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Abstract: We consider a stochastic model for a blood bank, in which amounts
of blood are offered and demanded according to independent compound Pois-
son processes. Blood is perishable, i.e., blood can only be kept in storage for
a limited amount of time. Furthermore, demand for blood is impatient, i.e., a
demand for blood may be cancelled if it cannot be satisfied soon enough. For a
range of perishability functions and demand impatience functions, we derive
the steady-state distributions of the amount of blood Xb kept in storage, and
of the amount of demand for blood Xd (at any point in time, at most one of
these quantities is positive). Under certain conditions we also obtain the fluid
and diffusion limits of the blood inventory process, showing in particular that
the diffusion limit process is an Ornstein-Uhlenbeck process.

1. Introduction

This paper is devoted to the study of a stochastic blood bank model in which
amounts of blood are offered and demanded according to stochastic processes,
and in which blood is perishable (i.e., blood can only be kept for a limited
amount of time) and demand for blood is impatient (i.e., a demand for blood
may be canceled if it cannot be satisfied soon enough). Let us first provide some
background, and subsequently sketch the blood bank model in some more de-
tail.

One of the major issues in securing blood supply to patients worldwide is
to provide blood of the best achievable quality, in the needed quantities. In
most countries blood, which is collected as whole blood units from human
donors, is separated into different components which are subsequently stored
under different storage conditions according to their biological characteristics,
functions and respective expiration dates. Blood units and components are or-
dered by local hospital blood banks (LBB) from the Central Blood Bank (CBB)
respectively) according to their operational needs. The CBB has to run its in-
ventory and supply according to these requests and to the need to keep suffi-
cient stock for immediate release in emergency situations. It also has to perform
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tests to determine the unit’s blood type and to detect the presence of various
pathogens which are able to cause transfusion-transmitted diseases, such as
Hepatitis B (HBV), Hepatitis C (HCV), Human Immunodeficiency Virus (HIV)
and Syphilis; see, e.g., Steiner et al. [16].

Blood consists of several components: Red Blood Cells (RBC), plasma and
platelets. In addition there are 8 blood groups (types): O+, O−, A+, A−, B+

,B−, AB+, AB− (− means Rh negative) where the interrelationship between
the transfusion issuing policies among the 8 types is quite intricate. It turns out
that each of the negative types can satisfy the corresponding + type, but not
vice versa. Blood components are perishable as RBC can be used for only 35
to 42 days and platelets for only 5 days (plasma, however, can be frozen and
kept for one year). Accordingly, if RBC and particularly platelets are not used
for blood transfusion within their expiration dates then they perish.

In most developed countries demand requirements of about 50, 000 blood
donations are needed per one million persons per year. About 95% of these
donations are aggregated by CBB’s and the remaining 5% by LBB’s. Blood
units stored at the CBB are usually ordered by LBB’s for planned elective surg-
eries. However, as it happens rather frequently, elective surgeries turn out to
become emergency ones due to various conditions of the patient involved. In
such cases, hospitals use their own local blood banks to supply the demand,
and they cancel the required demand from the CBB; this is what we refer to
as demand impatience. A good review on supply chain management appears
in Beliën and Forcé [4] and the references cited there in. Other relevant studies
are Ghandforoush and Sen [9] and Stanger et al. [15].

In this paper we consider the analysis of blood perishability and demand
impatience, concentrating on only one blood type. We do this by considering
the stochastic inventory processes {Xb(t), t ≥ 0}, with Xb(t) the amount of
blood kept in storage at time t, and {Xd(t), t ≥ 0}, with Xd(t) the amount of
demand for blood (the shortage) at time t. If Xb(t) > 0 then Xd(t) = 0, and if
Xd(t) > 0 then Xb(t) = 0. We assume that amounts of blood arrive according
to a Poisson process, and that requests for blood arrive according to another,
independent, Poisson process. The delivered and requested amounts of blood
are assumed to be random variables. We represent the perishability of blood
by letting the amount of blood, when positive, decrease in a state-dependent
way: if the amount is v, then the decrement rate is ξbv + αb. The ξb factor is
motivated by the fact that a large amount of blood present suggests that some
of the blood has been present for quite a while – and hence there is a relatively
high perishability rate when much blood is in inventory. The αb factor pro-
vides additional modelling flexibility. One can in this way represent the blood
perishability more accurately; but the αb term could also, e.g., represent a fluid
demand rate of individuals or organizations, which contact the CBB directly,
and that is only satisfied when there is inventory. Similarly, we represent the
demand impatience by a decrement rate ξdv + αd. The ξd factor is motivated
by the following fact. When there is a large shortage (demand) of blood, there
are probably many patients waiting for blood, so many patients that might be-
come impatient (i.e., they could recover, or die, or become in need of emergency
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surgery) leading to a cancellation of the required demand from the CBB. Again,
the αd factor provides additional modelling flexibility; it not only allows us to
represent demand impatience more accurately, but it could also, e.g., represent
additional donations of individuals in times of blood shortage. To keep things
simple, in the remainder of the paper, we shall refer to the ξbv + αb term as the
blood perishability rate, and to the ξdv + αd term as the demand impatience
rate.

The inclusion of both the perishability factor ξbv + αb and the demand im-
patience factor ξdv + αd makes the analysis of the ensuing model mathemati-
cally quite challenging, but leads to a very general model that contains many
well-known models as special cases. Our two-sided stochastic process, with
both jumps upward and jumps downward, and with the rather general slope
factors ξv + α, could represent a quite large class of stochastic phenomena. It
should for example be noted that this model is a two-sided generalization of
the well-known shot-noise model that describes certain physical phenomena
(cf. [10]). In some of our calculations we remove either the ξ factors or the α
factors, and this results in easier calculations and more explicit results.

Our main results are: (i) Determination of the steady-state distributions of
the amounts of blood and of demand in inventory; in particular, we present a
detailed analysis of the case in which the delivered and requested amounts of
blood are both exponentially distributed. (ii) Expressions for mean amounts of
blood and demand in storage, and for the probability of not being able to satisfy
demand. (iii) We obtain the fluid and diffusion limits of the blood inventory
process, showing in particular that the diffusion limit process is an Ornstein-
Uhlenbeck process.

The paper is organized as follows: Section 2 presents a detailed model de-
scription. A global analysis of the densities of demand and of blood amount
in storage is contained in Section 3. A detailed analysis of the case of exponen-
tially distributed delivered and requested blood amounts, when αb = αd = 0
(i.e., pure proportionality) is provided in Section 4, while Section 5 considers
the case of positive αb and αd. Section 6 is devoted to the case ξb = ξd = 0.
The fluid and diffusion scalings are discussed in Section 7, and in Section 8
we present numerical results for certain performance measures like mean net
amount of blood and the probability that there is a shortage of blood. These re-
sults indicate, a.o., that the probability that there is a shortage of blood can be
accurately approximated via a Normal approximation, based on the Ornstein-
Uhlenbeck process appearance in the diffusion scaling. Section 9 contains some
conclusions and suggestions for further research.

2. Model description

We consider the following highly simplified model of a blood bank, restricting
ourselves to only one type of blood.
Blood amounts arrive according to a Poisson process with rate λb. The amounts
which successively arrive are independent, identically distributed random vari-
ables B1, B2, . . . with distribution Fb(·); F̄b(x) = 1− Fb(x).
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Fig 1: Sample path of net amount of blood available as a function of time.

Demands for blood arrive according to a Poisson process with rate λd. The
successive demand amounts are independent, identically distributed random
variables D1, D2, . . . with distribution Fd(·); F̄d(x) = 1− Fd(x). We view these
amounts as continuous quantities, measured in, e.g., liters.
If there is enough blood for a demand, then that demand is immediately sat-
isfied. If there is some blood, but not enough to fully satisfy a demand, then
that demand is partially satisfied, using all the available blood; the remainder
of the demand may be satisfied later.
Blood has a finite expiration date. We make the assumption that if the total
amount of blood present is x > 0, then blood is discarded – because of its finite
expiration date – at a rate ξbx+ αb, so linear in x.
Blood demands have a finite patience. We make the assumption that if the total
amount of demand present is x > 0, then demand disappears – because of its
finite patience – at a rate ξdx+ αd, so linear in x.

Notice that either the total amount of blood present, or the total amount of de-
mands, is zero, or both are zero; they cannot be both positive. Hence we can eas-
ily in one figure depict the two-sided process {X(t), t ≥ 0} = {(Xb(t), Xd(t)),
t ≥ 0} of total blood and total demand amounts present at any time t, as we
have done in Figure 1. For our purposes, we are mainly interested in the charac-
teristics of the process described above in stationarity. Let us denote by Xd the
steady-state total amount of demand and by Xb the steady-state total amount
of blood present, with corresponding density functions f(·) and g(·), respec-
tively. Notice that these are defective densities; we have

∫∞
0+ f(v)dv = πd =

P(demand > 0) and
∫∞

0+ g(v)dv = πb = P(blood > 0). If αb = αd = 0, then
neither Xb nor Xd has probability mass at zero, and πb + πd = 1 (when there is
only a very small amount x present, the ”decay” rate ξbx or ξdx is very small).
However, if αb and/or αd is positive, then there is a positive probability π0 of
being in 0.

When ξd and ξb are positive, existence of these steady-state densities is obvi-
ous; otherwise, the conditions for the existence of the steady-state distributions
requires some discussion, cf. Section 6. In the next section we try to determine
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f(·) and g(·), using the LCT (Level Crossing Technique).

3. Analysis of the densities of demand and of blood amount

In this section we present a global approach towards determining f(·) and
g(·) in the most general form of our model. At the end of the section, we also
consider a few other important performance measures, viz., π0 and the mean
length of time during which, uninterruptedly, there is a positive amount of
blood (resp. demand). The latter could be viewed as the busy period of the Xb

process (resp. of the Xd process).
First we consider the density g(·) of the amount of blood. We equate the rate

at which some positive blood level v is upcrossed and downcrossed, respec-
tively. LCT leads to the following integral equation: for v > 0,

λb

∫ v

0

g(y)F̄b(v − y)dy + λb

∫ ∞
0

f(y)F̄b(v + y)dy + πoλbF̄b(v)

= λd

∫ ∞
v

g(y)F̄d(y − v)dy + (ξbv + αb)g(v). (3.1)

Here the three terms in the lefthand side represent the rate of crossing level
v from below; the first term corresponds to a jump from a blood inventory
level between 0 and v, whereas the second term corresponds to a jump from a
shortage level, and the third term corresponds to a jump from level 0. The two
terms in the righthand side represent the rate of crossing level v from above;
the first term corresponds to a jump from above v, and the second term to a
smooth crossing.

Next we consider the density f(·) of the amount of demand (shortage). We
equate the rate at which some positive demand level v is upcrossed and down-
crossed, respectively. LCT leads to the following integral equation: for v > 0,

λd

∫ v

0

f(y)F̄d(v − y)dy + λd

∫ ∞
0

g(y)F̄d(v + y)dy + π0λdF̄d(v)

= λb

∫ ∞
v

f(y)F̄b(y − v)dy + (ξdv + αd)f(v). (3.2)

It should be noted that these two, coupled, equations are symmetric (swap f
and g, and the b and d parameters).

Let us introduce the following Laplace Transforms (LT):

φ(s) :=

∫ ∞
0

e−syf(y)dy, (3.3)

γ(s) :=

∫ ∞
0

e−syg(y)dy. (3.4)

We now take Laplace transforms in (3.2), considering its five terms and calling
them T1, T2, T3, T4 and T5, successively. We have:

T1 = λd

∫ ∞
v=0

e−sv
∫ v

y=0

f(y)F̄d(v − y)dydv = λdφ(s)
1− E[e−sD]

s
, (3.5)
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T2 = λd

∫ ∞
v=0

e−sv
∫ ∞
y=0

g(y)F̄d(v + y)dydv

= λd

∫ ∞
y=0

esyg(y)

∫ ∞
z=y

e−szF̄d(z)dzdy, (3.6)

T3 = π0λd

∫ ∞
0

e−syF̄d(y)dy, (3.7)

T4 = λb

∫ ∞
v=0

e−sv
∫ ∞
y=v

f(y)F̄b(y − v)dydv

= λb

∫ ∞
y=0

e−syf(y)

∫ y

z=0

eszF̄b(z)dzdy, (3.8)

T5 = ξd

∫ ∞
v=0

ve−svf(v)dv + αdφ(s) = −ξdφ′(s) + αdφ(s). (3.9)

3.1. The case of Coxian jumps

We shall now analyse these equations for the case that Fb(·) and Fd(·) are Cox-
ian distributions. More specifically, if Xi, i = 1, 2, . . . ,K are independent, ex-
ponentially distributed random variables, and E[Xi] = 1

βi
, i = 1, 2, . . . ,K, then

a Coxian amount of blood B can be represented as:

B =

i∑
j=1

Xj with probability pi

i−1∏
j=1

(1− pj), i = 1, 2, . . . ,K. (3.10)

The class of Coxian distributions lies dense in the class of all distributions of
nonnegative random variables (cf. [2], Section III.4); hence one can approxi-
mate Fb(·) arbitrarily closely by a Coxian distribution. In the above case, it is
easily verified that one can represent F̄b(x) as follows:

F̄b(x) = P(B > x) =

K∑
i=1

pi

i−1∏
h=1

(1− ph)

i∑
j=1

i∏
l=1;l 6=j

βl
βl − βj

e−βjx, (3.11)

if all βj are different. If two βj coincide, then a term with xe−βjx (Erlang-2)
must be added. We leave this to the reader, but in Remark 2 below we outline
how Erlang terms can be handled in solving the integral equations (3.2) and
(3.1).

Taking Laplace transforms in those integral equations, we shall encounter
the following terms:∫ y

z=0

eszF̄b(z)dz =

K∑
i=1

pi

i−1∏
h=1

(1− ph)

i∑
j=1

i∏
l=1;l 6=j

βl
βl − βj

1

βj − s
(1− e(s−βj)y),

(3.12)
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∫ ∞
z=y

e−szF̄b(z)dz =

K∑
i=1

pi

i−1∏
h=1

(1− ph)

i∑
j=1

i∏
l=1;l 6=j

βl
βl − βj

1

βj + s
e−(s+βj)y,

(3.13)

E[e−sB ] =

K∑
i=1

pi

i−1∏
h=1

(1− ph)

i∑
j=1

i∏
l=1;l 6=j

βl
βl − βj

βj
βj + s

, (3.14)

and hence

1− E[e−sB ]

s
=

K∑
i=1

pi

i−1∏
h=1

(1− ph)

i∑
j=1

i∏
l=1;l 6=j

βl
βl − βj

1

βj + s
. (3.15)

Their counterparts for the case that Fd(·) is Coxian, being given by

F̄d(x) = P(D > x) =

L∑
i=1

qi

i−1∏
h=1

(1− qh)

i∑
j=1

i∏
l=1;l 6=j

δl
δl − δj

e−δjx, (3.16)

are readily obtained by replacing K by L, pi by qi and βi by δi everywhere.
Combining (3.2) with (3.5)-(3.9), and using (3.12) and the counterparts of

(3.13) and (3.15) for F̄d(·), we find:

λdφ(s)

K∑
i=1

qi

i−1∏
h=1

(1− qh)

i∑
j=1

i∏
l=1;l 6=j

δl
δl − δj

1

δj + s

+ λd

L∑
i=1

qi

i−1∏
h=1

(1− qh)

i∑
j=1

i∏
l=1;l 6=j

δl
δl − δj

1

δj + s
[γ(δj) + π0]

= λb

K∑
i=1

pi

i−1∏
h=1

(1− ph)

i∑
j=1

i∏
l=1;l 6=j

βl
βl − βj

1

βj − s
(φ(s)− φ(βj))

− ξdφ
′(s) + αdφ(s). (3.17)

When ξd > 0, this equation can be written in the following form:

φ′(s) = AH(s)φ(s) +AI(s), (3.18)

with the homogeneous term AH(s) being given by

AH(s) := − 1

ξd

λd K∑
i=1

qi

i−1∏
h=1

(1− qh)

i∑
j=1

i∏
l=1;l 6=j

δl
δl − δj

1

δj + s

− λb

K∑
i=1

pi

i−1∏
h=1

(1− ph)

i∑
j=1

i∏
l=1;l 6=j

βl
βl − βj

1

βj − s
− αd

 , (3.19)
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and the inhomogeneous term AI(s) being given by

AI(s) := − 1

ξd

λd L∑
i=1

qi

i−1∏
h=1

(1− qh)

i∑
j=1

i∏
l=1;l 6=j

δl
δl − δj

1

δj + s
[γ(δj) + π0]

+ λb

K∑
i=1

pi

i−1∏
h=1

(1− ph)

i∑
j=1

i∏
l=1;l 6=j

βl
βl − βj

1

βj − s
φ(βj)

 . (3.20)

The solution of (3.18) is given by the following expression:

φ(s) = φ(0)e
∫ s
0
AH(z)dz +

∫ s

0

AI(u)e
∫ s
u
AH(z)dzdu, s ≥ 0. (3.21)

γ(s) is given by a mirror expression, where φ(0) is replaced by γ(0) and where
AH(s) and AI(s) are replaced by expressions in which K and L are swapped,
and p and q, and βi and δi. It should be noticed, though, that φ(0), γ(0) and
π0 still have to be determined. Furthermore, it should be noticed that AH(s)
and AI(s) have singularities at s = β1, . . . , βK . These singularities are remov-
able, but handling Formula (3.21) clearly requires some care. Instead of work-
ing out the details, we shall in the next section focus on the case of exponen-
tially distributed amounts of blood and demand – so K = L = 1. For that
case we shall not only work out the solution of the differential equation for
φ(s) in detail, including the determination of the missing constants, but we
shall also present a different way of handling equations (3.2) and (3.1), with-
out resorting to Laplace transforms. We refer to [7] for a detailed discussion of
first-order linear differential equations with singularities like (3.18); in [7] such
equations arise in the study of another two-sided stochastic process, represent-
ing a queueing model with additional inventory capacity.

Remark 1. If ξd = 0, then φ(s) is obtained from (3.17) in a standard manner; see also
Remark 7 for the special case that K = 1.

Remark 2. We now outline how (3.13) and (3.14) change when the Bi have an
Erlang-(l + 1, β) distribution, and when the Di have an Erlang-(k + 1, δ) distribu-
tion; (3.12) and (3.15) do not change (but of course E[e−sD] changes). Firstly,∫ y

z=0

eszF̄b(z)dz =

l∑
j=0

βj

(β − s)j+1

[
1−

j∑
i=0

e−(β−s)y ((β − s)y)i

i!

]
. (3.22)

Term T4 now becomes:

T4 = λb

∫ ∞
v=0

e−sv
∫ ∞
y=v

f(y)F̄b(y − v)dydv

= λb

l∑
j=0

βj

(β − s)j+1

[
φ(s)−

j∑
i=0

(β − s)i

i!

∫ ∞
y=0

yie−βyf(y)dy

]
. (3.23)
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It should be noted that s = β is a removable singularity. E.g., for l = 0 one has
T4 = λb

φ(s)−φ(β)
β−s .

Secondly,

∫ ∞
z=y

e−szF̄b(z)dz =

k∑
j=0

δj

(s+ δ)j+1

j∑
i=0

e−(s+δ)y ((s+ δ)y)i

i!
. (3.24)

Term T2 now becomes:

T2 = λd

∫ ∞
v=0

e−sv
∫ ∞
y=0

g(y)F̄d(v + y)dy dv

= λd

k∑
j=0

δj

(s+ δ)j+1

j∑
i=0

(s+ δ)i

i!

∫ ∞
y=0

yie−δyg(y)dy. (3.25)

It is readily seen that the resulting counterpart of (3.17) can again be written in the
form (3.18), and hence the solution is formally still given by (3.21).

3.2. A few simple performance measures

In this subsection we first relate π0 to the densities f(·) and g(·) (cf. Proposi-
tion 1), and subsequently we express the mean length of time during which
there is, uninterruptedly, a positive amount of blood present, into f(·), g(·) and
π0; we do the same for the mean length of time during which there is, uninter-
ruptedly, a positive demand (Proposition 2).

Proposition 1. Let π0 be the steady-state atom probability of the zero period. Then

π0 =
αdf(0) + αbg(0)

λd + λb
.

Proof. Substitute υ = 0 in (3.1) and (3.2) and take the sum. The result is ob-
tained after several steps of elementary algebra.

The result introduced in the Proposition above is very intuitive. By LCT
αdf(0) +αbg(0) is the rate at which level 0 is reached (i.e., the process will now
really stay at 0 for a while), so that [αdf(0) + αbg(0)]−1 is the expected length
of time between two successive times level 0 is reached by the fluid. More pre-
cisely, the (zero periods , non-zero periods) generate an alternating renewal pro-
cess whose expected cycle length is [αdf(0) + αbg(0)]−1. The expected length
of the zero period is [λd + λb]

−1, since the end of the zero period is terminated
at the moment of the next jump. But the jump process is a Poisson process with
rate λd + λb. Now the renewal reward theorem simply says that

π0 =
E[zero period]

E[cycle]
.
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In preparation of the next proposition, for the process X = {X(t) : t ≥ 0}
we define a modified process Xm = {Xm(t) : t ≥ 0} where Xm is constructed
by deleting the zero periods (only the zero periods, not the emptiness periods) from X
and gluing together the non-zero periods. The modified process is Xm such that
Xm(t) = Xd(t)1{Xd(t)>0} + Xb(t)1{Xb(t)>0} where by definition of the model
{Xd(t) > 0} ⇒ {Xb(t) = 0} and {Xb(t) > 0} ⇒ {Xd(t) = 0}.

Proposition 2. Let Bb and Ib be the generic non-emptiness period and the emptiness
period, respectively, of the inventory system. Similarly, let Bd and Id be the generic
non-emptiness period and the emptiness period, respectively, of the demand process.
Then

(i)



EBb = 1−π0

αbg(0)+λd
∫∞
0
F̄d(y)g(y)dy

,

EBd = 1−π0

αdf(0)+λb
∫∞
0
F̄b(y)f(y)dy

.

And

(ii)

{
EIb = 1

λb
∫∞
0
F̄b(y)f(y)dy+λbπ0

− EBb,
EId = 1

λd
∫∞
0
F̄d(y)g(y)dy+λdπ0

− EBd.

Proof. (i ) Consider the non-emptiness period of the inventory system. The
steady state densities of the inventory system and the demand process of Xm

are given by

gm(x) =
g(x)

1− π0
, fm(x) =

f(x)

1− π0
,

respectively. At the end of the non-emptiness period of the inventory system
there are two disjoint ways (disjoint events) to downcross level 0+. Either level
0 is downcrossed by a negative jump or level 0+ is reached by the fluid reduc-
tion (both in Xm). The rate of the first event is λd

∫∞
0
F̄d(y)gm(y)dy and by LCT

the rate of the second event is αbgm(0). Since the events are disjoint, the rate of
downcrossings of level 0+ is λd

∫∞
0
F̄d(y)gm(y)dy + αbgm(0). That means that

the expected length of the non-emptiness period is given by[
λd

∫ ∞
0

F̄d(y)gm(y)dy + αbgm(0)

]−1

. (3.26)

Thus
EBb =

1− π0

αbg(0) + λd
∫∞

0
F̄d(y)g(y)dy

.

Now EBd is obtained by complete symmetry.
(ii) Define a cycle in the real process X (not the modified process Xm) as the
time between two upcrossings of level 0+. By definition, the emptiness pe-
riod plus the non-emptiness period is a cycle in X. That means that the ex-
pected length of the emptiness period is the expected length of the cycle mi-
nus the expected length of the non-emptiness period. The non-emptiness pe-
riod in X and in Xm are identical and the length of the expected cycle is
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[λb
∫∞

0
F̄b(y)f(y)dy + λbπ0]−1, since, λb

∫∞
0
F̄b(y)f(y)dy + λbπ0 is the rate of

the upcrossings of level 0+. We obtain

EIb + EBb =
1

λb
∫∞

0
F̄b(y)f(y)dy + λbπ0

,

yielding EIb. EId is obtained by symmetry.

4. The exponential case

We assume in this section that F̄b(x) = e−µbx and F̄d(x) = e−µdx. Moreover,
we take αb = αd = 0. Under these assumptions, we can not only work out
(3.21) in detail, but we shall also solve (3.2) and (3.1) without using Laplace
transforms. In the next section, we shall allow αb and αd to be positive, still
requiring exponentially distributed amounts of blood deliveries and demands.

Equations (3.2) and (3.1) reduce to:

λd

∫ v

0

f(y)e−µd(v−y)dy + λde
−µdv

∫ ∞
0

g(y)e−µdydy

= λb

∫ ∞
v

f(y)e−µb(y−v)dy + ξdvf(v), v > 0; (4.1)

λb

∫ v

0

g(y)e−µb(v−y)dy + λbe
−µbv

∫ ∞
0

f(y)e−µbydy

= λd

∫ ∞
v

g(y)e−µd(y−v)dy + ξbvg(v), v > 0. (4.2)

In addition, the level crossing identity for level v = 0 gives the condition (take
v = 0 in either (4.1) or (4.2)):

λb

∫ ∞
0

f(y)e−µbydy = λd

∫ ∞
0

g(y)e−µdydy. (4.3)

Taking LT in (4.1) and (4.2) yields:

λd
φ(s)

µd + s
+ λd

γ(µd)

µd + s
= λb

φ(s)− φ(µb)

µb − s
− ξdφ′(s), (4.4)

λb
γ(s)

µb + s
+ λb

φ(µb)

µb + s
= λd

γ(s)− γ(µd)

µd − s
− ξbγ′(s). (4.5)

Hence we have two inhomogeneous first order differential equations in the LTs
φ(s) and γ(s):

φ′(s) = φ(s)

[
λb
ξd

1

µb − s
− λd
ξd

1

µd + s

]
− λb
ξd

φ(µb)

µb − s
− λd
ξd

γ(µd)

µd + s
, (4.6)
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γ′(s) = γ(s)

[
λd
ξb

1

µd − s
− λb
ξb

1

µb + s

]
− λd
ξb

γ(µd)

µd − s
− λb
ξb

φ(µb)

µb + s
. (4.7)

A standard approach yields:

φ(s) =

(
µb

µb − s

)λb
ξd
(

µd
µd + s

)λd
ξd
[
φ(0) (4.8)

− λd
ξd
γ(µd)

∫ s

0

(
µb − z
µb

)λb
ξd
(
µd + z

µd

)λd
ξd
−1

dz

µd

− λb
ξd
φ(µb)

∫ s

0

(
µb − z
µb

)λb
ξd
−1(

µd + z

µd

)λd
ξd dz

µb

]
.

Similarly,

γ(s) =

(
µd

µd − s

)λd
ξb
(

µb
µb + s

)λb
ξb
[
γ(0) (4.9)

− λb
ξb
φ(µb)

∫ s

0

(
µd − z
µd

)λd
ξb
(
µb + z

µb

)λb
ξb
−1

dz

µb

− λd
ξb
γ(µd)

∫ s

0

(
µd − z
µd

)λd
ξb
−1(

µb + z

µb

)λb
ξb dz

µd

]
Notice that the exponents in the above integrals have powers which are larger
than −1 (e.g., λdξd − 1), so that these integrals do not lead to singularities. We
still need to determine the two constants φ(0) = πd and γ(0) = πb. Together
with φ(µb) and γ(µd), we have four unknowns. We determine these unknowns
using the following four equations: (i) From (4.3), we get λbφ(µb) = λdγ(µd),
while (ii) πd + πb = 1. Finally, we take (iii) s = µb in (4.8) and (iv) s = µd in
(4.9).

Notice that the identity λbφ(µb) = λdγ(µd) allows us to reduce the two inte-
grals in (4.8) to one integral (and similarly in (4.9)):

φ(s) =

(
µb

µb − s

)λb
ξd
(

µd
µd + s

)λd
ξd
[
φ(0) (4.10)

− λd
ξd
γ(µd)

µb + µd
µbµd

∫ s

0

(
µb − z
µb

)λb
ξd
−1(

µd + z

µd

)λd
ξd
−1

dz
]
.

Remark 3. If λb = 0 then we have a known queueing model or shot-noise model with
state-dependent service rate; cf. Keilson & Mermin [10] and Bekker et al. [3] for the
so-called shot noise model.
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Remark 4. The case λd = ξd is special. Formula (4.8) now reduces to

φ(s) =

(
µb

µb − s

) λb
λd µd
µd + s

[
φ(0) (4.11)

− γ(µd)

∫ s

0

(
µb − z
µb

) λb
λd dz

µd

− λb
λd
φ(µb)

∫ s

0

(
µb − z
µb

) λb
λd
−1

µd + z

µd

dz

µb

]
.

Both integrals are easily evaluated (rewrite, in the last integral, µd + z = µd + µb −
(µb − z)). We find:

φ(s) =

(
µb

µb − s

) λb
λd µd
µd + s

[
φ(0)

+
γ(µd)

µd

λd
λb + λd

µb − φ(µb)
µd + µb
µd

− φ(µb)

µd

λb
λb + λd

µb

]
+

µd
µd + s

[
γ(µd)

µd

λd(µb − s)
λb + λd

+ φ(µb)
µd + µb
µd

− φ(µb)

µd

λb
λb + λd

(µb − s)
]
.

(4.12)

Now observe, cf. (4.3), that λbφ(µb) = λdγ(µd). Hence, in both lines of the above
formula, two terms cancel. Moreover, φ(s) should be analytic for s = µb, yielding

φ(0) = φ(µb)
µd + µb
µd

. (4.13)

Finally we obtain:

φ(s) =
µd

µd + s
φ(µb)

µd + µb
µd

= φ(0)
µd

µd + s
= πd

µd
µd + s

, (4.14)

and hence
f(x) = πdµde

−µdx, x > 0; (4.15)

the shortage (amount of demand present) appears to be exponentially distributed when
λd = ξd.
It should be noticed that, if λd = ξd, then the first and last term of (4.1) are equal when
(4.15) holds; and using (4.3) it is also readily verified that the second and third term of
(4.1) are equal. The constant πd will in general still depend on the parameters λd = ξd,
λb, µb and ξb.
We end this remark with the observation that in the one-sided shot-noise process (so
λb = 0), Bekker et al. [3] also observe that λd = ξd results in an exponential density.

4.1. A direct approach to the exponential case

In this subsection we shall determine f(·) without using Laplace transforms.
Notice that, once f(·) has been determined, g(·) follows by swapping parame-
ters (symmetry).
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Differentiate (4.1) w.r.t. v:

λdf(v)− µd
[
λd

∫ v

0

f(y)e−µd(v−y)dy + λd

∫ ∞
0

g(y)e−µd(v+y)dy

]
= −λbf(v) + λbµb

∫ ∞
v

f(y)e−µb(y−v)dy + ξdf(v) + ξdvf
′(v). (4.16)

Using (4.1) once more, now to replace the term between square brackets in
(4.16), we get:

ξdvf
′(v) = (λd + λb − ξd)f(v)

− µd

(
λb

∫ ∞
v

f(y)e−µb(y−v)dy + ξdvf(v)

)
− µbλb

∫ ∞
v

f(y)e−µb(y−v)dy, (4.17)

and once more differentiating w.r.t. v then gives:

ξdvf
′′(v) + ξdf

′(v)− (λd + λb − ξd − µdξdv)f ′(v)

= −µdξdf(v) + (µb + µd)λbf(v)− µb(µb + µd)λb

∫ ∞
v

f(y)e−µb(y−v)dy.

(4.18)

The integral that appears in (4.18) can be eliminated by using (4.17), and we
thus finally obtain the following second order homogeneous differential equa-
tion:

ξdvf
′′(v) + (2ξd − λd − λb + µdξdv − µbξdv) f ′(v)+

+ (µdξd − µbξd − µdλb + µbλd − µbµdξdv) f(v) = 0. (4.19)

As additional equations we have
∫∞

0
f(v)dv = πd, and the continuity condition

(4.3); this amounts to a level crossing identity at 0. (4.19) is a known type of
second order differential equation.
We can rewrite (4.19) as follows:

vf ′′(v) + (A+Bv)f ′(v) + (C +Dv)f(v) = 0, (4.20)

where

A = 2− λb + λd
ξd

, B = µd − µb, C = µd − µb +
λdµb − λbµd

ξd
, D = −µbµd.

(4.21)
Note that we divided both sides of equation (4.19) by ξd here. We will try to
transform the differential equation into one of which the solution is easily de-
rived. In order to do so, we first guess f to be of the form f(v) = eβvh(v), where
β is a constant and h another real-valued function. Substituting this into (4.20)
gives

vh′′(v) + [(2β +B)v +A]h′(v) +
[
(β2 +Bβ +D)v +Aβ + C

]
h(v) = 0. (4.22)
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Next, we would like to choose β such that β2 +Bβ +D = 0, that is

β =
−B ±

√
B2 − 4D

2
, (4.23)

which equals either −µd or µb. Since the solution of (4.20) we are looking for
is a density, and necessarily f(v) = eβvh(v) → 0 as v → ∞, we set β equal
to the negative root −µd. Lastly, we apply a change of variable, x = δv, and
h(v) = w(x), so that (4.22) is transformed into

xw′′(x) +
[
(2β +B)δ−1x+A

]
w′(x) + δ−1 [Aβ + C]w(x) = 0. (4.24)

By choosing (2β +B)δ−1 = −1, i.e.

δ = −(2β +B) = µb + µd, (4.25)

we obtain
xw′′(x) + [A− x]w′(x) + δ−1 [Aβ + C]w(x) = 0, (4.26)

which is known as Kummer’s equation, xw′′(x)+(b−x)w′(x)−aw(x) = 0, see
[14], with parameters

a = −δ−1 [Aβ + C] = 1− λd
ξd
,

b = A = 2− λb + λd
ξd

.

Kummer’s equation has two linearly independent solutions, namely w(x) =
M(a, b, x), where M is Kummer’s hypergeometric function, also denoted by
1F1(a, b, x), and U(a, b, x), Tricomi’s hypergeometric function. These are de-
fined as, see [14, Eq. (1.3.1)],

M(a, b, x) =

∞∑
n=0

(a)n
(b)nn!

xn, (4.27)

U(a, b, x) =
Γ(b− 1)

Γ(1 + a− b)
M(a, b, x) +

Γ(b− 1)

Γ(a)
x1−bM(1 + a− b, 2− b, x),

(4.28)

where (.)n is the Pochhammer symbol, which is used to represent (y)n = y ·
(y + 1) · ... · (y + n− 1). We can therefore deduce that f(v) is of the form

eβv [c1M(a, b, δv) + c2 U(a, b, δv)] , (4.29)

or

e−µdv
[
c1M

(
1− λd

ξd
, 2− λb+λd

ξd
, (µb + µd)v

)
+

+ c2U
(

1− λd
ξd
, 2− λb+λd

ξd
, (µb + µd)v

)]
, (4.30)
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where c1 and c2 are constants. From [14, p. 60], we have

M(a, b, x) ∼ Γ(b)

Γ(a)
exxa−b, as x→∞. (4.31)

Hence,

e−µdvM

(
1− λd

ξd
, 2− λb + λd

ξd
, (µb + µd)v

)
∼

Γ(2− λb+λd
ξd

)

Γ(1− λd
ξd

)
eµbv ((µb + µd)v)

λb/ξd−1 →∞, (4.32)

for all µb > 0, which leads us to conclude c1 = 0. We deduce c2 by exploiting
the restriction that ∫ ∞

0

f(v) dv = πd, (4.33)

where πd is the probability of positive demand. Hence

πdc
−1
2 =

∫ ∞
0

e−µdvU
(

1− λd
ξd
, 2− λb+λd

ξd
, (µb + µd)v

)
dv. (4.34)

By slightly transforming [14, (3.2.51)], we find

c−1
2 =

1

πd

Γ
(
λb+λd
ξd

)
Γ
(

1 + λb
ξd

) 2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

)
, (4.35)

Altogether, this yields:

Proposition 1.

f(v) = πd
Γ
(

1 + λb
ξd

)
Γ
(
λb+λb
ξd

) e−µdv U
(

1− λd
ξd
, 2− λb+λd

ξd
, (µb + µd)v

)
2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

) (4.36)

with corresponding Laplace transform, again by [14, Eq. (3.2.51)],

φ(s) = πd
µd

µd + s

2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
, s−µbs+µd

)
2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

) . (4.37)

By exchanging parameters, a similar expression can be formulated for the density and
LT of the amount of blood present.

Last, we obtain expressions for πd and πb. These follow immediately by a
level-crossing argument around the point v = 0:

λb

∫ ∞
0

f(v)F̄b(v)dv = λd

∫ ∞
0

g(v)F̄d(v)dv. (4.38)
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In the exponential case, this becomes (see already (4.3)):

λb

∫ ∞
0

f(v)e−µbvdv = λd

∫ ∞
0

g(v)e−µdvdv. (4.39)

An equivalent form of (4.39) is λbφ(µb) = λdγ(µd), or by filling in s = µb in
(4.37),

µd
µb + µd

πd λb

2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

) =
µb

µb + µd

πb λd

2F1

(
1− λb

ξb
, 1, 1 + λd

ξb
,−µdµb

) ,
(4.40)

where we used that 2F1(a, b, c, 0) = 0. Using πb + πd = 1, we solve (4.40) and
obtain

πd =
λdµb 2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

)
λdµb 2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

)
+ λbµd 2F1

(
1− λb

ξb
, 1, 1 + λd

ξb
,−µdµb

) .
(4.41)

By substituting this result into both (4.36) and (4.37),

f(v) = C̄−1
Γ
(

1 + λb
ξd

)
Γ
(
λb+λd
ξd

) λdµb e
−µdv U

(
1− λd

ξd
, 2− λb+λd

ξd
, (µb + µd)v

)
, (4.42)

φ(s) = C̄−1 λdµb µd
µd + s

2F1

(
1− λd

ξd
, 1, 1 +

λb
ξd
,
s− µb
s+ µd

)
, (4.43)

where

C̄ = λdµb 2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

)
+ λbµd 2F1

(
1− λb

ξb
, 1, 1 + λd

ξb
,−µdµb

)
.

(4.44)
Similar expressions can be formulated for the density g(v) of the amount of
blood present, its LT γ(s) and the probability πb of being positive.

Remark 5. By applying the Pfaff transformation

2F1(a, b, c, z) = (1− z)−b 2F1

(
c− a, b, c, z

1− z

)
, (4.45)

we may reformulate

2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

)
= µd

µb+µd 2F1

(
λb+λd
ξd

, 1, λbξd ,
µb

µb+µd

)
, (4.46)

so that

πd =
λd 2F1

(
λb+λd
ξd

, 1, λbξd ,
µb

µb+µd

)
λd 2F1

(
λb+λd
ξd

, 1, λbξd ,
µb

µb+µd

)
+ λb 2F1

(
λb+λd
ξb

, 1, λdξb ,
µd

µb+µd

) . (4.47)
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By also transforming the hypergeometric term in the numerator of (4.36), we get an
equivalent form of (4.42), namely

f(v) = C̄−1
alt

Γ
(

1 + λb
ξd

)
Γ
(
λb+λb
ξd

) λbµb(µb + µd)

µd
e−µdv U

(
1− λd

ξd
, 2− λb+λd

ξd
, (µb + µd)v

)
,

(4.48)
with

C̄alt = λd 2F1

(
λb+λd
ξd

, 1, λbξd ,
µb

µb+µd

)
+ λb 2F1

(
λb+λd
ξb

, 1, λdξb ,
µd

µb+µd

)
. (4.49)

As a consequence, (4.43) is given by

φ(s) = πd
2F1

(
λb+λd
ξd

, 1, λbξd ,
µb−s
µb+µd

)
2F1

(
λb+λd
ξd

, 1, λbξd ,
µb

µb+µd

) = C̄−1
alt λd 2F1

(
λb+λd
ξd

, 1, λbξd ,
µb−s
µb+µd

)
(4.50)

By close inspection of these derived density functions, we make a few addi-
tional remarks.

First, it can be verified, e.g. nummerically, that the expressions in (4.8) and
(4.43) coincide.

Secondly, the confluent hypergeometric function U(a, b, z) has limiting form
as z → 0,

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
+

Γ(b− 1)

Γ(a)
z1−b +O(z2−b), b ≤ 2, (4.51)

see [11, Subsec. 13.2]. Note that b < 2 for all parameter settings. This expression
shows that U(a, b, z) has a singularity at z = 0 if Re(b) > 1, which in our
case translates to f(v) and g(v) being analytic at v = 0 if λb + λd > ξd and
λb + λd > ξb, respectively. Assuming λb + λd > max{ξb, ξd}, (4.51) also implies
that

lim
v→0

f(v) = C̄−1
Γ
(

1 + λb
ξd

)
Γ
(
λb+λd
ξd

) λdµb ·
Γ
(
λb+λd
ξd
− 1
)

Γ
(
λb
ξd

) (4.52)

= C̄−1
λb
ξd

λb+λd
ξd
− 1

λdµb = C̄−1 λbλdµbµd
λb + λd − ξd

.

Similarly,

lim
v→0

g(v) = C̄−1 λbλdµbµd
λb + λd − ξb

. (4.53)

By equating these two expressions, we conclude that limv→0 f(v) = limv→0 g(v)
< ∞, i.e. the overall density function is continuous at v = 0 if and only if
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ξb = ξd.

The asymptotic behavior of U is given by [14, p. 60],

U(a, b, z) ∼ z−a, z →∞, (4.54)

which implies that the density function will decay as

f(v) ∼ C∗ e−µdv vλd/ξd−1, v →∞, (4.55)

for some constant C∗. Note that for λd = ξd the asymptotic behaviour is con-
sistent with (4.15). Let us take a closer look at this case λd = ξd. Formula (4.43)
reduces to

φ(s) = C̄−1 λdµb
µd

µd + s
= πd

µd
µd + s

, (4.56)

where we used that 2F1(0, a, b, z) = 1 for all a, b, z. Hence, conditioned on be-
ing positive, the amount of demand present is exponentially distributed with
parameter µd, regardless of the values of λd = ξd, as well as λb, ξb, and µb. Note
that we also could have deduced this from (4.37) by observing 2F1(0, 1, a, x) =
1 for all a, x ∈ R, so that

φ(s) = πd
µd

µd + s
. (4.57)

This is in accordance with what we found in (4.15) with the approach based on
Laplace transforms.

A second special case arises when the process is symmetric, that is, λb =
λd = λ, µb = µd = µ and ξb = ξd = ξ. Obviously, we get πb = πd = 1

2 due to the
symmetry. If we define η := λ/ξ,

f(v) =
Γ(1 + η)µe−µv U (1− η, 2(1− η), 2µv)

2 Γ(2η)2F1

(
2η, 1, 1 + η, 1

2

) (4.58)

=
Γ(1 + η)

2 Γ(2η)2F1

(
2η, 1, 1 + η, 1

2

) µ

2
√
π

(2µv)
η− 1

2 K 1
2−η

(µv) ,

where Kα(·) is the modified Bessel function of the second kind, see
[11, Eq. (13.6.10)].

Based on the LT in (4.43), we can directly derive a couple of characteristics
of the process.

Corollary 1. The expected amount of demand (blood) present, given that it is positive
equals

E[Xd|Xd > 0] =
1

ξd

λd
µd
− λb
µb

+
λb
µb

1

2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

)
 , (4.59)

E[Xb|Xb > 0] =
1

ξb

λb
µb
− λd
µd

+
λd
µd

1

2F1

(
1− λb

ξb
, 1, 1 + λd

ξb
,−µdµb

)
 . (4.60)
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Accordingly, the expected net amount of blood present equals

EQ =

(
λb
µb
− λd
µd

)(
πb
ξb

+
πd
ξd

)
+
λbλd
C̄

(
1

ξb
− 1

ξd

)
. (4.61)

Proof. The expression in (4.59) can be derived through differentiation of (4.43).
However, we choose to use the implicit equation in (4.6) with s = 0 and the
fact that φ(0) = πd to obtain

E[Xd|Xd > 0] = −φ
′(0)

φ(0)
=

1

ξd

[
λd
µd
− λb
µb

+
λb
µb

φ(µb)

φ(0)
+
λd
µd

γ(µd)

φ(0)

]
=

1

ξd

[
λd
µd
− λb
µb

+

(
1

µb
+

1

µd

)
λbφ(µb)

ϕ(0)

]
=

1

ξd

[
−m+

µb + µd
µbµd

λbφ(µb)

φ(0)

]
.

Here we defined m := λb
µb
− λd
µd

, which can be regarded as the mean net amount
of blood brought into the system per time unit, and λbφ(µb) = λdγ(µd). From
(4.43), we know

φ(µb)

φ(0)
=

µd
µb + µd

1

2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

) , (4.62)

so that

E[Xd|Xd > 0] =
1

ξd

[
−m+

λb
µb

2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

)−1
]
. (4.63)

The expression for E[Xb|Xb > 0] follows directly. Furthermore,

E[Q] = πbE[Xb|Xb > 0] + πdE[−Xd|Xd > 0]

= m

[
πb
ξb

+
πd
ξd

]
+

λd
µd ξb

πb

2F1

(
1− λb

ξb
, 1, 1 + λd

ξb
,−µdµb

)
− λb
µb ξd

πd

2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

) .
Note that πd 2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

)−1

= λdµbC̄
−1. Hence,

E[Q] = m

[
πb
ξb

+
πd
ξd

]
+
λbλd
C̄

(
1

ξb
− 1

ξd

)
,

which completes the proof.

Remark 6. Note that if ξb = ξd = ξ, we get E[Q] = m(πb + πd)/ξ = m/ξ. The
expression in (4.59) contains no ξb. Indeed, while the value of ξb influences the proba-
bility that Xd > 0, it does not influence the mean of Xd given that Xd > 0.
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(a) (b)

Fig 2: Expected mean amount of blood, demand, and net blood present.

In Figure 2 we plotted the behavior of the three performance metrics in
Corollary 1 while keeping m fixed. In Figure 2.A we set λb = 1.2, λd = 1,
µb = 1, µd = 1.2, so that m = 11/30 and vary ξb = ξd = ξ between 0 and 1. In
Figure 2.B we fix ξb = ξd = 0.5 and take λb = 1.2θ, λd = θ, µb = θ, µd = 1.2θ, so
that still m = 11/30, and vary θ.

Furthermore, using the PASTA property of the Poisson process, we get
P(demand immediately satisfied) =

∫∞
0
g(u)(1− e−µdu)du = πb − γ(µd), which

is by equivalent form of (4.43) for the LST γ(·), equal to

C̄−1λbµd

(
2F1

(
1− λd

ξd
, 1, 1 + λb

ξd
,− µb

µd

)
− µb
µb + µd

)
.

5. A variant

In this section we return to the case that the expiration rate of blood and the
patience rate of demand are not purely proportional to the amount of blood
and of demand, respectively. Accordingly, we generalize the expiration rate
of blood from ξbv to ξbv + αb, and the patience rate of demand from ξdv to
ξdv+αd. We do stick to the assumptions of exponentially distributed amounts
of demand and blood, though. Hence this is a generalization of the results in
Section 4.1. Equations (4.16)-(4.19) change into:

λdf(v)− µd
[
λd

∫ v

0

f(y)e−µd(v−y)dy + λd

∫ ∞
0

g(y)e−µd(v+y)dy + π0λde
−µdv

]
= −λbf(v) + λbµb

∫ ∞
v

f(y)e−µb(y−v)dy + ξdf(v) + (ξdv + αd)f
′(v), (5.1)
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(ξdv + αd)f
′(v) = (λd + λb − ξd)f(v)

− µd
(
λb

∫ ∞
v

f(y)e−µb(y−v)dy + (ξdv + αd)f(v)

)
− µbλb

∫ ∞
v

f(y)e−µb(y−v)dy, (5.2)

(ξdv + αd)f
′′(v) + ξdf

′(v)− (λd + λb − ξd − µd(ξdv + αd))f
′(v)

= −µdξdf(v) + (µb + µd)λbf(v)− µb(µb + µd)λb

∫ ∞
v

f(y)e−µb(y−v)dy,

(5.3)

(ξdv + αd)f
′′(v) + (2ξd − λd − λb + µd(ξdv + αd)− µb(ξdv + αd))f

′(v)

+ (µdξd − µbξd − µdλb + µbλd − µbµd(ξdv + αd)) f(v) = 0. (5.4)

Solution to differential equation (5.4)
We attempt to solve differential equation (5.4). Let us introduce a new variable
z such that ξdz = ξdv + αd. Hence

z(v) = v +
αd
ξd
, v(z) = z − αd

ξd
. (5.5)

Then (5.4) can be rewritten as

ξdzf
′′(z − αd/ξd) + (2ξd − λd − λb + (µd − µb)ξdz)f ′(z − αd/ξd)

+ (µdξd − µbξd − µdλb + µbλd − µbµd(ξdz))f(z − αd/ξd) = 0, (5.6)

which almost resembles Equation (4.19). If we furthermore define f̂(z) = f(z−
αd/ξd) and note that f̂ ′(z) = f ′(z − αd/ξd) and f̂ ′′(z) = f ′′(z − αd/ξd), (5.6)
becomes

ξdzf̂
′′(z) + (2ξd − λd − λb + (µd − µb)ξdz)f̂ ′(z)

+ (µdξd − µbξd − µdλb + µbλd − µbµd(ξdz))f̂(z) = 0, (5.7)

which is exactly the same as (4.19). From (4.30), we already know that the only
feasible solution to (5.7) is of the form

f̂(z) = C−1e−µdz U
(

1− λd
ξd
, 2− λb+λd

ξd
, (µb + µd)z

)
, (5.8)

with z > 0, so that

f(z) = f̂(z + αd/ξd)

= C−1 πd e
−µd(z+αd/ξd) U

(
1− λd

ξd
, 2− λb+λd

ξd
, (µb + µd)(z + αd/ξd)

)
,

(5.9)
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Xb(t)

Xd(t)

↑

↓

Fig 3: Sample path of the net amount of blood present if ξb = ξd = 0.

for some positive constant C. Computing this constant C in this case proves
more tedious, because we are now after the values of the integral∫ ∞

αd/ξd

e−µdzU
(

1− λd
ξd
, 2− λb+λd

ξd
, (µd + µb)z

)
dz. (5.10)

We had an expression for the Laplace transform of tkU(a, b, t) at hand in the
previous case, but finding an expression for this integral has so far been un-
successful. Another issue that arises for this setting is the observation that the
event {v = 0} will have positive probability, due to the additional decay (of
both blood and demand) that does not slow down for v close to 0. Therefore,
we have the additional equation πd + πb + π0 = 1, where π0 > 0 denotes the
probability of the event “no inventory, no demand”.

6. Another variant

In this section we assume that the expiration rate of blood and the patience rate
of demand are constant; so we take ξb = ξd = 0. A visualization of a possible
sample path is depicted in Figure 3.

We again restrict ourselves to the case of exponentially distributed amounts
of demand and of blood deliveries. We now need to impose stability condi-
tions. In the case of positive demand, the drift is towards zero if λdED <
αd +λbEB, while in the case of a positive amount of blood, the drift is towards
zero if λbEB < αb + λdED. If these two conditions are violated, either the
amount of demand or the amount of blood present increases without bound
(see also Remark 8 below). In this case, (5.4) reduces to

αdf
′′(v) + (−λd − λb + µdαd − µbαd)f ′(v) + (−µdλb + µbλd − µbµdαd)f(v) = 0.

(6.1)
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Hence f(·) is a mixture of two exponential terms: f(v) = R+e−x+v +R−e−x−v ,
where x+ and x− are the positive and negative root of the equation

αdx
2 − (µdαd − µbαd − λd − λb)x+ (−µdλb + µbλd − µbµdαd) = 0. (6.2)

Notice that the last term in the lefthand side of (6.2) is negative if the stability
condition λdED < αd+λbEB holds, i.e., if µbλd < µdλb+µbµdαd, thus guaran-
teeing that the product of the two roots x+ and x− is negative, and hence that
there is a positive and a negative root. One should subsequently observe that
R− must be zero to have a probability density. Hence f(v) is simply (a constant
times) an exponential; similarly for g(v). In addition, the steady-state amounts
of demand and of blood have an atom at 0 (since ξd and ξb are no longer zero,
the demand and blood processes can reach 0).

Remark 7. Alternatively, we could have taken Laplace transforms; (4.4) now changes
into (only its last term has to be adapted):

λd
φ(s)

µd + s
+ λd

γ(µd)

µd + s
= λb

φ(s)− φ(µb)

µb − s
+ αdφ(s), (6.3)

or
φ(s) =

λdγ(µd)(µb − s) + λbφ(µb)(µd + s)

αd(µd + s)(µb − s)− λd(µb − s) + λb(µd + s)
. (6.4)

Now notice that the zeros of the denominator of (6.4) are exactly s = x− and s = x+,
and that the numerator should be zero for s = x+. Inversion then again gives an
exponential density f(v), v > 0; similarly for g(v).

Remark 8. Interestingly, the model of this section is closely related to the model with
workload removal that is considered in [5]. There an M/G/1 queue is studied with the
extra feature that, at Poisson epochs, a stochastic amount of work is removed. In the
M/M/1 case with removal of exponential amounts of work (cf. Section 5.1 of [5]), one
has the model of the present section when we concentrate on the amount of demand
present. One difference with the model in [5] is that, when the workload in that model
has become zero, the work becomes positive at rate λd, whereas in the present model
the amount of blood can become positive (so zero demand is present) and the amount
of demand does not have to become positive when demands arrive (because they are
immediately satisfied; cf. Fig. 3). So the atom at zero is in the present model larger than
in the model of [5]. In our model a positive demand level may be reached from below zero
(by a jump, i.e., a demand arriving at an epoch that there is some, but not enough, blood
present). The memoryless property of the exponential demand requirement distribution
implies that this jump results in a demand level that is exp(µd), just as if the initial
demand level had been zero. In the case of non-exponential demand requirements, our
model becomes equivalent with an M/G/1 queue with exponential amounts of work
removed, and with the special feature that the first service requirement of a busy period
has a different distribution. Lemmas 4.1 and 4.2 of [5] present the stability condition
of that M/G/1 queue with work removal; it amounts to λdED < αd + λbEB, which
indeed is one of the two stability conditions of the present demand/blood model.

Finally we observe that Formula (5.1) of [5] coincides with (6.2) (take αd = 1,
λd = λ+, λb = λ−, µd = 1/β and µb = 1/γ).
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7. Scaling limits

We finally study the model with αb = αd = 0 from an asymptotic perspective,
by obtaining the fluid and diffusion limits of the blood inventory process. That
is, we will create a sequence of processes, indexed by n = 1, 2, ..., in which we
let the rates of blood and demand arrivals grow large. If we then scale the pro-
cess in a proper manner, we are able to deduce a non-degenerate limiting pro-
cess, that provides insight in the overall behavior of the arrival volume when
the system grows large. Furthermore, only the first two moments of the blood
and demand distributions are needed.

7.1. Identification of the limiting process

First, we introduce some additional notation. Let Xb(t) and Xd(t) denote the
amount of blood and demand, respectively, at time t > 0. Let

Q(t) := Xb(t)−Xd(t), (7.1)

be the net amount of blood available at time t. Remember thatXb(t), Xd(t) ≥ 0,
and Xb(t) > 0 or Xd(t) > 0 for all t, since αd = αb = 0. Let Nb(t), Nd(t) be the
two independent Poisson processes counting the number of arrivals of blood
and demand, respectively. Then the following integral representation holds for
Q(t),

Q(t) = Q(0)− ξb
∫ t

0

Q+(s) ds+ ξd

∫ t

0

Q−(s) ds+

Nb(t)∑
i=1

Bi −
Nd(t)∑
i=1

Di, (7.2)

where x+ = max{0, x} and x− = max{0,−x}. For the sake of exhibition we
will concentrate on the case ξb = ξd =: ξ. Our analysis can be extended to
the general case, but involves more technicalities which do not contribute to
the insight provided by the limiting process. A sketch of this generalization is
given at the end of this section. Define

X(t) =

Nb(t)∑
i=1

Bi −
Nd(t)∑
i=1

Di, (7.3)

so that (7.2) reduces to

Q(t) = Q(0)− ξ
∫ t

0

Q(s) ds+X(t). (7.4)

The first step in the definition of the sequence of processes under investigation
is defining the asymptotic scheme we are interested in. As mentioned above,
we intend to let the arrival rates grow to infinity. Therefore, in the nth process
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Qn(t), we replace the rates of the arrival processes by nλb and nλd. This in-
duces Poisson processes N (n)

b (t) and N
(n)
d (t) with arrival rates nλb and nλd,

respectively. However, we have

N
(n)
b (t)

d
= Nb(nt) and N

(n)
d (t)

d
= Nd(nt), (7.5)

so that the term X(t) in (7.2) in this asymptotic scheme can be replaced by

Xn(t) =

Nb(nt)∑
i=1

Bi −
Nd(nt)∑
i=1

Di. (7.6)

The first step in our analysis is obtaining the fluid limit of the process. Bearing
in mind application of the Functional Strong Law of Large Numbers (FSLLN),
we scale the process as Q̄n(t) = Qn(t)

n , so that with (7.4)

Q̄n(t) = Q̄n(0)− ξ
∫ t

0

Q̄n(s) ds+ X̄n(t), (7.7)

where X̄n(t) = Xn(t)/n. Let us rewrite (7.7) a bit, by observing

EX̄n(t) =
1

n
[ENb(nt)EB − ENd(nt)ED] = λbEBt− λdEDt. (7.8)

Setting m := λbEB − λdED,

Q̄n(t) = Q̄n(0)− ξ
∫ t

0

(
Q̄n(s)− m

ξ

)
ds+ Ȳn(t), (7.9)

where Ȳn(t) : X̄n(t)−mt is now a centralized process.
The essential step in establishing a result on the convergence of Q̄n is the

application of [12, Thm 4.1]. Let D[0,∞) be the space of all one-dimensional
real-valued functions defined on [0,∞), endowed with the usual J1-Skorohod
topology. Then, we know that the integral representation

x(t) = y(t) +

∫ t

0

u(x(s)) ds, (7.10)

with boundary condition u(0) = u0, has a unique solution, given that u is a
Lipschitz function. This implies that the function Hu : D[0,∞) → D[0,∞),
which maps the function u(·) into the solution x(·) of (7.10), is well-defined.
Furthermore, [12, Thm 4.1] tells us that the mapping Hu is continuous. Back to
our case, we set u(x) = −ξx + m, to be able to write Q̄n = Hu

(
Ȳn + Q̄n(0)

)
.

Since u is clearly Lipschitz continuous, the mapping Hu is indeed continuous,
which allows us to state the next result.

Proposition 2 (Fluid limit). Let E[B], E[D] <∞ and Q̄n(0) = Qn(0)/n→ q(0) ∈
R, as n→∞. Then for n→∞,

Q̄n ⇒ q, (7.11)
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where⇒ denotes convergence in distribution and

q(t) =
m

ξ
+

(
q(0)− m

ξ

)
e−ξt. (7.12)

Proof. First, we concentrate on the process Ȳn. Observe that, by the elementary
renewal theorem for renewal reward processes, see e.g. [13, Thm 3.6.1], we
have

1

nt

Nb(nt)∑
i=1

Bi
a.s.⇒ λbE[B],

1

nt

Nd(nt)∑
i=1

Di
a.s.⇒ λdE[D], (7.13)

for n → ∞ and for all t > 0. Hence, X̄n(t)
a.s.⇒ λbE[B]t − λdE[D]t = mt. By

definition of Ȳn and the assumption of convergence of Q̄(0), this implies

Ȳn + Q̄n
a.s.⇒ q(0) (7.14)

as n→∞. Next, note Q̄n = Hu

(
Ȳn + Q̄n(0)

)
. Due to Lipschitz continuity of u,

Hu constitutes a continuous mapping, and hence we can apply the Continuous
Mapping Theorem (CMT), to find

Q̄n = Hu

(
Ȳn + Q̄n(0)

)
⇒ Hu (q(0)) ≡ q, (7.15)

where q(·) is the solution of

q(t) = q(0) +

∫ t

0

u(q(s)) ds = q(0)− ξ
∫ t

0

(
q(s)− m

ξ

)
ds. (7.16)

The unique solution of this integral equation is given in (7.11).

According to Proposition 2, the fluid limit approaches EQ = m
ξ exponen-

tially fast. To obtain an expression for the diffusion limit of the process, we an-
alyze the fluctuations of the process around the fluid limit in (7.11), again by
scaling the process in a proper manner. First, we subtract q(t) on both sides of
(7.9), and multiply by

√
n:

√
n
(
Q̄n(t)− q(t)

)
=
√
n
(
Q̄n(0)− q(0)

)
−ξ
∫ t

0

√
n
(
Q̄n(s)− q(s)

)
ds+
√
n Ȳn(t).

(7.17)
Let Q̂n ≡

√
n
(
Q̄n − q

)
and Ŷn ≡

√
n Ȳn, then this reduces to

Q̂n(t) = Q̂n(0)− ξ
∫ t

0

Q̂n(s) ds+ Ŷn(t). (7.18)

Again the term Ŷn(t) needs special attention.

Lemma 1. Let EB, ED, E[B2],E[D2] < ∞. Then Ŷn ⇒ σW as n → ∞, where
σ2 := λbE[B2] + λdE[D2] and W is a standard Brownian motion.
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Proof. Recall that

Ŷn(t) =
√
n

 1

n

Nb(nt)∑
i=1

Bi − λbE[B]t

−
 1

n

Nd(nt)∑
i=1

Di − λdE[D]t

 . (7.19)

By the Functional Central Limit Theorem (FCLT) for renewal-reward processes
given in [17, Thm 7.4.1], the process

Ŷ bn (t) =
√
n

 1

n

Nb(nt)∑
i=1

Bi − λbE[B]t

 , (7.20)

converges weakly to σbWb, where Wb is a standard Brownian motion, and

σ2
b = λb VarB + λb(E[B])2 = λbE[B2]. (7.21)

Similarly Ŷ dn (t)⇒ σdWd, with the obvious parameter switches and Wd is stan-
dard Brownian motion. Since the processes Ŷ bn and Ŷ dn are independent, so are
their limits, and

Ŷn ⇒
√
λbE[B2]Wb +

√
λdE[D2]Wd

d
=
√
λbE[B2] + λdE[D2]W, (7.22)

for n→∞ and W a standard Brownian motion.

Now, we are ready to prove the diffusion counterpart of Proposition 2.

Proposition 3 (Diffusion limit). Let EB,ED,E[B2],E[D2] < ∞. If Q̂n(0) →
Q̂(0), then Q̂n ⇒ Q̂ as n→∞, where Q̂ satisfies the integral equation

Q̂(t) = Q̂(0)− ξ
∫ t

0

Q̂(s) ds+ σW (t). (7.23)

In other words, Q̂ is an Ornstein-Uhlenbeck diffusion process with infinitesimal mean
ξ and infinitesimal variance σ2 := λbE[B2] + λdE[D2].

Proof. We again rely on the result that the mappingHu as in the proof of Propo-
sition 2 is continuous if u is Lipschitz continuous. Here, we set u(x) = −ξx
which again clearly satisfies this condition. We have Q̂n ≡ Hu(Q̂n(0) + Ŷn).
From Lemma 1, we know

Q̂n(0) + Ŷn ⇒ Q̂(0) + σW, (7.24)

for n→∞. As a consequence of the CMT, we conclude

Q̂n = Hu

(
Q̂n(0) + Ŷn

)
⇒ Hu

(
Q̂(0) + σW

)
≡ Q̂, (7.25)

where Q̂ solves (7.23).
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7.2. Generalization for ξb 6= ξd

We now sketch the scaling approach towards fluid and diffusion limits for the
general case in which ξb may differ from ξd. In case ξb 6= ξd, the integral equa-
tion for Q̄n as in (7.7) becomes

Q̄n(t) = Q̄n(0) +

∫ t

0

(−ξbQ̄+
n (s) + ξdQ̄

−
n (s)−m) ds+ Ȳn(t) (7.26)

= Q̄n(0)−
∫ t

0

(
[
ξb1{Q̄n(s)≥0} + ξd1{Q̄n(s)<0}

]
Q̄n(s) +m) ds+ Ȳn(t),

where Ȳn(t) is defined as before. Note that Q̂n ≡ Hu(Q̄n(0) + Ȳn), where we
now have

u(x) = −
[
ξb1{x≥0} + ξd1{x<0}

]
x+m, (7.27)

which is still Lipschitz continuous. Therefore by the same reasoning of the
proof of Proposition 2, we obtain the fluid limit Q̄n

a.s.⇒ q, where q is the so-
lution of

q(t) = q(0)−
∫ t

0

(
[
ξb1{q(s)≥0} + ξd1{q(s)<0}

]
q(s)−m) ds. (7.28)

The solution to this integral equation is more elaborate than (7.11) and depends
on the sign of m and q(0). Assuming m ≥ 0, one can check that,

q(t) =
m

ξb
+

(
q(0)− m

ξb

)
e−ξbt, if q(0) ≥ 0, (7.29)

q(t) =

{
m
ξd

+
(
q(0)− m

ξd

)
e−ξdt, if 0 ≤ t < t∗d,

m
ξb

(
1− e−ξb(t−t∗d)

)
, if t ≥ t∗d,

if q(0) < 0, (7.30)

where

t∗d = − 1

ξd
log

(
m/ξd

m/ξd − q(0)

)
. (7.31)

If m < 0,

q(t) =
m

ξd
+

(
q(0)− m

ξd

)
e−ξdt, if q(0) ≤ 0, (7.32)

q(t) =

{
m
ξb

+
(
q(0)− m

ξb

)
e−ξbt, if 0 ≤ t < t∗b ,

m
ξd

(
1− e−ξd(t−t∗b )

)
, if t ≥ t∗b ,

if q(0) > 0, (7.33)

where

t∗b = − 1

ξb
log

(
m/ξb

m/ξb − q(0)

)
. (7.34)

Note that the equilibrium of the fluid limit also depends on the sign of m:

lim
t→∞

q(t) =

{
m/ξb, if m ≥ 0,
m/ξd, if m < 0.

(7.35)
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In the remainder, without loss of generality m ≥ 0. Furthermore, set q(0) =
m/ξb so that q ≡ m/ξb. Subtracting q(t) on both sides of (7.26) yields,(
Q̄n(t)− q(t)

)
=
(
Q̄n(0)− q(0)

)
−
∫ t

0

[
ξb1{Q(s)≥0} + ξd1{Q(s)<0}

]
Q̄n(s)− ξb q(s) ds+ Ȳn(t)

(7.36)

=
(
Q̄n(0)− q(0)

)
−
∫ t

0

ξb
(
Q̄n(s)− q(s)

)
ds

+

∫ t

0

1{Q̄n(s)<0}(ξb − ξd)Q̄n(s) ds+ Ȳn(t). (7.37)

Let Q̂n(t) =
√
n
(
Q̄n(t)− q(t)

)
. Then

Q̂n(t) = Q̂n(0)−ξb
∫ t

0

Q̂n(s) ds+

∫ t

0

1{Q̄n(s)<0}(ξb−ξd)Q̄n(s) ds+ Ŷn(t) (7.38)

Now, we argue non-rigorously that the one-but-last term vanishes as n → ∞.
Namely, by defining the function G : D[0,∞) → D[0,∞) by the integration
operator:

G(u) =

∫ t

0

1{u(s)<0}(ξb − ξd)u(s) ds, (7.39)

this term can be expressed as G(Q̄n). Hence by the fact that Q̂n
a.s.⇒ m/ξb and

the CMT we see G(Q̂n)⇒ 0.
Under this claim, we deduce by the approach of Proposition 3, that if Q̂n ⇒

Q̂ for n→∞, then Q̂ satisfies the stochastic integral equation

Q̂(t) = Q̂(0)− ξb
∫ t

0

Q̂(s) ds+ σW (t), (7.40)

which implies that Q̂ is an Ornstein-Uhlenbeck process with infinitesimal mean
ξb and variance σ2 := λbE[B2] + λdE[D2].
The result that the scaled process converges to an Ornstein-Uhlenbeck process
can be intuitively justified by the so-called mean-reverting behavior of the orig-
inal process. That is, the further the process is away from its mean, the greater
the drift towards that equilibrium. This is the defining feature of the OU diffu-
sion process. The decay rates ξb and ξd are responsible for the original process
being ‘forced’ towards 0 and therefore the similarities should not be surpris-
ing. However, note that in the diffusion limit Qn has drift ξb (cq. ξd) towards
m/ξb ( cq. m/ξb, if m > 0 (cq. < 0) at any position of the process. This implies
that if Qn ∈ (0,m), it has an upward drift equal to ξb, which is at first sight
counter-intuitive.
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8. Numerical evaluation

This section is devoted to the numerical evaluation of the density functions
f(·) (amount of shortage) and g(·) (amount of blood present) found in Proposi-
tion 1, as well as the performance characteristics resulting from these in Corol-
lary 1. In particular, we examine the approximation of the density of the net
blood present that follows from the diffusion limit that we obtained in Section
7. We shall restrict ourselves to the case of exponentially distributed amounts
of blood requirements and blood deliveries.

The diffusion limit in Proposition 3 promises to describe the process’ distribu-
tion accurately for large blood and demand arrival rates. Therefore, we stick
to the framework of Section 7. Namely, we denote by Qn(t) the net amount of
blood present at time t for the process with arrival rate nλb and nλd, where λb
and λd are fixed quantities. We fix µb, µd, ξb and ξd as n→∞. LetQn be the sta-
tionary counterpart of Qn(t). From Proposition 1 we have an exact expression
for the density of Qn, namely hn(v), defined as

hn(v) =

{
fn(−v), if v < 0,
gn(v), if v ≥ 0,

(8.1)

where fn and gn are the density functions of the amount of demand and blood
present, respectively, where the subscript indicates that all arrival rates are
multiplied by n.

On the other hand, Proposition 3 tells us that Q̂n is approximately an Ornstein-
Uhlenbeck process with long-term mean 0, drift−ξ∗ and infinitesimal variance
σ2, where

ξ∗ =

{
ξb, if m ≥ 0,
ξd, if m < 0,

m =
λb
µb
− λd
µd
, σ2 =

2λb
µ2
b

+
2λd
µ2
d

. (8.2)

The stationary distribution of this process is a normal distribution with mean
0 and variance σ2/(2ξ∗). Hence, we have

Qn − nm/ξ∗√
n

≈ N
(

0,
σ√
2ξ∗

)
, (8.3)

for n large, and we may approximate

Qn√
n
≈ N

(√
nm

ξ∗
,

σ√
2ξ∗

)
. (8.4)

Let ϕn(v) denote the density of this normal random variable. The exact density
of Qn/

√
n is given by ĥn(v) :=

√
nhn(

√
nv). We choose to scale Qn by

√
n and

thereby keep the variance of the limit fixed as n → ∞, to be able to do a fair
visual comparison.

In Figure 4 we depict the two densities for λb = 1, λd = 1.2, µb = 0.5, µd = 1,
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(a) n = 1 (b) n = 5 (c) n = 25

Fig 4: Density function of Qn/
√
n (black) and the Gaussian limiting density

function (dashed) for ξb = ξd.

(a) n = 1 (b) n = 5 (c) n = 25

Fig 5: Density function of Qn/
√
n (black) and the Gaussian limiting density

(dashed) for ξb 6= ξd.

ξb = ξd = 0.5. Figure 5 shows the density function for the same parameters,
except ξb = 0.6 and ξd = 0.1.

First, observe that for these parameter settings, the Gaussian approximation
is already quite accurate for n = 5. For n = 25, the plots almost align. In Figure
5 we clearly see a discontinuity of the exact density at v = 0, as we already
found by the left and right limits in (4.52) and (4.53). Note however, that as
n → ∞ the jump at v = 0 vanishes. Also, as n grows, a shift towards the right
(in this case, because m > 0) occurs, so that πd → 0 and πb → 1 as we predicted
in Section 7.

The fluid limit of Qn gives us an approximation for its mean. Namely, since
Qn/n

a.s.⇒ m/ξ∗, we have
EQn ≈ nm/ξ∗. (8.5)

The exact value is given in Corollary 1. The diffusion limit also provides an
approximation for πd (and πb) as n grows large. Namely

πd = P(Qn ≤ 0) = P
(
Qn − nm/ξ∗√

n
≤ −
√
nm

ξ∗

)
≈ P

(
N(0, σ/

√
2ξ∗)) ≤ −

√
nm

ξ∗

)
= Φ

(
−
√

2n

ξ∗
m

σ

)
, (8.6)

where Φ(·) is the cdf of the standard normal distribution. Note that this ap-
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ξb = ξd = 0.5 ξb = 0.6, ξd = 0.1
n EQn/n πd (8.6) EQn/n πd (8.6)
1 1.6 0.31977 0.30990 0.21442 0.43755 0.32531
2 1.6 0.24092 0.24145 0.80897 0.33806 0.26092
5 1.6 0.12478 0.13363 1.19738 0.18271 0.15559

10 1.6 0.04978 0.05833 1.30135 0.07873 0.07604
20 1.6 0.00958 0.01325 1.32941 0.01827 0.02141
50 1.6 0.00010 0.00023 1.33334 0.00036 0.00068

TABLE 1
Gaussian approximations of performance metrics compared against true values.

proximation confirms that πd → 0 if m < 0, and πd → 1 if m > 0.
We numerically test these approximations against the true values for the two

parameter sets as before in Table 1. Note that the expected (scaled) means for
Qn approximated by the diffusion limit equal 8/5 and 4/3, respectively.

We see that in case ξb = ξd, the approximation for the mean is exact, as we
saw in Corollary 1, while for ξb 6= ξd, the value of EQn/n converges to the limit
4/3 rather quickly. The approximation for positive demand performs better for
the first scenario. We can blame this on the discontinuity of the density function
of Qn if ξb 6= ξd.

9. Conclusions and suggestions for further research

In this paper we have studied a stochastic model for a blood bank. We have
presented a global approach to the model in its full generality, and we have ob-
tained very detailed exact expressions for the densities of amount of inventory
and amount of demand (shortage) in special cases (exponential amounts of do-
nated and requested blood; and either ξb = ξd = 0 or αb = αd = 0). Moreover,
we have shown how an appropriate scaling, for the model in full generality,
leads to an Ornstein-Uhlenbeck diffusion process, which can be used as a tool
to obtain simple yet accurate approximations for some key performance mea-
sures.

Our model is a two-sided model, in the sense that we simultaneously con-
sider the amount of blood in inventory and the amount of demand (shortage),
one of the two at any time being zero. Such two-sided processes arise in many
different settings, and thus are of considerable interest. The present setting is
reminiscent of an organ transplantation problem, where there is either a queue
of persons waiting to receive an organ, or a queue of donor organs. The per-
ishability/impatience aspect features there, too [6]. A quite different setting is
that of insurance risk. We refer to Albrecher and Lautscham [1] who extend the
classical Cramér-Lundberg insurance risk model by allowing the capital of an
insurance company to become negative – a situation that is usually indicated
by “ruin” in the insurance literature. Their process thus becomes two-sided.
The capital might become positive again; however, at a rate ω(x) when the
capital has a negative value −x, bankruptcy is declared and the process ends.
Interestingly, similar special functions (like hypergeometric functions) play a
role in [1] and in the present study.
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Our results are restricted to one type of blood. It would be very interesting
to extend the analysis to multiple types of blood. Another important exten-
sion would be to use our results to facilitate the decision process that is faced
by the CBB on a daily basis: Which amounts of blood, and of which types,
should today be sent to the local blood banks (hospitals)? Knowing that, e.g.,
blood types O−, A−, B−, AB− can satisfy the corresponding + type (but not
vice versa), one may try to optimize the blood allocation process on the basis
of actual amounts of blood present.
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