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Abstract

In this paper we study a queue with L�evy input, without imposing any a priori assumption on

the jumps being one-sided. The focus is on computing the transforms of all sorts of quantities

related to the transient workload, assuming the workload is in stationarity at time 0. The results

are simple expressions that are in terms of the bivariate Laplace exponents of ladder processes.

In particular, we derive the transform of the minimum workload attained over an exponentially

distributed interval.
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1 Introduction

In this short communication we focus on the analysis of various random quantities related to the

transient of a L�evy-driven queue. Throughout, we denote the driving L�evy process by Xt; t � 0,

uniquely characterized through its L�evy exponent

 (�) = LogEei�X1 ; � 2 R:

As usual, the corresponding queueing process (or: workload process) Qt; t � 0 is de�ned as the

solution to the Skorokhod problem [3, Ch. II], i.e.,

Qt = Q0 +Xt � (Xt +Q0) ^ 0 = Q0 _ (�Xt) +Xt; t � 0; (1)

where Xt := infs2[0;t]Xs is the running minimum and Q0 is assumed to be independent of the

evolution of the driving process Xt for t � 0; similarly we let Xt := sups2[0;t]Xs.

It is well known that Qt converges to a stationary distribution as t!1 if and only if Xt has a negative

drift, that is, limt!1Xt = �1 a.s.; we therefore assume that this condition is in place throughout
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this work. If EX1 is well-de�ned, then this condition is equivalent to requiring that EX1 2 [�1; 0),

see [6, Thm. 7.2]. It is also a standard result that the stationary distribution of Qt coincides with the

distribution of X := X1, the overall supremum; this is a property that is often attributed to Reich

[3, Eqn. (2.5)].

Importantly, in the sequel we systematically assume that Q0 has the stationary distribution; as

will become clear, this assumption plays a crucial role in the analysis. As mentioned above, the

primary objective of this note is to study various transient metrics related to the process Qt. All our

results are in terms of transforms of the quantities of interest, in addition transformed with respect

to time. In this respect, it is recalled that taking transforms with respect to time essentially amounts

to considering t = eq, where eq is an exponential variable with rate q (i.e., with mean q�1), sampled

independently of everything else.

This note is organized as follows. In Section 2 we sketch preliminaries, related to splitting at extrema

and the Wiener-Hopf factorization. In Section 3 we focus on the distribution of the minimum workload

attained over an exponentially distributed amount of time. Section 4 provides transforms of some

other quantities of interest, distinguishing between two cases: (i) the ongoing busy period and (ii) the

�nished initial busy period, in which case the focus is on the so-called unused capacity. Finally,

Section 5 focuses on the minimal workload in a queue conditioned to be positive. We conclude the

paper by mentioning some challenging open problems.

2 Preliminaries

Let us state some well-known facts about splitting and the Wiener-Hopf factorization, all of which

can be found in e.g. [1, Ch. VI]. Consider the process X on the interval [0; eq] and let

Geq := supft 2 [0; eq] : Xt ^Xt� = Xeqg

be the (last) time of the minimum. It is well known that the process X splits at its minimum, see [1,

Lem. VI.6]. This result can be stated in a simple form when considering the process X 0
t := Xt for all

t 6= Geq and X
0
Geq

:= Xeq . Namely, the processes

fX 0
t; t 2 [0; Geq ]g and fX 0

t+Geq
�X 0

Geq
; t 2 [0; eq �Geq ]g

are independent (note that X 0 and X di�er only if X jumps up at Geq | this jump should be included

in the right process, but not in the left). In particular, the above implies that Xeq and Xeq �Xeq are

independent. Splitting in the queueing context used earlier; see e.g. [4].

Let us de�ne the following two functions for �; � 2 C with <(�);<(�) � 0:

�(�; �) = exp

 Z 1

0

Z
(0;1)

(e�t � e��t��x)
1

t
P(Xt 2 dx)dt

!
;

�(�; �) = exp

 Z 1

0

Z
(�1;0]

(e�t � e��t��x)
1

t
P(Xt 2 dx)dt

!
; (2)

which are the Laplace exponents of the so-called (strictly) ascending and (weakly) descending bivariate

ladder processes, respectively. In general these functions are de�ned up to a multiplicative constant;

the trivial scaling chosen in (2) implies that

�(�; 0)�(�; 0) = exp

 Z 1

0

Z
(0;1)

(e�t � e��t)
1

t
dt

!
= �; � > 0; (3)

2



by virtue of the Frullani integral identity. This particular scaling simpli�es the calculations in the

proofs, but it does not a�ect the results of the paper. The Laplace exponents can then be used to

express the so-called Wiener-Hopf factors:

Ee
��Geq

+�Xeq =
�(q; 0)

�(q + �; �)
; (4)

Ee
��(eq�Geq

)��(Xeq�Xeq
)
= Ee��Geq��Xeq =

�(q; 0)

�(q + �; �)
; (5)

where Geq := infft 2 [0; eq] : Xt _Xt� = Xeqg is the (�rst) time of the maximum.

Finally, for � 2 R we have

q

q �  (�)
= Eei�Xeq = Ee

i�XeqEe
i�(Xeq�Xeq

)
=

�(q; 0)

�(q; i�)

�(q; 0)

�(q;�i�)
;

which according to (3) yields

q �  (�) = �(q; i�)�(q;�i�): (6)

Let us �nally remark that one has to distinguish between �rst and last extrema only in the case when

X is a compound Poisson process; the same is true also for open and closed integration sets in (2).

3 Minimum workload

In [5] the distribution of the minimum workload during [0; eq) was characterized for the case the

driving L�evy process is spectrally one-sided; it was assumed that the workload is in stationarity at

time 0. In this section, this result is extended to the spectrally two-sided case. Several rami�cations

of this result are presented as well.

Throughout we let Q
t
be the running minimum of the workload, i.e., Q

t
is the minimum of Qs over

s 2 [0; t], and we assume that Q0 has the stationary workload distribution.

3.1 Transform of minimum workload

This subsection shows how to express the transform ofQ
t
in terms of the Wiener-Hopf factors. Observe

that

Q
t
= (Q0 +Xt) _ 0 = Xt +Q0 _ (�Xt) (7)

which follows by considering the event Q0 > �Xt and its complement separately. To this end, we

�rst rewrite the de�nition of Qt, as given in (1), in terms of Xt �Xt and Qt
:

Qt = (Xt �Xt) +Xt +Q0 _ (�Xt) = (Xt �Xt) +Q
t
;

which is also easily seen from Figure 1. This means that we in particular have

Qeq = (Xeq �Xeq) +Q
eq
;

where the two terms on the right are independent, because of (7) and splitting at the in�mum, i.e.

Xeq �Xeq and Xeq are independent, see Section 2. Using (5) we thus obtain the identity

e��Qeq = Ee
��(Xeq�Xeq

)
Ee

��Q
eq = Ee��Xeq Ee

��Q
eq =

�(q; 0)

�(q; �)
Ee

��Q
eq (8)

for � � 0. Since Q0 has the stationary workload distribution, so does Qeq : As a consequence, Qeq has

the distribution of X, which yields the following result, see also (5).
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Proposition 1. For any �; q � 0,

Ee
��Q

eq =
�(0; 0)

�(0; �)

�(q; �)

�(q; 0)
: (9)

It is noted that Equation (9) generalizes the �ndings of [5] which just cover the spectrally one-sided

cases; it is readily veri�ed that plugging in expressions for � for the one-sided cases the formulas

obtained are in accordance with those derived in [5].

Remark 1. The transform of Q
eq

has a simple explicit form also in the case when Q0 is expo-

nential (with mean ��1):

E e
��Q

eq = P

�
Q
eq
< e�

�
= P

�
Q0 +Xeq < e�

�
= P(Q0 < e� �Xeq) = 1� E e

��(e��Xeq
)

= 1�
�

�+ �

�(q; 0)

�(q; �)

and then (8) yields Ee��Qeq . Throughout this work we assume that Q0 has the stationary

distribution, but virtually all results carry over to the case of the exponential initial distribution.

We conclude this section by deriving a related, elegant identity. To this end, we de�ne by

� := infft � 0 : Qt ^Qt� = 0g = infft � 0 : Qt = 0g a.s.,

the time when the system becomes empty for the �rst time; � is also referred to as the residual busy

period as seen from time 0, and the equality follows from [1, Prop. VI.4]. Clearly, P(� = eq) = 0 and

as a consequence

P

�
Q
eq
= 0

�
= P(� < eq):

Taking � !1 in (9), and noting that �(q; �)=�(0; �)! 1 which follows from (2), we obtain

E e�q� = P (� < eq) = P

�
Q
eq
= 0

�
=
�(0; 0)

�(q; 0)
= E e�qG (10)

showing that � and G := G1, the (�rst) time of the overall maxima, have the same distribution

(which was concluded, using another line of argumentation, in [4] as well).

4 More re�ned quantities

In this section we analyze a few more re�ned quantities that are related to the minimum workload.

In this respect observe that

Geq = sup
n
t 2 [0; eq] : Qt ^Qt� = Q

eq

o

is also the (last) time of the minimal workload, see Figure 1. In the sequel we �nd it convenient to

distinguish between the following two cases: � > eq and � < eq, i.e., if the residual busy period is

still going on at time eq, or not. In the second case we look at the �rst and the last times when the

workload attains the value 0, i.e. the time � when the �rst busy period �nishes and the time Geq when

the last busy period starts.
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Qeq

Q
eq

Geq eq −Geq

(a) Ongoing busy period: � > eq

Qeq

Geq − τ eq −Geq
τ

D

Ueq

(b) Finished busy period: � < eq

Figure 1: Schematic queueing process

4.1 Ongoing busy period: � > eq

Note that (9) combined with (10) provides us with the equality

E

�
e
��Q

eq ; � > eq

�
= Ee

��Q
eq � P(� < eq)

=
�(0; 0)

�(0; �)

�(q; �)

�(q; 0)
�
�(0; 0)

�(q; 0)
=
�(0; 0)(�(q; �)� �(0; �))

�(0; �)�(q; 0)
; (11)

describing the distribution of Q
eq

on the event � > eq: The following result gives a simple expression

of the joint transform of various quantities related to the minimal workload in an ongoing busy period.

Proposition 2. For any �; �; �; ; q � 0,

E

�
e
��Q

eq
��Qeq��Geq

�(eq�Geq
)
; � > eq

�
=

q

� + q

�(0; 0)(�(q + �; � + �)� �(0; � + �))

�(0; � + �)�(q + ; �)
:

Proof. By appealing to the usual splitting argument, we can write

E

�
e
��Q

eq
��(eq�Geq

)
; � > eq

�
= E

�
e
��Q

eq ; � > eq

�
Ee

��(eq�Geq
)

= E

�
e
��Q

eq ; � > eq

�
�(q; 0)

�(q + �; 0)
=
�(0; 0)(�(q; �)� �(0; �))

�(0; �)�(q + �; 0)
;

see (5) and (11). Now realize that

E

�
f(eq)e

��eq
�
=

q

� + q
Ef(eq+�) (12)

for any Borel function f . It therefore immediately follows that

E

�
e
��Q

eq
��(eq�Geq

)
; � > eq

�
=

q

� + q
E

�
e
��Q

eq+�
+�Teq+� ; � > eq+�

�
:

Replacing consistently q + � by q, and � by ��, we thus obtain

E

�
e
��Q

eq
��Geq ; � > eq

�
=

q

� + q

�(0; 0)(�(q + �; �)� �(0; �))

�(0; �)�(q; 0)
:
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Finally, again relying on the splitting argument, we arrive at

E

�
e
��Q

eq
��Qeq��Geq

�(eq�Geq
)
; � > eq

�

= E

�
e
�(�+�)Q

eq
��Geq ; � > eq

�
E

�
e
��(Xeq�Xeq

)�(eq�Geq
)
�

=
q

� + q

�(0; 0)(�(q + �; � + �)� �(0; � + �))

�(0; � + �)�(q; 0)

�(q; 0)

�(q + ; �)
;

see (5), completing the proof.

4.2 Finished busy period: � < eq

In the case � < eq we de�ne two random quantities:

Ueq := �(Q0 +Xeq); D := �(Q0 +X� );

see Figure 1(b). The �rst can be interpreted as the unused capacity, and the second as the sudden

unused capacity at the end of the initial busy period. The latter quantity may be of limited interest,

but it can be included in the joint transform without any additional work. First we start with a basic

result complementing (11).

Proposition 3. For any �; q � 0,

E

�
e��Ueq ; � < eq

�
=
�(0; 0)

�(q; 0)

�(q; �)� �(0; �)

�(q; �)
:

Proof. First we compute for � = iR

E

�
e��Ueq ; � < eq

�
= Ee

�(Q0+Xeq
)
� E

�
e
�Q

eq ; � > eq

�

=
�(0; 0)

�(0;��)

�(q; 0)

�(q; �)
�
�(0; 0)(�(q;��)� �(0;��))

�(0;��)�(q; 0)
;

see (5), (4) and (11). Using (3) this can be rewritten as

�(0; 0)

�(q; 0)�(0;��)

�
q

�(q; �)
� �(q;��) + �(0;��)

�
:

Finally, using (6) we can express �(q;��) = (q �  (�i�))=�(0; �). Plugging this in yields that the

expression in the previous display equals

�(0; 0)�(0; �)

��(q; 0) (�i�)

�
 (�i�)

�(q; �)
�
 (�i�)

�(0; �)

�
;

which easily reduces to the expression in the statement. Finally, analytic continuation shows that it

is true for all � 2 C with <(�) � 0.

Proposition 4. For any �; �; �; ; u; v; q � 0,

E

�
e
��D��Ueq�Qeq�u��v(Geq

��)�w(eq�Geq
)
; � < eq

�
=

q

q + u

�(0; 0)(�(q + u; �+ �)� �(0; �+ �))

�(q + w; )�(q + v; �)
:
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Proof. By splitting we have

E

�
e
��Ueq�u(eq�Geq

)
; � < eq

�
= E

�
e��Ueq ; � < eq

�
Ee

�u(eq�Geq
)
=
�(0; 0)(�(q; �)� �(0; �))

�(q; �)�(q + u; 0)
;

see also (5) and Proposition 3. Moreover, using (12) we write

E

�
e
��Ueq�u(eq�Geq

)
; � < eq

�
=

q

q + u
E

�
e��Ueq+u+uTeq+u ; � < eq+u

�
:

As before, changing parameters leads to

E

�
e
��Ueq�uGeq ; � < eq

�
=

q

q + u
E

�
e��Ueq+u+u(eq+u�Teq+u ); � < eq+u

�

=
q

q + u

�(0; 0)(�(q + u; �)� �(0; �))

�(q + u; �)�(q; 0)
:

Next, we apply the strong Markov property at the time � to obtain the identity

E

�
e
��Ueq�uGeq ; � < eq

�
= E

�
e��D�u� ; � < eq

�
E

�
e
�Xeq

�uGeq

�
;

which leads to

E

�
e��D�u� ; � < eq

�
=
�(0; 0)(�(q + u; �)� �(0; �))

q + u

using (4) and (2). Finally, we write using the strong Markov property at � and splitting at Geq

E

�
e
��D��Ueq�Qeq�u��v(Geq

��)�w(eq�Geq
)
; � < eq

�
= E

�
e�(�+�)D�u� ; � < eq

�
Ee

�Xeq
�vGeqEe

�(Xeq�Xeq
)�w(eq�Geq

)

=
�(0; 0)(�(q + u; �+ �)� �(0; �+ �))

q + u

�(q; 0)

�(q + v; �)

�(q; 0)

�(q + w; )
;

which in view of (3) completes the proof.

5 Minimal workload in a queue conditioned to stay positive

In this section we focus on the law of Q
eq

conditional on the queue not having idled between 0 and

eq, i.e., � > eq, and provide an alternative representation of this law in the limiting case when q # 0.

We also comment on the relation of this limit law to L�evy processes conditioned to stay positive.

It follows directly from (10) and (11) that

E

�
e
��Q

eq j � > eq

�
= E

�
e
��Q

eq ; � > eq

��
P (� > eq) =

�(0; 0)

�(0; �)

�(q; �)� �(0; �)

�(q; 0)� �(0; 0)
: (13)

Note, however, that the corresponding conditional law does not have a direct link (via Laplace trans-

form) to its transient counterpart, i.e. when eq is replaced by t.

In the following we assume that �0(0; 0) <1 (and so also �0(0; �) <1 for � � 0), where the derivative

of �(q; �) is taken with respect to q. According to (10) this requirement is equivalent to E� = EG <1;

see Proposition 6 for an example when this assumption does not hold. Now it follows from (13) that

lim
q#0

E

�
e
��Q

eq j � > eq

�
=
�(0; 0)

�(0; �)

�0(0; �)

�0(0; 0)
=

log(�(0; �))0

log(�(0; 0))0
: (14)

Along the same lines, one can establish the generalization

lim
q#0

E

�
e
��Q

eq
��Qeq j � > eq

�
=
�(0; 0)

�(0; �)

log(�(0; � + �))0

log(�(0; 0))0
:
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Remark 2. It must be noted that the limit law of Q
eq
j� > eq as q # 0 does not coincide with

the so-called quasi-stationary distribution of the minimal workload, i.e. with that of Q
t
j� > t as

t!1, even though eq !1 a.s. as q # 0. Roughly speaking, conditioning on f� > eqg does not

only force � to be large, but also makes eq to appear smaller. In this respect it may be helpful

to mention that

lim
q#0

E

�
e��eq j � > eq

�
=

1� E e���

�E�
;

i.e. the limit law of eqj� > eq is a proper distribution, the residual life distribution associated

to � . For related results on the quasi-stationary behaviour of reected one-sided L�evy processes

we refer to e.g. [7].

Remark 3. Importantly, one way to construct a L�evy process started in x and conditioned to

stay positive (in the usual sense) is to condition on f� > eqg and then let q # 0, see [2, Prop. 1].

The distribution of the in�mum of this process is characterized in [2, Thm. 1]. Note, however,

that the limit distribution of Q
eq
j� > eq can not be obtained from this result by integrating with

respect to P(Q0 2 dx). The main reason is that

EEQ0
(e
��Q

eq j� > eq) = E
EQ0

(e
��Q

eq ; � > eq)

PQ0
(� > eq)

6=
EEQ0

(e
��Q

eq ; � > eq)

EPQ0
(� > eq)

= E(e
��Q

eq j� > eq);

because the event upon which we condition depends on Q0.

Proposition 5. Assume that �0(0; 0) <1. Then the limit laws of

Q
eq
j� > eq; and Xeq jXeq > 0

coincide as q # 0.

Proof. Using (2) observe that

q log(�(q; �))0 =

Z 1

0

Z 1

0
qe�qt��xP (Xt 2 dx) dt = E

�
e��Xeq ;Xeq > 0

�
:

Hence

log(�(0; �))0

log(�(0; 0))0
= lim

q#0

log(�(q; �))0

log(�(q; 0))0
= lim

q#0

E

�
e��Xeq ;Xeq > 0

�
P
�
Xeq > 0

� = lim
q#0

E

�
e��Xeq jXeq > 0

�
:

The proof is complete in view of (14).

This result has a simple intuitive explanation. Firstly, on the left hand side we have the limit of

Q0 +Xeq jQ0 +Xeq > 0. Secondly, it holds that Xeq = (Xeq �Xeq) +Xeq , where the two terms on

the right are independent and the distribution of the �rst converges to that of Q0 as q # 0.

Let us conclude by giving yet another representation of the limit law of Q
eq
j� > eq in the spectrally

one-sided cases.

Proposition 6. Assume that X is either spectrally positive or spectrally negative. Then the

limiting law of Q
eq
j� > eq as q # 0 is the residual life distribution associated to Q0, i.e.

lim
q#0

E

�
e
��Q

eq j � > eq

�
=

1� E e��Q0

�EQ0
: (15)

Moreover, �0(0; 0) = 1 if and only if X is a spectrally positive process with var(X1) = 1, in

which case EQ0 =1 and Q
eq
j� > eq converges to 1 as q # 0.

8



Proof. The identity (15) is easily veri�ed using (14) and the explicit expressions for �(�; �) in both

cases, see, e.g., [6, Sec. 6.5.2]. These explicit expressions also show that in the spectrally negative case

we must have �0(0; 0) <1, whereas in the spectrally positive case �0(0; 0) <1 i� �00(0) =1, where

�(�) = logEe��X1 . The latter is equivalent to var(X1) =1 and implies that (15) results in 0.

It seems unlikely that (15) holds in general. It would be interesting to characterize all the L�evy

processes drifting to �1 for which (15) is true. Another challenging problem is to express the joint

transform Ee��Q0��Qeq (or, closely related, the joint transform Ee
��Q0��Q

eq ) through the functions

�(�; �) and �(�; �).
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