

2
+

ey /2 1{z§u,y>v}¢(u —T+ 7‘2(1} - y)’ O)M(dl', dy)dUdv
R

e S1T—81T2Y / 1{U<y}6—51U—(52—51T2)U¢(u’ O)dudv,u(dx, dy)
R

2
+

and a similar equation for the last integral in (5).
Finally, we combine all the terms to get

0 = (s1¢1 + s2¢2) F(s1, $2) — c1Fa(s2) — caFi(s1)
+ A (—F(sl, S2) + é(sl, s2)F(s1,82)

F N N Fy5(s
+71(51) (G(s1,81m2) — G(s1,52)) + 72( 2)
So — 8172 S1 — 8271

(é(827’1, 32) — G(Sl, 82))) .
Some simple manipulations using (1) show that this equation coincides with (6) and so we are done.
The following Corollary for two independent driving processes is immediate.

Corollary 1. If X; and X5 are independent processes given in Remark 1 then

(1(51) + a(52))F(s1, 82) = Pa(s2) — 1/12(7'281)F1(Sl) + Y1(s1) — 1/}1(7"182)F2(82)

S9 — T'9281 S1 —T182

for all s1,s9 > 0.



5. The net profit condition

Let p; = EX;(1) € [—00,00) be the average drift of the driving process X;. In the following we assume
that the net profit condition holds

w1+ rope >0, o + iy > 0. (9)
The importance of this condition is explained by the following result.
Proposition 2. The following dichotomy is true for r; € (0,00) with rirg > 1:
e if (9) holds then ¢(00,0) = ¢(0,00) = P(o0,0) =1,
o otherwise ¢p(u,v) =0 for all u,v € R;.
Proof. Equation (2) implies that
0 < S1(t) +reS2(t) = u+rov+ X1 (t) + 12 Xa(t) + (1 — rire) L1 (t) + E1(t) + r2Ea(?).

Thus if © + rov + X1(¢) + r2X2(¢) < 0 then necessarily E;(t) + roE2(t) > 0 implying that 7 < ¢. Note that
if (9) does not hold then at least one of the Cramér-Lundberg processes X (t) +r2X5(t) and r1 X7 (¢) + X2(¢)
is certain to get ruined, which shows that ¢(u,v) = 0.

In the following assume that (9) holds, which guarantees that at least one of y; is positive. Without loss
of generality we assume that p; > 0. By considering the case that the first company does not need any help
we arrive at the bound

B(u,0) > P(Vt > 0: u+ X1 (t) + Xo(t)r2 > 0).

Here X, (t) is the running infimum of the process X5. It is well known in the queueing literature that
a.s. X1(t)/t — p1 and X,(t)/t — min(uz2,0) as ¢ — oco. Now we see from p; + rouz > 0 that a.s. Xi(¢) +
X, (t)ra — oo and hence the infimum of this process is finite. This yields ¢(o0,0) = 1.

For any e > 0 choose u so large that ¢(u,0) > 1 — ¢/2, and consider the first passage time T' = inf{t >
0: X1(t) + X, (t) > u} of the reflected process above level u > 0. In order to guarantee that ¢(0,v) > 1—¢
we need to choose v so large that P(X,(T') + X, (T)r1 < —v) < €/2, i.e. the second company has enough
capital for the first to reach high capital. This is clearly possible, because T' < oo a.s. O

5.1. From survival function to measure

Since ¢(u,v) € [0,1] is continuous and non-decreasing in both w,v > 0 it defines a finite (probability)
measure ¢(du,dv) on R2, where ¢(u,v) = fxe[o ] ny[O . ¢(dz,dy). By Fubini we have for sq,s2 > 0 the
following relation

F(s1,59) ::/ e~ T2 (du, dv)
]R2
2
—suss [ [ Lsugmae o dadyo(du, do)
R2 JR2 -
T IRy
:5132/ e TRV, y)dedy
RZ
2
= 8182]‘7‘(817 52).

Similarly,

Fi(s) ::/ e *"P(du, 0) = sFi(s),

Fy(s) ::/ e P(0,dv) = sFs(s)
0—

8



for s > 0. We will refer to ¢(du,0) and ¢(0,dv) as boundary measures. Note that one can easily rewrite
the results of Proposition 1 and Corollary 1 in terms of measure transforms F', F, F5. Finally, observe that

lim F(s1,s9) = Fy(sy), lim F(s1,s2) = Fi(s1), lim  F(s1,s2) = ¢(0,0)

§1—00 S2—>00 §1—00,52—>00

and hence given F' we can easily find Fy, F» and ¢(0,0).

6. Independent driving processes

Throughout this section we assume that the claim streams are independent, and thus we can focus on
the kernel equation in Corollary 1. For this case we provide an explicit solution for the bivariate Laplace
transform F'(s1, s2) of the survival probability ¢(u,v).

Even though the kernel equation is quite different from the kernel equation of a coupled processor model,
the method of analysis from [7], building upon [11], can still be used. In the following we present a self-
contained (apart from a few technical properties which can be found in [7]) application of this method to
our risk problem.

We assume that X; and X5 are two independent Cramér-Lundberg processes with exponents 1 (s) and
Ya(s), and so ¥(s1, s2) = ¥1(s1) + ¥2(s2), see Remark 1. Tt is well known that ;(s) = ¢ for ¢ > 0 has a
unique positive solution, call it ®;(g). Moreover, ®;(0) = limy o ®;(q) is a solution of ¥);(s) = 0, which is
positive when p; < 0 and ®;(0) = 0 when p; > 0.

It turns out that there exists a unique non-decreasing Lévy process Y; (descending ladder time process [18,
p. 170] corresponding to X;) such that

Y, q
Y (q) :=logBe™ () = 7 ,q >0,
: (@) o ®i(q)
(here and in the sequel, the positive and negative parts of some entity ¢ are denoted by ¢ := max(c,0) and
¢~ = —min(c,0)). In our case Y; is a compound Poisson process (CPP) with no deterministic drift and

jumps distributed as inf{t > 0 : X;(¢) < 0}, see also [7]. Define two two-sided CPP processes X and Xg
and two constants pr, and pgr as follows:

Xp(t) =Yi(rit) — Ya(t), Xr(t) =Y1(t) — Ya(rat), (10)
pr=py + iy, pr =i +rap3,

where we assume that Y; and Y5 are independent. Note that pr,pr > 0 according to the net profit
condition (9). Observe that the corresponding Laplace exponents are given by

—w) = logBe wXe® = p, Y v 11
Yr(—w) := logEe PL =T ) + By ()’ (11)
—w) = log Be " X# (M) = pp — Y v 12
Yr(—w) :=logEe PR~ 3 (w) + 72 (=)’ (12)
where w € iR, w # 0.
Finally, we introduce the Wiener-Hopf factors for Xy, pr:
F (w) = B XeCon) | Rw) >0, WL (w) = B Xelon) | R(w) <0,

where e,, denotes an independent exponential random variable of rate p; and X, X, are the running
supremum and infimum of X, respectively. It is well known that

pbL

Tw)vy (w) = ———————
o (w) ¥y (w) pL — YL(-w)

, w € iR, (13)

see e.g. [18, Thm. 6.16]. In a similar way we define the Wiener-Hopf factors for Xg,pr. We are now ready
to formulate our main result.



Theorem 1. For independent X1 and Xo satisfying (9) and s; > ®;(0) it holds that

P Wa(s2) — Pa(rasy) U (11(s1))
(Wrls1) + W(s2)) Fs1, 52) = 59 — 7251 ¥1(s1) + Ya(r2s1) V(1 (s1))
P P1(s1) = Yi(ris2) Vp(—1a(s2))
51— 7152 Ya(s2) + Y1(r182) W (—tha(s2))’
where
P =T+ g — rarapy Pr = T2z + pi = rirapy

We note that the cases so = 957 and s1 = r1s2 should be understood in the limiting sense. Importantly,
numerical evaluation of the survival probability function ¢(u,v) using Theorem 1 seems feasible. We refer
an interested reader to [13] for a discussion of an efficient and accurate Laplace inversion technique and
computation of the Wiener-Hopf factors.

Proof of Theorem 1. We rewrite (8) using measure transforms from Section 5.1:
(s1—7152)(s2 — 7251) (Y1 (51) + Y2 (52)) F (51, 52)
= (51— r152) (V2 (s2) — Ya(ras1)) Fi(s1)s2
+ (52 —1281)(¢1(s1) — ¢1(7152))F2(52)51

By analytic continuation and continuity on the imaginary axis we see that this equation holds for all s1, so
with R(s1), R(s2) > 0. It is shown in [7] that ®;(s) can be analytically continued to R(s) > 0. Moreover,
in this domain R(®;(s)) > 0 for R(s) > 0, ®;(s) # 0 for s # 0, and the identity 1;(P;(s)) = s is preserved.
Thus we can plug in the above equation s; = ®1(w), s2 = P2(—w) for w € iR to obtain the following:
0 = (®1(w) = r1®a(—w))(—w — o (ra®1 (w))) Fy (1 (w)) Po(—w)
F(@y() — a1 () — 1 (11 Ba(~0))) B () 1 ().

Assume for a moment that w # 0 and multiply both sides by w/(®1(w)®2(—w))? which using (11) leads to

—w — 'l/JQ(T'Q(b](w))

(pL - wL(_w)) <I>1(w) Fl ((I)l(w)) =
(pr — Yr(—w)) " wa)ir(l_tb;)(—w)) Fy(®y(—w)).
Using Wiener-Hopf factorization we arrive at
Uk (w) w ro®1(w)) »
g D @) = (14)
Up (w) —w+ 1 (r®a(—w)) -
PR L(w) <I>12(—1w§ Fy(®o(—w)).

Consider (14) and note that the lhs is analytic in $(w) > 0, the rhs is analytic in (w) < 0, and both
are continuous and coincide on the imaginary axis; for w = 0 this is checked by taking the limit in the
respective half plane, see also (15) below. Hence this equation defines an entire function. Let us show
that it is bounded and hence is a constant, call it C, by Liouville’s theorem. According to [7] the ratios
of W-H factors are bounded in their respective half planes. The transforms F; of boundary measures are
bounded by 1. Finally we consider (w + t2(ro®1(w)))/®1(w) for R(w) > 0; the corresponding term on
the rhs can be analyzed in the same way. Boundedness follows from the following simple observations:
| D1 (w)| = 00, Yo (w)/w — o, V1 (P1(w)) /Py (w) = w/P1(w) — ¢1 as |w| = co.
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Both sides of (14) are equal to some constant C, which can be identified by taking the limit w — 0.
Suppose g1 > 0 then ®1(0) = 0 and hence we have

et Vo (ra®1(w))
|w]{0,R(w)>0 <I>1(w)

= 1(0) + 72105(0) = p1 + rapo. (15)

This results in

C = pr(p1 + r2p2)9(00,0),
and for po > 0 we similarly have

C = pr(p2 + r111)0(0, 00).

Recall that under the net profit condition (9), we have ¢(c0,0) = ¢(0,00) = 1 and at least one of pq, p2
should be positive. Now it is not hard to check that C/py, = p;,C/pr = P’

Finally, pick s; > ®;(0) which implies ®;(¢;(s;)) = s;. By considering the left part of (14) for w =
¥1(s1) > 0 and its right part for w = —2(s2) < 0 we obtain

Fl(sl) _ c q’z(wl(sl))
pr(¥1(s1) + Pa(rasi)) UE (v (s1))’
FQ(SQ) — C \IJ]E(_’@[JQ(S?))
Pr(V2(s2) + Y1(r152)) Uy (—1ha(s2))
Combining these calculations with Corollary 1 we get the result. O

Corollary 2. For independent X1 and Xy satisfying (9) it holds that

Ve W) | p  Wi(-o)
c1+1raco Uh(oo) 1 +71acp Uy (—00)

Proof. First observe that ¥} (c0) = P(X(ep,) = 0) and similar observations hold true for the other W-H
factors. From Theorem 1 we see that

o )
Fls1,50) = 89 — 1281 (1/)1(81) + b2 (ras1) wl(sl) +¢2(s2) ¥1(s1))

P51 ( 59 B 52 ) 2(s2))
s1— 1152 \V2(s2) +1(rise)  Yi(s1) +va(s2) ) Wi (—tha(s2))

To get the first statement, let so — co and then s; — oco. The second is obtained by reversing the order of
limit operations. U

p}gsz 51 51 ) 2(1/)1(51
Uk (1 (
r(=

6.1. Example: insurer and reinsurer

Let us provide a check for a simple system, which admits a direct analysis. Suppose that X5(t) = cot,
i.e. the second company does not pay any claims of its own, but only provides a cover for the first company.
We also assume that the net profit condition (9) holds.

Note that our system survives if and only if the one dimensional Cramér-Lundberg process Z(t) :=
X1(t) + (p2/r1)t survives when started at u + v/ry. Hence, with ¢z(x) the survival probability for the Z

11



process when started at x,

F(sl,SQ):/ e T2 o (u 4 v/ )dudv
R

2
+

/ eisluﬁﬁZ(u) / 1{u>v/7“1}ei(szisl/rl)vdvdu
0 0

— [ e e e

So — s1/T1

_ it pe/r ( 11 )
so—s1/r1 \Yz(s1)  Yz(ris2)
_ 2t ( 1 7 r1 ) (16)
s1— 1182 \W1(r182) + pasa  Tihi(sy) + pes1 )’
where 1z is the Laplace exponent of Z.

Let us check this result against Theorem 1. Note that ps = co > 0, 2(s2) = p2sa, P2(q) = ¢/pe and so
¥3 (g) = 0 implying that Y3 is a zero process. Thus ¥ (w) = ¥x(w) = 1,

\I/_'_ w) = Ee—UJY1(”r’1€pL) = Eew},(w)rlei”L = PL = Pr
1) pr— ) (w)  p2 +riw/®(w)

and similarly WF(w) = pr/(rap2 +w/®1(w)). Hence for s1, sy large enough we have

T (¥1(s1)) _ PL 2251 +Y1(s1)
\I’Jﬁwl(sl)) PR H2s1 + 11 (s1)

According to Theorem 1 we can write

PR P Tumps Ya(st) = va(risy)

s1) + p1os2)F(s1, 89) = ———1 ,
Wa(s2) F pasa) F(s1, 52) st +rii(s1) pr - S1—rise pese + Pr1(ri182)

which indeed coincides with (16), because plypr/pr = T1p11 + po. The latter is established by checking the
two cases pp > 0 and p1 < 0 separately.
6.2. Example: riro =1

Assume that r179 = 1 which in particular holds when there are no transaction costs, i.e. r;1 = ro = 1.
The net profit condition reduces to a single inequality p1 + rous > 0. From (2) it follows that

Sl(t) + 7"252(t) =U—+ 12U + Xl(t) + ’I"QXQ(t) + El(t) + 7“2E2(t).
Observe that the ruin time 7 is the first jump of E(¢)+7r2FE2(t). Hence we have u+rov+ X, (7)+r2Xa(7) < 0

and u+rqov+Xi (t) +12X5(t) > 0 for all t < 7. Therefore, 7 is the ruin time of the classical Cramér-Lundberg
process Z(t) = X1(t) + roX2(¢) started in u + r9v = w + v/ry. Similar to (16) we get

F(51,32):/ e~ T2 o (uw + v/ry)dudv
Ry

1 e/ ( L 1 >

sy —s1/rn \Wz(s1)  Yz(rise)

_ 1t rape < 1 B 1 > (17)
So— 812 \Y1(s1) + a(ras1)  Y1(ris2) +¢a(s2) )
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Let us now check this result against Theorem 1. Firstly, note that pr = ropr, and Xg(t) = X (rat), which
implies that the Wiener-Hopf factors for both processes are the same: U} (w) = Uk (w) and U (w) = U5 (w).
Hence we have

(P1(s1) + P2(s2)) F(s1, 52)

__ Pr Wa(s2) —Pa(ras1) n P P1(s1) — ¥i(ris2)
53 — 1281 P1(81) + a(rasy) 81— risa Ya(s2) +Yi(ris2)
1
(

PR Y1(s1) + ¥a(s2) PL Y1(s1) + Pa(s2) P DL

Sg —rasy 1(s1) + Pa(rasy) st —ris2 Ya(s2) +Yi(ris2)  s2 —7Tas1  s1—TiS2

Note that p, = rop} = p1 + rape and so we indeed obtain (17).

7. Making some capital transfers impossible

One can modify our risk model so that only the second company is allowed to help the first one, but
not the opposite way. In other words, we regard the second company as a reinsurer with its own stream of
claims. Note that this new model is governed by the equations

Sl(t) =u-+ Xl(t) + Ll(t) + Fr (t),
Sg(t) =0+ Xg(t) - TlLl(t) + Eg(t)
In the following we specialize our results to this case by taking limits as 7o — oco. Note that the survival

probability we thus obtain corresponds to survival of both insurer and reinsurer.
Firstly, the kernel equation becomes

P(s1,52) — Y(r152,52)

S1 —T182

(s, s2)F(s1,82) = caFi(s1) + F>(s2),

which is immediate from Proposition 1 and (1). Secondly, the net profit condition now reads
w2 >0, p2 +ripr >0, (18)

which is seen by repeating the steps of the proof of Proposition 2. Assuming independence of claim streams,
we obtain the following corollary of Theorem 1.

Corollary 3. Assume that ro = 0o and X1, Xs are independent and satisfy (18). Then for s; > ®;(0) it
holds that

+ 51
(Y1(s1) + ¥2(52))F(s1,82) = (p2 — rlul—)w

s Yi(s1) —¥i(ris2) 1
51 — 152 Pa(s2) + P1(r152) 1/’2(82)\1’2(*1/12(82)).

+ pa(p2 + rip)

Proof. Let us examine the limiting quantities (as ro — 00) from the statement of Theorem 1. Firstly, \I/f
stay the same, but

_H2®2(-w)

Uh(w) — 1, Ve (w) — "

To see this notice that pr — 0o and so X g(ep,) < Yi(ep,) — 0 a.s., which yields the first limit. The second
is then obtained from (13) (written for ‘R’) and (12). Finally, observe that p} = rip1+pe, Pr/re — po—r1p47
and take the limit in the equation of Theorem 1. O

13



Finally, let us assume that neither company can help the other, i.e. 11 = ro = oco. Thus we retrieve the
standard bivariate ‘or’ problem, where the ruin means ruin in at least one line, see [8, Eq. (1.5)]. The kernel
equation becomes

P(s1,52)F(s1,52) = caF1(s1) + c1F2(s2).

Finally, we assume that py,pue > 0 and that X, X are independent, and take the limit as r; — oo in
Corollary 3. Noticing that

U (w) = 7M12(w)7 U7 (w) — 1.

we obtain

() + o)) P ) = L2 St

This yields the correct product formula

M1 M2
P1(s1)) ¥2(s2))

F(s1,82) =
providing yet another check.

8. Open problems

Various interesting directions for future work exist with respect to the present model. Firstly, one may
try to extend the model to allow for more general driving processes, that is for Lévy processes with negative
jumps. This seems to be a hard problem contrary to many other settings, where such generalizations require
little additional effort. In fact, there are essential difficulties in each step leading to Theorem 1:

e Definition of the model. In general one can not use the recursive definition of Section 2.1. The definition
in Section 2.2 (or a variant of it) seems to be a natural one. Nevertheless one has to establish that
there is a unique solution to this modified Skorokhod problem.

o The kernel equation. We believe that Proposition 1 holds for a general bivariate Lévy process (X1, X5)
with negative jumps. One may try to employ the generator of the underlying Markov process instead
of an o(h) reasoning. There are various problems on this way including the required smoothness of
the survival function. Alternatively, one may try to use a martingale approach, but the choice of an
appropriate martingale is far from trivial.

o Identification of boundary measures. One may follow the ideas from the proof of Theorem 1. In the
Lévy case, a highly problematic step is to bound both sides of (14) by a constant.

Secondly, it is important to understand if the kernel equation in Proposition 1 characterizes the survival
probability in some sense. In the case of a reflected Brownian motion in a quadrant the basic adjoint
relation characterizes the stationary distribution together with the boundary measures, see [22, Thm. 3.4].
This property allowed Dai and Harrison [12] to construct an algorithm computing the stationary distribution
based on the basic adjoint relation.

Finally, one may try to interpret Theorem 1 (and the quite similar Theorem 1 in [7]) to provide a
probabilistic approach. Moreover, one may consider some alternative risk measures of the model in (2) such
as discounted external injections of capital. One may also try to extend the model to a setting with multiple
companies. It seems that a probabilistic approach could be very helpful in this respect.
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Appendix

Proof of (5). Using monotonicity of ¢ in both arguments we see that the rhs of (5) provides a lower bound
for ¢(u,v). The upper bound follows in a similar way.

d(u,v) <o(h) 4+ (1 = Ah)d(u + c1h,v + cah)

+Ah/ / o(u+ crh — 2,0+ cah — y)u(de, dy)

o Jo

—I—)\h// d(u+c1th — x4+ ro(v —y + cah), cah)u(dz, dy)
0 v

(oo} v
"‘)‘h/ / d(cih, v+ coh —y +ri(u — x + crh))p(dz, dy).
u 0

According to (4) the difference of the bounds is of order o(h), which completes the proof. O
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