EURANDOM PREPRINT SERIES

2015-018

August 24, 2015

A reinsurance risk model with a threshold coverage policy -
The Gerber-Shiu penalty function

O. Boxma, E. Frostig, D. Perry
ISSN 1389-2355



A reinsurance risk model with a threshold coverage policy —
The Gerber-Shiu penalty function

O.J. Boxma,!, E. Frostig?, and D. Perry?

Department of Mathematics and Computer Science, Eindhoven, The Netherlands
2Department of Statistics, University of Haifa, Israel

August 20, 2015

Abstract

We consider a Cramér-Lundberg insurance risk process with the added feature of reinsurance.
If an arriving claim finds the reserve below a certain threshold -, or if it would bring the reserve
below that level, then a reinsurer pays part of the claim. Using fluctuation theory and the
theory of scale functions of spectrally negative Lévy processes, we derive expressions for the
Laplace transform of the time to ruin and of the joint distribution of the deficit at ruin and the
surplus before ruin. We specify these results in much more detail for the threshold set-up with
proportional reinsurance.

1 Introduction

Let X (t) be the surplus at time ¢ of the classical Cramér-Lundberg risk process,
Nt
X(t):u—l—ct—ZZi (1.1)
i=1

In this model the company earns premium at a fixed rate ¢, the claim arrival process {N; : ¢t > 0}
is a Poisson process at rate A\, {Z; : i = 1,2,---} are the successive claim amounts indexed by their
appearance, and are i.i.d. positive random variables and u = X(0).

In models like this it is of interest to study the distribution of the time to ruin, the joint
distribution of the time to ruin, the deficit at ruin and the surplus before ruin. For a comprehensive
overview of the state of the art of the classsical Cramér-Lundberg model see the book of Asmussen
and Albrecher (2010).

In the last decade the classical Cramér-Lundberg model in (1.1) was modified to capture dividend
payments to the shareholders. Under the threshold dividend policy, dividends at rate ¢ < ¢ are paid
whenever the reserve is above a threshold . This process has a ’bent’ at « and it is called refracted
Lévy risk process; see Gerber and Shiu (2006), Zhang et al. (2006), Dickson and Drekic (2006), Lin
and Pavlova (2006). Wan (2007) considered the more general model where the compound Poisson
risk model is perturbed by a Brownian motion.



Lately, Kyprianou and Loeffen (2010) considered such a state dependent premium rate model
for the general spectrally negative Lévy risk process. They used fluctuation theory and the theory
of scale functions for spectrally negative Lévy processes to obtain the Laplace transform of the exit
time, of the time to ruin, and of the joint probability for the surplus before and at ruin. In order to
reduce risk, the insurer insures part of the risk. The insurer pays a premium to the reinsurer, while
the reinsurer pays a part of each claim. Motivated by the threshold dividend policy, we consider the
reinsurance threshold policy; the insurer pays a constant premium to the reinsurer and the reinsurer
pays part of the claim that falls below a threshold ~.

We apply similar methods as in Kyprianou and Loeffen (2010) to obtain similar quantities of
interest. Assume that the company has a reinsurance contract. To describe it define a function
I(z), where I(x) < z, and I(z) is non-decreasing in z, I(0) = 0. The reinsurance pays part of the
claim when the claim is below a given threshold . Let T (x,y) denote the part that the insurer pays

for a claim of size z occurring when the reserve level is y. The reinsurer pays x — I(z,y). I(z,y) is
given by:

3 x ify>vy,z<y—7
Iz,y)=q y—y+1l(z—(y—7v) fy>yvz>y—n (1.2)
I(x) if y <7

Examples for I(x) are I(x) = min(a, z) for a given constant a, and I(z) = az, 0 < a < 1.

Throughout we will not specify the reserve level y in T (z,y) but it will be clear from the context.
We consider the following risk process: The premium rate, the claim arrival process and the claim
amounts are as per (1.1). When a claim of size x arrival finds the reserve below ~ the insurer pays
only I(x). When a claim of size x finds the reserve at level y > «y the insurer pays y—y+1(x—(y—7)),
i.e. he pays only part of the claim that falls below v. We denote by U, the reserve level at time ¢
under this policy.

In a companion paper (Boxma et al. 2015) we analyze a risk process with state dependent
premium rate and state dependent claim payments assuming a barrier dividend policy. Under this
policy all the premium income is paid as dividends when the reserve level is bigger than a barrier
b. In that paper we applied different tools to find the distribution of the deficit at ruin and the
amount of dividends until ruin. In the present paper we consider a special case of state dependent
claim payments and consider the expected discounted time to ruin and the joint distribution of the
deficit at ruin and the reserve just before ruin.

The paper is organized as follows. Section 2 introduces some notations and a few identities
related to exit times of spectrally negative Lévy processes which play a crucial role in the remainder
of the paper. Section 3 presents expressions for the Laplace transform of the exit time from an upper
barrier, the time to ruin and the joint probability for the surplus before and at ruin for general I(x).
In Section 4 these results are specified in much more detail for the case that I(z) = ax.

2 Notations

Denote by X; a compound Poisson risk process with drift ¢ (premium rate), and i.i.d. claims
with distribution Fj arriving according to a Poisson process at rate A. Similarly Xy is a compound



Poisson process with drift ¢ (premium rate), and i.i.d. claims with distribution Fy arriving according
to a Poisson process at rate \, where Fy(z) = Fy(I7'(x)), where I71(y) = inf{z : I(z) > y}. Let

Gils) = B[], i=0,1
and let
®;(v) =sup{y > 0: ¢;(y) = v}

Definition 2.1. For a given spectrally negative Lévy process X, with Laplace exponent ¥, and g > 0,
there is a unique q scale function associated with X, W@ : R — [0,00) such that WD (z) = 0 for
x <0, and on (0,00), W is the unique continuous function with Laplace transform

Ooefﬁx @ (2)dx = 1
f W@ = 1)

We will denote W(© by W. Consider a spectrally negative Lévy process X, with g-scale function
W@, For b >0 let
mh=inf{t >0: X(t) > b}

and
7, =inf{t >0: X(t) < a}.

For the modified process U define
Kk, =inf{t > 0: U, > b},
and
k, =inf{t >0:U; < a}.
We denote by P, and by E, the conditional probability and expectation given that X (0) = x.
In the sequel we will apply the following identities, (Kyprianou (2010), Chapter 8):
Theorem 2.1. Let X be a spectrally negative Lévy process. Then

(i) Forq>0, andxz <b
E,[e 97 Lt on] = VWV/((Z))((Z)) (2.2)
(ii) Letb >0, z €[0,b], ¢ > 0 then
WD ()W D (b — )
W(q)(b)

/ e Py (X € dy,t <77 ATy )dt = ( WD (g — y)) dy. (2.3)
0

3 The Laplace transform of the time to ruin-General /(z)

To derive the Laplace transform of the time to ruin we need to obtain some quantities. Let b > -,
and let B CR. For 0 < x <b let
o0

V@ (z,~,b,B) = / e "P,(U; € B,t < Ky Akjf)dt
t=0



174%% (x,7,b, B) is the discounted time that the process U; spends in B, given that Uy = x. Let

v < x < b, then

V@ (z,7,b, B)

/ e—qt/ Py (Xi(t) edy — v, t <75 A Tbt,y)dydt (3.1)
yE€BN[v,b]

00 b
/ ot / / P, (X1(t) € dy —v,t < 75 Ay )AAFy(0)dydt -
t=0 0>y—y !

(3.2)

(/ / € TPy 1(0-(y—y) (Xo(s) € dz,5 <75 AT )ds (3.3)
s=0 JzeBN[0,y)

By 10—ty (€7 s Lot o )V O(1,7,0, B)) (3.4)

(3.1) describes the discounted time that U spends in B N [y, b] before it down-crosses the level .
(3.2) multiplied by (3.3) is the discounted time that U spends in B N [0,7) from the moment it
down-crosses 7 until it exits [0,7). Similarly, (3.2) multiplied by (3.4) is the expected discounted
time that U spends in B from the moment the process first hits v after the first down-crossing of

the level v

Using the scale function as in (2.3), and with Wi(q) (x) the scale function associated with X;,
i = 0,1, we obtain that:

V(q) (x? FY’ b? B)

(@) Q)
t/B[b<wq< — Wb w_wﬂwx_m)@
yEBN[Y.b] Wb — )

b— q) — @/
/ 7 /9>y (Wl WQ?(/ (b) 1) — W (@ -y - y)) XAy (6)dy -
)

(/ (Wé)(v 10— y)Ws" (v — 2) W{)(Q)(,y_j(g_y)—z)> dz
2€BN[0,y) We? (7)

W (y — 1(6 — )
W2 (y)

V@ (y,7,b, B)) , y<x<b (3.5)

Similarly, for x < :

V@(z,7,b,B) = /
t

8

o

eqt/ - )IP’QC(XO(t) € dy, 1t<707/\77+)dt
yeBN[0,y

[ e / P,(Xo(t) € dy. 1+, )dtV@(7,7.b, B)
yelo

t=0 77
- @OV (=)
- /yEBﬂOy < Wét])(,},) Wy (x —y) | dy

W) o

Wi TP (3:6)



To obtain V(9 (v, ~,b, B) we substitute # = 5 in (3.5) and solve the associated equation.

1
V@(y,7,b,B) = '
y=v J02y—y Wi (b—) ! Wi () Y
[ (Wf”(owfq)(b - y)) "
yEBN[Y,b) Wl(q)(b =)
b () (@) p, _
n ( / / (Wl ((’())Wl (b y)>)\dF1(0)dy- (3.7)
y=v JO2y—y qu (b—")
@D _ T(H— (1 — (@), _
/ Wo (v —1(6 (%> )IWo (v ) WDy~ (04— ) — 2) | dz
=€BN0,7) Wy (7)

Next we obtain

V@D (z, 4, B) = / e "P, (U, € Bt < kg )dt = blim VD (z,~,b, B)
t=0 0

For a Lévy process X (t) with Lévy exponent ¢, adapted to a o-field F; let
My (B) = eBX )=y (B)
be the Wald martingale associated with X. Define the measure P? as follows: For A € F; define
P(A) = B[ (P14

Denote by W((/g; the scale function associated with X under P?. Apply (Kyprianou 2010) Chapter

8.2, or eq. (53) in Kuznetsov et al. (2013):

L PO (X(c0) > 0), (3.5)

WD (1) = 2@z z)=eP@r___ -
() (@()) (%) Wp(q)(oﬂ A

where X () = infs<¢ X (s). Under the measure ]P’g)(Q)7 X drifts to oco. Applying (3.8) to X7, we get
that for y <y < b

P b— ®1(q)
Wl(q)(b—y) _e 1) y)Pb_ly (X (00) = 0) _ e P@y—) (3.9)
Wl(q)(b —9) eél(q)(b*W)IP’fj,(Yq) (X (c0) > 0) boe

Thus, taking the limit as b — oo in (3.5) we get that for x > =,

V@ (z,v,B) = / (Wl@ (z —7)e~ 21 @) _ W1(q) (z — y)) dy
y€BN[y,00)
+ / / (Wl(q) (2 —7)e  T1@=) _ Wl(q) (x — y)) AFy(0)dy -
y=y J02y—y

(@ _ _ @ _
(/ . (Wo (v 1(9-1—’(7(1) y))Wo (y )Wéq)(fyl(eqL’yy)z)) dz
ey wy"(7)

W (y — 10+~ — y))
W (y)

V@D (y,, B)) (3.10)

5



For z < 7y, we obtain a similar expression as in (3.6), by replacing V(2 (z,7,b,B) and V(@) (v,7,b,B)
by V@ (z,~, B) and V(9 (y,~, B) respectively.

V(@ (~,~, B) is obtained by substituting 2 = v in (3.10) .

1
V@(y,7,B) =
) ) ( ) I 9
— [ fyey WD (0)em B @D AdFy (0) ™ (;f“”((? v) gy

[/ W1(q) (0)e 21 @=7) gy

yE€BN(y,00]
< / / WP (0)e= 2 DD \IF (0)dy - (3.11)

0>y—y
WPy =10 +7 =)W (= 2)

-/ A WO - 104y —y) =) | d

z€BN(0,7] WOq (’7)

Introduce &, an Exponentially(q) distributed random variable. The Laplace transform of the time
to ruin is:

Eele™01 —__]=P,[€, > k]

g <00

_ 1—PE, < xg] = q/ 9P, (U € [0, 00))dt
0

= 1- qV(q)(xawa [07 OO))

Let h(z,y) be a bounded function. The Gerber-Shiu penalty function reflects the discounted cost

of the insurer at the time of ruin, r, as a function of the surplus just before ruin U _- and the
o

deficit at ruin |U o |, assuming a discount factor g.

miz.q) = Eole ™ h(U,- .|U,-])]

Y

= V(g %dy)/ AdEy(0)h(y, 0 — y)do
y=0 0>y

+ / VO (z ’y,dy)/ AE(0)h(y, 1(0 — (y — 7)) —v)do
y=" 0>y,1(0—(y—7))>v

4 I(x)=ax

In this section we consider the case where I(z) = ax, 0 < a < 1. In this case we will obtain simpler
expressions, especially for equations (3.5)-(3.11). We will get expressions involving only one integral
instead of two. We apply a similar approach as in Kyprianou and Loeffen (2010) (See also Chapter
8 in Kyprianou (2013)). Throughout we put index 1 for quantities related to the risk process X (t)
with premium rate ¢ and claim distribution F}, and 0 for quantities related to the risk process Xo(t)
with premium rate ¢ and claim distribution Fy, where Fy(z) = Fi(z/«).

This section is organized as follows. Section 4.1 considers the exit time from an upper threshold
b before getting ruined, and establishes a key identity which is applied in the remainder of this
section. In Section 4.2 we obtain an expression for the discounted time that U; € B before exiting



[0,b], where B C R, and in Section 4.3 we obtain a similar expression for the case that b = oc.
Section 4.4 presents the Laplace transform of the time to ruin, and Section 4.5 the ruin probability.
Section 4.6 presents an expression for the Gerber-Shiu penalty function and the joint probability of
the surplus before and at ruin.

4.1 Exit time for U
Let v < b. We first obtain an expression for p(z,7,b, q), where
—gkT
P(l’v% b7 Q) = El‘(e G 1{”:<”5}|U0 = ‘/1:)

Let v <x < b. By (2.2) and (2.3):

(@, _
p(z,7,b,q) = W 1)
W (b—7)
b—vy .73‘
/ / ( (q ’V)Wl(q)(b—fy y) — W(Q)(aﬁ—’y—y)>
o=y \ W7 (b —7)
— (0 —
% G @ ( y))AdFl(H)dyp(%%b, q)
Wy (7)
For 0 <z <+,
W(‘I) T
p(l’,’}/, b?Q) = O(q)( )p(’y,'y,b,q)
Wy (7)

Since Wl(q) (0) = 1/¢ > 0, see e.g. Section 8 in Kyprianou (2006), substituting = v in (4.1), we
obtain after some calculations that:

b—y -1
p(7,7,b,9) = Wi (7) (Wf(”(b — W (y)e — / A WD (b — 5 — )W (v — (0 — ) AdF1(6) dy)
Yy= 2y
(4.2)
For = > ~y let
T—y
Alx) = / W@ == W0 - a0~ )raF o) dy (4.3)
Yy= 2Y

We define A(xz) = 0 for x < v. We want to find a simpler expression for A(z), x > ~. We apply
similar techniques as in Kyprianou and Loeffen (2010) (see also p. 72 in Kyprianou (2013)) for a risk
process where the premium rate decreases when the process up-crosses a given threshold. Consider



the Laplace transform with respect to x of A(x):
e @ (@
/ e / Wi (@ — v —y)Wy" (v — a(f — y))AdF1(0) dydx
="y y=0 Jo>y

00 T—
= eSV/ e s(@=7) / Wl(q) (x—v— y)Wéq) (v — a0 — y))AdF1(0)dy dx

Y y=0 Jo>y
= e“”/ e / WI(Q) (x — y)Wéq)ﬁ —a(f — y))A\dF1(0)dy dx (4.4)
=0 y=0J6>y

= e—sv/ e Y W (y — a(f — y))AdF1(9)/ e EIWD (2~ y)d dy
y=0 0>y =y

e 7

- - ooe_s (9) —all —
B 1’01(8)_(]/3/:0 Y oy W (v (0 —y))\dF1(0)dy (4.5)

where in the last equality we applied the identity:

-
Y1(s) — ¢

Consider now the double integral in the last line of (4.5).

/ e_“Wl(Q) (z)dx =
0

[ e [ Wit - a-y)irio
y=0 0>y

= e [ w6 a0 - y)iRay
y=0 0>y

= / e Wéq) (v — 0+ ay)dFy(0)dy
y=0 0>ay
1 (e}
_ 1 / esvle [ WDy g 4 y)dFy(0)dy (4.6)
@ Jy=0 0>y

To obtain the last expression assume that the process behaves as Xy, i.e. the claim amount is always
distributed as Fy, (i.e. a = 1). In this case 7,7 = K/, 7, = K . Then,

(e 1+ [ X0(0) = ) (4.7)

we? (0)

By (4.2) (with X; behaving now exactly as Xo) and (4.7) we obtain the following equality

b— -1
=W (W00 =W e [ W= W= 0= o))

(4.8)
Since b is any threshold such that b > ~, replacing b by z, x > ~ in (4.8) we obtain the following
equality:

=y
/ W (=5 =)W (7 = (6 — ) AdFo(6) dy
y=0 0>y

= Wy = Wg? ()~ Wy () (49)



Taking Laplace transform from the two sides of (4.9) we obtain that :
o (a) (@)
G / | Wi = Wi (0~ y)xar0) dy
="y 0>y
— W) / e W (& — y)da — / e W (2)d (4.10)
=" ="

Repeating the same calculations as in (4.5) ( replacing Fy by Fy and Wl(Q) by WéQ)), the lefthand
side of (4.10) equals

e [ [ W= Wi = 0 - u)dF(6) dy
T Y

es'y/ e Wo(q) (v — (0 —y))AdEFy(0) / efs(m*y)WO(q) (x —y)dzdy
y=0 0>y =y

=57
- / [ WOy — (0 = y))AdF(0)dy (4.11)
0>y
The righthand side of (4.10) equals:

[o¢] [o¢]

cWéq) (7) / 6_S$Wéq) (z —7)dx — / e_“Wéq) (z)dx
T="y =7

e 57

o = LW D[] (4.12)

= W)

where

LW 9s) = / e "W () da
T="
Thus, (4.10), (4.11) and (4.12) yield:

/ [ W= 0 - ROy
2y
= WD () — e (o(s) — ) LW D3] (4.13)

(4.5), (4.6), and (4.13) yield that the Laplace transform of A(z) is

1 e W(Q) vs/a L W(Q) 4.14
am(c 0 (V) — € (Yo(s/a) — )L W, [s/a]) (4.14)

Let § = = — ¢, then it is easy to see that
¥1(s) = tho(s/a) — ds. (4.15)

Thus the Laplace transform of A(z) can be written as follows:

.
L7 wioyy — Lost-ap g e - — L 98 ai0-as w@ig ) (416)

ayi(s) — g o’ Di(s) —qa’



To invert the Laplace transform notice that:

e -
— = / e W (2 — v)dx (4.17)
Pi(s) —q y
675(l_1)£ W Ns/a] = / 6—5$Wéq)(a1‘+’y(1—a))dm (4.18)
«
’
1 sevs(éfl) ( e—5Y
— LW Ps/a] = WY / / WD (2 — )aW? (ay + 7(1 — a))dydz,
agi(s)—q " ls/al U1(s) — q () o (ay+~(1—a))dy
(4.19)
where ]
W (@) = 3 W @)
Thus,

, d
AW (ay +4(1 - a)) = dyW(q)(ay+'y(1 @))

(4.19) is derived as follows:

/ e %% / Wl(q) (x — y)aWO(q)l(ay +(1 — a))dydz
x y="

=
= a/ SyW( 9 (ay +~v(1— a))/ e_s(x_y)Wl(Q)(x — y)dydx
y=y a=y
1 —s (@) /OO —s () ]
= —— |—e W, +s e Wy (ay +v(1 —a))d
S T s [ ey a0 =y
1 s | S
B zm(s)—q[_e W)+ e 1>£7qu>[3/@]]
(4.3), (4.5), (4.6) and (4.9) yield:

xT

A(z) = WO ()W (=) WD (a+4(1—a))—ad / W (@—y) W (ay+~(1—a))dy (4.20)
Y

For x > ~ define

w9 (z,2) = WSQ)(QJ: —z+v(1—-a)) + 04(5/ WI(Q) (x — y)Wéqy(ay —z+v(l1—a))dy (4.21)
ol

and for x < 7y define
w@(z,2) = W (z - 2). (4.22)

(@) ()

In this subsection we need only wy'’ (z,0), later we will use wy"’ (x, z). For z >~

A(z) = WP ()W D (@ — 5) — w'@ (x,0).

10



Substituting (4.20) in (4.1) and (4.2), we obtain for v < x < b that

(q)
2 _ (f - 7)
p(x,7,b,q) I +
b W@ = @, @ .
0 /9>y (Wl(q)(b B ’}/) Wl (b Y y) Wl (‘T Y y)
@/ all —
« 2O @ O =) sar, 0)dy p(r.,.9)
Wi (7)
_ Wf(”)(x -1, (Wf(@)(m ) A0 Aw )p(%% b
qu (b - ’Y) qu (b - ’Y) qu (’7) qu (V)
W (@ — ) (Wf‘” (@ —7) ) 1
= + A(b) — A(x
W20 -y \ W20 - 0= Aw) W2 (b — )W (7)e — A(b)

Thus, for x > v
p(z,v,b,q)
1
Wi (b — 7 )ws? (b, 0)
(Wi (@ = )@ ®,0) + Wi (@ = WD (b — WP (3)e = W (@ = )wl® (5,0)
(q)

we (z,0
= W =)W 0= )W (e = WO 0= ufd 2,0) = LD
wq” (b, 0)

X

Notice that @ @
qu (7) _ we! (7.0)

p(v,7,b,q) = =
w® (5,00 w(b,0)
Thus, for x <~
W(q) T wgz) 2,0
p(x>75b7Q) = %Q)( )p(7777b7 Q) = %
. w&q) x,0
Hence we can, for all z < b, write p(z,v,b,q) = wff)((b,o))'

4.2 V@ (x,~,b B)
We obtain for B C (0, b) the discounted time the process is in B before exiting (0,b). Define

V@ (z,~,b,B) = / e P, (U, € B,t < kg Ak )dt
0

11



First we consider the case v < x < b. By (3.5)

@,
V@ (z,7,b,B) = / (Wl()(@”Y)
yeBnly,b) \ W7 (b —7)

bffy (Q) _
N / (Wwfw(b_,,_y) - Wf@(x_fy_y)) AdFy(6)
y=0 J6>y

W (y — a6 —y))
Wy (+)

V@ (y,7,b, B)} dy
Notice that for = > ~:

Ty
/ o Jos W (z — v — )W (y — (6 — y)AdFy (0)dy = A(z) = WP (WD (@ — 5) — w
Yy= 2y

To obtain

z—
Al z) = / W =W = - a0 AR O)dy,
Y= 2y

substitute v, =y — z,x, = & — 2z in (4.3). Similar to the calculation of A(x) in (4.20),
Afe,2) = Wy (7 = )W (@ = 7) — 0l (w, 2)

where, cf. (4.21), for z > ~:

r—z

wfe.2) =W (alz =) + (=21 -a) +as | W2y W (ay + (1= a)(y - 2)dy

Y=z
(4.23)
After some algebra,

w9 (z,2) = Wo(q) (ax —z+7y(1—a))+ Ocd/ Wl(Q) (x — y)WO(qy(ay —z+v(1—a))dy. (4.24)
gl

Thus, for v < x < b we obtain
1745 (z,7,b,B) = / 1()7W1(q)(b —y) — Wl(q) (r—vy) | dy
yeBnivb) \ W7 (b —7)

o (Wé%—@ (_Wf”(
oz \ W)\ WP (- )

S
|
2
g
e
=
=
+
g
o=
&
=
N——

Wi 1) ’
@, (@)
+ (w&q)(%o) _ ngz)(b, 0)) % (4.25)
16 (b—") W (7)



Substituting = = v we obtain a relation for V@ (v, ~,b, B)

(9)
W (0
V@D(y,7,6,B) = / <(q)1 © Wl(q)(b—y)> dy
veBnlyb) \ W (b—7)
(

@/, (9)
s f Moo= (O 00,00+ wle)(5,0)
2€[0,7)NB qu (b—")

wi?(0)
Wi 1)

@ (@
+ <w§g)(%o) - ww(q)(b,0)> V9,6, B)

Wb —) Wi (y)

Since w{? (7,2) = Wo(q) (v — 2), we obtain that

Wi (b — y)dy

WP (O)wl? (b,0) V@ (37,6, B) / Wi (0)
Wb — ) WP () yeBnly) WP (b — )

(@) (9)
W% (0w’ (b,0
+ / (Mféq)(’)’ — z) (1 — (ql) ( )w ((q) ) )
2€(0,y)NB W 1 (b - ’Y) W 0 (7)

wi?(0)
W9 (b )

w,(lq)(b, z) — Wéq) (v — z)) dz

and, noticing that the two Wéq) (v — 2) terms cancel in the righthand side

(9)
W,
VoG = SEOL [ gy,
we” (b,0) JyeBN[y,b)

(@)
N / WDy o)+ M(/O)i(fy)w&q)(b, 2 ) d
2€(0,y)NB we” (b, 0)

Substituting V(9 (~, v, b, B) back into (4.25) we obtain that:
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VD (z,7,b,B) = /
y€BN[y,b)

r—7
B <q)( )> / Wi (b — y)dy
WY (b—~) ) JyeBnly.b)

1
(9) (9)
Wo"(y—2) [ W7 (x—7) w? (b,0) + wl? (=, 0)>

Wi (y) WP (b )

W'D (b, 2) — wlD (z, z)) dz

<w£3><x,o> W ey, 0)> |
W) W20 - W)

(9)
[ (w0 -2+ 6,2 ) a:
z€BN[0,7) w&q) (b,0)

Thus, for v < x < b,

(9)
VO (z,,0,B) = / we 80y _y) - Wi —y) ) dy
yeB[,b) \ wal’ (b, 0)
(q)
- f 280,400, 4) ~ 0 ,9) ) dy (4.26)
yeB0,y) \ wa? (b,0)
For x <  we obtain from (3.6)
(9)
V@B = | Wo 0y 5~ y) — WP (@~ ) ) ay
yEBN[0,y) qu (v
(9)
+ Dy o, )

wld
x
= / (?q)( ) We? (v = y) = Wy (w — y)) dy
veBnoy) \ Wo™ (v)

Wéq) () w&q)(b, 0) JyeBn[y,b)
(9)
W,
[ ewP - S 00 )y
y€BN0,7] wa!’ (b, 0)
(9)
= Ty 00,4) WP 2 ) ) dy
(q) a 0
yeBN[0,7) \ wa’ (b,0)
(9)
Wo (@) W (b - y)dy (4.27)
(@) 1
we” (b,0) JyeBn[y,b)

Since for x < 7, cf. (4.22), w? (x,2) = Wéq) (x — z), cf. (4.22), we get a similar expression to
(4.26).
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4.3 b— o

In this subsection we obtain
oo
V@(z,7,B) = Eq |:/t0 ¢ eB teny) (4.28)
By letting b — oo in V(9 (z,,b, B):

V@ (z,y,B) = Jim V@ (z,~,b, B)
— OO

Applying the first equality in (3.8) to (4.23) we obtain

w® (b, ) B Wo(q)(ab —2+7(1 - a)) + da fé’ Wl(q)(b - y)Wéq) (ay — z+~(1 —a))dy

w0 W)
ey, o) (ab— 2 +5(1 - a)) (4.29)
e‘bl(‘I)bW(cbl(q)) (b)
b e®P1(D) 0=y, (b—1y) /
(®1(a)) Y) @
+ 5@/ W (ay — 2 + (1 — a))dy (4.30)
. 21 @DV g, () (D) 0

Since Xo(1) > Xi(1), vo(s) > ¥1(s), and ®o(q) < P1(q). By Kuznetsov et al. (2013) Section
3.1, Wia(qg)) (+00) = 1/4'(®(q)).
Thus

e(Po(@a=21(9))b __,
b—o0

and the limit as b — oo of the expression in (4.29) is 0. The limit

by (@) (9) 0o
Wi (b —y)Wy" (ay — 2z +~(1 — a))dy /
fv 1 0 o 0 b~>oo; e—‘bl(q)ym/é@ (ay —z+v(1 —a))dy (4.31)
W, 2l

For z =0 in (4.31) define:

A= [T e ay 1)y (1.3
Y
Applying (3.9), (4.29)-(4.32)
(@) Wi (b—y) 510
— (a) —P1(q9)y
Wl( )(b Y _ O, 8 : (4.33)
we (b, 0) w? (b,0) boo  daA
Wy (b)
and
w'® (b—y) Y
wng)(b - ) _ W@ () R f,y e 1YWY (ay — 2+ v(1 — a))dy 30
w@(p,0) w00 b 1 .
W (b)
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Let x > ~. Letting b — oo in (4.26) we obtain by (4.33) and (4.34):

(@)
0) _
V(@) z,v,B) = / Yo \ L) (=, e~ Py _ pp @) x—y) | dy
( ) yeBﬁ['y,oo) (SO[A 1 ( )

(@) o) ,
+ / wa (@,0) / e Pz O(q )(az —y+ (1 - a))dz —wl® (z,y) | dy
y€BN[0,7) A =

(4.35)

Similarly, letting b — oo in (4.27) and applying (4.33) and (4.34) we obtain for 0 < z < ~ that:

(9)
V@D (5,4 B) = / Vo (@)~ 0y g,
yeBnlyeo) 0aA

”7(4) 00
!
+ / B0 (0 (z) / e~ ®1(a)z éq )(az —y+v(1—a))dz — Wo(q)(x — y)) dy
yeBN(0,y A z

=
(4.36)
Since for x < 7, w? (x,2) = Wéq) (x — z), (4.36) can be written similarly to (4.35).
Thus we can write for all x > 0:
(9)
wy (x,0) _
VO (@ .dy) = ((M(Af "y Wz - y)) Lyt ooy (4.37)

wa‘l) :L‘,O 0 B ; ,
+ <£1 ) / e @O WY (a2 — y 4+ 4(1 - ))dz — w@ (x,y) Lyefo)dy
z=

4.4 The Laplace transform of the time to ruin

Let £(q) be an Exponentially distributed random variable with parameter g.

Eyle ™01 _ 1=P,[E(q) > ky] =1—P,[Us > 0,5 < E(q)]

NO <o
= 1- Q/ e "L (,(0,00),0<s<tydt =1 — Q/ . VD (z,,dy) (4.38)
0 y=

In the last equality of (4.38) we applied (4.28). To find the last integral we have to integrate (4.37)
between 0 and oco. Notice that

v oo ’
/ / 67‘1’1(Q)2Wéq) (OzZ —y+ ’y(l — Oé))dZdy
y=0Jz=y

v /
= / e—<1>1(¢1)z/ WélI) (z —y +~(1 — a))dydz
z="y y=0

= e ®1(0)z O(Q) (az +~v(1 — ))dz — / e ®1(9) SQ)(a(z —v))dy (4.39)

zZ=" z="
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and
/ O (0 —7))dz
2=

—®1(¢)y foo
_ / e H W9 (1)
@ 2=0

_ e~ P1(a)y B e—P1(a)y »
~ a(wo(Pi(g)/a) —q)  ad®i(q) (4.40)

We applied (4.15) in the last equality. Thus, by (4.37), (4.39) and (4.40),

(e e}

1- Q/ e_qtl(Use(O,oo),0<s<t)dt =1- q/ v (z,7,dy)
t=0 y=0

o—1(a) wi? (2,0) [ e~ M@V (ay + 7(1 — a))dy
= 1— (9) - _
1—¢q |:w (z, 0) NI / W1 xr —z)dz + I
(q) —®1(a)y gl
~ Y (a?(giil&a —/Owg)(:v,z)dz] (4.41)

Let = > ~. Substituting (4.21) for wl )(ac z) in (4.41) and adding and subtracting fomw (1=a) WO(Q) (y)dy
(to obtain a simpler expression for (4.41)) we obtain that:

00 (q) 0 —®1(q)yyy (@) _

x,0 HOYW o (oy +v(1 — ))d
E.le” kg lﬁ,< ]=1-—g¢ |:/ W/'I(Q)(x — 2)dz ( )f (ay +( ))dy
¥ A

¥ z v /
— [ Wiz~ 2+ 4(1 - a))dz - ad / Wil —y) [ W (ay — 2+ (1~ a)dzdy
2=0 = 2=0

az+y(1-a)) o0 wl? )(a: 0) [ el )yW(q) (ay + (1 —a))dy
= 1—¢q {/ Wéq) (y)dy — / Wl(q) (x —2)dz + f 1
0 v

crta(i-e) T @
—i—/ qu (y)dy — qu (ax — 2+ ~(1 — a))dz
0

z=0
—04(5/ w9 (z / qu(ay—z—l—’y(l—a))dzdy
y="
az+y(1- a) w((;” z,0 0 o=@y D (o + (1 —«a))d
. 1({/ T e oy 20 = o
0

az+y(l—a) @ ~y @
—i—/ qu (y)dy — / qu (ax —z4+~(1 — a))dz
0 z=0

—as [ WO =)Wy 42— ady+as [ WO = W aly )y
y=y =y
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Thus, for x > v,

_ az+y(l—a)) (Q) z,0 00 _q>1(q)yW(q) a4+ ~(1 — a)d
Ele ™01, ] :1+q/0 WAD () — g (x,0) [ (ay +7(1 — ))dy

A
+qa5/ WD (z — )W (ay +~(1 — a))dy + ¢C(x),
Y=

where

oo (@) ar+y(l-a) (@)
C(x) / qu (x — z)dz — / qu (y)dy
0 0

/_0 Wéq)(a:c —z+v(1—-a))dz—ad /_ Wl(Q) (x — y)Wo(q)(Oz(y —7))dy

Note that

o0

z—y
W q (x—2)dz = /0 Wl(Q) (y)dy,

/
/ W, q (ax —z+~(1 —«a))dz = / Wo" (y)dy,
y=a(z—7)
A
y=

HH

Wi (@ — y)Wg” (aly — 7))dy

WD (@ -y — )W, (ay)dy.
,

y=0

We thus obtain a simpler expression for C(z):

) @ @ E— @
/0 4 (y)dy—/o W (y)dy—a5/ . Wiz — v —y)Wy" (ay)dy
-

Thus C(x) = g(z — ), where

z) = /0 w9 (y)dy — /0 Wi (y)dy — ad / OWfq)(fv—y)Wéq)(ay)dy
y:

Taking Laplace transform fooo e *g(x)dx we obtain that

/OO e g(x)dx = ! — ! - 0
0 s(Pi(s) —a)  s(¥o(s/a) —q)  (Yo(s/a) —q)(¥1(s) — q)

Applying (4.15) we conclude that the last expression equals 0. Thus g(x) = 0 for > =, and

—qKy oaty(l-e) (9) ‘ (9) (9)
Bl 01, ol = 1+ | Wi )dy +aad [ WO = Wi (ay -+ (1 - )iy
(Q)(x 0) foo —'I>1(Q)yw( )(ay+'y(1 _ a))dy (4 42)
L e @i (ay + 4 (1 - a))dy '

For = < -y we obtain from (4.41) or directly from (4.37) that

(@) 0 ,—®1(q)y 1y (@) _
Wy (x 1 W ay+v(1 -«
E.le —aKg 1R_<oo] =1—¢q 0 )fﬁy 1 ( ( ))d +q/ Wo ( —2z)dz (4.43)
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4.5 Ruin probability

To obtain the ruin probability, take the limit of (4.42) for = > ~, or of (4.43) for z < v as ¢ — 0.
For x > ~, the limit of the last two terms in the first line of (4.42) is 0.

To calculate the limit of the last expression in (4.42) notice that:

wi? (2,0) [ e~ @O (ay + (1 — a))dy

e (ay + - )y
:qw&q)(ﬂt,O) &, (q)y(1— a/afoo e—®1( )y/aW(Q) Yy — [T e~ )y/aw(Q)( )y
Jy et )yW(q) (ay +7(1 — a))dy
qfo y/aw( )( )y

— 0@ (g, 0) 2P @701 a)/aW

w e—P1(@)y/ayy (@)
— 0@ (z,0)Letr@r(1-a)/a @ 4 MO (y)dy
* T a fyoo e*q’l(Q)yWéq) (ay +~(1 — a))dy’

where we applied (4.15) in the last line of (4.44).

(4.44)

If 4} (0) < 0 then ®1(0) > 0, the limit of the last expression is 0 and thus the ruin probability
is 1. If ¢} (0) > 0 then ®1(0) =0 . In this case,

tim = — g 0) = 100

lim ( ) —6. (4.45)

Next, we obtain a simpler expression for the denominator in (4.44).

> ! 1 & ®1(9) '
/ €—¢1(Q)31W(§Q) (ay +7(1 — a))dy = ae%(q)v(l—a)/a/ e_lTyWé‘Z) (y)dy
g v

= leqn(q)v(l—a)/a (_Wo(q) (’y)e*q)lT(q)“/
«

o q ’Y q
+<I>1(q)/0 e—qﬁ“ywé”(y)dy—wfo e—qﬁ“ywéq)(y)d@

« (07

= leq)l(‘I)'Y(l—Oc)/oc (_Wo(q) ('y)e_q)IT@W
o

Pi(q) 1 ®1(q) /7 _ 2@, (q)
_ R d
R 6®1(q) a Jo© Wo (w)dy

The limit of the denominator of (4.44) as ¢ — 0 hence is

~(~Wo() + ) (4.46)

Applying (4.44), (4.45),(4.21) and (4.46) we obtain that the ruin probability for x > v is,

Py (kg <oo)—hmIE [e” q017<oo]

a1 (0)

—1_ <WO(OC$ + 7(1 — Oé)) + a(S/ Wl(ZL‘ - y)Wé(Oéy + '7(1 — a))dy) TVVO(V)
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Similarly, applying (4.22) for < 7 we obtain that
P (HO < OO) - (}E}%E [6 "o 157<oo]

a¢1(0)

=1- Wo(x)il o)

4.6 Gerber-Shiu penalty function
Let —U r be the deficit at ruin and U o the surplus just before ruin. We want to obtain

m(@,q) = Bole™™ " h(U,~, [Us,)|Uo = ],

where h(z,y) is a nonnegative function — the penalty function. By (4.37):

v o9
miz,0) = [ VOdy) [ b 2dE+ 2y
y=0 z=0
= @ = Ttz
+ Vi (x,~,dy) h(y, z)AdFy(y — v + 5 )dy
= 2=0

¥ (Q) [ee] , 00
/ ( / e_q)l(q)SWO(q )(as —y+ (1 —a))ds — w'?(z, y)> / h(y, 2)A\dFo(y + z)dy
y=0 s=v z=0

_l’_

—<I)1(q)y_ @¢,. /Oo F(y — yt+z 4.4
/7 ( MA Wi (z y)) Ziokd Wy — v+ " Yh(y, 2)dy (4.47)

An application of the Gerber-Shiu penalty function is the derivation of the joint distribution of
the reserve just before ruin and the deficit at ruin when ] (0) > 0, i.e. when ®;(0) = 0.

Let A, B C (0,00), and let h*(y, z) = Liyea,zeB)

In order to obtain P,(U,- € A, |U"fo_| € B), we substitute h* in (4.47) and take the limit as
o
q— 0.

Notice that
/ efq)l(q)SWéq)/(as —y+7(1—a))ds
s=
= *6_¢1(Q)7W0(q) (/y — y) + M _(bl y ’Y(l o) /Oo (bl(q)s )(S)ds
«a Y-y
i) : o) [0 s
= ey gy P [Ty

0
B P1(q) efch(q)iy_vfj_a) /Fyy e*iq)léq)s W(q)(s)ds
0

o 0
¢1(q)y W(l o 1
ad

y— —a Y s
_ (I)logq) 6,—<I>1(Q)L WS )/ 8_4’71((;1) WSQ)(S)dS (4.48)
0

_ _effbl(q)’ywé‘J) (7 _ y) Te
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In the third term of the last equality we applied (2.1) and (4.15).

The limit as ¢ — 0 in (4.48) is
1—adWo(y —y)

4.4
”: (4.49)
Similarly the limit as ¢ — 0 of A in (4.32) is
1-— a(;Wo(’Y)
—_— 4.
3 (4.50)
Denote by w? (z,y) = wa(z,y), then we obtain
Wey (:Ua 0) v+ B
]P’xUGA,UEB:/ <—Wx— >H -7+ d
(U Uyl € B) e \T—adWWo(3) 1z —y) | iy - )dy
1 — adWo(y — y) >
We $,O/ < — Wal\Z,Y HD y+de
(=.0) yeBn(0y) \ 1 —adWy(v) (7.9) ) o )

where II;(C) is the Lévy measure of the set C, in the compound Poisson case II;(C) = AF;(C) and
F,(C) =P(Z! € C) and Z' has distribution F}, i = 0, 1.

5 Conclusions

In this paper we studied a compound Poisson risk process where the claims are "refracted" — i.e.
only a part of the claim is paid when the reserve is under v. We obtained expressions for the Laplace
transform of the exit time from an upper barrier, the time to ruin and the joint probability for the
surplus before and at ruin, for a general function I(x) as defined in the Introduction. We obtained
relatively simple expressions for the special but important case that I(z) = ax. In this case the
results are in the same flavor as for spectrally negative refracted Lévy processes, where the premium
income rate when the reserve is above 7 is ac, as was studied by Kyprianou and Loeffen (2010).

We conclude by mentioning two topics for further research. (i) A similar analysis might be
applied when generalizing the compound Poisson process to a spectrally negative bounded variation
Lévy risk process. (ii) It would be worthwhile to consider I(z) = min(a,z) where a is a positive
constant.
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