
EURANDOM PREPRINT SERIES

2015-005

March, 2015

A coupled processor model with simultaneous arrivals
and ordered service requirements

S. Badila, J. Resing
ISSN 1389-2355

1



A COUPLED PROCESSOR MODEL WITH SIMULTANEOUS ARRIVALS

AND ORDERED SERVICE REQUIREMENTS

E.S. Badila1 and J.A.C. Resing2

Abstract. We study a coupled processor model with simultaneous arrivals. Under the
assumption of ordered input, the Laplace-Stieltjes transform of the joint stationary amount
of work in the system can be explicitly calculated by relating it to the amount of work in
a parallel queueing system without coupling. This relation is first exploited for the system
with two coupled queues. The method is then extended to higher dimensions.

Keywords: Coupled processors; multivariate workload

2010 Mathematics Subject Classification. Primary 60K25.

Introduction

In this paper we study a coupled processor model which receives service requirements
at both queues simultaneously. We assume that the service requirement at, say, station 1
is always greater than the service requirement from station 2. Moreover, when server 2 is
idle, it switches to process work from the first queue, if there is any. In [1], the model with
simultaneous arrivals and ordered service times, but without coupled processors was analysed.
This model has connections with tandem and priority queues, but also with a reinsurance
problem with proportional reinsurance (see [1], Section 4.2). Here, we extend the model to
the coupled processors case.

A pioneering paper on coupled processors is Fayolle and Iasnogorodski [4], who consider two
parallel M/M/1 queues with independent Poisson arrival processes, servers speed ri, i = 1, 2
and such that as soon as queue i empties, the other queue works at speed rj + r∗j 6= rj ,
i 6= j. This system is solved for the steady state number of customers in both queues by
reducing the problem to a boundary value problem of a Riemann-Hilbert type. In Cohen and
Boxma [2] this model is generalized by dropping the assumption that the service requirements
are exponentially distributed. It is shown that the problem of determining the workload
distribution reduces again to a Riemann-Hilbert boundary value problem. In Cohen [3], the
analysis is further extended for the case when with some probability arriving customers may
also request service simultaneously from both queues. Moreover, the service requirement of
a customer is allowed to depend on whether he finds one of the queues to be empty, the so-
called semi-homogeneous workload process. Both in [2] and [3] the focus is on the transient
problem, that is the study of the time dependent amount of work/queue lengths.

The steady-state version of the functional equation for the workload vector (V (1), V (2))
from [3, p.186, (1.10)] reads:

1Supported by Project 613.001.017 of the Netherlands Organisation for Scientific Research (NWO)
2Supported by the IAP BESTCOM Project funded by the Belgian government
Eurandom, Eindhoven University of Technology, The Netherlands.
E-mail addresses: e.s.badila@tue.nl, resing@win.tue.nl.

1



2 A COUPLED PROCESSOR MODEL

K(s1, s2)ψ(s1, s2) = (r2s2 − r∗1s1)ψ1(s1) + (r1s1 − r∗2s2)ψ2(s2) + (r∗1s1 + r∗2s2)ψ0, (1)

with ψ(s1, s2) the Laplace-Stieltjes transform (LST) of the stationary amount of work in the
system and with the unknown boundary functions

ψi(si) = E[e−siV
(i)

(V (j) = 0)], i 6= j ∈ {1, 2}, ψ0 = P(V (1) = V (2) = 0).

The function K(s1, s2) is a so-called Poisson kernel. For φ(s1, s2) the joint transform of a
generic service time vector,

K(s1, s2) = r1s1 + r2s2 − λ(1− φ(s1, s2)).

Actually, in [3] the functional equation of the time dependent workload is given. The
stationary version above is obtained by multiplying the functional equation [3, p.186, (1.10)]
with the discount factor ρ of the Laplace transform over time, and then taking ρ→ 0, while
keeping ρ > 0.

The analysis in the above mentioned works relies heavily on the theory of complex functions
which makes it highly non-trivial, and in addition, it is difficult to recognize the probabilistic
nature of the initial problem.

We will show in Section 2 that under an additional ordering assumption between the
claims, it is possible to relate the coupled processor model to a parallel queueing system
without coupling. Then the transform of the amount of work in the coupled system follows
from that obtained in the decoupled parallel system, by using a result from [1]. This gives
an explicit representation for the steady-state amount of work in the coupled system (Section
3), which can be extended to multiple coupled queues by making suitable assumptions on the
coupling rates (Section 4).

1. Problem description

We consider two parallel M/G/1 queues, with simultaneous arrivals and correlated service
requirements. The arrival process is a Poisson process with rate λ. We will denote by
An the time elapsed between arrival epochs n and n + 1. The service requirements at the
two queues of successive customers are independent, identically distributed random vectors

(B
(1)
n , B

(2)
n ), n ≥ 1. In the sequel we denote with (B(1), B(2)) a random vector with the same

distribution as the vectors (B
(1)
n , B

(2)
n ), n ≥ 1. The joint Laplace-Stieltjes transform of this

vector is

φ(s1, s2) := E(e−s1B(1)−s2B(2)
).

In addition, let c1 and c2 be the servers’ processing rates. An essential assumption in the
model is that, after normalizing the system with the server rates, with probability one, each
customer has a bigger service requirement in queue 1 than in queue 2, i.e.,

P(B(1)/c1 ≥ B(2)/c2) = 1.

Moreover the processors are coupled in the sense that as soon as server 2 becomes idle, it
switches its capacity to serving work from buffer 1. We will assume that it works at rate c12
when processing from buffer 1. We are interested in the joint stationary distribution of the
amount of work in the two queues. Let us denote with V (1) the stationary amount of work
in queue 1 and with V (2) the stationary amount of work in queue 2.



A COUPLED PROCESSOR MODEL 3

As a convention, we will denote with Vt the vector representing the amount of work in the
system at time t and with Vn the amount of work in the system just before the nth job arrives.
Formally, Vn is the left limit Vt(n)−, where t(n) is the arrival instant of the nth customer.

Our aim is to study such a queueing system under the above assumption of ordered service
times. In particular we want to find an expression for the Laplace-Stieltjes transform of the
joint stationary amount of work.

2. Recursive equations for the amount of work in the coupled system

In this section we will derive stochastic recursive equations for the joint amount of work in
the system.

Let V
(1)
n be the amount of work in queue 1 as seen by customer n upon arrival, and V

(2)
n

the amount of work in queue 2 at the same time instant. We assume that at time 0 the first
customer arrives in an empty system. Then we have the following recursion for the random

variables (V
(1)
n , V

(2)
n ), n ≥ 1 :

(V
(1)
1 ,V

(2)
1 ) = (0, 0),

V
(1)
n+1 =

[
(V (1)

n +B(1)
n − c1An) ∨ 0 +

c12
c2

(V (2)
n +B(2)

n − c2An) ∧ 0

]
∨ 0, (2)

V
(2)
n+1 = (V (2)

n +B(2)
n − c2An) ∨ 0.

We used the notation x ∧ 0 = min{x, 0} and x ∨ 0 = max{x, 0}. Remark that

− 1

c2
[(V (2)

n +B(2)
n − c2An) ∧ 0]

is the amount of time that server 2 has been idle between the arrival epochs n and n + 1.

Then the second term in the recursion of V
(1)
n+1 is minus the amount of work server 2 processes

at rate c12 from buffer 1 during his idle period (if it has an idle period).
This extra term appears because the servers are coupled. It is useful to compare this

with the recursion for a system without coupling between the servers. Consider two parallel
queues simultaneously receiving service requirement distributed as the vector (B̃(1), B̃(2)).
The servers are not coupled anymore and server 1 always works at speed c̃1, while server 2

always works at speed c̃2. Let (Ṽ
(1)
n , Ṽ

(2)
n ) be the amount of work in such a system, then the

following recursion holds

(Ṽ
(1)
1 , Ṽ

(2)
1 ) = (0, 0),

Ṽ
(1)
n+1 = (Ṽ (1)

n + B̃(1)
n − c̃1Ãn) ∨ 0, (3)

Ṽ
(2)
n+1 = (Ṽ (2)

n + B̃(2)
n − c̃2Ãn) ∨ 0,

with Ãn the inter-arrival time between customer n and n + 1. This is Lindley’s recursion
because both queues evolve in isolation as one-dimensional systems. Notice that, marginally,
queue 2 evolves as if there was no coupling in (2).

We are ready to give the main result of this section which connects the amount of work in
the coupled system to a workload process in a system without coupling between the servers.
For further usage we will denote by system (C) the coupled system and by system (D), the
system without coupling.



4 A COUPLED PROCESSOR MODEL

Proposition 1. Let (V
(1)
n , V

(2)
n )n≥1 be the workload process at arrival epochs in system (C).

Then the process (V
(1)
n +

c12
c2
V

(2)
n , V

(2)
n )n≥1 is the workload process in a system of type (D)

with generic input (B
(1)
n +

c12
c2
B

(2)
n , B

(2)
n ), where the servers have speed (c1 + c12, c2) and do not

interact with each other.

We will show that (V
(1)
n +

c12
c2
V

(2)
n , V

(2)
n ) has the same distribution as (Ṽ

(1)
n , Ṽ

(2)
n ), the solution

to the recursive system (3), by using a probabilistic coupling between systems (C) and (D),
that is we will let the two systems evolve on the same probability space given by the sequences

(An)n≥1 and (B
(1)
n , B

(2)
n )n≥1. The choice for the input variables in system (D) is the following:

Ãn := An, (B̃(1)
n , B̃(2)

n ) := (B(1)
n +

c12
c2
B(2)

n , B(2)
n ),

c̃1 := c1 + c12, c̃2 := c2. (4)

To be more precise, start both systems empty at time t = 0. At the nth arrival epoch tn,

system (C) receives input (B
(1)
n , B

(2)
n ) whereas system (D) receives input (B

(1)
n +

c12
c2
B

(2)
n , B

(2)
n ).

Let us focus on system (D). The key idea is to partition the amount of work at queue 1 in

system (D) into V
(1)
t and

c12
c2
V

(2)
t , then during the busy periods of server 2, distribute the total

capacity per time unit c1 + c12 of server 1 in the following way: c1 is dedicated to processing

V
(1)
t while c12 is used to process the remaining

c12
c2
V

(2)
t . In this way, during the busy periods

of server 2, the amount of work in queue one of system (C) and the work in the c1-dedicated
component of queue one in system (D) evolve in the same way.

As soon as queue 2 becomes empty (which now happens at the same moment in system (C)
as in system (D) because the second queue evolves unchanged between the two systems), in

both systems (C) and (D), server 1 will process work V
(1)
t at speed c1 + c12. Another remark

is that due to the ordering between the service requirements, queue two will always become
idle before queue 1 in any of the systems (C) or (D) (see also Remark 1 below).

We give below the formal proof of Proposition 1. The idea of the proof is to verify that

V
(1)
n +

c12
c2
V

(2)
n satisfies (3) with the input variables from (4).

Proof of Proposition 1. First remark that we can drop the maximum w.r.t. 0 in the first term
of recursion (2):

V
(1)
n+1 =

[
V (1)
n +B(1)

n − c1An +
c12
c2

(V (2)
n +B(2)

n − c2An) ∧ 0

]
∨ 0, (5)

the reason being that the other term is either 0 or negative as pointed out below (2) so it can
only decrease the term between the square brackets in the recursion of the coupled queue 1.

Adding the term
c12
c2
V

(2)
n+1 =

c12
c2

(V
(2)
n +B

(2)
n − c2An) ∨ 0 to both sides of (5) gives

V
(1)
n+1 +

c12
c2
V

(2)
n+1 =

[
V (1)
n +B(1)

n − c1An +
c12
c2

(V (2)
n +B(2)

n − c2An)

]
∨ c

1
2

c2
(V (2)

n +B(2)
n − c2An) ∨ 0.



A COUPLED PROCESSOR MODEL 5

We used the fact that the operator ∨ is distributive w.r.t. addition and the obvious decom-
position x ∧ 0 + x ∨ 0 = x.

There are two possible cases:

In the event that V
(1)
n + B

(1)
n − c1An > 0, the RHS above is of the form a ∨ b ∨ 0, with

a > b, hence b can be removed. In the end we can rewrite the above as

V
(1)
n+1 +

c12
c2
V

(2)
n+1 =

(
V (1)
n +

c12
c2
V (2)
n +B(1)

n +
c12
c2
B(2)

n − (c1 + c12)An

)
∨ 0.

This is the desired Lindley recursion for V
(1)
n +

c12
c2
V

(2)
n .

In the event that V
(1)
n + B

(1)
n − c1An < 0, queue 1 would empty at epoch n + 1 without

any additional help, so that V
(1)
n+1 = 0. Then by the ordering assumption, V

(2)
n+1 = 0 as well,

and the above identity is trivially satisfied. This proof shows that the ordering between the
normalized claims is an essential assumption. �

Remark 1. Notice that the normalized input in the related system (D) remains ordered:

B
(1)
n +

c12
c2
B

(2)
n

c1 + c12
=
c1

B
(1)
n
c1

+ c12
B

(2)
n
c2

c1 + c12
≥ B

(2)
n

c2
,

because by assumption, B
(1)
n /c1 ≥ B(2)

n /c2.

3. The transform of the equilibrium amount of work at arrival epochs

In [1] has been shown how to calculate the Laplace-Stieltjes transform of the joint, sta-
tionary amount of work in a system of type (D) under the same ordering assumption ([1],
Formula (7)). Thus, by inverting the correspondence from Proposition 1, and using Remark

1 we can recover without any additional effort the joint transform of (V (1), V (2)), the steady-
state amounts of work in the coupled system. With the extra remark that, because of Poisson
arrivals, we have the PASTA property, which means that in equilibrium, the amount of work
is the same as the workload seen by an arriving customer.

The inverse relation from Proposition 1 is

(V (1), V (2)) = (Ṽ (1) − c12
c2
Ṽ (2), Ṽ (2)). (6)

If we denote by

ψ(C)(s1, s2) := E(e−s1V (1)−s2V (2)
), ψ(D)(s1, s2) := E(e−s1Ṽ (1)−s2Ṽ (2)

),

the LST of the equilibrium amount of work in system (C) and respectively system (D), then
via (6), the relation between the LSTs becomes:

ψ(C)(s1, s2) = ψ(D)(s1, s2 − s1c12/c2). (7)

Remark 2. Equation (1) can be adapted to describe the stationary workload (Ṽ (1), Ṽ (2)) in
the decoupled system by setting the coupling rates r∗ equal to 0. The kernel K(s1, s2) has to
be modified as well to



6 A COUPLED PROCESSOR MODEL

K(D)(s1, s2) = (c1 + c12)s1 + c2s2 − λ[1− φ(s1, s2 + s1c
1
2/c2)]

because server 1 receives the extra input c12/c2B
(2) and always works at speed c1 + c12. Then

(1) becomes

K(D)(s1, s2)ψ(D)(s1, s2) = c2s2ψ(D),1(s1) + (c1 + c12)s1ψ(D),0, (8)

since by the ordering relation from Remark 1, ψ(D),2(s2) is constant and equal to ψ(D),0:

ψ(D),2(s2) = E[e−s2Ṽ (2)
(Ṽ (1) = 0)] = P(Ṽ (1) = Ṽ (2) = 0) =: ψ(D),0.

On the other hand, the kernel for the coupled system (C) is

K(C)(s1, s2) = c1s1 + c2s2 − λ[1− φ(s1, s2)].

The equation that has to be satisfied by ψ(C)(s1, s2) now reads (with ψ(C),2(s2) ≡ ψ(C),0, again
because of the ordering)

K(C)(s1, s2)ψ(C)(s1, s2) = (c2s2 − c12s1)ψ(C),1(s1) + (c1 + c12)s1ψ(C),0 (9)

with the key remark that the two boundary functions ψ(D),1(s1) and ψ(C),1(s1) are identical
(Proposition 1):

E[e−s1Ṽ (1)
(Ṽ (2) = 0)] ≡ E[e−s1V (1)

(V (2) = 0)]

and the same holds for ψ(C),0 and ψ(D),0.

Now it is easy to check that if ψ(D)(s1, s2) is the solution of (8), then ψ(D)(s1, s2− s1c12/c2)
as in (7) is the solution of (9), and conversely, if ψ(C)(s1, s2) is the solution of (9) then

ψ(C)(s1, s2 + c12/c2s1) is the solution of (8). In particular, it follows from [1] that the amount
of work in system (C) is ergodic under the condition

lim
s1→0

s1>0

∂

∂s1
K(D)(s1, 0) > 0⇔ E(B(1)) + c12/c2E(B(2)) < (c1 + c12)E(A). (10)

This simply means that the first queue in system (D) is capable to handle the amount of input
per time unit while working at speed (c1 + c12) and this is sufficient to ensure that the entire

system is stable, because of the ordering assumption. It may happen that E(B(1)) > c1E(A),
i.e. that queue 1 of system (C) would be supercritical if it were to work only on its own.

Inequality (10) together with Remark 1, implies E(B(2)) < c2E(A), thus queue 2 is ergodic
and during its (non-degenerate) idle periods it is capable to maintain queue 1 stable because
of the coupling.

Using the relation between ψ(C)(s1, s2) and ψ(D)(s1, s2) we obtain

Theorem 1. Under the stability condition (10), with ρ̃1 := λE(B̃(1))/(c12 + c1), the joint
transform of the stationary amount of work in a system of type (C) is

ψ(C)(s1, s2) = (1− ρ̃1)
(c1 + c12)s1

c1s1 + c2s2 − λ[1− φ(s1, s2)]
· c2S2(s1)− c2s2 + s1c

1
2

c2S2(s1)
. (11)

For each fixed s1 with Re s1 > 0, S2(s1) is the zero of the equation

K(C)(s1, S2(s1) + s1c
1
2/c2) = 0,



A COUPLED PROCESSOR MODEL 7

that is unique in the positive half of the complex plane.

Proof. The derivation for the decoupled system is known (c.f. [1], Formula (7)). It is easy to
adapt the analysis in Section 3 of [1] to give the transform of the workload when the servers’
speeds are not normalized. The joint transform of the stationary amount of work in the
decoupled system becomes

ψ(D)(s1, s2) = (1− ρ̃1)
c̃1s1

c̃1s1 + c̃2s2 − λ[1− φ(D)(s1, s2)]
· c̃2S2(s1)− c̃2s2

c̃2S2(s1)
, (12)

with φ(D)(s1, s2) the joint LST of the generic input

φ(D)(s1, s2) = E(e−s1B̃(1)−s2B̃(2)
).

The stability condition for this system is ρ̃1 < 1, and for each fixed s1 with Re s1 > 0, S2(s1)
is the zero of the equation

K(D)(s1, s2) = c̃1s1 + c̃2s2 − λ[1− φ(D)(s1, s2)] = 0, (13)

that is unique in the positive half of the complex plane.
We have the analogous relation to (7):

φ(s1, s2) = φ(D)(s1, s2 − s1c12/c2). (14)

Combining (7), (12) and (14) we obtain

ψ(C)(s1, s2) = (1− ρ̃1)
(c1 + c12)s1

c1s1 + c2s2 − λ[1− φ(s1, s2)]
· c2S2(s1)− c2s2 + s1c

1
2

c2S2(s1)
.

The kernel identity K(D)(s1, s2) = K(C)(s1, s2+s1c
1
2/c2) (see Remark 2) together with (13)

gives that S2(s1) is then the unique zero with positive real part of

K(C)(s1, s2 + s1c
1
2/c2) = 0.

This yields the desired result.

4. The k-dimensional model

In this section we consider multiple coupled servers in parallel which receive simultaneous
requirements. It is shown that also in this case, the coupled system can be reduced to a
decoupled system, upon modifying the input. However for three servers we have to specify
in addition how to divide the extra service capacity of an idle server over the other queues.
This was trivial for two servers since one can only assist the other during its idle periods.
With such specifications in place, the formal idea of the proof for the k dimensional system
is analogous to the case k = 3, and it relies on the result for two coupled queues. Thus, we
can work with k = 3, to keep formulae still accessible, without losing generality.

We extend the ordering assumption between the service requirements to

P(B(1)/c1 ≥ B(2)/c2 ≥ B(3)/c3) = 1.

In addition, while server 3 is idle and server 2 is busy, we denote by c13 and c23 the processing
rate of server 3 into buffers 1 and 2 respectively. If also server 2 becomes idle, we denote by
c12 the processing rate of server 2 into buffer 1 during its idle time, and moreover, server 3
contributes an extra rate ĉ13 into buffer 1, so that the total contribution from server 3 becomes
c13 + ĉ13, while server 2 is idle.



8 A COUPLED PROCESSOR MODEL

Moreover we assume that c13/c1 ≤ c23/c2 in order to ensure that the amount of work in queue
1 remains above the amount of work in queue 2, at all times. Because of this assumption, the
amount of work in the system is again ordered:

P(V (1)/c1 ≥ V (2)/c2 ≥ V (3)/c3) = 1.

The Lindley type recursion for queue 2 is similar to (5). In the sequel, we will derive the
recursion for queue 1. Because of the coupling, the idle period of queue 2 plays a role in the
dynamics of queue 1 so for this reason (and to keep notations short) we introduce

J (2)
n := (c23 + c2)

−1[V
(2)
n−1 +B

(2)
n−1 − c2An−1 + c23/c3 (V

(3)
n−1 +B

(3)
n−1 − c3An−1) ∧ 0],

J (3)
n := c−1

3 (V
(3)
n−1 +B

(3)
n−1 − c3An−1).

−(J
(2)
n ∧ 0) is the idle period in queue 2 right before epoch n, and it follows from (2) that

(c23 + c2)J
(2)
n ∨ 0 = V (2)

n . (15)

Also −(J
(3)
n ∧ 0) is the idle period in queue 3. The fact that −(J

(2)
n ∧ 0) is an idle period is

again a consequence of the ordering, because if server 2 is idle then server 3 must also be idle
and hence coupled to queue 2. We can combine the terms above into the identity

J (2)
n = (c23 + c2)

−1(V
(2)
n−1 +B

(2)
n−1 − c2An−1 + c23J

(3)
n ∧ 0). (16)

Now we can write the stochastic recursion for the amount of work in queue 1 at arrival
epoch n+ 1:

V
(1)
n+1 = [V (1)

n +B(1)
n − c1An + (c12 + ĉ13)J

(2)
n+1 ∧ 0 + c13J

(3)
n+1 ∧ 0] ∨ 0. (17)

In addition, −[(c12 + ĉ13)J
(2)
n+1 ∧ 0] is the extra amount of work that server 2 and server 3 are

capable of processing while working coupled to server 1 during the idle period of server 2.

Similarly, −(c13J
(3)
n+1∧0) is the amount of work that can be processed by server 3 while coupled

directly to server 1.

Proposition 2. Let (V
(1)
n , V

(2)
n , V

(3)
n ) be the amount of work at epoch n in the coupled system

(C), then the following process defined for n ≥ 1

Ṽ (1)
n := V (1)

n + c∗2/c2V
(2)
n + c∗3/c3V

(3)
n , (18)

Ṽ (2)
n := V (2)

n + c23/c3V
(3)
n ,

Ṽ (3)
n := V (3)

n ,

with

c∗2 :=
c12 + ĉ13
c2 + c23

c2, c∗3 :=
c12 + ĉ13
c2 + c23

c23 + c13,

represents the amount of work at epoch n in a queueing system without coupling between
the servers. The service rates are c̃1 := c1 + c∗2 + c∗3 = c1 + c12 + c13 + ĉ13 for server 1,
c̃2 := c2 + c23 for server 2 and c̃3 := c3 for server 3. The input in the three queues at epoch n

is B̃
(1)
n := B

(1)
n +c∗2/c2B

(2)
n +c∗3/c3B

(3)
n , B̃

(2)
n := B

(2)
n +c23/c3B

(3)
n and B̃

(3)
n := B

(3)
n respectively.



A COUPLED PROCESSOR MODEL 9

By a similar coupling argument as in the case k = 2, assume that all queues start empty
and that the arrival epochs are the same as in the coupled system. Server 1 processes at rate
c̃1 = c1 + c12 + c13 + ĉ13, server 2 at rate c̃2 = c2 + c23, and server 3 at the same rate c3. Queue

3 evolves again unchanged. Using a bit of algebra, Ṽ
(1)
n from (18) can be rewritten as

Ṽ (1)
n = V (1)

n +
c12 + ĉ13
c2 + c23

(V (2)
n − c2

V
(3)
n

c3
) + (c12 + c13 + ĉ13)

V
(3)
n

c3
.

Focus on the ends of the successive busy periods in the three queues. The first one to empty
is queue 3. Up to the moment the third queue is empty, partition the work in queue 2 as
in Section 3. Actually queue 2 together with queue 3 make up precisely the two-dimensional
system studied in Section 3.

The service rate in queue 1 can be partitioned in the following way: c1 is dedicated to

processing type V
(1)
t work, and (c12 + c13 + ĉ13) is dedicated to processing the work (c12 + c13 +

ĉ13)V
(3)
t /c3. Remark that V

(2)
t −c2V (3)

t /c3 is a.s. non-negative due to ordering. The remainder

of Ṽ
(1)
n is waiting in the buffer up to the moment queue 3 empties. At this point in time,

work V
(2)
t − c2V (3)

t /c3 is still left in buffer 2, and it is processed at rate c2 + c23, whereas in
buffer 1 the amount left equals

V
(1)
t − c1

V
(3)
t

c3
+
c12 + ĉ13
c2 + c23

(V
(2)
t − c2

V
(3)
t

c3
).

From this point on, partition server 1 capacity in the following way: dedicate rate (c1 + c13)

to process work V
(1)
t − c1V (3)

t /c3, and rate (c12 + ĉ13) to process work
c12+ĉ13
c2+c23

(V
(2)
t − c2V (3)

t /c3).

In this way, at the moment queue 2 empties, there is still work left in queue 1, that is

V
(1)
t − c1

V
(3)
t

c3
− c1 + c13
c2 + c23

(V
(2)
t − c2

V
(3)
t

c3
),

and this is processed at speed c1 + c12 + ĉ13 + c13 as long as there is no new arrival.

Proof of Proposition 2. The idea is to add successively the terms (c12+c23)J
(2)
n+1∨0 and c∗3J

(3)
n+1∨

0 = c∗3/c3V
(3)
n+1 to the recursion in (17) in order to compensate for the minima with 0 in the

first bracket.
First add the term (c12 + ĉ13)J

(2)
n+1 ∨ 0 = c∗2/c2V

(2)
n+1 to both sides of (17). Making use of

(15) for the left-hand side and of (16) for the right-hand side, (17) becomes after rearranging
terms

V
(1)
n+1+

c∗2
c2
V

(2)
n+1 =[

V (1)
n +B(1)

n − c1An +
c∗2
c2

(V (2)
n +B(2)

n − c2An) +
c∗3
c3

(V (3)
n +B(3)

n − c3An) ∧ 0

]
∨
[
c∗2
c2

(V (2)
n +B(2)

n − c2An) +
c∗3 − c13
c3

(V (3)
n +B(3)

n − c3An) ∨ 0

]
∨ 0. (19)

Now add the term c∗3J
(3)
n+1∨0, which is the same as c∗3/c3V

(3)
n+1, by Lindley’s recursion. After

regrouping terms, (19) becomes



10 A COUPLED PROCESSOR MODEL

V
(1)
n+1+

c∗2
c2
V

(2)
n+1 +

c∗3
c3
V

(3)
n+1 =[

V (1)
n +B(1)

n − c1An +
c∗2
c2

(V (2)
n +B(2)

n − c2An) +
c∗3
c3

(V (3)
n +B(3)

n − c3An)

]
∨
[
c∗2
c2

(V (2)
n +B(2)

n − c2An) +
c∗3 − c13
c3

(V (3)
n +B(3)

n − c3An)

+
c13
c3

(V (3)
n +B(3)

n − c3An) ∨ 0

]
∨ c

∗
3

c3
(V (3)

n +B(3)
n − c3An) ∨ 0. (20)

We show now that the two middle terms that appear in the maximum sequence above are
always dominated by either one of the extremal terms. There are three cases to be considered.
If

V (3)
n +B(3)

n − c3An > 0

then by the ordering assumption, V
(2)
n +B

(2)
n − c2An and V

(1)
n +B

(1)
n − c1An are also positive,

and it is easy to see that the first term on the right-hand side is the largest one.
The alternative is

V (3)
n +B(3)

n − c3An < 0,

and there are two sub-cases to be considered: if

−c
1
3

c3
(V (3)

n +B(3)
n − c3An) < V (1)

n +B(1)
n − c1An,

then the first term dominates the second one on the right-hand side of (20) and the third
term is negative by assumption, so one can ignore the intermediate terms again.

The other subcase is when

−c
1
3

c3
(V (3)

n +B(3)
n − c3An) > V (1)

n +B(1)
n − c1An,

thus the first term on the right-hand side of (20) is smaller than the second term. We show
that this second term is now negative: the above inequality means that queue 3 is able to
empty queue 1 at epoch n+1 without the help of queue 2, so as a consequence of the ordering

assumptions, then queue 3 will also empty queue 2 at epoch n+1: V
(2)
n+1 = 0, and it is easy to

see using the definitions of c∗2 and c∗3 and the recursion (5) for the two coupled queues, that
this latter fact is equivalent to the second term being negative.

In conclusion the intermediate terms on the right-hand side of (20) can be ignored, and
this gives after rearranging terms

Ṽ
(1)
n+1 = {Ṽ (1)

n + B̃(1)
n − c̃1An} ∨ 0.

By ignoring queue 1, it follows at once from Proposition 1 that Ṽ
(2)
n satisfies the corresponding

Lindley recursion, and since queue 3 evolves unchanged, the proof is complete. �



A COUPLED PROCESSOR MODEL 11

As in Section 2, if we denote by ψ(C) and ψ(D) the transforms of the amount of work in
the coupled and respectively, in the related decoupled system, then the relation analogous to
(7) is

ψ(C)(s1, s2, s3) = ψ(D)(s1, s2 −
c∗2
c2
s1, s3 −

c23
c3
s2 −

c∗3
c3
s1),

and it is easy to see that the input in the decoupled system remains ordered, which means, in
principle, one can determine ψ(C) from the relation above using the available expression for
ψ(D) obtained in [1] (Section 3, Formulae (8) and (12)).

5. Conclusions and final remarks

We have pointed out a relation between a coupled processor model and two parallel queues
without coupling, under the assumption of ordered input. This relation was further used to
derive the joint Laplace-Stieltjes transform of the amount of work in equilibrium.

We have also derived the relation explicitly for the case of three coupled processors. This
can be used in principle to determine the joint transform of the equilibrium amount of work
by using the expression derived in Proposition 2 in [1], for the queueing system with the
processors not coupled.
Relation with two coupled queues in tandem. There is also a relation between the
coupled processor model with two queues described above and two tandem queues which are
coupled. The relation is similar to the one between the systems without coupling, which was
pointed out for Lévy input in Kella [5] (see also [1]).

Consider two queues working in tandem, and having a compound Poisson arrival process

which at epoch n brings work B
(2)
n in the first queue and work B

(1)
n −B(2)

n in the second queue.
Both queues work at unit speed and the output from queue 1 flows into queue 2. The queues
are also coupled, which means that as soon as queue 1 is empty it switches its capacity to
help queue 2, so that the processing rate of queue 2 doubles during the idle periods of queue
1. The assumption of equal rates seems to be necessary to have this model related to the
coupled processor model studied in the previous sections.

Since the amount of work does not depend on the server’s policy, one can assume that
the amount of fluid coming from server 1 is processed with priority over the accumulated
exogenous input into buffer 2. Then the point of the assumption of equal rates is that server
2 finishes processing the fluid at the same instant that server 1 becomes idle. For this reason,
the amount of work in queue 1 together with the total amount of work in the tandem system
taken as a whole is the same as the workload vector in the coupled system (C).

l
B

(2)

B -B
(1) (2)

Figure 1. Tandem fluid queue

As a final remark, we mention that the number of jobs waiting to be served in a tandem
queueing system with coupled processors has been studied in Resing and Örmeci [6] related
to data transfer in cable networks. The focus is on the number of jobs at two stations
which receive a Poisson input at only the first station (no exogenous arrivals) and the server



12 A COUPLED PROCESSOR MODEL

distributes its capacity among the queues while both are non-empty and it switches full
capacity to one queue when the other has no jobs to be served, hence the system behaves
as a coupled processor model. The functional equation is solved by relating it again to a
Riemann-Hilbert boundary-value problem, and in van Leeuwaarden and Resing [7] it is also
pointed out how to derive performance measures as the mean delay at one station, based on
its solutions.

References

[1] Badila, E.S., Boxma, O.J., Resing, J.A.C. and Winands, E.M.M. Queues and risk processes with
simultaneous arrivals. Adv. Appl. Prob., 46(3), 812-831, 2014.

[2] Cohen, J. W. and Boxma, O. J. Boundary Value Problems in Queueing System Analysis. North-Holland
Publ. Cy., Amsterdam, 1983.

[3] Cohen, J. W. Analysis of Random Walks. IOS Press, Amsterdam, the Netherlands, 1992.
[4] Fayolle, G. and Iasnogorodski, R. Two coupled processors: The reduction to a Riemann-Hilbert

problem. Z. Wahrsch. Verw. Gebiete 47, 325–351, 1979.
[5] Kella, O. (1993). Parallel and tandem fluid networks with dependent Lévy inputs. Annals of Applied

Probability 3, 682–695.
[6] Resing, J.A.C. and Örmeci, L. A tandem queueing model with coupled processors. O.R. Letters 31(5),

383–389, 2003.
[7] van Leeuwaarden, J.S.H. and Resing, J.A.C. A tandem queue with coupled processors: Computa-

tional issues. Queueing Systems, 51(1-2), 29–52, 2005.


	Introduction
	1. Problem description
	2. Recursive equations for the amount of work in the coupled system
	3. The transform of the equilibrium amount of work at arrival epochs
	4. The k-dimensional model
	5. Conclusions and final remarks
	References

