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ABSTRACT. One major open conjecture in the area of critical random graphs, formulated by sta-
tistical physicists, and supported by a large amount of numerical evidence over the last decade
[23, 24, 28, 63] is as follows: for a wide array of random graph models with degree exponent
τ ∈ (3,4), distances between typical points both within maximal components in the critical regime
as well as on the minimal spanning tree on the giant component in the supercritical regime scale
like n(τ−3)/(τ−1).

In this paper we study the metric space structure of maximal components of the multiplicative
coalescent, in the regime where the sizes converge to excursions of Lévy processes “without re-
placement” [10], yielding a completely new class of limiting random metric spaces. A by-product
of the analysis yields the continuum scaling limit of one fundamental class of random graph mod-
els with degree exponent τ ∈ (3,4) where edges are rescaled by n−(τ−3)/(τ−1) yielding the first rigor-
ous proof of the above conjecture. The limits in this case are compact “tree-like” random fractals
with finite fractal dimensions and with a dense collection of hubs (infinite degree vertices) a finite
number of which are identified with leaves to form shortcuts. It is generally believed that dynamic
versions of a number of fundamental random graph models, as one moves from the barely sub-
critical to the critical regime can be approximated by the multiplicative coalescent. In work in
progress, the general theory developed in this paper is used to prove analogous limit results for
other random graph models with degree exponent τ ∈ (3,4).

Our proof makes crucial use of inhomogeneous continuum random trees (ICRT), which have
previously arisen in the study of the entrance boundary of the additive coalescent. We show
that tilted versions of the same objects using the associated mass measure, describe connectivity
properties of the multiplicative coalescent. Since convergence of height processes of correspond-
ing approximating p-trees is not known, we use general methodology in [14] and develop novel
techniques relying on first showing convergence in the Gromov-weak topology and then extend-
ing this to Gromov-Hausdorff-Prokhorov convergence by proving a global lower mass-bound.
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1. INTRODUCTION AND RESULTS

The last two decades have witnessed a plethora of results regarding scaling limits of large
discrete random objects to continuum analogs, ranging from Aldous’s continuum random tree
[7, 8, 51], Schramm-Loewner evolution and critical planar systems [61], to what is most closely
related to this paper: scaling limits of maximal components in the critical regime for random
graphs as well as the minimal spanning tree on the giant component in the supercritical regime
[3–5].

Motivated by empirical observations on real world networks, in the last decade, researchers
from a wide array of fields including computer science, the social sciences and statistical physics
have proposed an enormous number of random graph models to explain various functionals
of real world systems including power law degree distributions and small world scaling of dis-
tances between nodes in the network [6, 21, 32, 33, 35, 42, 55, 56]. Many of these models have a
parameter t related to the edge density and a model dependent critical point tc . Writing n for the
number of vertices in the network, if t < tc then the maximal connected component C1 = oP (n)
while if t > tc one has a giant component C1(n) ∼ f (t )n for some positive model dependent
function f (t ) > 0 for t > tc . The “t = tc ” regime is often referred to as the critical regime. Just as
a study of the classical critical Erdős-Rényi random graph spurred enormous activity in proba-
bilistic combinatorics in the 90s [9, 21, 47, 52, 53], the study of the critical regime of these new
random graph models and new phenomena such as explosive percolation [2,60] have motivated
a concerted effort to understand the critical regime of these new random graph models.
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In this context, for more than a decade [23, 24, 28, 63], one of the fundamental open conjec-
tures in this area (loosely stated) is as follows. Consider distances between typical points in
the maximal component either in the critical regime or the minimal spanning tree on the giant
component in the supercritical regime scale

(a) If the random graph model has asymptotic degree distribution with finite third moments
then distances scale like n1/3.

(b) If the random graph model has a limiting degree distribution
{

pk : k Ê 1
}

with tail pk ∼C /kτ

for τ ∈ (3,4), then distances scale like n(τ−3)/(τ−1).

Contributions of the paper: Since we will need to setup some notation before getting to the
main results, let us give a general overview of the contributions of this paper.

(i) General theory: The fundamental aim of the paper is development of general theory one
can use to prove (b) in the conjecture above for a wide class of random graphs and in partic-
ular derive a new class of continuum scaling limits. To do so, we consider the multiplicative
coalescent with entrance boundary in the space l0 as in [10] (see (1.13)). Viewing the maxi-
mal components as measured metric spaces (using graph distance and vertex weights), we
show that these components with edges and associated measures properly rescaled con-
verge to continuum random objects in the Gromov weak sense. These resulting objects are
obtained via appropriate tilts and vertex identifications of inhomogeneous continuum ran-
dom trees; untilted versions of the same objects have been used to describe the entrance
boundary of the additive coalescent [13]. These resulting random objects are “tree-like”
but with a dense collection of “hubs” (infinite degree vertices).

(ii) Proof techniques: The standard technique in proving such results is studying height pro-
cesses of certain spanning trees of the components and showing that these precesses con-
verge to limiting excursions that code the limiting random real trees. In our context, the
convergence of height processes of corresponding approximating p-trees is not known. In
[11], the height processes of p-trees were shown to converge to limiting excursions in cer-
tain regimes, but these results are not applicable to our situation.

Owing to this reason, we develop new techniques relying on first showing convergence in
Gromov-weak topology via a careful analysis of the tree spanning a finite collection of “typ-
ical” points in random “tilted" p-trees. In one fundamental class of random graph models,
we then extend Gromov-weak convergence to Gromov-Hausdorff-Prokhorov convergence
by proving a global lower mass-bound.

(iii) Special case: As an example of the general theory, we study the special case of the Norros-
Reittu model [57] (which in the regime of interest has been proven [46] to be equivalent to
the Chung-Lu model [30] and the rank-one random graph [22]). In this case, we show that
the limiting spaces are compact. We also show that the upper box-counting dimension is
bounded by (τ−2)/(τ−3) a.s. which we believe to be the correct value (see Conjecture 1.2).

In work in progress [19], we use the general theory in this paper to analyze another fundamental
random graph model, the configuration model with degree distribution with exponent τ ∈ (3,4),
and derive the continuum analogs of the maximal components of this model. We defer a more
detailed discussion of related work and the relevance of the current study to Section 3.

Organization of the paper: A reasonable amount of notation regarding the entrance boundary
of the multiplicative coalescent is required to describe the main results (Theorems 1.7, 1.8). To
ease the reader into the paper, we start in Section 1.1 with the special case of the Norros-Reittu
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model and in Theorem 1.1 describe what the main results imply for this model. Then in Sec-
tion 1.2 we define the multiplicative coalescent as well as the class of entrance boundaries of
importance for the paper and then describe the two main results. The results use two notions of
convergence of metric spaces, these are given a precise formulation in Section 2.1. Section 2.2
describes an imporatn class of random trees called p-trees and the corresponding inhomoge-
nous continuum random trees that arise as scaling limits of these objects. These are then used
in Section 2.3 to give a precise description of the scaling limits of maximal components. We dis-
cuss the relevance of the main results, relate these to existing work and give an overview of the
proof in Section 3. The proofs of the main results are contained in Sections 4 - 7.

1.1. Rank-one random graph.

1.1.1. Model formulation. We start by describing a particular class of random graph models
called the Poissonian random graph or the Norros-Reittu model [22, 57], sometimes also re-
ferred to as the rank-one random graph model [22]. In the regime of interest for this paper, as
shown in [46], this model is equivalent to the Chung-Lu model [29–32] and the Britton-Deijfen-
Martin-Löf model [25]. Start with vertex set [n] := {1,2, . . . ,n} and suppose each vertex i ∈ [n]
has a weight wi Ê 0 attached to it; intuitively this measures the propensity or attractiveness of
this vertex in the formation of links. Writing w = (w1, . . . , wn), place an edge between i and j
independently for each i 6= j ∈ [n] with probability

qi j = qi j (w ) := 1−exp(−wi w j /`n), (1.1)

where `n is the total weight given by

`n := ∑
i∈[n]

wi .

To complete the formulation, we need to specify how these vertex weights are chosen. Essen-
tially we want the empirical distribution of weights n−1 ∑

i∈[n]δ {wi } to converge to a fixed pre-
specified distribution F as n →∞. There are a number of ways to do this but for this paper, the
following choice turns out to be convenient for a clear statement of the results. Let (wi )i∈[n] be
constructed by

wi := [1−F ]−1(i /n), i ∈ [n], (1.2)

where F is a cumulative distribution function on [0,∞) and [1−F ]−1 is the generalized inverse

[1−F ]−1(u) := inf{s : [1−F ](s) É u} .

We assume there exists τ ∈ (3,4) and cF > 0 such that

lim
x→∞xτ−1[1−F (x)] := cF . (1.3)

We will use W for a random variable with distribution F . We will use NRn(w ) to denote the
corresponding random graph.

1.1.2. Motivation and known results. As described in the introduction, one impetus for the for-
mulation of a wide array of network models, is to capture the heterogeneous and heavy-tailed
nature of the degree distribution of empirical networks. Write Nk for the number of vertices with
degree k in NRn(w ). Under the assumptions in the previous section, one can show [22, Theorem
3.13] that

Nk

n
P−→ E

(
e−W W k

k !

)
, k Ê 0, (1.4)
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where W ∼ F . In particular, the degree distribution also has tail exponent τ. More important
in the context of this paper is the connectivity threshold. For i Ê 1 write Ci for the i th largest
connected component and let |Ci | denote the number of vertices. Now define the parameter

ν := E(W 2)

E(W )
, (1.5)

and note that by (1.3), ν<∞. Then by [22, Theorem 3.1 and Section 16.4], we have the following
criterion for phase transition for the largest component:

(a) Supercritical regime: If ν > 1, then there exists ρ ∈ (0,1) such that |C1|/n
P−→ ρ whilst

|C2|/n
P−→ 0;

(b) Subcritical regime: If ν< 1 then |C1|/n
P−→ 0.

The main aim of this paper is to understand the critical regime ν = 1. In this setting, there
are different universality classes. In the Erdős-Rényi universality class, critical clusters have
size of order n2/3 and their metric space structure was discovered by Addario-Berry, Broutin
and Goldschmidt [4]. Interestingly, when E(W 3) <∞, component sizes still scale like n2/3 [16]
while assuming finite 6+ε-moments the metric space structure of rank-1 inhomogeneous ran-
dom graphs is (apart from a trivial rescaling of size and time) the same [20]. However, when
E(W 3) =∞, the scaling limits of critical clusters are dramatically different in the sense that their
sizes are gives by n(τ−2)/(τ−1), where τ is the degree power-law exponent given by (1.3). In this
paper, we focus on their metric space structure, obtained after rescaling edges by n−(τ−3)/(τ−1)

and taking the limit as n →∞. We show that this limiting metric space is compact and its upper
box-counting dimension is bounded by (τ−2)/(τ−3). This is expected to be the correct value of
the Minkowski dimension whereas the Erdős-Rényi scaling limit has Minkowski dimension 2.

Further, in this paper, we analyze the entire critical scaling window. More precisely let w
denote the weight sequence as in (1.2) and fix λ ∈R. Now consider the weight sequence w (λ) :=
(wi (λ))i∈[n] defined by

w (λ) :=
(
1+ λ

n(τ−3)/(τ−1)

)
w . (1.6)

Write NRn(w (λ)) for the corresponding random graph and let Ci (λ) denote the corresponding
i th largest component. Then this critical scaling window was first identified and studied in [62]
where it was shown that for every fixed λ ∈ R, |C1|/n(τ−2)/(τ−1) as well as n(τ−2)/(τ−1)/|C1| are
tight. The entire distributional asymptotics of component sizes were derived in [17] where it
was shown that in the product topology on RN,( |Ci (λ)|

n(τ−2)/(τ−1)
: i Ê 1

)
w−→ (Zi (λ) : i Ê 1), (1.7)

where (Zi (λ) : i Ê 1) are excursions away from zero of a special stochastic process described in
Section 1.2.

1.1.3. Our results. We make the following convention:

For any metric measure space (S,d ,µ) and a > 0, aSwill denote the metric mea-
sure space (S, ad ,µ), i.e, the space where the distance is scaled by a and the mea-
sure remains unchanged.

Consider the random graph NRn(w (λ)) and view each connected component C as a connected
metric space via the usual graph distance where each edge has length one. Further, we can view
each connected component C as a measured metric space by assigning weight wi /(

∑
j∈C w j ) to



6 BHAMIDI, VAN DER HOFSTAD, AND SEN

vertex i ∈C . Note that the normalization yields a probability measure on each connected com-
ponent. Let S denote the space of (equivalence classes) of compact measured metric spaces
equipped with the Gromov-Hausdorff-Prokhorov metric (see Section 2.1.1 for definition). View

Mnr
n (λ) := (

Ci (λ) : i Ê 1
)

(1.8)

as a random element of S N.
Next recall that the lower and upper box counting dimensions of a compact metric space M

are given by

dim(M ) := liminf
δ↓0

log[N (M ,δ)]

log(1/δ)
, and dim(M ) := limsup

δ↓0

log[N (M ,δ)]

log(1/δ)

respectively, where N (M ,δ) is the minimal number of open balls with radiusδ required to cover
M . Also let dimh(M ) denote the Hausdorff dimension of M .

The main result of this section is as follows:

Theorem 1.1 (Scaling limits with degree exponent τ ∈ (3,4)). Fix λ ∈ R and consider the critical
Norros-Reittu model NRn(w (λ)), i.e, assume that ν= 1 where ν is as in (1.5).

Then, there exists an appropriate limiting sequence of random compact metric measure spaces
Mnr∞(λ) := (M nr

i (λ))iÊ1 such that the components in the critical regime satisfy

1

n(τ−3)/(τ−1)
Mnr

n (λ)
w−→ Mnr

∞(λ), as n →∞. (1.9)

Here convergence is with respect to the product topology on S N induced by the Gromov-
Hausdorff-Prokhorov metric on each coordinate S . For each i Ê 1, the limiting metric spaces
have the following properties:

(a) M nr
i (λ) is random compact metric measure space obtained by taking a random real tree Ti (λ)

and identifying a random (finite) number of pairs of points (thus creating shortcuts).
(b) Call a point u ∈ Ti (λ) a hub point if deleting the u results in infinitely many disconnected

components of Ti (λ). Then Ti (λ) has infinitely many hub points which are everywhere
dense on the tree Ti (λ).

(c) The upper box-counting dimension of M nr
i (λ) satisfies

dim(M nr
i (λ)) É τ−2

τ−3
a.s. (1.10)

Consequently, the Hausdorff dimension satisfies the bound dimh(M nr
i (λ)) É (τ−2)/(τ−3) a.s.

Conjecture 1.2. We strongly believe that the lower box-counting dimension, the Hausdorff di-
mension, and the packing dimension of M nr

i (λ) are all equal to (τ−2)/(τ−3) a.s. See Section 8 for
a discussion.

1.2. Connectivity asymptotics for the multiplicative coalescent. In this section we will con-
sider a slightly more general setting than in Section 1.1. The motivation is as follows: recall that
for the rank-one model, two vertices were connected with essentially probability proportional
to the product of the weight between these two vertices. For probabilists, this connectivity pat-
tern is quite reminiscent of the famous multiplicative coalescent [9, 10, 15]. Whilst interesting
in its own right, its fundamental importance in the context of random graphs is as follows: A
wide array of random graph models can be constructed in a dynamic fashion where as time
progresses new edges are created between pre-existing clusters. Even though the merging dy-
namics between connected components tend to be quite different from that specified by the
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multiplicative coalescent, the mergers from the barely subcritical regime through the critical
scaling window can be approximated by the multiplicative coalescent. This idea was exploited
in [18] to prove universality of scaling limits in the critical regime for several random graphs
models.

Thus components at criticality of a wide array of random graph models can be thought of
consisting of two major parts:

(a) “Blobs" which are components formed in the barely subcritical regime.
(b) Edges formed between such blobs as the system proceeds from the barely subcritical regime

through the critical scaling window.

The results below (in particular Theorem 1.7) specify how to handle the second aspect. In a
companion paper we show how one can use macroscopic averaging of distances within blobs in
random graph models such as the configuration model to show that these models also have the
same scaling limit in the critical regime as Theorem 1.1 in the setting where degrees obey power-
laws with exponents τ ∈ (3,4). Further, it will follow from Theorem 1.7 that the convergence in
(1.9) holds with respect to the product topology induced by Gromov-weak topology on each
coordinate. Therefore, Theorem 1.1 can be recovered partially from the more general Theorem
1.7 at the expense of working with a weaker topology.

Before stating the result we will need to define the multiplicative coalescent. The natural
domain of this Markov process is the space

`2
↓ :=

{
x = (x1, x2, . . .) : x1 Ê x2 Ê ·· · Ê 0,

∑
i

x2
i <∞

}
, (1.11)

equipped with the metric d(x,y) :=√∑
iÊ1(xi − yi )2. We will work in the simpler setup where the

Markov process starts with a finite number of clusters, i.e, the process starts with x ∈ `2
↓ such that

∃n <∞ such that xi = 0 for i > n. Write `2
↓(n) for the collection of such vectors. Now the Markov

process (X(t ))tÊ0 with initial state X(0) = x evolves as follows. Write X(t ) = (Xi (t ))iÊ1. Then for
i 6= j , clusters i and j merge at rate Xi (t ) ·X j (t ) into a single cluster of size Xi (t )+X j (t ).

Note that for any fixed time t > 0, it is easy to find the distribution of masses X(t ) via the
following random graph:

Definition 1.3 (Random graph Gn(x, t )). Consider the vertex set [n] := {1,2, . . . ,n} and assign
weight xi to vertex i . Now connect each pair of vertices i , j with i 6= j independently with proba-
bility

qi j := 1−exp(−t xi x j ). (1.12)

Call this random graph Gn(x, t ). For a connected component C ⊆ Gn(x, q), let mass(C ) :=∑
i∈C xi . Let (Ci (t ))iÊ1 denote the connected components arranged in decreasing order of their

masses.

The following is obvious from the definition of the multiplicative coalescent:

Lemma 1.4. For each fixed t Ê 0, the masses of the multiplicative coalescent at time t started with
finite number of initial clusters with masses x satisfies

(Xi (t ) : i Ê 1)
d= (

mass(Ci (t )) : i Ê 1
)
.

Analogous to (1.11), consider the two spaces

`3
↓ :=

{
c := (c1,c2, . . .) : c1 Ê c2 Ê ·· ·0,

∑
iÊ1

c3
i <∞

}
, l0 := `3

↓ \`2
↓. (1.13)
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These spaces turn out to be crucial in describing the entrance boundary of the eternal mul-
tiplicative coalescent in [10]. In the context of this paper, we are interested in studying scal-
ing limits of connected components of the random graph Gn(x, t ) when (suitably normalized)
asymptotics of the weight vector x are described by a vector c ∈ l0. Let

σr (x) :=∑
i

xr
i , 1 É r É 3. (1.14)

We will make the following assumptions about the weight vector x := x(n) used to form the graph
Gn(x, t ). These place the associated graph in a particular entrance boundary of the associated
eternal multiplicative coalescent [10, Proposition 7].

Assumption 1.5. For each n Ê 1, let x(n) = (x (n)

i : 1 É i É n) be an initial finite-length vector be-
longing to `2

↓(n). Suppose that as n →∞ there exists c ∈ l0 such that

σ3(x(n))

(σ2(x(n)))3
→∑

j
c3

j , (1.15)

x (n)

j

σ2(x(n)))
→ c j for j Ê 1, and (1.16)

σ2(x(n)) → 0. (1.17)

Now let
{
ξ j : j Ê 1

}
be a sequence of independent exponential random variables where ξ j has

rate c j for each j Ê 1. For a fixed λ ∈R, consider the process

V c
λ (s) :=λs +∑

j
(c j 1l

{
ξ j É s

}− c2
j s), s Ê 0. (1.18)

It turns out that this process is well defined precisely if c ∈ `3
↓ [10]. Consider the “reflected at

zero” process

Ṽ c
λ (s) :=V c(s)− min

0És′És
Ṽ c(s′). (1.19)

Consider the excursions of Ṽ c
λ

(·) from zero. Then Aldous and Limic [10] showed that the lengths
of these excursions are a.s. in l 2 precisely when c ∈ l0, and thus can be arranged in decreasing
order. Write

Z (λ) := (Z1(λ),Z2(λ), . . .) (1.20)

for these excursions in decreasing order of their length. Let Zi (λ) := |Zi (λ)| denote the length of
the i th largest excursion and let

Z(λ) := (Z1(λ), Z2(λ), . . .) ∈ `2
↓ a.s. (1.21)

Then Aldous and Limic [10] proved the following result:

Theorem 1.6. [[10, Proposition 7]] Fix λ ∈ R and consider the time scale tn := λ+ [σ2(x(n))]−1.
Under Assumptions (1.15), (1.16), (1.17), the masses of the connected components of the graph
Gn(x, tn) satisfy (

mass

[
Ci

(
λ+ 1

σ2(x(n))

)]
: i Ê 1

)
w−→ Z(λ), as n →∞,

with respect to the topology in `2
↓, where Z(λ) is as in (1.21).
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Now consider the connected components in Gn(x, t ), and as before, view each component
C as a connected metric space via the usual graph distance where each edge has length one.
Further, view each component C as a measured metric space by assigning mass xi /mass(C ) to
each vertex i ∈ C . Let S∗ denote the space of (equivalence classes) of measured metric spaces
equipped with Gromov-weak topology (see Section 2.1.2 for definition) and view

Mn(λ) :=
(
Ci

(
λ+ 1

σ2(x(n))

)
: i Ê 1

)
as a random element in S N∗ . Then our next result is about Gromov-weak convergence of Mn(λ).

Theorem 1.7. Fixλ ∈R. Then under Assumption 1.5, there exist an appropriate limiting sequence
of metric spaces Mc∞(λ) := (M c

i (λ) : i Ê 1) such that

σ2(x(n))Mn(λ)
w−→ Mc

∞(λ), as n →∞.

Here weak convergence is on S N∗ which is equipped with the natural product topology induced
by the Gromov-weak topology on each coordinate S∗.

Remark 1. A full description of the limit objects is given in Section 2.3. The limit objects use
tilted versions of inhomogeneous continuum random trees and checking compactness even of
the original versions at this level of generality turns out to be quite intractable. However as the
next theorem shows, in the special case of relevance to the rank one model, one can prove much
more.

Consider the special sequence c = c(α,τ) := (ci (α,τ) : i Ê 1) ∈ l0 with τ ∈ (3,4) andα> 0, where

ci (α,τ) := α

i 1/(τ−1)
, i Ê 1. (1.22)

Then we have the following result about the limiting metric spaces.

Theorem 1.8. Fix α > 0, τ ∈ (3,4) and let c = c(α,τ) as in (1.22). Consider the limiting metric
spaces Mc∞(λ) := (M c

i (λ) : i Ê 1).
Then almost surely M c

i (λ) is compact for every i Ê 1. Further, the upper box-counting dimen-
sion of M c

i (λ) satisfies

dim(M c
i (λ)) É τ−2

τ−3
a.s. (1.23)

Consequently, the Hausdorff dimension satisfies the bound dimh(M c
i (λ)) É (τ−2)/(τ−3) a.s.

Remark 2. Since we are dealing with equivalence classes of metric spaces (see Sections 2.1.1
and 2.1.2), Theorem 1.8 should be understood as claiming the existence of representative spaces
M c

i (λ) that are compact, and satisfy the said conditions about the fractal dimensions. We will
only work with these representative spaces throughout this paper.

2. DEFINITIONS AND LIMIT OBJECTS

2.1. Convergence of metric spaces. Proper notions of convergence of (measured) metric
spaces is one of the central themes in this paper. Here we define the two topologies used in
the statement of our results. We mainly follow [1, 26, 38, 39].
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2.1.1. Gromov-Hausdorff-Prokhorov metric. In this section, all metric spaces under consider-
ation will be compact metric spaces with associated probability measures. Let us first recall
the Gromov-Hausdorff distance dGH between metric spaces. Fix two metric spaces (X1,d1) and
(X2,d2). For a subset C ⊆ X1 ×X2, the distortion of C is defined as

dis(C ) := sup
{|d1(x1, y1)−d2(x2, y2)| : (x1, x2), (y1, y2) ∈C

}
. (2.1)

A correspondence C between X1 and X2 is a measurable subset of X1×X2 such that for every x1 ∈
X1 there exists at least one x2 ∈ X2 such that (x1, x2) ∈C and vice-versa. The Gromov-Hausdorff
distance between the two metric spaces (X1,d1) and (X2,d2) is defined as

dGH(X1, X2) = 1

2
inf

{
dis(C ) : C is a correspondence between X1 and X2

}
. (2.2)

Suppose (X1,d1) and (X2,d2) are two metric spaces and p1 ∈ X1, and p2 ∈ X2. Then the pointed
Gromov-Hausdorff distance between X 1 := (X1,d1, p1) and X 2 := (X2,d2, p2) is given by

d pt
GH(X 1, X 2) = 1

2
inf

{
dis(C ) : C is a correspondence between X1 and X2 and (p1, p2) ∈C

}
. (2.3)

We will need a metric that also keeps track of associated measures on the corresponding
spaces. A compact measured metric space (X ,d ,µ) is a compact metric space (X ,d) with an
associated probability measure µ on the Borel sigma algebra B(X ). Given two compact mea-
sured metric spaces (X1,d1,µ1) and (X2,d2,µ2) and a measure π on the product space X1 × X2,
the discrepancy of π with respect to µ1 and µ2 is defined as

D(π;µ1,µ2) := ||µ1 −π1||+ ||µ2 −π2||, (2.4)

where π1,π2 are the marginals of π and || · || denotes the total variation distance between proba-
bility measures. Then the Gromov-Haussdorf-Prokhorov distance between X1 and X2 is defined
as

dGHP(X1, X2) := inf

{
max

(
1

2
dis(C ), D(π;µ1,µ2), π(C c )

)}
, (2.5)

where the infimum is taken over all correspondences C and measures π on X1 ×X2.
Similar to (2.3), we can define a “pointed Gromov-Hausdorff-Prokhorov distance”, d pt

GHP be-
tween two metric measure spaces X1 and X2 having two distinguished points p1 and p2 respec-
tively by taking the infimum in (2.5) over all correspondences C and measures π on X1×X2 such
that (p1, p2) ∈C .

Write S for the collection of all measured metric spaces (X ,d ,µ). The function dGHP is a
pseudometric on S , and defines an equivalence relation X ∼ Y ⇔ dGHP(X ,Y ) = 0 on S . Let
S̄ :=S / ∼ be the space of isometry equivalent classes of measured compact metric spaces and
d̄GHP the induced metric. Then by [1], (S̄ , d̄GHP) is a complete separable metric space. To ease
notation, we will continue to use (S ,dGHP) instead of (S̄ , d̄GHP) and X = (X ,d ,µ) to denote
both the metric space and the corresponding equivalence class.

2.1.2. Gromov-weak topology. Here we mainly follow [38]. Introduce an equivalence relation
on the space of complete and separable metric spaces that are equipped with a probabil-
ity measure on the associated Borel σ-algebra by declaring two such spaces (X1,d1,µ1) and
(X2,d2,µ2) to be equivalent when there exists an isometry ψ : support(µ1) → support(µ2) such
that µ2 =ψ∗µ1 := µ1 ◦ψ−1, i.e., the push-forward of µ1 under ψ is µ2. Write S∗ for the associ-
ated space of equivalence classes. As before, we will often ease notation by not distinguishing
between a metric space and its equivalence class.
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Fix n Ê 2, and a complete separable metric space (X ,d). Then given a collection of points
x := (x1, x2, . . . , xn) ∈ X n , let D(x) := (d(xi , x j ))i , j∈[n] denote the symmetric matrix of pairwise
distances between the collection of points. A function Φ : S∗ → R is called a polynomial of
degree n if there exists a bounded continuous function φ :Rn2

+ →R such that

Φ((X ,d ,µ)) :=
∫
φ(D(x))µ⊗n(d(x)). (2.6)

Here µ⊗n is the n-fold product measure of µ. LetΠ denote the space of all polynomials on S∗.

Definition 2.1 (Gromov-weak topology). A sequence (Xn ,dn ,µn)nÊ1 ∈ S∗ is said to converge to
(X ,d ,µ) ∈ S∗ in the Gromov-weak topology if and only if Φ((Xn ,dn ,µn)) → Φ((X ,d ,µ)) for all
Φ ∈Π.

In [38, Theorem 1] it is shown that S∗ is a Polish space under the Gromov-weak topology. It is
also shown that, in fact, this topology can be completely metrized using the so-called Gromov-
Prokhorov metric.

2.1.3. Spaces of trees with edge lengths, leaf weights and root-to-leaf measures. In the proof of
the main results we will need the following two spaces built on top of the space of discrete trees.
The first space TI J was formulated in [12, 13] where it was used to study trees spanning a finite
number of random points sampled from an inhomogeneous continuum random tree (described
in the next section). We will use the same notation in this paper.
The space TI J : Fix I Ê 0 and J Ê 1. Let TI J be the space of trees having the following properties:

(a) There are exactly J leaves labeled 1+, . . . , J+, and the tree is rooted at another labeled vertex
0+.

(b) There may be extra labeled vertices (called hubs) with distinct labels in {1,2, . . . , I }. (It is
possible that only some, and not all labels in {1,2, . . . , I } are used.)

(c) Every edge e has a strictly positive edge length le .

A tree t ∈ TI J can be viewed as being composed of two parts: (a) shape(t) describing the shape of
the tree (including the labels of leaves and hubs) but ignoring edge lengths. The set of all possi-

ble shapes Tshape
I J is obviously finite for fixed I , J . (b) The edge lengths l(t) := (le : e ∈ t). Consider

the product topology on TI J consisting of the discrete topology on Tshape
I J and the product topol-

ogy on Rd .
The space T∗

I J : We will need a slightly more general space. Along with the three attributes
above in TI J , the trees in this space have the following two additional properties. Let L (t) :=
{1+, . . . , J+} denote the collection of non-root leaves in t. Then every leaf v ∈ L (t) has the fol-
lowing attributes:

(d) Leaf weights: A strictly positive number A(v). Write A(t) := (A(v) : v ∈L (t)).
(e) Root-to-leaf measures: A probability measure νt,v on the path [0+, v] connecting the root

and the leaf v . Here the path is viewed as a line segment pointed at 0+ and has the usual
Euclidean topology. Write ν(t) := (νt,v : v ∈L (t)) for this collection of probability measures.

In addition to the topology on TI J , the space T∗
I J with these additional two attributes inherits the

product topology onRJ owing to leaf weights and (d pt
GHP)J owing to the the root to leaf measures.

For consistency, we add to the spaces TI J and T∗
I J a conventional state ∂. Its use will be clear

later.
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2.2. Random p-trees and inhomogeneous continuum random trees (ICRTs). For fixed m Ê 1,
write Tm and Tord

m for the collection of all rooted trees with vertex set [m] and rooted ordered
trees with vertex set [m] respectively. Here we will view a rooted tree as being directed with
the root being the original progenitor and each edge being directed from child to parent. An
ordered rooted tree is a tree where children of each individual are assigned an order (meant to
describe for example orientation in a planar embedding, e.g., right to left or some notion of age,
e.g., oldest to youngest).

In this section, we define a family of random tree models called p-trees [27, 59], and their
corresponding limits, the so-called inhomogeneous continuum random trees, which play a key
role in describing the limit metric spaces as well as in the proof. Fix m Ê 1, and a probability
mass function p = (p1, p2, . . . , pm) with pi > 0 for all i ∈ [m]. A p-tree is a random tree inTm , with
law as follows. For any fixed t ∈ Tm and v ∈ t, write dv (t) for the number of children of v in the
tree t. Then the law of the p-tree, denoted by Ptree, is defined as:

Ptree(t) =Ptree(t;p) = ∏
v∈[m]

pdv (t)
v , t ∈Tm . (2.7)

Generating a random p-tree T ∼ Ptree and then assigning a uniform random order on the chil-
dren of every vertex v ∈T gives a random element with law Pord(·;p) given by

Pord(t) =Pord(t;p) = ∏
v∈[m]

pdv (t)
v

(dv (t))!
, t ∈Tord

m . (2.8)

Obviously a p-tree can be constructed by first generating an ordered p-tree with the above dis-
tribution and then forgetting about the order.

In a series of papers [11–13] it was shown that p-trees, under various assumptions, converge
to inhomogeneous continuum random trees which we now describe. Recall the space `2

↓ in

(1.11). Consider the subsetΘ⊂ `2
↓ given by

Θ :=
{
θ := (θi : i Ê 1) ∈ `2

↓ :
∑
i=1

θi =∞,
∞∑

i=1
θ2

i = 1
}

. (2.9)

Now recall from [37, 51] that a real tree is a metric space (T ,d) that satisfies the following for
every pair a,b ∈T :

(a) There is a unique isometric map fa,b : [0,d(a,b)] →T such that fa,b(0) = a, fa,b(d(a,b)) = b.
(b) For any continuous one-to-one map g : [0,1] → T with g (0) = a and g (1) = b, we have

g ([0,1]) = fa,b([0,d(a,b)]).

Construction of the ICRT: Given θ ∈Θ, we will now define the inhomogeneous continuum ran-
dom tree T θ. We mainly follow the notation in [13]. Assume that we are working on a probabil-
ity space (Ω,F ,Pθ) rich enough to support the following:

(a) For each i Ê 1, let P i := (ξi ,1,ξi ,2, . . .) be a rate θi Poisson process, independent for different
i . The first point of each process ξi ,1 is special and is called a joinpoint, whilst the remaining
points ξi , j with j Ê 2 will be called i -cutpoints [13].

(b) Independent of the above, let U = (U (i )

j : j Ê 1, i Ê 1) be a collection of i.i.d. uniform (0,1)
random variables. These are not required to construct the tree but will be used to define a
certain function on the tree.

The random real tree (with marked vertices) T θ
(∞) is then constructed as follows:
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(i) Arrange the cutpoints
{
ξi , j : i Ê 1, j Ê 2

}
in increasing order as 0 < η1 < η2 < ·· · . The as-

sumption that
∑

i θ
2
i < ∞ implies that this is possible. For every cutpoint ηk = ξi , j , let

η∗k := ξi ,1 be the corresponding joinpoint.
(ii) Next, build the tree inductively. Start with the branch [0,η1]. Inductively assuming we have

completed step k, attach the branch (ηk ,ηk+1] to the joinpoint η∗k corresponding to ηk .

Write T θ
0 for the corresponding tree after one has used up all the branches

[0,η1],
{
(ηk ,ηk+1] : k Ê 1

}
. Note that for every i Ê 1, the joinpoint ξi ,1 corresponds to a

vertex with infinite degree. Label this vertex i . The ICRT T θ
(∞) is the completion of the marked

metric tree T θ
0 . As argued in [13, Section 2], this is a real-tree as defined above which can

be viewed as rooted at the vertex corresponding to zero. We call the vertex corresponding to
joinpoint ξi ,1 hub i . Since

∑
i θi =∞, one can check that hubs are almost everywhere dense on

T θ
(∞).

P1

ξ11 ξ12 ξ13 ξ14 ξ15

P2

ξ21 ξ22 ξ23

P3

ξ31

P4

ξ41 ξ42

FIGURE 2.1. An illustration of the ICRT construction with four point process
{P i : 1 É i É 4}. The red points represent the joinpoint of the corresponding point
process and the blue points the corresponding cutpoints. The last line contains
the union of the four point processes. See Figure 2.2 for the corresponding tree.

Remark 3. The uniform random variables (U (i )

j : j Ê 1, i Ê 1) give rise to a natural ordering on

T θ
(∞) (or a planar embedding of T θ

(∞)) as follows. For i Ê 1, let (T (i )

j : j Ê 1) be the collection

of subtrees hanging off of the i th hub. Associate U (i )

j with the subtree T (i )

j , and think of T (i )

j1

appearing “to the right of" T (i )

j2
if U (i )

j1
<U (i )

j2
. This is the natural ordering on T θ

(∞) when it is being

viewed as a limit of ordered p-trees. We can think of the pair (T θ
(∞),U ) as the ordered ICRT.

Reduced tree r (∞)
I J : Fix I Ê 0 and J Ê 1. Now let η0 = 0 and for j Ê 0 call vertex η j the j th sampled

leaf and label this as j+ to differentiate this from hub j . Note that the subtree of T θ
(∞) spanned

by {0+,1+, . . . , J+} (namely the part of the tree constructed from the interval [0,η J ]) is a tree in
the usual sense with random edge lengths. For all hubs i , if i É I , retain its label and remove the
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0 ξ21 ξ11

ξ22

ξ13

ξ12

ξ31

ξ23

ξ41

ξ42

ξ14

ξ15

FIGURE 2.2. The tree constructed via the stick-breaking construction from Figure 2.1.

label otherwise. This gives a random element of TI J (recall the definiton Section 2.1.3), which
we denote by r (∞)

I J . See Figure 2.3 corresponding to the stick-breaking construction in Figures 2.1
and 2.2.

0+ 2 1

1+

4+

2+

3

3+

4

5+

6+
7+

FIGURE 2.3. Reduced tree r46 corresponding to the tree in Figure 2.2.

Mass measure: For every vertex v ∈ T θ
(∞), define the degree of v to be the number of connected

components of T θ
(∞) \ {v}. Vertices with degree one are called leaves of T θ

(∞) and all other vertices
form the skeleton of the tree. Let L (T θ

(∞)) denote the set of leaves of T θ
(∞). In [13], it was shown

that one can associate to T θ
(∞), a natural probability measure called the mass measure satisfying

µ(L (T θ
(∞))) = 1.
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Root-to-vertex path measures: Now using the collection of uniform random variables above,
we will define a function G(∞) on the tree as well as a collection of measures on paths emanating
from the root. Recall that the hubs in T θ

(∞) have infinite degrees. Let (T (i )

j : j Ê 1) be the collection

of subtrees of hub i in T θ
(∞) (labeled in some fashion). For each y ∈T θ

(∞), let

G(∞)(y) = ∑
iÊ1

θi

[∑
jÊ1

U (i )

j ×1l
{

y ∈T (i )

j

}]
. (2.10)

We will show in our proof that G(∞)(y) is finite for almost every realization of T θ
(∞) and for µ-

almost every y ∈T θ
(∞) (see Lemma 4.9 and Theorem 4.15). For y ∈T θ

(∞), let [ρ, y] denote the path
from the root ρ to y . For every y , define a probability measure on [ρ, y] as

Q (∞)
y (v) :=

θiU
(i )

j

G(∞)(y)
, if v is the i th hub and y ∈T (i )

j for some j . (2.11)

Thus, this probability measure is concentrated on the hubs on the path from y to the root.

Remark 4. Note that both G(∞)(·) and Q (∞)
y (·) depend on the realization of the pair (T θ

(∞),U ), but
we chose to suppress them to avoid cumbersome notation.

Random tree R(∞)
I J : Recall the tree r (∞)

I J above. Recall that η j is the vertex in the tree T θ
(∞) cor-

responding to leaf j+ for 1 É j É J . To each of these J leaves, associate the value G(∞)(η j ), and
associate the probability measure Q (∞)

η j
to the path [0+, j+]. This tree is a random element of the

space T∗
I J (see Section 2.1.3), which we denote by R(∞)

I J .

2.3. Continuum limits of components. The aim of this section is to give an explicit description
of the limiting (random) metric spaces in Theorem 1.7. We start by constructing a specific tilted
version of the ICRT in Section 2.3.1. Then in Section 2.3.2 we describe the limits of maximal
components.

2.3.1. Tilted ICRTs and vertex identification. Let (Ω,F ,Pθ) and T θ
(∞) be as in Section 2.2 and let

γ> 0 a constant. Informally, the construction goes as follows: We will first tilt the distribution of
the original ICRT T θ

(∞) using the functional

L(∞)(T
θ

(∞),U ) := exp

(
γ

∫
y∈T θ

(∞)

G(∞)(y)µ(d y)

)
(2.12)

to get a tilted tree T θ,?
(∞) . We then generate a random but finite number N?

(∞) of pairs of points{
(xk , yk ) : 1 É k É N?

(∞)

}
. The final metric space is obtained by creating “shortcuts" by identifying

the points xk and yk . Formally the construction proceeds in four steps:

(a) Tilted ICRT: Define P?
θ

onΩ by

dP?
θ

dPθ
=

exp
(
γ

∫
y∈T θG(∞)(y)µ(d y)

)
E
[
exp

(
γ

∫
x∈T θG(∞)(x)µ(d x)

)] .

The expectation in the denominator is with respect to the original measure Pθ. In our proof
we will show that this object is finite. Write (T θ,?

(∞) ,µ?) and U? = (U (i ),?
j : i , j Ê 1) for the

tree and the mass measure on it, and the associated random variables under this change of
measure.
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(b) Poisson number of identification points: Conditional on ((T θ,?
(∞) ,µ?),U?), generate N?

(∞)

having a Poisson(Λ?(∞)) distribution, where

Λ?(∞) := γ
∫

y∈T θ,?
(∞)

G(∞)(y)µ?(d y) = γ∑
iÊ1

θi

[∑
jÊ1

U (i ),?
j µ?(T (i ),?

j )

]
.

Here, (T (i ),?

j : j Ê 1) denotes the collection of subtrees of hub i in T θ,?
(∞) . (As mentioned

before in Remark 4, G(∞)(·) depends on the realization of the ordered ICRT. U (i ),?
j appears in

the expression above as the function G(∞) acts on y ∈T θ,?
(∞) for which the associated order is

described by U?.)
(c) “First" endpoints (of shortcuts): Conditional on (a) and (b), sample xk from T θ,?

(∞) with
density proportional to G(∞)(x)µ?(d x) for 1 É k É N?

(∞).
(d) “Second" endpoints (of shortcuts) and identification: Having chosen xk , choose yk from

the path [ρ, xk ] joining the root ρ and xk according to the probability measure Q(∞)
xk

as in

(2.11) but with U (i ),?
j replacing U (i )

j . (Note that yk is always a hub on [ρ, xk ].) Identify xk

and yk , i.e., form the quotient space by introducing the equivalence relation xk ∼ yk for
1 É k É N?

(∞).

Definition 2.2. Fix γ Ê 0 and θ ∈ Θ as in (2.9). Let G∞(θ,γ) be the metric measure space con-
structed via the four steps above equipped with the measure inherited from the mass measure on
T θ,?

(∞) .

In our proofs, we will always think of the leaf end (of a shortcut or a surplus edge) as the first
endpoint, and the second endpoint will be selected from the skeleton.

2.3.2. Limits of the components. Fix λ ∈ R and c ∈ l0 as in (1.13) and consider the setting of
Theorem 1.7. We will need 2 main objects:

(a) The process Ṽ c
λ

(·) in (1.19). Recall that the excursions of this process from zero could be
arranged in increasing order of lengths as Z (λ). Let Ξ(i ) = (c j : ξ j ∈ Zi ) denote the point
process of jumps of the process Ṽ c

λ
(·) corresponding to the excursion Zi (λ). Abusing nota-

tion we will write Ξ(i ) = (c j : j ∈Zi ).
(b) The actual lengths of these excursions (Zi (λ) : i Ê 1) as in (1.21).

From these objects, for each fixed i Ê 1, define the random variable γ̄(i ) and the point process
θ(i ) = (θ(i )

j : j ∈Zi (λ)) as

γ̄(i ) := Zi (λ)
√ ∑

v∈Zi (λ)
c2

v , θ(i ) :=

 c j√∑
v∈Zi (λ) c2

v

: j ∈Zi (λ)

 . (2.13)

Our proof (see Proposition 5.1) will imply that θ(i ) ∈Θ as in (2.9) a.s. Define

Γi (λ) := Zi (λ)

( ∑
v∈Zi (λ)

c2
v

)−1/2

, (2.14)

and generate the random metric measure spaces

M c
i (λ) := Γi (λ) ·G∞(θ(i ), γ̄(i )), (2.15)
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where G∞(θ, γ̄) is as described in Section 2.3.1 and the metric spaces are conditionally indepen-
dent across i given the driving parameters in (2.13). Let Mc∞(λ) = (M c

i (λ) : i Ê 1). Then this is the
limiting collection of metric spaces in Theorem 1.7.

To describe the sequence of spaces Mnr∞(λ) appearing in Theorem 1.1, define

cnr := (cnr
j : j Ê 1), where cnr

j = 1

EW

(
cF

j

)1/(τ−1)

, (2.16)

ζ :=−
(

c2/(τ−1)
F

EW

) ∞∑
i=1

[∫ i

i−1

du

u2/(τ−1)
− 1

i 2/(τ−1)

]
, and t nr

λ := (λ+ζ)

EW
. (2.17)

Here W is a random variable with distribution F as in (1.3). Then

Mnr
∞(λ) = 1

EW
·Mcnr

∞
(
t nr
λ

)
. (2.18)

3. DISCUSSION

We describe the two major motivations for developing the general theory of this paper in
Sections 3.1 and 3.2. In Sections 3.3 and 3.4, we include a very brief discussion about ICRTs as
well as give an overview of the order in which the proofs are carried out.

3.1. Universality and domains of attraction of critical random graph models. One natural
question the reader might ask at this point is why the general theory in Section 1.2, why not
just stick to the rank one random graph model as in Section 1.1. As we described in the intro-
duction, the aim of this paper is the development of general theory applicable to a wide array
of models. What does one mean by this? It turns out that many different random graph models
can be constructed in a dynamic fashion as graph valued process {Gn(t ) : t Ê 0} where edges are
added as time advances thus resulting in mergers of components as t ↑ tc . In this construction,
there is a critical time tc (model dependent) such that the giant component emerges after time
tc .

Now for most random graph models (including the configuration model) the dynamics of
mergers of components starting at time zero do not look like the multiplicative coalescent. How-
ever if one were to zoom in at the critical time tc , for many models, ∃εn ↓ 0 such that if one were
to look at the interval [tc −εn , tc +εn], then mergers of components can be approximated by the
multiplicative coalescent. Here tc −εn often corresponds to the barely subcritical regime of the
random graph. Thus if one had good control over component functionals at the barely subcrit-
ical time tc − εn and in particular if one was able to show that component sizes appropriately
normalized satisfied the assumptions 1.5, then one can use Theorem 1.7 to derive convergence
at the critical time tc of the maximal components. Note that one does not expect component
sizes at time tc −εn to satisfy assumptions of the Norros-Reittu model in (1.4). Rather in most
cases, at time tc−εn , the size of the component of a randomly selected vertex Vn would scale like
nδ1 while the maximal component would scale like nδ2 (ignoring logarithmic corrections) where
δ1 < δ2 are related to various scaling exponents of the system. In work in progress [19], Theorem
1.8 coupled with delicate estimates of various scaling exponents for the configuration model
in the barely subcritical regime, proves analogous results for the configuration model with de-
gree exponent τ ∈ (3,4). Sizes of maximal components in the critical regime including the heavy
tailed regime for this model was previously analyzed in [48]. Further as was done in [18], where
a number of sufficient conditions for the domain of attraction of the critical Erdős-Rényi scaling
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limits were derived, we hope to derive similar general conditions for a random graph model to
belong to the same domain of attraction as the rank-one model, established in this paper.

FIGURE 3.1. On the left, an approximation of an ICRT (using p-trees on approxi-
mately 20000 vertices) corresponding to θi ∝ i−1/(τ−2) where τ= 3.01. The reason
behind this choice of θi is explained in Section 8. On the right, an approxima-
tion of a Brownian CRT (using a uniform random tree on the same number of
vertices). Vertex sizes are proportional to the degree of the vertex.

3.2. Minimal spanning tree on inhomogeneous random graphs. As described in the introduc-
tion, a second major motivation for the technical analysis in this paper is the minimal spanning
tree. To fix ideas, consider the Norros-Reittu model in the supercritical regime (the parameter
in (1.5) ν > 1). To each edge attach a random edge weight iid across edges, assumed to be de-
rived from a continuous distribution. Consider the minimal spanning tree (MST) of the giant
component. A large amount of simulation based evidence from statistical physics [23,24,28,63]
suggests that when the degree exponent τ ∈ (3,4) then the distances in this object scale like
n(τ−3)/(τ−1), the same distance scaling shown in this paper for the maximal components in the
critical regime (Theorem 1.1).

Now this is not a coincidence. As has been shown in a series of fundamental papers [3–5]
for the complete graph and the supercritical Erdős-Rényi random graph, a major component
in the analysis of the MST problem is first the scaling of maximal components in the critical
regime which then provides crucial input for the scaling limit of the MST. Till date we have no
rigorous results for the scaling of the MST on any “inhomogeneous” random graph model. This
paper provides the first step in answering this question in the heavy tailed regime. Further this
program should enable one to analyze the MST for random graph models other than the rank
one model which belong to the same “domain of attraction” in the critical regime.

3.3. Inhomogeneous continuum random trees. As evident from Section 2.2, ICRTs play a ma-
jor role in the description of the limit objects. Despite a lot of work on these objects in the
last decade [11, 13, 27], a number of questions regarding these continuum objects are still open,
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ranging from sufficient conditions for compactness to the dependence of the fractal properties
of this object on the driving parameter θ. Our proof shows that in some special cases, ICRTs are
compact metric spaces when θ is sampled according to an appropriate size-biased distribution.
This can be seen as an annealed result on compactness of the ICRT. Whether compactness is
true for non-random sequences θ ∈Θ has been open problem for more than a decade [11]. Sim-
ilar questions hold for its fractal dimensions. See Section 8 for a more detailed account of these
problems.

3.4. Overview of the proof. In Section 4, we study the random graph Gn(x, t ) as in Definition
1.3. We start with the simple observation that conditional on the vertex set of components of
Gn(x, t ), a fixed component C has the same distribution as Gn(x, t ) conditional on being con-
nected. This section studies asymptotics for such distributions assuming specific regularity
properties of vertex weights in the component in the large network limit, showing Gromov-weak
convergence of the associated graph under proper normalization of edge lengths and vertex
weights. Section 5 uses the size-biased exploration of the process Gn(x, t ) [9] to show that max-
imal connected components satisfy the hypothesis required in Section 4. Section 6 studies the
special entrance boundary in (1.22) proving both compactness of the limiting objects as well as
strengthening the convergence in the Gromov-weak topology to convergence in dGHP. In Sec-
tion 7, we derive the upper bound on the box-counting dimension. In Section 8, we conclude
by describing a number of open problems.

4. PROOFS: ASYMPTOTICS CONDITIONAL ON BEING CONNECTED

The aim of this Section is to study large connected components of Gn(x, t ) assuming vertex
weights satisfy a few regularity properties.

4.1. Tilted p-trees and connected components of G (x, t ). Recall the random graph G (x, t ) from
Definition 1.3. Here for any t Ê 0, (Ci (t ) : i Ê 1) denoted the components in decreasing order of
their mass sizes. The aim of this section is to describe results from [20] which gave a method of
constructing connected components of G (x, t ) conditional on the vertices of the components.
This construction involved tilted versions of p-trees introduced in Section 2.2. Since these trees
are parametrized via a driving pmf p, it will be easy to parametrize various random graph con-
structions in terms of pmfs as opposed to vertex weights x. Proposition 4.1 will relate vertex
weights to pmfs.

Fix n Ê 1 and V ⊂ [n] and write Gcon
V

for the space of all simple connected graphs with ver-
tex set V . For fixed a > 0, and probability mass function p = (pv : v ∈ V ), define probability
distributions Pcon(·;p, a,V ) on Gcon

V
as follows: Define for i , j ∈ V ,

qi j := 1−exp(−api p j ). (4.1)

Then

Pcon(G ;p, a,V ) := 1

Z (p, a)

∏
(i , j )∈E(G)

qi j
∏

(i , j )∉E(G)
(1−qi j ), for G ∈Gcon

V , (4.2)

where Z (p, a) is the normalizing constant

Z (p, a) := ∑
G∈Gcon

V

∏
(i , j )∈E(G)

qi j
∏

(i , j )∉E(G)
(1−qi j ).

Now let V (i ) := V (Ci (t )) be the vertex set of Ci (t ) for i Ê 1 and note that
{
V (i ) : i Ê 1

}
denotes

a random finite partition of the full vertex set [n]. The following result is obvious from the con-
struction of G (x, t ):
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Proposition 4.1. [[20, Proposition 6.1]] Conditional on the partition
{
V (i ) : i Ê 1

}
define

p(i )
n :=

(
xv∑

v∈V (i ) xv
: v ∈ V (i )

)
, a(i )

n := t

( ∑
v∈V(i )

xv

)2

, i Ê 1.

For each fixed i Ê 1, let Gi ∈Gcon
V (i ) be a connected simple graph with vertex set V (i ). Then

P
(
Ci (t ) =Gi , ∀i Ê 1

∣∣ {
V (i ) : i Ê 1

})= ∏
iÊ1

Pcon(Gi ;p(i )
n , a(i )

n ,V (i )).

Thus the random graph G (x, t ) can be generated in two stages:

(i) Stage I: Generate the partition of the vertices into different components, i.e., generate{
V (i ) : i Ê 1

}
.

(ii) Stage II: Conditional on the partition, generate the internal structure of each component
following the law of Pcon(·;p(i ), a(i ),V (i )), independently across different components.

Let us now describe an algorithm to generate such connected components using distribution
(4.2). To ease notation, let V = [m] for some m Ê 1 and fix a probability mass function p on [m]
and a constant a > 0 and write Pcon(·) :=Pcon(·;p, a, [m]) onGcon

m :=Gcon
[m] . We will first need to set

up some notation before describing this result.

Depth-first exploration of ordered trees. Recall that we used Tord
m for the space of ordered (or

planar) trees with vertex set [m]. Given a tree t ∈Tord
m , one can use the associated order to explore

the tree in a depth-first manner. More precisely we start with v(1) being the root of t. At each
stage 1 É i É m, we will keep track of three types of vertices: the set of active vertices–A (i ), the
set of explored vertices–O (i ), and the set of unexplored vertices–U (i ). The set of active vertices
will in fact be viewed as a vertical stack (not just a set) with A (i ) representing the state of this
stack at the end of step A (i ). Initialize the process with A (1) = {v(1)} (the root of t), O (1) = ;
and U (1) = [m] \ {v(1)}. At step i Ê 1, we let

(i) v(i ) denote the vertex at the top of the stack A (i ) and let D(i ) ⊂U (i ) denote the set of chil-
dren of v(i ). Delete v(i ) from A (i ) and arrange the vertices of D(i ) from oldest to youngest
at the top of the stack to from A (i +1);

(ii) O (i +1) =O (i )∪ {v(i )};
(iii) U (i +1) =U (i ) \D(i ).

Write P(t) for set of pairs of vertices {u, v} such that u, v ∈ A (i ) for some 1 É i É m; namely
both vertices are active but have not yet been explored. Using terminology from [4], call this
collection the set of permitted edges. Thus,

P(t) := {
(v(i ),u)

∣∣ 2 É i É m, u ∈A (i −1) \ {v(i )}
}

. (4.3)

Write E(t) for the edge set of t. Now define the function L :Tord
m →R+ by

L(t) = L(m)(t) := ∏
(k,`)∈E(t)

[
exp(apk p`)−1

apk p`

]
exp

( ∑
(k,`)∈P(t)

apk p`

)
, t ∈Tord

m . (4.4)

Recall the (ordered) p-tree distribution from (2.8). Using L(·) to tilt this distribution results in
the distribution

P?ord(t) :=Pord(t) · L(t)

Eord[L(T p
m )]

, t ∈Tord
m . (4.5)

For future reference we fix notation for the various objects required in the proof below.
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Definition 4.2. Fix m Ê 1, a > 0, and a probability mass function p on [m]. We will write G̃m(p, a)
to denote a random graph with distribution Pcon(·,p, a, [m]). T

p,?
m will denote a random planar

tree with the tilted p-tree distribution (4.5), and T
p

m will denote a random tree with the original p
tree distribution (2.8).

Proposition 4.3 ([20, Proposition 7.4]). Fix m Ê 1, a probability mass function p on [m], and
a > 0. Consider a random connected graph on [m] constructed as follows:

(a) First generate a rooted planar random tree T
p,?

m with distribution P̃ord(·) as in (4.5).
(b) Let P(T p,?

m ) denote the permitted edge set of this random tree. Add each such edge {u, v} ∈
P(T p,?

m ) with probability quv as in (4.1), independent across permitted edges.

Then, the resulting random graph has distribution Pcon on Gcon
m , i.e, has the same distribution as

G̃m(p, a).

4.2. Convergence of connected components under weight assumptions. The aim of this sec-
tion is to prove Gromov-weak convergence for the connected graph G̃m(p, a) under regularity
conditions on a and p as m →∞. We will assume that we have ordered the index set [m] so that
p1 Ê p2 Ê ·· · Ê pm > 0. Let

σ(p) :=
√∑

i
p2

i . (4.6)

Assumption 4.4. As m →∞, the following hold:

(i) σ(p) → 0 and further for each fixed i Ê 1, pi /σ(p) → θi where θ := (θ1,θ2, . . .) is an element
of Θ as in (2.9).

(ii) There is a constant γ> 0 such that aσ(p) → γ.

The following theorem is the main result of this section.

Theorem 4.5. Consider the connected random graph G̃m(p, a) viewed as a metric measure space
via the graph distance where each vertex v is assigned measure pv . Under Assumption 4.4,

σ(p)G̃m(p, a)
w−→G∞(θ,γ),

where G∞(θ,γ) is the random metric space defined in Definition 2.2 and convergence is in the
Gromov-weak topology on metric spaces.

The rest of this section proves this result. We will throughout assume that G̃m(p, a) has been
constructed using Proposition 4.3.

4.2.1. Two constructions of p-trees: Exploration process and the birthday construction. We start
by describing an explicit construction of the (untilted) p-tree T

p
m first developed in [11]. At the

end of this section we describe a second construction used later in the paper.
Exploration process construction: The first construction is initiated by setting up a map ψp :
[0,1]m →Tord as follows. Let u := (uv : v ∈ [m]) be a collection of distinct points in (0,1). Define

F p(s) :=−s +
m∑

v=1
pv 1l{uv É s} , s ∈ [0,1]. (4.7)

Assume that there exists a unique point v∗ ∈ [m] such that F p(uv∗−) = minu∈[0,1] F p(s). Set v∗ to
be the root of the tree ψp(u). Define yi := ui −uv∗ for i ∈ [m], and

F exc,p(s) := F p(uv∗ + s mod 1)−F p(uv∗−), 0 É s < 1.



22 BHAMIDI, VAN DER HOFSTAD, AND SEN

Then F exc,p(1−) = 0 and F exc,p(s) > 0 for s ∈ [0,1). Extend the definition of F exc,p to s ∈ [0,1] by
define F exc,p(1) = 0. We use F exc,p to construct a depth-first-search of an ordered tree whose
exploration in this depth-first manner is encoded by the function F exc,p. This in turn defines
the tree ψp(u). As before, in this construction we carry along a set of explored vertices O (i ),
active vertices A (i ) and unexplored vertices U (i ) = [m] \ (A (i )∪O (i )), for 0 É i É m. We view
A (i ) as the state of a vertical stack A after the i th step in the depth-first-search. Initialize with
O (0) = ;, A (0) = {

v∗}
, U (0) = [m] \ {v(1)}, and define y∗(0) = 0. At step i ∈ [m], let v(i ) be

the value that is on the top of the stack A (i − 1) and define y∗(i ) := y∗(i − 1)+ pv(i ). Define
D(i ) := {

i ∈ [m] : y∗(i −1) < yi < y∗(i )
}
. Suppose D(i ) = {

u( j ) : 1 É i É k
}

where we have ordered
these vertices in the sequence that they are found in this interval, i.e.,

y∗(i −1) < yu(1) < ... < yu(k) < y∗(i ).

Update the stack A as follows:

(i) Delete v(i ) from A .
(ii) Push u( j ), 1 É j É k, to the top of A sequentially (so that u(k) will be on the top of the stack

at the end).

Let A (i ) be the state of the stack after the above operations. Update O (i ) :=O (i −1)∪ {v(i )} and
U :=U (i −1) \D(i ). See Figure 4.1 for a pictorial description of this construction.

The treeψp(u) ∈Tord
m is constructed by putting the edges {(v(i ), v) : i ∈ [m], v ∈D(i )} and using

the order prescribed in the above exploration to make the tree an ordered tree. The fact that this
procedure actually produces a tree is proved in [11].

Lemma 4.6 ([11, Section 3.2]). Consider the map ψp. Let X := (Xv : v ∈ [m]) be i.i.d. random
variables distributed uniformly on (0,1). Then the random tree ψp(X) has distribution (2.8), i.e.,

ψp(X)
d=T p.

For future reference, coupled with the above construction, define S (i ) :=A (i −1) \ {v(i )} for
i ∈ [m]. Define the function Am(·) on [0,1] via

Am(u) := ∑
v∈S (i )

pv , for u ∈ (y∗(i −1), y∗(i )], i ∈ [m]. (4.8)

Further let Ām(u) := a Am(u), u ∈ [0,1], where a is the scaling constant in (4.1).
Birthday construction: We now describe a second construction of p-trees, first formulated in
[27]. We urge the reader to skim this portion and return to it once she has reached Section 4.5.
Let Y := (Y0,Y1, . . .) be an infinite sequence of i.i.d. random variables with distribution p. Let
R0 = 0 and for l Ê 1, let Rl denote the l -th repeat time, i.e.,

Rl = min
{

k > Rl−1 : Yk ∈ {Y0, . . . ,Yk−1}
}

.

Now consider the directed graph formed via the edges

T (Y) := {
(Y j−1,Y j ) : Y j ∉

{
Y0, . . . ,Y j−1

}
, j Ê 1

}
.

It is easy to check that this gives a tree which we view as rooted at Y0. Intuitively the process
of constructing a tree is as follows: the tree “grows” via the addition of new vertices sampled
using p till it stumbles across a “repeat” (a vertex already found) when it goes back to the first
occurrence of this “repeat” and starts growing from that position. The following striking result
was shown in [27].
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FIGURE 4.1. The function F p and the corresponding tree ψp.

Theorem 4.7 ([27, Lemma 1 and Theorem 2]). The random tree T (Y) viewed as an object in Tm

is distributed as a p-tree with distribution (2.7) independently of YR1−1,YR2−1, . . . which are i.i.d
with distribution p.

Remark 5. The independence between the sequence YR1−1,YR2−1, . . . and the constructed p tree
T (Y) is truly remarkable. In particular, suppose S is a p-tree with distribution as in (2.7) and
for fixed r Ê 1, let Ỹ1, Ỹ2, . . . Ỹr be i.i.d. with distribution p. Write Sr ⊂S for the tree spanned by
these vertices and the root. Let T B

r ⊂T (Y) denote the subtree with vertex set
{
Y0,Y1, . . . ,YRr −1

}
,

namely the tree constructed in the first Rr steps. Here B is a mnemonic for “birthday tree” and
also to distinguish this construction from a generic random tree model with r vertices. Then the
above result (formalized as [27, Corollary 3]) implies that these can be jointly constructed as

(Ỹ1, Ỹ2, . . . , Ỹr ;Sr )
d= (YR1−1,YR2−1, . . .YRr −1;T B

r ). (4.9)

We use this fact often in Section 4.5.
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4.3. Uniform integrability of the tilt. The first use of the above construction of the p-tree is to
prove the following:

Proposition 4.8. Fix s Ê 1 and consider the tilt L(·) as in (4.4). Under Assumptions 4.4, there is a
constant K := K (s) <∞ such that

sup
mÊ1

Eord
([

L(T p
m )

]s)É K .

In particular, the collection of random variables
{
L(T p

m ) : m Ê 1
}

is uniformly integrable.

Proof: Writing out the tilt L(·) explicitly we have

L(t) := ∏
(k,`)∈E(t)

[
exp(apk p`)−1

apk p`

]
exp

( ∑
(k,`)∈P(t)

apk p`
)
= I(t)L̄(t), (4.10)

say, where,

I(t) := ∏
(i , j )∈E(t)

exp(api p j )−1

api p j
É exp

(
a

∑
(i , j )∈E(t)

pi p j

)
É exp(apmax). (4.11)

Here we have used (ex − 1)/x É ex for x > 0 for the first inequality and the second inequality
follows using the fact that t is a tree, so that for each (i , j ) ∈ E(t) such that i is the parent of j , we
have pi p j É pmaxp j . By Assumption 4.4, we have apmax → γθ1. In particular, there is a constant
C > 0 such that for all m Ê 1, and t ∈Tord

m ,

I(t) ÉC and L(t) ÉC exp
( ∑

(k,`)∈P(t)

apk p`
)
. (4.12)

Now recall the functions Am and Ām := a Am from (4.8). Using the equivalent characterization
of the permitted edge set from (4.3) and comparing this with (4.8), it is easy to check that∑

(i , j )∈P(T p
m )

api p j = a
∑

i∈[m]

∑
j∈S (i )

pi p j =
∫ 1

0
Ām(s)d s.

Now by the definition of F exc,p,

F exc,p(y∗(i )) = ∑
v∈A (i )

pv , for i ∈ [m]. (4.13)

By (4.8),
Am(t ) = ∑

v∈S (i )
pv = ∑

v∈A (i−1)
pv −pv(i ), for t ∈ (y∗(i −1), y∗(i )].

Thus

‖Am‖∞ É ‖F exc,p‖∞. (4.14)

By Assumption 4.4(ii) and (4.12), for any s Ê 0, there exists K = K (s) <∞ such that[
L(T p

m )
]s ÉC s exp

(
K
‖F exc,p‖∞
σ(p)

)
. (4.15)

Now the following lemma completes the proof of Proposition 4.8. ■
Lemma 4.9. There exists a positive constant c > 0 such that for every m Ê 1 and x Ê e,

P
(‖F exc,p‖∞ Ê xσ(p)

)É exp(−cx log(log x)).
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Proof: Write R(m) := ‖F exc,p‖∞/σ(p) and as before, let X = (Xv : v ∈ [m]) be the collection of
uniform random variables used to construct F p. Write Q[0,1] for the set of rationals in [0,1].
Then note that

R(m) = sup
q∈Q[0,1]

F p(q)

σ(p)
− inf

q∈Q[0,1]

F p(q)

σ(p)
:=R1(m)+R2(m). (4.16)

We start by analyzing R1(m). For fixed q ∈Q[0,1], define the collection of m functions

s j
q (x) := p j

σ(p)

(
1l

{
x É q

}−q
)

, 1 É j É m.

Note that for all j ∈ [m], s j
q : [0,1] → [−1,1], with E(s j

q (X j )) = 0 and further

R1(m) = sup
q∈Q[0,1]

(
s1

q (X1)+·· ·+ sm
q (Xm)

)
.

Also note that

sup
q∈Q[0,1]

Var
(
s1

q (X1)+·· ·+ sm
q (Xm)

)
= sup

q∈Q[0,1]
q(1−q) = 1

4
.

If we can show that
κ := sup

mÊ1
E(R1(m)) <∞, (4.17)

then standard concentration inequalities for the maxima in empirical processes [49, Theorem
1.1(b)] will imply the existence of a constant c1 > 0 such that for all m Ê 1 and x > 0,

P(R1(m) Ê E(R1(m))+x) É exp

(
−x

4
log

[
1+2log

(
1+ x

2κ+ 1
4

)])
. (4.18)

Let us now prove (4.17). In fact we will show the stronger result:

sup
mÊ1

E

(
sup

q∈Q[0,1]

∣∣∣∣∣ m∑
j=1

s j
q (X j )

∣∣∣∣∣
)
<∞.

Let X (1) < X (2) < ·· · < X (m) denote the order statistics of X and let π denote the corresponding
permutation of [m], namely X (i ) = Xπ(i ). Note that

sup
q∈Q[0,1]

∣∣∣∣∣ m∑
j=1

s j
q (X j )

∣∣∣∣∣ := max
1ÉiÉm

|ϑi |, where ϑi :=
−X (i ) +∑i

j=1 pπ( j )

σ(p)
.

Hence

max
i∈[m]

|ϑi | É max
i∈[m]

[σ(p)]−1
∣∣∣∣−X (i ) + i

m

∣∣∣∣ + max
i∈[m]

[σ(p)]−1

∣∣∣∣∣ i∑
j=1

pπ( j ) − i

m

∣∣∣∣∣
:=R11(m)+R12(m).

We first analyze R11(m). By the DKW inequality [54],

P

(
max
i∈[m]

∣∣∣∣−X (i ) + i

m

∣∣∣∣Êσ(p)x

)
É 2exp

(
−2m · (σ(p)x

)2
)

By Cauchy-Schwartz, mσ2(p) Ê (
∑

i pi )2 = 1. Thus supmÊ1E(R11(m)) < ∞. We now analyze
R12(m). Since

E(pπ( j )) = 1

m
, and E(pπ(i )pπ( j )) =

∑
k 6=`∈[m] pk p`
m(m −1)

= 1−σ2(p)

m(m −1)
for i 6= j ∈ [m],
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for any i ∈ [m] we have

E

((
i∑

j=1
pπ( j ) − i

m

)2)
= iσ2(p)

m
+ i (i −1)

m(m −1)
(1−σ2(p))− i 2

m2
É i

m
σ2(p) (4.19)

by simply expanding the square. Now note that since π is a uniform random permutation of the
vertex set [m], for any fixed i Ê 1 we also have

i∑
j=1

pπ( j ) − i

m
d=

i−1∑
j=0

pπ(m− j ) − i

m
=

(
m − i

m
−

m−i∑
j=1

pπ(i )

)
.

Thus

E(R12(m)) É 2E

(
max

i∈[m/2]
[σ(p)]−1

∣∣∣∣∣ i∑
j=1

pπ( j ) − i

m

∣∣∣∣∣
)

. (4.20)

Now assuming that we construct π by sequentially sampling without replacement from [m],
let Fk denote the σ-field generated by (π(1),π(2), . . . ,π(k)) for 0 É k É m − 1. Let M0 = 0 and
consider the sequence

Mk :=
∑k

j=1 pπ( j ) −k/m

m −k
, 0 É k É m −1.

It is easy to check that {Mk : 0 É k É m −1} is a martingale with respect to the filtration
{Fk : 0 É k É m −1}. Then (4.20) and Doob’s L2-maximal inequality yield

E(R12(m)) É 2m

σ(p)

√
E([Mm/2]2)

Using (4.19) with i = m/2 then gives E(R12(m)) É 16 for all m Ê 1. Thus we have shown that
supmÊ1 max(E(R11(m)),E(R12(m))) <∞. This proves (4.17) and thus (4.18).

To complete the proof of the lemma, we need to get a tail bound on R2(m) appearing in (4.16).
As before, using [49], it is enough to show supmÊ1E(R2(m)) <∞. However, note that

R2(m) = max
i∈[m]

∣∣∣∑i−1
j=1 pπ( j ) −X (i )

∣∣∣
σ(p)

ÉR1(m)+ pmax

σ(p)
.

We now use (4.17) together with Assumption 4.4 to complete the proof. ■
4.4. Another construction of G̃m(p, a) and a modification. In this section, we start by giving
a more explicit description of the algorithm described in Proposition 4.3 via adding permitted
edges to a tilted p-tree. We first set up some notation. As a matter of convention, we will view
ordered rooted trees via their planar embedding, using the associated ordering to determine
the relative locations of siblings of an individual. We think of the left most sibling as the “oldest”.
Further, in a depth-first exploration, we explore the tree from left to right. Now given a planar
rooted tree t ∈ Tm , let ρ denote the root and for every vertex v ∈ [m], let [ρ, v] denote the path
connecting ρ to v in the tree. Given this path and a vertex i ∈ [ρ, v], write RC (i , [ρ, v]) for the set
of all children of i which fall to the right of [ρ, v]. Thus in the depth-first exploration of the tree,
when we get to v ,

P(v,t) :=∪i∈[m]RC (i , [ρ, v]) (4.21)

denotes the set of endpoints of all permitted edges emanating from v . Define

G(m)(v) := ∑
i∈[ρ,v]

∑
j∈[m]

p j 1l
{

j ∈RC (i , [ρ, v])
}

. (4.22)
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The function Am(·) defined in (4.8) is intimately connected to G(m)(·). More precisely, let
(v(1), v(2), . . . , v(m)) denote the order in the depth-first exploration of the tree. Let y∗(0) = 0
and y∗(i ) = y∗(i −1)+pv(i ). Define

A(m)(u) =G(m)(u), for u ∈ (y∗(i −1), y∗(i )], and Ā(m)(·) := a A(m)(·). (4.23)

Then the function A(m)(·) associated with an ordered p-tree has the same distribution as the
function Am(·) associated with the treeψp(X), where X = (Xv : v ∈ [m]) are i.i.d. random variables
uniformly distributed on (0,1) .

Finally, define the function

Λ(m)(t) := a
∑

v∈[m]
pvG(m)(v). (4.24)

While all of these objects depend on the tree t, we suppress this dependence to ease notation.
Now Proposition 4.3 implies we can construct G̃m(p, a) via the following five steps:

(i) Tilted p-tree: Generate a tilted ordered p-tree T
p,?

m with distribution (4.5). Now consider
the (random) objects P(v,T p,?

m ) for v ∈ [m] and the corresponding (random) functions
G(m)(·) on [m] and A(m)(·) on [0,1].

(ii) Poisson number of possible surplus edges: Let P denote a rate one Poisson process on R2+
and define

Ā(m) ∩P := {
(s, t ) ∈P : s ∈ [0,1], t É Ā(m)(s)

}
. (4.25)

Write Ā(m) ∩P := {
(s j , t j ) : 1 É j É N?

(m)

}
where N?

(m) = |Ā(m) ∩P |.
We will now use the set

{
(s j , t j ) : 1 É j É N?

(m)

}
to generate pairs of points{

(L j ,R j ) : 1 É j É N?
(m)

}
in the tree that will be joined to form the surplus edges.

(iii) “First" endpoints: Fix j and suppose s j ∈ (y∗(i − 1), y∗(i )] for some i Ê 1, where y∗(i ) is
as given right above (4.23). Then the first endpoint of the surplus edge corresponding to
(s j , t j ) is L j := v(i ).

(iv) “Second" endpoints: Note that in the interval (y∗(i −1), y∗(i )], the function Ā(m) is of con-
stant height aG(m)(v(i )). We will view this height as being partitioned into sub-intervals
of length apu for each u ∈ P(v(i ),T p,?

m ), the collection of endpoints of permitted edges
emanating from Lk . (Assume that this partitioning is done according to some preassigned
rule, e.g., using the order of the vertices in P(v(i ),T p,?

m ).) Suppose t j belongs to the in-
terval corresponding to u. Then the second endpoint is R j = u. Form an edge between
(L j ,R j ).

(v) In this construction, it is possible that one created more than one surplus edge between
two vertices. Remove any multiple surplus edges.

Lemma 4.10. The above construction gives a random graph with distribution G̃m(p, a) as in Def-
inition 4.2. Further, conditional on T

p,?
m :

(a) N?
(m) has Poisson distribution with meanΛ(m)(T

p,?
m ) whereΛ(m) is as in (4.24).

(b) Conditional on T
p,?

m and N?
(m) = k, the first endpoints (L j : 1 É j É k) can be generated in an

i.i.d. fashion by sampling from the vertex set [m] with probability distribution

J (m)(v) ∝ pvG(m)(v), v ∈ [m].

(c) Conditional on T
p,?

m , N?
(m) = k and the first endpoints (L j : 1 É j É k), the second endpoints

can be generated in an i.i.d. fashion where the probability that R j = u is proportional to pu

if u is a right child of some individual y ∈ [ρ,L j ].
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Proof: The assertions follow from Proposition 4.3 and standard properties of Poisson processes.
■

The modified space G mod
m (p, a): We construct a modified graph G mod

m (p, a) as follows:

(i′) Generate a tilted ordered p-tree T
p,?

m with distribution (4.5).
(ii′) Conditional on T

p,?
m = k, generate N?

(m) ∼Poi(Λ(m)(T
p,?

m )).
(iii′) Conditional on T

p,?
m and N?

(m) = k, generate the first endpoints (L j : 1 É j É k) in an i.i.d.
fashion by sampling from the vertex set [m] with probability distribution

J (m)(v) ∝ pvG(m)(v), v ∈ [m].

(iv′) Conditional on T
p,?

m , N?
(m) = k and the first endpoints (L j : 1 É j É k), generate the second

endpoints in an i.i.d. fashion where conditional on L j = v , the probability distribution of
R j is given by

Q (m)
v (y) :=

{∑
j pu1l

{
u ∈RC (y, [ρ, v])

}
/G(m)(v) if y ∈ [ρ, v],

0 otherwise .
(4.26)

Identify L j and R j for 1 É j É k.

Thus, instead of adding an edge between L j and one of the right children on the path [ρ,L j ]
as in Lemma 4.10(c), we identify it to the parent of this vertex which is on [ρ,L j ]. Also, we do
not remove any multiple surplus edges. This construction turns out to be easier to work with.
G mod

m (p, a) will be viewed as a metric measure space via the graph distance where vertex v has
mass

∑
pu where the sum is taken over all u ∈ [m] which have been identified with v . Intuitively

it is clear that σ(p)G̃m(p, a) and σ(p)G mod
m (p, a) are “close”. This is formalized in Lemma 4.12.

Remark 6. At this point we urge the reader to go back to Section 2.3.1 and remind themselves
of the four steps in the construction of the limit metric space G∞(θ,γ), and note the similarities
to the construction above. In particular, we make note of the following:

(a) For finite m, we essentially tilt the p-tree distribution via the functional L̄(T p
m ) =

exp(aE[G(m)(V1) | T p
m ]) (the term I(T p

m ) as in (4.10) can be ignored as we will see in Lemma
4.14), and the number of shortcut points selected, namely N?

(m), has a Poisson distribution
with mean aE(G(m)(V1) | T p,?

m ). Here V1 has distribution p.
(b) For the limit object, we tilt the measure using the functional L(∞)(T θ

(∞),U ) =
exp(γE[G(∞)(V1) | T θ

(∞),U ]), and the number of shortcuts, namely N?
(∞), follows a Pois-

son distribution with mean γE(G(∞)(V1) | T θ,?
(∞) ,U?). Here V1 is distributed according to the

mass measure µ? on T θ,?
(∞) .

As a brief warm-up to the kind of calculations in the next section, we now prove a simple
lemma on tightness of the number of surplus edges. We will prove distributional convergence
of this object in the next section.

Lemma 4.11. Under Assumption 4.4, the sequence
{

N?
(m) : m Ê 1

}
is tight, where N?

(m) is as given
below (4.25).

Proof: Fix r > 1. First note that conditional on T
p,?

m = t, N?
(m) has a Poisson distribution with

meanΛ(m)(t). Thus, there exists a constant C =C (r ) such that

E([N?
(m)]

r |T p,?
m = t) ÉC [Λ(m)(t)]r .
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Further, note that the tilt L(t) in (4.4) satisfies

L(t) := I(t)exp

( ∑
(k,`)∈P(t)

apk p`

)
= I(t)exp(Λ(m)(t)),

where 1 É I(t) É C ′ for a fixed constant C ′ independent of m by (4.11). Thus, Proposition 4.8
shows that

sup
mÊ1

E(exp(γΛ(m)(T
p

m ))) <∞

for any γ> 0. In particular,

sup
mÊ1

E([N?
(m)]

r ) É sup
mÊ1

C E
(
[Λ(m)(T

p,?
m )]r

)
=C sup

mÊ1

E([Λ(m)(T
p

m )]r L(T p
m )))

E(L(T p
m ))

<∞,

which proves tightness of
{

N?
(m) : m Ê 1

}
. ■

We conclude this section by proving a lemma which essentially says that it is enough to work
with the modified space G mod

m (p, a).

Lemma 4.12. Under Assumption 4.4, we have

dGHP

(
σ(p)G̃m(p, a), σ(p)G mod

m (p, a)
)

P−→ 0.

Proof: Recall the five-step construction of G̃m(p, a). Construct G mod
m (p, a) on the same space by

coupling it with G̃m(p, a) in the obvious way. Define the event

F := {
N?

(m) equals the number of surplus edges in G̃m(p, a)
}

.

In other words, F describes the event in which G̃m(p, a) does not have multiple surplus edges. It
is easy to check that

dGHP

(
G̃m(p, a), G mod

m (p, a)
)
É N?

(m) on the set F.

Thus, Lemma 4.11 combined with the assumption σ(p) → 0 yields the result provided we show
that P(F c ) → 0. To this end, note that

P
(
∃ multiple surplus edges between u and v

∣∣T p,?
m = t

)
=P(

Poi(apu pv ) Ê 2
)É c(apu pv )2

for every u ∈ [m], v ∈P(u,t), and some universal positive constant c. Hence

P
(
F c

∣∣T p,?
m = t

)
É ca2σ(p)2

∑
u∈[m]

p2
u

∑
v∈P(u,t)

(
pv /σ(p)

)2

É c(aσ(p))2
∑

u∈[m]
p2

u = c(aσ(p))2σ(p)2.

Since σ(p) → 0 and aσ(p) → γ, P(F c ) → 0 as desired. ■

4.5. Completing the proof of Theorem 4.5. At this point we urge the reader to remind them-
selves of (a) the four steps in the construction of the limit object in Section 2.3, (b) the birthday
construction of p-trees at the end of Section 4.2.1 and (c) the definition of Gromov-weak topol-
ogy in Section 2.1.2 of complete separable measured metric spaces S∗. Fix `Ê 1 and a bounded
continuous function φ : R`

2

+ → R. Let Φ be as in (2.6). To simplify notation, we will write Φ(X )
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instead of Φ(X ,d ,µ). To prove Theorem 4.5, we need to show that for every fixed ` Ê 1 and
functions φ andΦ as above,

E
[
Φ

(
σ(p) · G̃m(p, a)

)]→ E
[
Φ

(
G∞(θ,γ)

)]
as m →∞,

where we sample ` points according to p in G̃m(p, a) while we sample ` points according to the
measure on G∞(θ,γ) inherited from the mass measure. Now recall the explicit five step con-
struction of G̃m(p, a) in Section 4.4 starting from the tilted p-tree T

p,?
m and the Poisson number

of surplus edges N?
(m). Fix K Ê 1 and note that∣∣∣∣∣E[

Φ
(
σ(p)G̃m(p, a)

)]− K∑
k=0

E
[
Φ

(
σ(p)G̃m(p, a)

)
1l

{
N?

(m) = k
}]∣∣∣∣∣É ||φ||∞P(N?

(m) Ê K +1).

Using Lemma 4.11, we can choose K large (independent of m) to make the bound on the
right arbitrarily small. Further, in view of Lemma 4.12, we can work with G mod

m (p, a) instead
of G̃m(p, a). Hence it suffices to prove the following convergence for every fixed k Ê 0:

E
[
Φ

(
σ(p)G mod

m (p, a)
)

1l
{

N?
(m) = k

}]→ E
[
Φ

(
G∞(θ,γ)

)
1l

{
N?

(∞) = k
}]

as m →∞. (4.27)

To analyze this term, we first need to setup some notation.
Note that both the finite m and the limit object are obtained by starting with a discrete tree for

finite m and a real tree in the limit, and sampling a random number of pairs to create “shortcuts”.
Recall the space T∗

I J in Section 2.1.3. Fix k Ê 0 and let t be an element in T∗
I ,(k+`) for some I Ê 0.

“I " will not play a role in the definition below. Write ρ for the root and denote the leaves by

xk,k+` := (x1, x2, . . . , xk , xk+1, . . . , xk+`). (4.28)

Also recall that for each i , there is a probability measure νt,i (·) on the path [ρ, xi ] for 1 É i É k+`.
For 1 É i É k, sample yi according to the distribution νt,i (·) independently for different i and
connect xi and yi . Let t′ denote the (random) tree thus obtained and let dt′ denote the graph
distance on t′. Define the function g (k)

φ : T∗
I ,(k+`) →R by

g (k)
φ (t) :=

{
E
[
φ

(
dt′(xi , x j ) : k +1 É i É k +`)] , if t 6= ∂,

0, if t = ∂.
(4.29)

In words, we look at the expectation of φ applied to the pairwise distances between the last `
leaves after sampling yi on the path [ρ, xi ] for 1 É i É k and connecting xi and yi . Note that here
the expectation is only taken over the choices of yi .

Next, given t ∈ Tord
m and v := (v1, . . . , vr ) with vi ∈ [m], set t(v ) to be the subtree of t spanning

the vertices v and the root provided v1, . . . , vr are all distinct and none of them is an ancestor of
another vertex in v . When this condition fails, set t(v ) = ∂.

Now, conditional on T
p,?

m , construct a tree T
p,?

m (Ṽ(m)

k,k+`) where

(i) Ṽ(m)

k,k+` := (V̄ (m)
1 , . . . ,V̄ (m)

k ,V (m)

k+1, . . .V (m)

k+`);

(ii) V̄ (m)

i , 1 É i É k are i.i.d. with the distribution J (m)(·) as in Lemma 4.10(b); and
(iii) V (m)

k+1, . . .V (m)

k+` are i.i.d. with distribution p. Further, V̄ (m)
1 , . . . ,V̄ (m)

k ,V (m)

k+1, . . .V (m)

k+` are jointly
independent.

We will drop the superscript and simply write V (m)

i , V̄ (m)

i etc. when there is no scope of confu-

sion. Note that T
p,?

m (Ṽk,k+`) = ∂ whenever V̄1, . . . ,V̄k ,Vk+1, . . .Vk+` are not all distinct or one
of them is an ancestor of another vertex in Ṽk,k+`. In either of these two case, the subtree
spanned by the root and Ṽk,k+` will have less than k + ` leaves. We made the convention of
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setting T
p,?

m (Ṽk,k+`) = ∂ to make sure that we are always working with a bona fide element in
T∗

I ,(k+`). However, this makes no difference at all since by [27, Corollary 15],

lim
m

P
(
T

p
m (V1, . . . ,Vk+`

)= ∂) = 0

where V1, . . . ,Vk+` are i.i.d. p random variables. Now T
p,?

m is obtained by tilting the distribution
of T

p
m , where the tilt L(·) is uniformly integrable (Proposition 4.8). Further, V̄i , 1 É i É k are

i.i.d. with the distribution J (m)(v) ∝ pvG(m)(v) where maxv G(m)(v) is stochastically dominated
by ‖F exc,p‖∞ (see (4.14) and the discussion below (4.23)). It thus follows that

lim
m

P
(
T

p,?
m (Ṽk,k+`) = ∂

)
= 0. (4.30)

Using (4.30), we see that

E
[
Φ

(
σ(p)G mod

m (p, a)
)

1l
{

N?
(m) = k

}]
(4.31)

= E
{
Ep,?

[
g (k)
φ

(
σ(p)T p,?

m (Ṽk,k+`)
)]

1l
{

N?
(m) = k

}}+o(1),

where Ep,?(·) := E(·|T p,?
m ). At this point, we also define Ep(·) := E(·|T p

m ) where T
p

m has the original
ordered p-tree distribution (2.8).

Now since J (m)(v) ∝ pvG(m)(v), we see that the inner expectation in (4.31) can be simplified
as

Ep,?

[
g (k)
φ

(
σ(p)T p,?

m (Ṽk,k+`)
)]

=
Ep,?

[∏k
i=1G(m)(Vi )g (k)

φ

(
σ(p)T p,?

m (Vk,k+`)
)]

[Ep,?(G(m)(V1)]k
, (4.32)

where Vk,k+` = (V1,V2, . . .Vk+`), and Vi are i.i.d. with distribution p. Since T
p,?

m is sampled
according to a tilted p-tree distribution, combining (4.31), (4.32), we get the following result:

Lemma 4.13. Fix k Ê 0. Then

E
[
Φ

(
σ(p)G mod

m (p, a)
)

1l
{

N?
(m) = k

}]
(4.33)

=Cm E

Ep

[(∏k
i=1G(m)(Vi )

)
g (k)
φ

(
σ(p)T p

m (Vk,k+`)
)]

[Ep(G(m)(V1)]k
L(T p

m )1l
{

N(m) = k
}+o(1),

where Cm = {
E(L(T p

m ))
}−1

, and L is the tilt as in (4.4). Further, conditional on T
p

m , N(m) has a
Poisson distribution with meanΛ(m)(T

p
m ) = aEp(G(m)(V )) as in (4.24), where V has distribution p

independent of T
p

m .

This formula will be the starting point to prove (4.27). Recall from (4.10) that the tilt L(·) =
I (·)L̄(·), where I (·) has a messy form given by (4.11). We have already seen in (4.12) that under
Assumption 4.4, I(·) É C for a constant C all m Ê 1. The following lemma coupled with domi-
nated convergence theorem will now imply that we can replace L with L̄ in Lemma 4.13 and in
all the subsequent analysis below:

Lemma 4.14. Under Assumption 4.4, I(T p
m )

P−→ 1 as m →∞.

Proof: By (4.11) we have 1 É I(T p
m ) É exp(a

∑
(k,l )∈E(T p

m ) pk pl ). Thus it is enough to show that
aE(

∑
(k,l )∈E(T p

m ) pk pl ) → 0. Now for k 6= l ∈ [m], write {k ; l } for the event in which l is a child of

k in T
p

m . Then standard properties of p-trees [59, Section 6.2] implies that for k 6= l1 6= l2 ∈ [m]

P(k ; l1) = pk , P(k ; l1 and k ; l2) = p2
k . (4.34)
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Thus

aE

 ∑
(k,l )∈E(T p

m )

pk pl

= a
m∑

k=1
pk

∑
l 6=k

pl pk É a
m∑

k=1
p2

k = a[σ(p)]2 → 0,

as m →∞ by Assumption 4.4. ■
Write Eθ for expectation conditional on T θ

(∞) and the random variables U (i )

j which encode the

order on T θ
(∞), i.e.,

Eθ(·) := E
(
· ∣∣ T θ

(∞), U
)

,

and note that E
[
Φ

(
G∞(θ,γ)

)
1l

{
N?

(∞) = k
}]

has an expression similar to (4.33). Indeed, from the
construction of G∞(θ,γ) given in Section 2.3.1, it follows that

E
[
Φ

(
G∞(θ,γ)

)
1l

{
N?

(∞) = k
}]

(4.35)

=C∞E

Eθ
[(∏k

i=1G(∞)(V
(∞)

i )
)

g (k)
φ

(
T θ

(∞)(V(∞)

k,k+`)
)]

[
Eθ(G(∞)(V

(∞)
1 )

]k
L(∞)(T

θ
(∞),U )1l

{
N(∞) = k

} ,

where (a) G(∞)(·) is as defined in (2.10) (b) L(∞)(T θ
(∞),U ) is as in (2.12), (c) C∞ = [EL(∞)(T θ

(∞),U )]−1,
(d) V (∞)

i are i.i.d. random variables sampled from T θ
(∞) using the mass measure µ, (e) V(∞)

k,k+` =
(V (∞)

1 , . . . ,V (∞)

k+`), (f ) T θ
(∞)(V(∞)

k,k+`) is the tree spanned by the root of T θ
(∞) and V(∞)

k,k+`, viewed as an

element of T∗
0,k+` by declaring the leaf values to be G(∞)(V

(∞)

j ) and the root-to-leaf measures to

be Q (∞)
V j

(·) as in (2.11), and (g) conditional on (T θ
(∞),U ), N(∞) has a Poisson distribution with mean

Λ(∞) := γ
∫

y∈T θ
(∞)

G(∞)(y)µ(d y) = Eθ
[
G(∞)(V

(∞)
1 )

]
.

Finally, observe that L(m)(·) = I(m)(·)L̄(m)(·) where L̄(m)(t) = exp(aEp[G(m)(V
(m)

1 )]), and recall that
aσ(p) → γ (Assumption 4.4) and L(m)(T

p
m ) is uniformly integrable (Proposition 4.8). Therefore,

combining Lemma 4.14, Lemma 4.13 and (4.35) with Theorem 4.15 stated below yields (4.27)
and thus completes the proof of Theorem 4.5.

Theorem 4.15. For each k Ê 0,(
Ep

[
G(m)(V

(m)
1 )

σ(p)

]
, Ep

[(
k∏

i=1

G(m)(V
(m)

i )

σ(p)

)
g (k)
φ

(
σ(p)T p

m (V(m)

k,k+`)
)])

d−→ (4.36)(
Eθ

[
G(∞)(V

(∞)
1 )

]
, Eθ

[(
k∏

i=1
G(∞)(V

(∞)

i )

)
g (k)
φ

(
T θ

(∞)(V(∞)

k,k+`)
)])

.

The proof of this theorem is accomplished via the following two theorems for which we need
to set up some notation. Fix I Ê 0 and J Ê 1. We will assume that T

p
m has been constructed

via the birthday construction (see Section 4.2.1). This construction gives rise to an unordered
p-tree. To obtain an ordered p-tree from this, let D(m)(i ) denote the set of children of i in the p-
tree for every vertex i . Generate i.i.d. uniform random variables U (m)(i ) := {

U(m),i (v) : v ∈D(m)(i )
}
,

independent across v ∈ T
p

m . Think of these as “ages” of the children and arrange the children
from left to right in decreasing order of their ages. We can construct the function G(m)(·) as in
(4.22) once this ordering has been defined.
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Now recall that the right hand side of (4.9) tells us how to sample J i.i.d. points (V (m)
1 , . . . ,V (m)

J )

from distribution p and the corresponding spanning subtree T B
J from the tree using the re-

peat time sequence
{
R (m)

k : k Ê 1
}
. Thus, by the J th repeat time R J , we would have sampled all

J vertices V (m)

i = YRi−1. View T B
J as a tree with edge lengths and marked vertices as follows:

(a) rescale every edge to have length σ(p); (b) relabel V j as j+ and the root as 0+; (c) mark
only those vertices i É I which occur in T B

J ; (d) for all 1 É j É J , set the leaf values to be
G(m)(V j )/σ(p), and assign the measure ν(m)

j := Q (m)
V j

as defined in (4.26) to the path connecting

the root to V j , i.e, to the path [0+, j+] .

Definition 4.16. Fix I Ê 0, J Ê 1 and consider the tree constructed as above. Set r (m)
I J = R(m)

I J = ∂ if
some j+ is not a leaf or if some leaf has been multiply labeled. Otherwise, write r (m)

I J ∈ TI J for the
tree with edge lengths and at most I labelled hubs, namely where we retain information in (a) and
(b) above. Write R(m)

I J ∈ T∗
I J for the tree where we retain all information (a)-(d) above, namely the

leaf values G(m)(V j ) and the root-to-leaf probability measures Q (m)
V j

(·) in addition to (a) and (b).

Now recall the tree R(∞)
I J defined in Section 2.2 using the limit ICRT T θ

(∞). The main ingredients
in the proof of Theorem 4.15 are the following two theorems:

Theorem 4.17. Under Assumption 4.4, R(m)
I J

d−→ R(∞)
I J as m →∞ for every fixed I Ê 0 and J Ê 1.

This convergence is with respect to the topology defined on T∗
I J in Section 2.1.3.

The second result we will need is as follows. Recall the function g (k)
φ on T∗

I ,(k+`) as in (4.29).

Theorem 4.18. Fix I Ê 0, k Ê 0, ` Ê 2 and a bounded continuous function φ on R`
2
. Then the

function g (k)
φ is continuous on T∗

I ,(k+`).

Proof of Theorem 4.15: Assuming Theorem 4.17 and 4.18, let us now show how this completes
the proof. Getting a handle directly on the conditional expectations as required in Theorem
4.15 is a little tricky. Naturally, conditional on T

p
m , repeated sampling of vertices and calculating

sample averages should give a good idea of the conditional expectations (and the same for the
limit object T θ

(∞)). This is made precise in the following simple lemma whose proof we leave to
the reader.

Lemma 4.19. Suppose X(m) := (X (m),1, X (m),2) with m ∈ {1,2, . . . , }∪ {∞} is a sequence of R2-valued
random variables such that for each fixed r Ê 1, there exist random variables X(m)

r := (X (m),1
r , X (m),2

r )
such that the following hold:

(i) There exists a constant C <∞ such that for any m ∈ {1,2, . . . , }∪ {∞}, r Ê 1 and ε> 0,

max
s=1,2

P
(|X (m),s −X (m),s

r | > ε)É C

ε2r
.

(ii) For each fixed r Ê 1, X(m)
r

d−→ X(∞)
r .

Then X(m) d−→ X(∞).

We will apply this lemma with the random variables that arise in Theorem 4.15. That is, we
set

X (m),1 := Ep

[
G(m)(V (m))

σ(p)

]
, X (∞),1 := Eθ

[
G(∞)(V

(∞))
]

, (4.37)
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and similarly define X (m),2 and X (∞),2 to be the second coordinates in the display (4.36). To define
X(m)

r , we proceed as follows. For each fixed r Ê 1, sample a collection of Jr := [r + (k +`)r ] points
all i.i.d. p from T

p
m and think of them as r individuals points-(V (m)

1 ,V (m)
2 , . . . ,V (m)

r ), and r (k +`)
dimensional vectors-V(m),i

k,k+` := (V (m)

i 1 , . . . ,V (m)

i (k+`)) for 1 É i É r . Define

H (m)
φ (i ) :=

k∏
j=1

G(m)(V
(m)

i j )

σ(p)
g (k)
φ

(
σ(p)T p

m (V(m),i

k,k+`)
)

, for 1 É i É r.

For m =∞, sample as above Jr points using the mass measure µ from T θ
(∞) and define

H (∞)
φ (i ) :=

k∏
j=1

G(∞)(V
(∞)

i j )g (k)
φ

(
T θ

(∞)(V(∞),i

k,k+`)
)

, for 1 É i É r.

Now define

X (m),1
r :=

∑r
i=1G(m)(V

(m)

i )

rσ(p)
for m ∈ {1,2, . . .} , X (∞),1

r :=
∑r

i=1G(∞)(V
(∞)

i )

r
, and

X (m),2
r :=

∑r
i=1 H (m)

φ (i )

r
for m ∈ {1,2, . . .}∪ {∞} . (4.38)

Let X(m)
r := (X (m),1

r , X (m),2
r ) for m ∈ {1,2, . . .}∪ {∞}. To complete the proof of the theorem, we have to

check the two conditions of Lemma 4.19. Let us check condition (i) of Lemma 4.19 for the first
coordinate. The second coordinate can be handled in an identical fashion.

Applying Chebyshev’s inequality conditional on T
p

m and then taking expectations, we get

P(|X (m),1 −X (m),1
r | > ε) É (ε2r )−1E(Varp(G(m)(V1)/σ(p))) =: (ε2r )−1C(m), say ,

where Varp defined analogously to Ep is the conditional variance operator. Obviously

E

(
Varp

(
G(m)(V1)

σ(p)

))
É Var

(
G(m)(V1)

σ(p)

)
É E

((
G(m)(V1)

σ(p)

)2)
.

From the argument given below (4.13), it follows that ‖G(m)‖∞ É ||F exc,p||∞. Hence Lemma 4.9
implies that supm C(m) <∞. This verifies (i) of the lemma.

Let us now verify condition (ii) of the lemma. Writing this out explicitly, we have to show for
each fixed r Ê 1,(∑r

i=1G(m)(V
(m)

i )

rσ(p)
,

∑r
i=1 H (m)

φ (i )

r

)
d−→

(∑r
i=1G(∞)(V

(∞)

i )

r
,

∑r
i=1 H (∞)

φ (i )

r

)
. (4.39)

To this end, for each m ∈ {1,2, . . .} ∪ {∞}, consider the subtree spanning the Jr points
(V (m)

i )1ÉiÉr , (V(m),i

k,k+l )1ÉiÉr , viewed as an element of T∗
I J as in Definition 4.16. Using Theorem 4.17

and continuity of the function g (k)
φ from Theorem 4.18, we get((

G(m)(Vi )

σ(p)

)
1ÉiÉr

,
(
H (m)
φ (i )

)
1ÉiÉr

)
d−→

((
G(∞)(Vi )

)
1ÉiÉr ,

(
H (∞)
φ (i )

)
1ÉiÉr

)
with respect to weak convergence on R2r , which in turn implies (4.39). This completes the veri-
fication of the conditions of Lemma 4.19 and thus the proof of Theorem 4.15. ■

The rest of this section proves Theorems 4.17 and 4.18.

Proof of Theorem 4.17: The proof will rely on a truncation argument that is qualitatively similar
to Lemma 4.19. Fix a truncation level R Ê 1. Recall the definition of G(m)(v) from (4.22) which
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kept track of the contribution of all right children of individuals i on the path [ρ, v]. We will look
at a truncated version of this object where we keep track of the potential contributions of only
the first R vertices. More precisely let

GR
(m)(v) := ∑

i∈[ρ,v]
iÉR

∑
j∈[m]

p j 1l
{

j ∈RC (i , [ρ, v])
}

. (4.40)

Let GR
(∞)(·) be the analogous modification of G(∞)(·) defined in (2.10), i.e,

GR
(∞)(v) = ∑

iÉR
θi

[∑
jÊ1

U (i )

j ×1l
{

v ∈T (i )

j

}]
. (4.41)

Similarly modify the “second endpoint” measure in (4.26) to keep track of only ancestors with
labels É R, namely

Q (m),R
v (y) :=

{∑
u pu1l

{
u ∈RC (y, [ρ, v])

}
/GR

(m)(v), if y ∈ [ρ, v] and y É R,

0, otherwise.
(4.42)

Note that this does not make sense if GR
(m)(v) = 0, i.e., when there is no vertex with label É R

on the path from the root to v . In this case we follow the convention of defining the measure to
be the uniform probability measure on the line [ρ, v]. Define Q (∞),R

v (·) on T θ
(∞) in an analogous

fashion.
Consider the tree r (m)

I J as in Definition 4.16, and assign to leaf V j the truncated measure Q (m),R

V j
(·)

and leaf value GR
(m)(V j ) (instead of Q (m)

V j
(·) and G(m)(V j )/σ(p)). We denote the resulting object

(which is an element of T∗
I J ) by R(m),R

I J . Similarly construct R(∞),R

I J .

Proposition 4.20. The following hold:

(a) For all R Ê 1, R(m),R

I J
d−→R(∞),R

I J .

(b) R(∞),R

I J
d−→R(∞)

I J as R →∞.
(c) For any bounded continuous function f : T∗

I J →R,

limsup
R→∞

limsup
m→∞

∣∣∣E( f (R(m),R

I J ))−E( f (R(m)
I J ))

∣∣∣= 0.

Assuming this proposition, we now complete the proof of Theorem 4.17. Note that for any
fixed bounded continuous function f on T∗

I J and any truncation level R Ê 1, we have

|E( f (R(∞)
I J ))−E( f (R(m)

I J ))| É |E( f (R(∞)
I J ))−E( f (R(∞),R

I J ))|+ |E( f (R(∞),R

I J ))−E( f (R(m),R

I J ))|
+ |E( f (R(m),R

I J ))−E( f (R(m)
I J ))|.

Now letting m →∞ and then letting R →∞ and using Proposition 4.20 completes the proof. ■
We next prove Proposition 4.20.

4.6. Proof of Proposition 4.20. We start with three preliminary lemmas. Recall that
{
i ; j

}
denotes the event that j is a child of i in T

p
m .

Lemma 4.21. Under Assumption 4.4, for each fixed i Ê 1,∣∣∣∣∣
∑

j∈[m] p j 1l
{
i ; j

}
σ(p)

− pi

σ(p)

∣∣∣∣∣ P−→ 0 as m →∞.
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Proof: Recall from (4.34) that for fixed i , the collection of events
{{

i ; j
}

: j 6= i
}

are pairwise
independent and have the same probability pi . Thus

E

(∑
j∈[m] p j 1l

{
i ; j

}
σ(p)

)
= pi

σ(p)

(∑
j 6=i

p j

)
= (1−pi )

pi

σ(p)
,

and

Var

(∑
j∈[m] p j 1l

{
i ; j

}
σ(p)

)
= ∑

j∈[m]

p2
j

σ2(p)
Var(1l

{
i ; j

}
) É pi .

This completes the proof as pmax = p1 → 0 and pi /σ(p) → θi under Assumption 4.4. ■
Lemma 4.22. Under Assumption 4.4, for each fixed i Ê 1,

max
j :i; j

p j

σ(p)
P−→ 0, as m →∞.

Proof: Fix ε> 0 and write

Nε(m) := {
j : p j Êσ(p)ε

}
and nε(m) = |Nε(m)|.

Note that by Assumption 4.4, for every ε > 0, {nε(m) : m Ê 1} is a bounded sequence. Further,
(4.34) and Markov’s inequality yield

P

(
max
j :i; j

p j

σ(p)
> ε

)
É ∑

j∈Nε(m)
pi = nε(m)pi → 0,

as pmax = p1 → 0. ■
Recall that Dm(i ) is the set of children of vertex i in T

p
m . For later use let dm(i ) := |Dm(i )|

denote the degree of i in T
p

m . Note that Lemma 4.21 together with the lemma just proven gives

dm(i )
P−→∞, as m →∞. (4.43)

Lemma 4.23. For each fixed m, let q(m) := (q1, q2, . . . qd ) be a probability mass function with
qi > 0 for all i ,m where d = d(m) →∞ as m ↑∞. Assume further that qmax := maxi∈[d ] qi → 0 as
m →∞. Let

{
U (m)

i : 1 É i É d
}

be i.i.d. uniform random variables and consider the function

Wm(t ) :=
d∑

i=1
qi 1l

{
U (m)

i É t
}− t , t ∈ [0,1].

Then supt∈[0,1] |Wm(t )| P−→ 0 as m →∞.

Proof: Recall the proof of Lemma 4.9 when we studied the tightness of the tilt. Then replacing
p in the proof by q, the quantity of interest supt∈[0,1] |Wm(t )| = σ(q)R1(m) where R1(m) is as

defined in (4.17) and σ(q) :=
√∑

i q2
i . Now (4.17) and (4.18) imply the existence of a constant C

(independent of m) such that for all m and x Ê e,

P( sup
t∈[0,1]

|Wm(t )| > xσ(q)) É exp(−C x log(log x)).

Since σ(q) Ép
qmax → 0 as m →∞, this completes the proof. ■

We now have all the ingredients for the proof of Proposition 4.20. We prove parts (a), (b) and
(c) one by one.
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Proof of Proposition 4.20 (a): Recall from Definition 4.16 the tree r (m)
I J that contains all the edge

lengths and hub information in R(m)
I J but ignores root-to-leaf measures and lead values G(m)(·).

By [27, Corollary 15] or [13, Proposition 3], for fixed J Ê 1, we have(
r (m)

I ′ J : I ′ Ê 0
)

w−→
(
r (∞)

I ′ J : I ′ Ê 0
)

(4.44)

with respect to the product topology on
∏

I ′Ê0 TI ′ J . Using Lemma 4.21, Lemma 4.22 and Skoro-
hod embedding, we assume that we are working on a probability space that supports a sequence

of unordered p-trees
{
T

p,uo
m : m Ê 1

}
, sampled vertices

{
V (m)

j : 1 É j É J ,m Ê 1
}

using the associ-

ated sequence of probability mass functions
{

p(m) : m Ê 1
}
, an ICRT T θ

(∞), and sampled vertices{
V (∞)

j : 1 É j É J
}

using the mass measure such that the following hold:

(A) Convergence in (4.44) happens almost surely:(
r (m)

I ′ J : I ′ Ê 0,
)

a.s.−→
(
r (∞)

I ′ J : I ′ Ê 0
)

as m →∞ (4.45)

coordinatewise, where the underlying tree corresponding to r (m)

I ′ J is spanned by the root of

T
p,uo

m and V (m)

j , 1 É j É J .

(B) Writing sm(i ) :=∑
v∈Dm (i ) pv for the sum of weights of children of i in T

p,uo
m , we have(

sm(i )

σ(p)
: i Ê 1

)
a.s.−→ (θi : i Ê 1) (4.46)

coordinatewise. (We can assume that this holds because of Lemma 4.21.)
(C) For fixed hub i Ê 1 and m Ê 1, write

qm,i (v) := pv

sm(i )
, v ∈Dm(i ), qmax

m,i := max
v∈Dm (i )

qm,i (v). (4.47)

Then we assume (using Lemma 4.22 and (4.43)) that for all i Ê 1

qmax
m,i

a.s.−→ 0 and dm(i )
a.s.−→∞.

Now, for each z ∈ [m] and i Ê 1, if i ∈ [ρ, z] (where ρ = ρm is the root of T
p,uo

m ), write
c(i ; z) ∈ Dm(i ) for the child of i that is the ancestor of z. Next, construct a collection{
Um,i (v) : m Ê 1, i Ê 1, v ∈ [m]

}
of uniform[0,1] random variables on the same space such that

(a)
{
T

p,uo
m ,Um,i (v) : i Ê 1, v ∈ [m]

}
are jointly independent for each m Ê 1; and

(b) for each i É R and j É J for which i ∈ [ρ,V (∞)

j ], Um,i

(
c(i ;V (m)

j )
)

is a constant sequence (in m)

eventually.

As described below Theorem 4.15, we can use these uniform random variables to generate the
sequence of ordered p-trees

{
T

p
m

}
from

{
T

p,uo
m

}
as follows: Let U m,i := {

Um,i (v) : v ∈Dm(i )
}
.

Think of these as “ages” of the children and arrange the children from left to right in decreasing
order of their ages.

Once this ordering has been defined, we can construct the function G(m)(·) as in (4.22). In this
case we can write this function explicitly in terms of the associated uniform random variables
as follows. Define

O(m),i (z) := 1

σ(p)
1l

{
i ∈ [ρ, z]

} ∑
v∈Dm (i )

pv 1l
{
Um,i (v) <Um,i (c(i ; z))

}
= 1l

{
i ∈ [ρ, z]

} sm(i )

σ(p)

∑
v∈Dm (i )

qm,i (v)1l
{
Um,i (v) <Um,i (c(i ; z))

}
.
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Then (
σ(p)

)−1
GR

(m)(z) = ∑
iÉR
O(m),i (z). (4.48)

Similarly, the root-to-leaf measure Q (m),R
v (recall (4.40)) can also be expressed in terms of this

function.
Now using (4.45), for every fixed hub i É R, j É J , and a.e. sample pointω, one of the following

two holds:

(a) i ∉ [ρ,V (∞)

j ], in which case there exists m = m(ω) such that i ∉ [ρ,V (m)

j ] for all m > m(ω).

(b) i ∈ [ρ,V (∞)

j ], in which case there exists m = m(ω) such that i ∈ [ρ,V (m)

j ] for all m > m(ω).

When the latter happens, using Lemma 4.23 together with (4.46) and (4.47), we get∣∣∣O(m),i (V
(m)

j )−θiUm,i

(
c(i ;V (m)

j )
)∣∣∣ P−→ 0 as m →∞.

By construction, Um,i

(
c(i ;V (m)

j )
)

is eventually constant in m on the event
{

i ∈ [ρ,V (∞)

j ]
}

. This im-

mediately implies convergence of the (scaled) truncated leaf values GR
(m)(V

(m)

j )/σ(p) (see (4.48))

for 1 É j É J , and similarly the truncated root to leaf measures Q (m),R

V (m)
j

jointly with the convergence

in (4.45) and thus yields the convergence R(m),R

I J
d−→R(∞),R

I J . ■
Proof of Proposition 4.20 (b): Recall from Section 2.2 that R(∞)

I J is obtained by applying the stick-
breaking construction to [0,η J ], and leaf j+ in R(∞)

I J corresponds to the vertex coming from η j .

It is easy to see from the definition of GR
(∞) and Q (∞),R

v that it suffices to prove

0 É E (1)
R :=

J∑
j=1

(G(∞)(η j )−GR
(∞)(η j ))

P−→ 0, as R →∞.

For every hub i Ê 1 and leaf η j , write
{
i → η j

}
if η j is a descendant of i (namely i ∈ [ρ,η j ]). Then

note that

E (1)
R =

J∑
j=1

∞∑
i=R+1

∞∑
k=1

θiU
(i )

k 1l
{
η j ∈T (i )

k

}É J∑
j=1

∞∑
i=R+1

θi 1l
{
i → η j

}
:= E (2)

R .

Thus, it is enough to show that given ε> 0, we can find R = R(ε) <∞ such that P(E (2)
R > ε) < ε. To

this end, first choose Kε large enough so that P(η J > Kε) < ε/2, and then choose Rε large enough
so that

JKε

ε

∞∑
Rε+1

θ2
i < ε/2.

Then note that

P(E (2)
Rε

> ε) ÉP(η J > Kε)+P
(

J
∞∑

i=Rε+1
θi 1l

{
i th hub appears before time Kε

}> ε)

É ε

2
+ J

ε

∞∑
i=Rε+1

θi
(
1−exp(−θi Kε)

)
< ε by choice of Rε,

where the first term in the second inequality follows from the choice of Kε, while the second
term comes from the stick-breaking construction of T θ

(∞) using the countable collection of Pois-
son point processes. This completes the proof. ■
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Proof of Proposition 4.20(c): Recall that the tree R(m)
I J (and R(m),R

I J ) can be thought of as being
made up of 2J +1 coordinates:

(a) One coordinate for the shape and edge length information along with the labels smaller than
I namely r (m)

I J (see Definition 4.16). Note that this is the same for both R(m)
I J and R(m),R

I J .
(b) J coordinates for the leaf values G(m)(V j )/σ(p) (resp. GR

(m)(V j )/σ(p)).
(c) J coordinates for the measured metric spaces M (m)

j := ([ρ,V (m)

j ], Q (m)
V j

) (resp. M (m),R

j :=
([ρ,V (m)

j ], Q (m),R
V j

)).

Since T∗
I J assumes the product topology on these coordinates, it is enough to show the required

estimate in Proposition 4.20 (c) with functions of the form

f (t, (ai )1É jÉJ , (M j )1É jÉJ ) := F (t)
∏

1É jÉJ
g j (ai )

∏
1É jÉJ

h j (M j ).

Here t ∈ TI J , a j ∈ R are associated leaf values and M j are the paths from the root to leaf j with
an associated probability measure and f , g j and h j are bounded uniformly continuous func-
tions on the spaces TI J , R and S (measured compact metric spaces) respectively. To simplify
notation, we will simply write this as f (t).

Now we can go from R(m)
I J to R(m),R

I J by flipping one coordinate at a time. Thus writing

f (−i )
1 (t) := F (t)

∏
1É jÉJ

j 6=i

g j (ai )
∏

1É jÉJ
h j (M j ), f (−i )

2 (t) := F (t)
∏

1É jÉJ
g j (ai )

∏
1É jÉJ

j 6=i

h j (M j ),

we get

|E( f (R(m),R

I J ))−E( f (R(m),R

I J ))| É
J∑

j=1
|| f (− j )

1 ||∞E
(∣∣∣∣g j

(
G(m)(V j )

σ(p)

)
− g j

(
GR

(m)(V j )

σ(p)

)∣∣∣∣)

+
J∑

j=1
|| f (− j )

2 ||∞E(|h j (M (m)

j )−h j (M (m),R

j )|) (4.49)

Since V j ’s have been sampled in an i.i.d. fashion from p, it is enough to show that for any two
bounded uniformly continuous functions h, g on R and S respectively,

limsup
R→∞

limsup
m→∞

E

(∣∣∣∣∣g
(
G(m)(V

(m)
1 )

σ(p)

)
− g

(
GR

(m)(V
(m)

1 )

σ(p)

)∣∣∣∣∣
)
= 0, (4.50)

and
limsup

R→∞
limsup

m→∞
E
(|h(M (m)

1 )−h(M (m),R
1 )|)= 0. (4.51)

Now consider the measured metric spaces M (m)
1 and M (m),R

1 . As remarked above, they share the
same metric space, namely the path [ρ,V (m)

1 ]. The only difference is in the associated probability
measures. Consider the natural correspondence C = {

(x, x) : x ∈ [ρ,V (m)
1 ]

}
between M (m)

1 and
M (m),R

1 . Further, define a probability measure π on [ρ,V (m)
1 ]× [ρ,V (m)

1 ] as

π(i , i ) :=
{∑

u pu1l
{
u ∈RC (i , [ρ,V (m)

1 ])
}
/G(m)(V

(m)
1 ), if i ∈ [ρ,V (m)

1 ] and i É R,[
G(m)(V

(m)
1 )−GR

(m)(V
(m)

1 )
]

/G(m)(V
(m)

1 ), if i = ρ.
(4.52)

Writing π1 and π2 for the marginals of π, we have, using the above choice of correspondence
C and of the measure π,

d pt
GHP(M (m)

1 ,M (m),R
1 ) É

(
||π1 −Q (m)

V1
||+ ||π2 −Q (m),R

V1
||
)
É 2

[
G(m)(V1)−GR

(m)(V1)
]

G(m)(V1)
. (4.53)
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Now suppose we show (4.50). Using part (a) and part (b) of Proposition 4.20, we get

(σ(p))−1G(m)(V
(m)

1 )
d−→ G(∞)(V

(∞)
1 ) > 0. Now using the bound in (4.53) and uniform continuity

of h, we see that (4.51) is true. Hence it is enough to prove (4.50).
Recall from Section 4.2.1 the construction of V (m)

1 and the tree simultaneously via the birthday
construction, where V (m)

1 is obtained as the value before the first repeat time, namely YR1−1. Fix
ε> 0. By [27, Theorem 4], under Assumptions 4.4 we may choose Kε large so that the first repeat
time satisfiesP(R1 > Kε/σ(p)) < ε for all m Ê 1. Next, by uniform continuity of g , choose δ ∈ (0,1)
such that |g (x)− g (y)| < ε if |x − y | < δ. Finally choose R large so that for all m,

K 2
ε

δ∧ε
m∑

i=R+1

p2
i

σ2(p)
< ε.

First, by choice of Kε and boundedness of g ,∣∣∣∣∣E
[

g

(
G(m)(V

(m)
1 )

σ(p)

)]
−E

[
g

(
G(m)(V

(m)
1 )

σ(p)

)
1l

{
R1 É Kε

σ(p)

}]∣∣∣∣∣É ||g ||∞ε, (4.54)

and a similar inequality holds true if we replace the functional G(m) by GR
(m). Next, writing

E (1)
(m)(R) :=

∣∣∣∣∣E
[{

g

(
G(m)(V

(m)
1 )

σ(p)

)
− g

(
GR

(m)(V
(m)

1 )

σ(p)

)}
1l

{
R1 É Kε

σ(p)

}]∣∣∣∣∣ ,

we have

E (1)
(m)(R) É ε+2||g ||∞P

(
R1 É Kε

σ(p)
,

(
G(m)(V

(m)
1 )−GR

(m)(V
(m)

1 )
)

σ(p)
Ê δ

)
(4.55)

by our choice of δ. The difference G(m)(V
(m)

i )−GR
(m)(V

(m)

i ) is a tricky object for which we will need

a tractable upper bound. Recall that we have used T B
1 for the birthday tree in (4.9) constructed

by time R1. For every vertex i ∈ T B
1 , let J (i ) be the first child of i in the birthday construction

(the first new, i.e., previously un-sampled vertex sampled immediately after a prior sampling
of i ). This will be an empty set if i is a leaf in the eventual full tree T

p
m . Recall that

{
i ; j

}
was

used to denote the event that j is a child of i in T
p

m . Then note that

G(m)(V
(m)

1 )−GR
(m)(V

(m)
1 ) É ∑

iÊR+1
1l

{
i ∈T B

1

} ∑
j∈[m]

p j 1l
{
i ; j , j 6=J (i )

}
.

Thus,

P

(
R1 É Kε

σ(p)
,

(
G(m)(V

(m)
1 )−GR

(m)(V
(m)

1 )
)

σ(p)
Ê δ

)
É 1

δ

m∑
i=R+1

∑
j∈[m]

p j

σ(p)
P

(
i appears before

Kε

σ(p)
, i ; j , j 6=J (i )

)
=: E (2)

(m)(R). (4.56)

For i 6= j ∈ [m], define the event Ei j :=
{

i appears before Kε

σ(p) , i ; j , j 6=J (i )
}

. Then for Ei j to

happen, the following needs to happen in the birthday construction: (a) There is an 0 É r1 É
Kε/σ(p) such that till time r1, neither i or j have been sampled. (b) At time r1 + 1 vertex i is
sampled. (c) There is an r2 Ê 0 such that in the times [r1 + 1,r1 + 1+ r2] samples, j does not
appear. (d) Then at time r1 + r2 +2, vertex i is sampled again. (e) In the next time step r1 + r2 +3
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vertex j is sampled. Therefore,

P(Ei j ) É
Kε/σ(p)∑

r1=0

∞∑
r2=0

(1−pi −p j )r1 pi (1−p j )r2 pi p j É p2
i

Kε

σ(p)
.

Using this in (4.56), we get

E (2)
(m)(R) É Kε

δ

m∑
R+1

p2
i

[σ(p)]2
É ε, by our choice of R. (4.57)

Combining (4.54), (4.55), (4.56) and (4.57) now gives the following lemma which completes the
proof of (4.50) and thus the proof of part (c) of the proposition. ■
Lemma 4.24. Given ε> 0 choose Kε,δ and R as above. Then, for all m Ê 1,∣∣∣∣∣E

[
g

(
G(m)(V

(m)
1 )

σ(p)

)]
−E

[
g

(
GR

(m)(V
(m)

1 )

σ(p)

)]∣∣∣∣∣É ε(4||g ||∞+1).

Proof of Theorem 4.18: We now prove continuity of the function g (k)
φ on the space T∗

I ,(k+`).
In fact, we will give a quantitative estimate. Since we are assuming the discrete topology on
the coordinate corresponding to the shape, without loss of generality we will work with two
trees t,t ∈ T∗

I ,(k+`) having the same shape. We need to distinguish the labels for the root and

the leaves in the two trees; so write 0+ (respectively 0+) for the root of t (respectively t) and

write
{

j+ : 1 É j É k +`} (respectively
{

j+ : 1 É j É k + l
}

) for the collection of leaves in t (respec-

tively t). Finally, let ν j be the corresponding probability measure on the path M j := [0+, j+] for

1 É j É k, and analogously let ν j be the probability measure on M j := [0+, j+]. View these
paths as pointed measured metric spaces pointed at the roots 0+ and 0+ respectively. Now let
ε j := d pt

GHP(M j ,M j ), where d pt
GHP is the pointed Gromov-Hausdorff-Prokhorov metric defined in

Section 2.1.
Write L = (`

2

)
. Let φ :RL+ →R be a bounded continuous function. For K > 0, let ä(K ) = [0,K ]L ,

and for δ> 0, define

oscφ(δ,K ) := sup
x,y∈ä(K )
||x−y||∞<δ

|φ(x)−φ(y)|.

Finally, define

ε := 4
k∑

j=1
ε j + (k +1)

∑
e

∣∣le (t)− le (t)
∣∣, (4.58)

where le (·) denotes the length of the edge e and we have used the fact that both trees have the
same shape. Write ht(t) for the height of tree t (not graph distance, rather in terms of maximal
distance from the root when incorporating edge lengths). The following proposition completes
the proof of Theorem 4.18:

Proposition 4.25. For two trees t,t ∈ T∗
I ,(k+`) having the same shape, and with ε as in (4.58),

|g (k)
φ (t)− g (k)

φ (t)| É 2ε||φ||∞+oscφ
(
ε , 2ht(t)+2ht(t)

)
.
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Proof: For each j É k, choose a correspondence C j and a measure π j on the product space

[0+, j+]×[0+, j+] such that the following conditions are met: (a) (0+,0+) ∈C j ; (b) the distortion
satisfies dis(C j ) < 3ε j ; (c) the measure of the complement satisfies π j (C c

j ) < 2ε j ; (d) and finally

||ν j −p∗π j ||+ ||ν j −p∗π j || < 2ε j , (4.59)

where p∗π j and p∗π j are the marginals ofπ j . Now sample (X?
j , X

?

j ) ∼π j from [0+, j+]×[0+, j+]

independently for 1 É j É k. By (4.59), we can couple (X?
j , X

?

j ) with two random variables X j , X j

(again independently for 1 É j É k) such that X j ∼ ν j and X j ∼ ν j , and further

P
(

X j 6= X?
j

)
+P

(
X j 6= X

?

j

)
< 2ε j . (4.60)

Using conditions (b) and (c), we get

P
(∣∣∣dt

(
0+, X?

j

)
−dt

(
0+, X

?

j

)∣∣∣> 3ε j

)
É 2ε j , (4.61)

where dt is the distance metric on tree t which incorporates the edge lengths. Now write E for
the following “good event”:

E :=
k⋂

j=1

{
X j = X?

j , X j = X
?

j ,
∣∣∣dt

(
0+, X?

j

)
−dt

(
0+, X

?

j

)∣∣∣É 3ε j

}
.

It follows from (4.60) and (4.61) that

P(E c ) É 4
k∑

j=1
ε j . (4.62)

Now we are going to create “shortcuts" by gluing the leaves to the corresponding sampled
points. Let S (resp. S) be the (random) metric space obtained by identifying each of the leaves
j+ (resp. j+) with X j (resp. X j ) in t (resp. t) for 1 É j É k and write dS (resp. dS) for the induced
metric. Then by definition,

g (k)
φ (t) = E

[
φ

(
dS ((k + i1)+, (k + i2)+) : 1 É i1 < i2 É `

)]
,

and an analogous expression holds for g (k)
φ (t). This gives∣∣g (k)

φ (t)− g (k)
φ (t)

∣∣É E(∣∣∣φ(
dS ((k + i1)+, (k + i2)+) : 1 É i1 < i2 É `

)
−φ

(
dS

(
(k + i1)+, (k + i2)+

)
: 1 É i1 < i2 É `

)∣∣∣). (4.63)

Consider the map from t to t which takes every vertex to the corresponding vertex and points
on each edge are mapped by linear interpolation (using the edge lengths) to points on the corre-
sponding edge. Consider a ∈ [0, j+] and let a ∈ [0, j+] be the corresponding point in t for some
j É k. Then note that∣∣∣dt

(
a, X j

)−dt

(
a, X j

)∣∣∣É ∣∣∣dt
(
0+, X j

)−dt

(
0+, X j

)∣∣∣+ ∣∣∣dt (0+, a)−dt

(
0+, a

)∣∣∣
É 3ε j +

∑
e
|le (t)− le (t)| (4.64)

on the set E .
Now consider a shortest path in S connecting (k+i1)+ and (k + i2)+. We can go from (k + i1)+

to (k + i2)+ by taking the same route in S, i.e., by traversing the same edges and taking the same
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shortcuts in the same order. We make the following observations: (i) The difference between
distance traversed while crossing the edge e is |le (t)− le (t)|. (ii) By (4.64), on the set E , tak-
ing a “shortcut" contributes at most (3ε j +∑

e |le (t)− le (t)|) to the difference between distance
traversed. Since we have to take at most k shortcuts, we immediately get

dS

(
(k + i1)+, (k + i2)+

)
É dS ((k + i1)+, (k + i2)+)+3

k∑
j=1

ε j + (k +1)
∑

e
|le (t)− le (t)|

on the set E . By symmetry, a similar inequality holds if we interchange the roles of S and S. This
observation combined with (4.62) and (4.63) yields the result. ■

5. PROOFS: CONVERGENCE IN GROMOV-WEAK TOPOLOGY

Recall from Proposition 4.1 that conditional on the partition of the vertices
{
V (i ) : i Ê 1

}
into

the connected components, the actual structure of the components of G (x, t ) can be generated
independently as the connected graph G̃|V (i )|(a(i )

n ,p(i )
n ) where a(i )

n ,p(i )
n are as in Proposition 4.1 and

given m,p, a, G̃m(a,p) is the connected random graph model studied in the previous section.
For Theorem 1.7, the time scale t = tn of interest in the expression of a(i )

n is

tn :=λ+ 1

σ2(x(n))
, (5.1)

for fixed λ ∈ R. Let N (R+) denote the space of counting measures on R+ equipped with the
vague topology. Define Υ(i )

n := (pv /σ(p), v ∈ V (i )) and view (a(i )
n σ(p(i )

n ),Υ(i )
n ) as a random element

of S :=R+×N (R+) (equipped with the product topology). Finally, define

Pn := ((
a(i )

n σ(p(i )
n ),Υ(i )

n

)
: i Ê 1

)
viewed as an element of S∞, again equipped with the product topology induced by a single
coordinate S. Now given an infinite vector c ∈ l0 recall the process V̄ c

λ
(·) as in (1.19), the corre-

sponding excursions Z (λ) as in (1.20) and the corresponding excursion lengths in (1.21). Finally
recall the definitions of γ̄(i ),θ(i ) from (2.13). Writing these out explicitly, define

P∞ := ((γ̄(i ),θ(i )) : i Ê 1) =

Zi (λ)
√ ∑

v∈Zi (λ)
c2

v ,

(
c j√∑

v∈Zi (λ) c2
v

: j ∈Zi (λ)

)
: i Ê 1

 . (5.2)

Proposition 5.1. The following hold under Assumption 1.5:

(i) For every i Ê 1, σ(p(i )
n )

P−→ 0 as n →∞.

(ii) Pn
d−→P∞ on S∞ as n →∞. Further for every fixed i Ê 1, almost surely,∑

v∈Zi (λ)
cv =∞. (5.3)

Proof of Theorem 1.7: We prove the theorem assuming Proposition 5.1. By an application of
Skorohod embedding we may assume that we are working on a probability space where the
convergence in Proposition 5.1 happens almost surely. In particular, in this space, Assumption
4.4 is satisfied almost surely for p(i )

n for any fixed i Ê 1. Now an application of Theorem 4.5 com-
pletes the proof.

■



44 BHAMIDI, VAN DER HOFSTAD, AND SEN

5.1. Verification of weight assumptions in maximal components. Here we give the proof of
Proposition 5.1. To ease notation, we will throughout assume λ= 0. The general case follows in
an identical fashion, but this assumption simplifies notation. We will write V c instead of V c

0 for
the process in (1.18) with λ= 0 and simply write Ci for Ci ([σ2(x(n))]−1).

We start by describing an exploration scheme (developed in [9]) which simultaneously con-
structs the graph Gn(x, t ) and a “breadth first” walk. This was carefully analyzed in [10] to prove
Theorem 1.6.

For every ordered pair (u, v), let ηu,v be an exponential random variable with rate t xv (in-
dependent across ordered pairs). Note that there is a simple relation between the connection
probabilities of Gn(x, t ) given by (1.12) and the above random variables given by:

quv :=P(ηuv < xu). (5.4)

At each stage i Ê 1, we have a collection of active vertices A (i ), a collection of explored vertices
O (i ) and a collection of unexplored vertices U (i ) = [n] \A (i )∪O (i ).

Initialize with O (1) =; and A (1) = {v(1)}, where the first vertex v(1) is chosen by size-biased
sampling, namely with probability proportional to vertex weights x. When possible we will sup-
press dependence on n to ease notation. Now let D(v(1)) := {

v : ηv(1),v É xv(1)
}

denote the col-
lection of “children” of v(1) and note that by (5.4) this generates the right connection prob-
abilities in Gn(x, t ). Think of the associated ηv(1),v values (for vertices connected to v(1)) as
“birth-times” of these connections in the interval [0, xv(1)] and label the corresponding ver-
tices as v(2), v(3), . . . v(|D(v(1))| +1). Update the process as O (2) := {v(1)}, A (2) := D(v(1)) and
U (2) =U (1) \D(v(1)).

Associate with this construction a breadth-first walk as follows:

Zn(0) := 0, Zn(u) :=−u +∑
v

xv 1l
{
ηv(1),v É u

}
, 0 É u É xv(1). (5.5)

Recursively for i Ê 2 let Ti−1 := ∑i−1
j=1 xv( j ). At this “time” we will explore the unexplored

neighbors of v(i ). By this time, there are |U (i )| := i − 1 + |A (i )| vertices that have either
been explored or are active. Let D(v(i )) := {

v ∈U (i ) : ηv(i )v É xv(i )
}

and again label these as
v(i +|A (i )|), v(i +|A (i )|+1), . . . v(i +|A (i )|+ |D(v(i ))|−1) in increasing order of their ηv(i )v val-
ues. Update O (i+1) =O (i )∪{v(i )}, A (i+1) =A (i )∪D(v(i ))\{v(i )} and U (i+1) =U (i )\D(v(i )).
Again update the walk as

Z (Ti−1 +u) = Z (Ti−1)−u + ∑
v∈D(v(i ))

xv 1l
{
ηv(i ),v É u

}
, 0 É u É xv(i ). (5.6)

After finishing a component (which happens when A (i ) = ; for some i Ê 2), choose the next
vertex to explore in a size-biased manner from the unexplored set U (i ). If U (i ) = ;, then we
have finished constructing the partition of the graph into the connected components.

Now note the following important properties of this exploration:

(a) The ordering (v(1), v(2), . . . , v(n)) is a size-biased reordering of the vertex set [n].
(b) If we start a new component at some stage i with vertex v(i ), and finish exploring the com-

ponent at stage j Ê i , then the walk satisfies

Z (T j ) = Z (Ti−1)−xv(i ), Z (u) Ê Z (T j ) on Ti−1 < u < T j .

Thus, the size of the component of v(i ),
∑ j

l=i xv(l ) is essentially the length of the excursion
of the walk beyond past minima.
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As a starting point in proving Theorem 1.6, Aldous and Limic [10] show the following result.
Their result is more general (incorporating the presence of a “Brownian component”) but we
state their result as applied to our setting.

Proposition 5.2 ([10, Proposition 9]). Consider the process
{

Z̄n(s) : s Ê 0
}

defined by setting

Z̄n(s) := Z (s)/σ2. Then under Assumption 1.5 Z̄n
d−→V c as n →∞.

Using this result, Aldous and Limic [10] show that the corresponding maximal excursions be-
yond past minima of Z̄n also converge to the maximal excursions beyond past minima of V c

λ
,

namely the excursion lengths of the reflected process V̄ c
λ

(see (1.19)) from zero. A consequence
of the proof of Theorem 1.6 in [10] using Proposition 5.2 is the following result:

Lemma 5.3. Fix K and let En(K ) be the time required for the above construction to explore the
maximal K components {Ci : 1 É i É K }. Then {En(K ) : K Ê 1} is tight.

In other words, for any fixed K Ê 1, the maximal length excursions of V̄ c are found in finite
time. Thus, even though the total weight of vertices σ1 →∞, when exploring the graph in size-
biased fashion, under Assumption 1.5 one needs only a finite amount of “time” to find the max-
imal components. Here time is measured in terms of the weight of vertices already explored.
Now define

Sn,2(u) = ∑
i :TiÉu

(
xv(i )

σ2

)2

, Rε
n(u) := ∑

i :TiÉu

x2
v(i )

σ2
2

1l
{

xv(i ) <σ2ε
}

. (5.7)

Thus, Sn,2(t ) is the normalized sum of squares of vertex weights of vertices explored by time
t and Rε

n is the normalized sum of these squares where we only retain explored vertices with
weight at most εσ2. Using the same set of exponential random variables

{
ξ j : j Ê 1

}
that arose

in the definition of the process V c in (1.18) define a new process

S∞,2(u) :=
∞∑

j=1
c2

j 1l
{
ξ j É u

}
. (5.8)

The same proof techniques as in [10] now implies the following. Since the ideas basically follow
from [10] we only sketch the proof.

Lemma 5.4. Assumption 1.5 implies the joint convergence of the processes (Z̄n(·),Sn,2(·))
d−→

(V c(·),S∞,2(·)) as n →∞.

Proof: Fix K Ê 1, and for each i Ê 1, let ξ(n)
i denote the time when vertex i is added to the collec-

tion of active vertices. Now consider the K +1 dimensional stochastic process

YK
n (s) :=

(
Z̄n(s),

x1

σ2
1l

{
ξ(n)

1 É s
}

, . . . ,
xK

σ2
1l

{
ξ(n)

K É s
})

, s Ê 0.

Write

YK
∞(s) := (V c(s),c11l{ξ1 É s} , . . . ,cK 1l{ξK É s}).

In the proof of Proposition 5.2, Aldous and Limic showed that YK
n

d−→ YK∞ for every fixed
K Ê 1. Thus to complete the proof, it is enough to show, for every fixed A > 0 and
η > 0, limsupε→0 limsupn→∞P(Rε

n(A) > η) = 0. Now as described on [10, Page 17], we
can couple (ξ(n)

1 ,ξ(n)
2 , . . . ,ξ(n)

n ) with a sequence of independent exponential random variables
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(ξ̃(n)
1 , ξ̃(n)

2 , . . . , ξ̃(n)
n ) with ξ̃(n)

j having rate x j /σ2 such that ξ̃(n)
j É ξ(n)

j . Now write

R̃ε
n(t ) := ∑

j :x j<εσ2

x2
j

σ2
2

1l
{
ξ̃(n)

j É t
}

. (5.9)

Then it is enough to show
limsup
ε→0

limsup
n→∞

E(R̃ε
n(A)) = 0, (5.10)

which is trivial since

E
(
R̃ε

n(A)
)É A

∑
j :x jÉεσ2

(
x j

σ2

)3

→ A
∑

j :c j<ε
c3

j . (5.11)

We have used both (1.15) and (1.16) in the last convergence assertion. Thus, first letting n →∞
and then ε→ 0 completes the proof. ■

We can now complete the proof of Proposition 5.1. First, note that to prove (5.3), it is enough
to show that for any two rationals r < s,

∑
j c j 1l

{
r É ξ j É s

} =∞ almost surely where ξ j are the
associated exponential rate c j random variables. This, however, is trivially true as

∑
j c2

j =∞.

To prove the other assertions, define, for i Ê 1, the point processes Ξ(i )
n := {xu/σ2 : u ∈Ci },

namely the rescaled vertex weights in the i th maximal component. Analogously define Ξ(i )∞ =
{cv : v ∈Zi }, namely the collection of jumps in the i th largest excursion of V̄ c. Let

s (i )
n = ∑

v∈Ci

x2
v

σ2
2

, and s (i )
∞ := ∑

v∈Zi

c2
v , (5.12)

for the normalized sum of squares of vertex weights in a component. Define

P̃n := ((
mass(Ci ), s (i )

n ,Ξ(i )
n

)
, i Ê 1

)
, P̃∞ := ((

Zi , s (i )
∞,Ξ(i )

∞
)

, i Ê 1
)

.

We will view these as random elements of S̃∞ where S̃ :=R2×N (R). Lemma 5.3 and Lemma 5.4
now imply the following:

Lemma 5.5. As n →∞ P̃n
d−→ P̃∞ on S̃∞.

Expressing the functionals that arise in Proposition 5.1 in terms of vertex weights in maximal
components completes the proof. Indeed,

σ(p(i )
n ) =

√∑
v∈Ci

x2
v∑

v∈Ci
xv

=
σ2

√
s (i )

n

mass(Ci )
→ 0,

as n →∞. The proof of Pn
d−→P∞ is similar. ■

5.2. Gromov-weak convergence in Theorem 1.1. That convergence in (1.9) holds with respect
to Gromov-weak topology is an easy consequence of Theorem 1.7. Indeed, setting

xi = n− τ−2
τ−1 wi and tn = 1

`n

(
1+λn− τ−3

τ−1

)
n

2(τ−2)
τ−1 , (5.13)

we can write NRn(w (λ)) as the model G (x , tn) where x = x (n) := (xi : i ∈ [n]). A direct computa-
tion will show that x (n) satisfies Assumption 1.5 with the entrance boundary cnr defined in (2.16).
Note also that

tn − 1

σ2(x (n))
= n

2(τ−2)
τ−1∑

i∈[n] w 2
i

(
1

`n

∑
i∈[n]

w 2
i −1

)
+ λ

`n/n
.
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Under the assumptions of Theorem 1.1, `n/n → EW and
∑

i w 2
i /n → EW 2 = EW . Further, by

[17, Lemma 2.2],

1

`n

∑
i∈[n]

w 2
i = 1+ζn− τ−3

τ−1 +o(n− τ−3
τ−1 ),

where ζ is as defined in (2.17). Combining these observations, we see that

tn − (σ2(x (n)))−1 → t nr
λ as n →∞,

where t nr
λ

is as in (2.17). Since n
τ−3
τ−1σ2(x (n)) → EW , we conclude that Mnr∞(λ) defined in (2.18) is

the Gromov-weak limit of n− τ−3
τ−1 Mnr

n (λ), where Mnr
n (λ) is as in (1.8).

Remark 7. Theorem 1.7 is stated for a fixed λ ∈ R, but in the argument just given, we have to
work with a sequence, namely tn − (σ2(x (n)))−1 converging to t nr

λ
. This, however, does not make

any difference. Indeed, the proof of [10, Proposition 9] can be imitated to prove the same result
in the setup where we have a sequence converging to t instead of a fixed t , and no new idea is
involved here. (In [10, Lemma 27], Aldous and Limic prove a similar result for the multiplicative
coalescent. They do not, however, explicitly state the convergence of the associated process
under the same assumption.)

6. PROOFS: CONVERGENCE IN GROMOV-HAUSDORFF-PROKHOROV TOPOLOGY

In this section, we improve Gromov-weak convergence in Theorem 1.1 to Gromov-Hausdorff-
Prokhorov convergence. To do so, we will rely on [14, Theorem 6.1] which gives a criterion for
convergence in Gromov-Hausdorff-weak topology. We do not give the definition of Gromov-
Hausdorff-weak topology and instead refer the reader to [14, Definition 5.1]. Convergence
in Gromov-Hausdorff-weak topology implies convergence in Gromov-Hausdorff-Prokhorov
topology when we are working with metric measure spaces having full support (i.e. support
of the measure is the entire metric space). This is true in our situation. Indeed, it is a trivial
fact that Ci (λ) has full support. Further, the mass measure on an inhomogeneous continuum
random tree has full support which implies that the same is true for M nr

i (λ).
Applying [14, Theorem 6.1] to our situation, we see that it is enough to prove the following

lemma.

Lemma 6.1 (Global lower mass-bound). Let Ci (λ) be the i th largest component of NRn(w (λ)).
Then the following assertion is true: For each i Ê 1, v ∈ [n] and δ> 0, let B(v,δ) denote the intrin-
sic ball (in NRn(w (λ))) of radius δn(τ−3)/(τ−1) around v and set

m(n)
i (δ) = inf

{
n− τ−2

τ−1
∑

j∈B(v,δ)
w j

∣∣∣ v ∈Ci (λ)

}
.

Then the sequence

{(
m(n)

i (δ)
)−1

}
nÊ1

is tight.

This ensures compactness of the spaces M nr
i (λ) which, in turn, implies compactness of the

spaces M c
i (λ) when c = (c1,c2, . . .) is of the form (1.22), thus proving the first assertion in Theo-

rem 1.8.
Before moving on to the proof of Lemma 6.1, we state a result which essentially says that

instead of looking at the largest components, we can work with the components of high-weight
vertices. This observation will be used to prove the global lower-mass bound.
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Proposition 6.2. For every ε> 0 and k Ê 1, there exists K = K (ε,k,λ) > 0 such that

P
(
[K ]∩Ci (λ) =; for some 1 É i É k

)É ε.

The above proposition follows trivially from [17, Theorem 1.6 (a)] and [17, Theorem 1.1].

6.1. Bound on size of εn
τ−3
τ−1 -nets for the largest components. For convenience, we set

η= (τ−3)/(τ−1) and ρ = (τ−2)/(τ−1). (6.1)

The purpose of this section is to prove a strong result (Proposition 6.3 stated below) that gives
control over the number of intrinsic balls of radius εnη needed to cover the largest components.
This acts as a crucial ingredient in the proof of Lemma 6.1 as well as the proof of the bound on
the upper box-counting dimension.

Proposition 6.3 (Small diameter after removing high-weight vertices). For every ε,δ > 0, and
N = N (ε) := ε−δ−1/η,

P
(
diam(NRn(w (λ)) \ [N ]) > εnη

)É cδexp
(
−C /εδη

)
, (6.2)

for all n sufficiently large, a positive constant cδ depending on δ and a universal constant C > 0.
Here NRn(w (λ)) \ [N ] denotes the graph obtained by removing all vertices with labels in [N ] and
the edges incident to them from the graph NRn(w (λ))

We continue to prove Proposition 6.3. Write

En = {diam(NRn(w (λ)) \ [N ]) É εnη}. (6.3)

The proof consists of four steps. In the first step, we reduce the proof to the study of the height of
mixed-Poisson branching processes. In the second step, we ensure that we can take λ= 0, while
in the third step, we study the survival probability of such critical infinite-variance branching
processes. In the fourth and final step, we prove the claim.

Comparison to mixed Poisson branching processes. Let Cres(i ) be the cluster of i in the (re-
stricted) random graph on vertex set [n] \ [i − 1] with edge probabilities qk`(w (λ)) for k,` ∈
[n] \ [i −1], where qk`(w (λ)) is as in (1.1).

Note that the event E c
n implies the existence of i > N such that the following happens: (a) The

diameter of the component of i in NRn(w (λ))\[N ] is bigger than εnη. (b) No j ∈ {N +1, . . . , i −1}
belongs to the component of i in NRn(w (λ)) \ [N ]. In particular, diam(Cres(i )) Ê εnη for this i .
Thus,

P(E c
n) É ∑

i>N
P

(
diam(Cres(i )) > εnη

)
. (6.4)

Now the random graph NRn(w (λ)) restricted to [n]\[i −1] is the Norros-Reittu random graph
NRn(w (i )(λ)), where w (i )(λ) = (w (i )

j (λ) : j ∈ [n]\[i −1]), w (i )

j (λ) = w j (λ)`(i )
n /`n , and `(i )

n =∑n
k=i wk .

Indeed, this follows from the simple observation:

w (i )

k (λ)w (i )

`
(λ)∑n

r=i w (i )
r (λ)

=
(
1+ λ

nη

)
wk w`

`n
.

Write W (i )
n (λ) for a random variable whose distribution is given by (n − i +1)−1 ∑n

j=i δw (i )
j (λ), and

for any non-negative random variable X with EX > 0, let X ◦ be the random variable having the
size-biased distribution given by

P(X ◦ É x) = E(X 1l{XÉx})/EX .
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We will use the following comparison to a mixed Poisson branching process:

Lemma 6.4 (Domination by a mixed-Poisson branching process). Fix i ∈ [n] and consider
NRn(w (i )(λ)). Then, there exists a coupling of Cres(i ) and a branching process where the root has
a Poi(w (i )

i (λ)) offspring distribution while every other vertex has a Poi((W (i )
n (λ))◦) offspring distri-

bution such that in the breadth-first exploration of Cres(i ) starting from i , each vertex v ∈Cres(i )
has at most the number of children as in the branching process.

Proof: See [57, Proposition 3.1]. ■
It immediately follows from Lemma 6.4 that

P
(
diam(Cres(i )) > εnη

)ÉP(
ht(T n

(i )
(λ)) > εnη/2

)
, (6.5)

where T n
(i )

(λ) is a mixed Poisson branching process tree whose root has a Poi(w (i )

i (λ)) offspring

distribution and every other vertex has a Poi((W (i )
n (λ))◦) offspring distribution. As before, ht(t)

denotes the height of the tree t.

When ht(T n
(i )

(λ)) > εnη/2, at least one of the subtrees of the root needs to have height at least
εnη/2. Combining this observation with (6.4) and (6.5), we get

P(E c
n) É ∑

i>N
E
[
Poi(w (i )

i (λ))
]
P

(
ht

(
T (i )

n (λ)
)
Ê εnη/2

)
É ∑

i>N
w (i )

i (λ)P
(
ht

(
T (i )

n (λ)
)
Ê εnη/2

)
, (6.6)

where T (i )
n (λ) is a branching process tree where every vertex has a Poi((W (i )

n (λ))◦) offspring dis-
tribution.

We make the convention of writing T (i )
n , W (i )

n etc. instead of T (i )
n (0), W (i )

n (0) etc. With this

notation, it is easy to see that W (i )
n (λ)

d= (1+λn−η)W (i )
n and hence (W (i )

n (λ))◦ d= (1+λn−η)(W (i )
n )◦.

The survival probability of mixed Poisson branching processes. We would like to compare our
mixed-Poisson branching process with an offspring distribution that is independent of n. For
this, we rely on the following two lemmas:

Lemma 6.5 (Mixed-Poisson branching processes of different parameters). Let T (i )
n and T (i )

n (λ)
be as above. Assume further that λÊ 0. Then, for each k Ê 1,

P
(
ht(T (i )

n (λ)) Ê k
)
É (1+λn−η)k ·P

(
ht(T (i )

n ) Ê k
)

.

Proof: We follow [44, Proof of Lemma 3.4(1)]. Writing δ= 1+λn−η, we note that we can obtain
T (i )

n as a subtree of T (i )
n (λ) by killing every child independently with probability 1−δ−1. Write A

for the event in which ht(T (i )
n (λ)) Ê k and no vertex in the leftmost path of length k starting from

the root in T (i )
n (λ) is killed. Then

P(A ) = δ−k P
(
ht(T (i )

n (λ)) Ê k
)

.

Indeed, the probability of the leftmost path surviving is precisely 1/δk . To finish the proof, note
that A implies ht(T (i )

n ) Ê k, so that

P
(
ht(T (i )

n ) Ê k
)
ÊP(A ) = δ−k P

(
ht(T (i )

n (λ)) Ê k
)

,

which is the desired inequality. ■
Lemma 6.6 (Stochastic bound by n-independent variable). The random variable (W (i )

n )◦ is

stochastically upper bounded by W ◦ where W ∼ F , i.e., (W (i )
n )◦

stÉW ◦.
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Proof: We note that

P(W (i )
n É x) = 1

n − i +1

∑
j∈[n]\[i−1]

1l
{

w (i )

j É x
}
= 1

n − i +1

∑
j∈[n]\[i−1]

1l
{

w j É x`n/`(i )
n

}
Ê 1

n − i +1

∑
j∈[n]\[i−1]

1l
{

w j É x
}Ê 1

n

∑
j∈[n]

1l
{

w j É x
}

.

The last inequality holds because we are removing the largest weight vertices, and can be

checked easily by induction on i . We conclude that W (i )
n

stÉ Wn which is distributed as the em-

pirical weight distribution of (wi )i∈[n]. Further, since wi = [1− F ]−1(i /n), Wn
stÉ W (see, e.g.,

[42, (6.1.17)]). Finally, size-biasing preserves stochastic domination (see, e.g., [42, Proposition

2.13]), which implies that (W (i )
n )◦

stÉW ◦
n

stÉW ◦. This yields the desired result. ■
We continue to study the survival probability of mixed-Poisson branching processes with in-

finite variance offspring distribution.

Lemma 6.7 (Survival probability of infinite-variance MPBP). Let T denote a mixed-Poisson
branching process tree with offspring distribution Poi(W ◦). Then, there exists a constant c6.7 such
that for all m Ê 1,

P(ht(T ) Ê m) É c6.7m−1/(τ−3).

Proof: This is a well-known result. We sketch the proof briefly for completeness. Recall the
following facts about W ◦: (a) E[W ◦] = ν = 1 and (b) for x →∞, P(W ◦ > x) = cx−(τ−2)(1+o(1)).
By the Otter-Dwass formula, which describes the distribution of the total progeny of a branching
process (see [36] for the special case when the branching process starts with a single individual,
[58] for the more general case, and [43] for a simple proof based on induction), we have

P(|T | = k) = 1

k
P

(
k∑

i=1
Xi = k −1

)
,

where Xi are i.i.d. random variables distributed as W ◦. By [41, Proposition 2.7], in our situation,
P(

∑k
i=1 Xi = k −1) É ck−1/(τ−2), so that

P(|T | = k) É ck−(τ−1)/(τ−2) and P(|T | Ê k) É ck−1/(τ−2). (6.7)

Take k = m(τ−2)/(τ−3) in the second inequality in (6.7)to get

P(ht(T ) Ê m) É cm−1/(τ−3) +P(
ht(T ) Ê m, |T | É m(τ−2)/(τ−3)) ,

where |T | denotes the total number of vertices in T . We condition on the size |T | and write

P
(
h(T ) Ê m, |T | É m(τ−2)/(τ−3))= m(τ−2)/(τ−3)∑

k=1
P

(
ht(T ) Ê m

∣∣ |T | = k
)
P(|T | = k)

É c
m(τ−2)/(τ−3)∑

k=1
P

(
ht(T ) Ê m

∣∣ |T | = k
)

k− τ−1
τ−2 . (6.8)

By [50, Theorem 4], there exists a κ> 1 such that, uniformly for u Ê 1,

P
(
ht(T ) Ê uk(τ−3)/(τ−2)

∣∣ |T | = k
)É e−auκ .
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Combining this with (6.8), we get

P
(
ht(T ) Ê m, |T | É m(τ−2)/(τ−3))É m

τ−2
τ−3∑

k=1
exp

(
−a

(
mk− τ−3

τ−2

)κ)
k− τ−1

τ−2 =Θ
(
m− 1

τ−3

)
.

■
Proof of Proposition 6.3: Clearly

P
(
ht

(
T (i )

n

)
Ê m

)
É E

[(
W (i )

n

)◦]
P

(
ht

(
T (i )

n

)
Ê m −1

)
=: ν(i )

n P
(
ht

(
T (i )

n

)
Ê m −1

)
,

where

ν(i )
n = E

[(
W (i )

n

)◦]= ∑
jÊi (w (i )

j )2∑
jÊi w (i )

j

=
(
`(i )

n

`n

) ∑
jÊi w 2

j∑
jÊi w j

=
∑

jÊi w 2
j

`n
.

Iterating this εnη/4 times, we get

P
(
ht

(
T (i )

n

)
Ê εnη/2

)
É (ν(i )

n )εnη/4P
(
ht

(
T (i )

n

)
Ê εnη/4

)
(6.9)

É (ν(i )
n )εnη/4P

(
ht(T ) Ê εnη/4

)É (ν(i )
n )εnη/4 × c6.7

(
4

ε

) 1
τ−3 1

n1/(τ−1)
,

where the second inequality is a consequence of Lemma 6.6 and the last step follows from
Lemma 6.7.

Substituting the estimate (6.9) into (6.6) leads to

P(E c
n) É cε−

1
τ−3 n− 1

τ−1

(
1+ max{λ,0}

nη

)1+εnη/2 ∑
i>N

wi (ν(i )
n )εnη/4 (6.10)

for some constant c. Here we have used Lemma 6.5 and the simple fact: w (i )
i É wi .

Next, note that it is an easy consequence of (1.3) that there exist constants c ′,c ′′ > 0 such that
for all i ∈ [n],

wi É c ′
(n

i

)1/(τ−1)
and

i∑
j=1

w 2
j Ê c ′′

i∑
j=1

(n

i

)2/(τ−1)
. (6.11)

Further, [17, Lemma 2.2] implies that ν(1)
n < 1 for large n. Hence, for every i Ê 2,

ν(i )
n = ν(1)

n − 1

`n

i−1∑
j=1

w 2
j É 1−C n−ηiη É exp

(−C n−ηiη
)

for some C > 0. Here, we have used the second inequality in (6.11). Combining this estimate
with(6.10) and the first inequality in (6.11), we end up with

P(E c
n) ÉC ′ε−1/(τ−3)

∑
i>N

i−1/(τ−1) exp
(−Cεiη/4

)



52 BHAMIDI, VAN DER HOFSTAD, AND SEN

for some C ′ > 0. Taking N = ε−δ−1/η, we get

P(E c
n) ÉC ′ε−1/(τ−3)N−1/(τ−1)

∑
i>N

exp
(−Cεiη/4

)
ÉC ′εδ/(τ−1)

∞∑
k=0

N 2k+1−1∑
i=N 2k

exp
(−Cεiη/4

)
ÉC ′εδ/(τ−1)N

∞∑
k=0

2k exp
(
−Cε(N 2k )η/4

)
. (6.12)

Note that εNη = ε−δη. A little more work after plugging this into (6.12) will lead to (6.2). ■
6.2. Proof of global lower-mass bound. In this section, we complete the proof of Lemma 6.1.
We start with some preliminaries:

Lemma 6.8 (Weight of size-biased reordering). Let πv (1) = v and (πv (i ) : i ∈ [n] \ {1}) be a size-
biased reordering on [n] \ {v} where size of vertex v ′ is proportional to wv ′ for v ′ ∈ [n] \ {v}. Then,
for every k = o(1), there exists a J > 0 such that

P
(
∃v :

k∑
j=1

wπv (i ) É k/2
)
É ne−Jk .

Proof: See [17, Proof of Lemma 5.1]. ■
Recall the definitions of η and ρ from (6.1). Recall that for v ∈ [n], B(v,δ) denotes the intrinsic

ball (in NRn(w (λ))) around v or radius δnη. We will use the following bound on the weight of
balls:

Lemma 6.9 (Weights of balls around high-weight vertices cannot be too small). For every ε> 0
and i Ê 1, there exist ni ,ε large and δi ,ε > 0 such that for all n Ê ni ,ε and δ ∈ (0,δi ,ε], we have

P

( ∑
j∈B(i ,δ)

w j É
(cF

2i

)1/(τ−1) δnρ

2

)
É n exp

(
− Jδnρ

i 1/(τ−1)

)
+ ε

2i
. (6.13)

Proof: We will rely on a cluster exploration used in [17] which we describe next. We denote by
(Zl (i ))lÊ0 the exploration process of the cluster C (i ), starting from i , in the breadth-first search,
where Z0(i ) = 1 and where Z1(i ) denotes the number of potential neighbors of the initial vertex
i . The variable Zl (i ) has the interpretation of the number of potential neighbors of the first
l explored potential vertices in the cluster whose neighbors have not yet been explored. As a
result, we explore by taking one vertex of the ‘stack’ of size Zl (i ), drawing its mark and checking
whether it is a real vertex, followed by drawing its number of potential neighbors. Thus, we set
Z0(i ) = 1, Z1(i ) =Poi(wi ), and note that, for l Ê 2, Zl (i ) satisfies the recursion relation

Zl (i ) = Zl−1(i )+Xl −1,

where Xl denotes the number of potential neighbors of the l th potential vertex that is explored,
where X1 = X1(i ) = Poi(wi ). More precisely, when we explore the l th potential vertex, we start
by drawing its mark Ml in an i.i.d. way with distribution

P(M = m) = wm/`n , 1 É m É n.

When we have already explored a vertex with the same mark as the one drawn, we turn the status
of the vertex to be explored to inactive, the potential vertex does not become a real vertex, and
we proceed with the next potential vertex. When, instead, it receives a mark that we have not
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yet seen, then the potential vertex becomes a real vertex, its mark Ml ∈ [n] indicating to which
vertex in [n] the l th explored vertex corresponds, so that Ml ∈C (i ). We then draw Xl =Poi(wMl ),
and Xl denotes the number of potential vertices incident to the real vertex Ml . Again, upon
exploration, these potential vertices might become real vertices, and this occurs precisely when
their mark corresponds to a vertex in [n] that has not appeared in the cluster exploration so far.
We call the above procedure of drawing a mark for a potential vertex to investigate whether it
corresponds to a real vertex a vertex check. Let

Z (n)
t (i ) = n−1/(τ−1)Zdtnρe(i ) for t > 0.

Then, by imitating the techniques used in the proof of Theorem 2.4 of [17], we get

(Z (n)
t (i ))t>0

d−→ (St (i ))t>0.

([17, Theorem 2.4 ] states the result for i = 1. However the exact same proof goes through for any
i Ê 2.) The limiting process (St (i ))t>0 is defined as follows: Let

a = c1/(τ−1)
F /E[W ] and b = b(i ) = (cF /i )1/(τ−1). (6.14)

We let (Ii (t ))iÊ1 denote independent increasing indicator processes defined by

Ii (s) = 1l
{
Exp(ai−1/(τ−1)) ∈ [0, s]

}
, s Ê 0,

so that

P (Ii (s) = 0 ∀s ∈ [0, t ]) = exp
(−at/i 1/(τ−1)) .

Then we define

St (i ) = b −abt + ct +
∞∑

j 6=i

b

j 1/(τ−1)

[
Ij (t )− at

j 1/(τ−1)

]
(6.15)

for all t Ê 0, where c = ζ−ab and ζ is as in (2.17). We call (St )tÊ0 a thinned Lévy process.
Let H (i )

n (u) denote the hitting time of u of the process (Z (n)
t (i ))t>0. Then, by [17, Corollary 3.4],

H (i )
n (u)

d−→ HS (i )(u), the hitting time of u of the process (St (i ))t>0. This implies the existence
of a Bε,i (independent of n) and an integer ni ,ε such that

P
(
H (i )

n

(
(cF /2i )1/(τ−1))É Bε,i

)É ε2−i for n Ê ni ,ε, (6.16)

since the limiting process (St (i ))t>0 starts from (cF /i )1/(τ−1) and takes a positive amount of time
to reach (cF /2i )1/(τ−1).

Let |B(i ,r )| denote the number of vertices in B(i ,r ). Let δε,i be so small that

(cF /2i )1/(τ−1)δε,i < Bε,i . (6.17)

Then we claim that for all δ ∈ (0,δε,i ],

P
(
|B(i ,δ)| É (cF /2i )1/(τ−1)δnρ

)
ÉP

(
H (i )

n

(
(cF /2i )1/(τ−1))É Bε,i

)
. (6.18)

That (6.18) holds can be seen as follows. For |B(i ,δ)| É (cF /2i )1/(τ−1)δnρ to occur, there has to
exist some j ∈ [1,δnη] such that the number of vertices at distance j from i is smaller than
(cF /2i )1/(τ−1)δnρ/(δnη), i.e,

min
1É jÉδnη

|∂B(i , j n−η)| É (cF /2i )1/(τ−1)n1/(τ−1). (6.19)

Now the number of vertices at distance j from i is precisely the number of vertices in generation
j of the breadth-first exploration process, and hence this number (scaled by nρ) appears in the
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function Z (n)
t (i ). Thus, (6.19) implies that (Z (n)

t (i ))t>0 has to hit (cF /2i )1/(τ−1) before we have
finished exploring up to generation δnη, i.e., we must have that

H (i )
n

(
(cF /2i )1/(τ−1))É |B(i ,δ)|

nρ
É

(cF

2i

)1/(τ−1)
δ< Bε,i ,

where the last inequality holds by (6.17) and because δ ∈ (0,δε,i ].
Combining (6.16) and (6.18), we conclude that for all δ ∈ (0,δε,i ] and n Ê ni ,ε,

P
(
|B(i ,δ)| É (cF /2i )1/(τ−1)δnρ

)
É ε2−i . (6.20)

This explains the second term in (6.13).
To see what happens when |B(i ,δ)| Ê (cF /2i )1/(τ−1)δnρ, recall that the vertices appear in a

size-biased fashion in our exploration process. Hence

P

( ∑
j∈B(i ,δ)

w j É
(cF

2i

)1/(τ−1) δnρ

2
, |B(i ,δ)| Ê

(cF

2i

)1/(τ−1)
δnρ

)
(6.21)

ÉP
(
δnρ(cF /(2i ))1/(τ−1)∑

j=1
wπi ( j ) É

(cF

2i

)1/(τ−1) δnρ

2

)

É n exp

(
− Jδnρ

i 1/(τ−1)

)
,

by Lemma 6.8. Combining (6.20) and (6.21) proves the claim. ■
Lemma 6.10. For v ∈ [n], let C (v) denote the component of v in NRn(w (λ)). Then for every fixed
i Ê 1 and ε1,ε2 > 0, there exist ξ= ξ(i )

ε1,ε2
> 0 and an integer n̄(i )

ε1,ε2
such that

P

(
min

v∈C (i )

( ∑
j∈B(v,ε1)

w j

)
É ξnρ

)
É ε2 for n Ê n̄.

Proof: Recall Proposition 6.3, and choose Nε1,ε2 and nε1,ε2 large so that

P
(
diam(NRn(w (λ)) \ [N ]) É ε1nη/2

)Ê 1−ε2 (6.22)

for all n Ê nε1,ε2 . Let

F1 =
{
diam(NRn(w (λ)) \ [N ]) É ε1nη/2

}
and F2 =

{
diam(C (i )) > ε1nη/2

}
.

Clearly, on the set F1 ∩F2,

min
v∈C (i )

{ ∑
j∈B(v,ε1)

w j

}
Ê min

k∈[Nε1,ε2 ]

{ ∑
j∈B(k,ε1/2)

w j

}
. (6.23)

Recall the definition of δε,i in (6.17), and let

∆ε1,ε2 = ε1 ∧
(
δε2,1 ∧·· ·∧δε2,Nε1,ε2

)
/2.

Then (6.23) implies

min
v∈C (i )

∑
j∈B(v,ε1)

w j Ê min
k∈[Nε1,ε2 ]

∑
j∈B(k,∆ε1,ε2 )

w j
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on the set F1 ∩F2. Hence, for all n Ê nε1,ε2 ,

P

(
F1 ∩F2 ∩

{
min

v∈C (i )

{ ∑
j∈B(v,ε1)

w j

}
É

(
cF

2Nε1,ε2

)1/(τ−1) ∆ε1,ε2 nρ

2

})
(6.24)

É
Nε1,ε2∑

k=1
P
( ∑

j∈B(k,∆ε1,ε2 )
w j É

( cF

2Nε1,ε2

)1/(τ−1)∆ε1,ε2

2
nρ

)

É
Nε1,ε2∑

k=1

(
n exp

(
− J∆ε1,ε2 nρ

N 1/(τ−1)
ε1,ε2

)
+ ε2

2k

)

É n2 exp

(
− J∆ε1,ε2 nρ

N 1/(τ−1)
ε1,ε2

)
+ε2,

where the second inequality is a consequence of Lemma 6.9.
Next, on the set F1 ∩F c

2 , ∑
j∈B(v,ε1)

w j =
∑

j∈C (i )
w j

for any v ∈ C (i ). Further, by [17, Theorem 1.4], n−ρ∑
j∈C (i ) w j converges in distribution to a

positive random variable. Hence, there exists ξ(i )
ε2
> 0 such that

limsup
n→∞

P

(
F1 ∩F c

2 ∩
{

min
v∈C (i )

( ∑
j∈B(v,ε1)

w j

)
É ξ(i )

ε2
nρ

})
(6.25)

É limsup
n→∞

P

( ∑
j∈C (i )

w j É ξ(i )
ε2

nρ

)
É ε2.

The result follows upon combining (6.22), (6.24) and (6.25). ■
We are now ready for

Proof of Lemma 6.1: Using Proposition 6.2, for any i Ê 1 and ε> 0, we can choose K such that

P (Ci (λ)∩ [K ] =;) É ε/2. (6.26)

By Lemma 6.10, we can choose ξ> 0 and an integer n̄ such that

P

(
min

v∈C (k)

( ∑
j∈B(v,δ)

w j

)
É ξnρ

)
É ε/(2K ) (6.27)

for all n Ê n̄ and k ∈ [K ]. Combining (6.26) and (6.27), we see that

P

((
m(n)

i (δ)
)−1 > 1/ξ

)
É ε for n Ê n̄

which yields the desired tightness. ■
7. PROOFS: FRACTAL DIMENSION

In this section, we prove the assertion about the upper box-counting dimension. We first
prove a similar result for the component of j , C ( j ). Consider C (1), and as usual, view C (1)
as a metric measure space via the graph distance and by assigning mass pv := wv /(

∑
`∈C (1) w`)

to vertex v ∈ C (1). Set p := (pv : v ∈ C (1)). Now note that conditional on the set {v ∈C (1)},
C (1) is the graph G̃m(p, a) where a = (1+λn−η)(

∑
j∈C (1) w j )2/`n . Using [17, Proposition 3.7] and

[17, Lemma 3.1], it is easy to verify that the conditions in Assumption 4.4 hold with this choice
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of a and p. Thus, by Theorem 4.5, n−ηC (1) converges in Gromov-weak topology to a limiting
space which we denote by M (1). Further, the sequence

{
n−ηC (1)

}
nÊ1 satisfies the global lower

mass-bound property by Lemma 6.10. Hence

n−ηC (1)
w−→M (1) (7.1)

with respect to Gromov-Hausdorff-Prokhorov topology. By similar arguments, we can show that

n−ηC ( j )
w−→ M ( j ) with respect to Gromov-Hausdorff-Prokhorov topology for any j Ê 1 and an

appropriate (random) compact metric measure space M ( j ). The key ingredient in the proof is
the following lemma.

Lemma 7.1. Writing π= (τ−2)/(τ−3), we have

P
(
dim(M ( j )) >π

)
= 0

for every j Ê 1.

Proof: For simplicity, we work with j = 1. The proof is similar for any j Ê 2. Recall that N (M ,δ)
denotes the minimum number of open balls of radius δ needed to cover the compact space M .
Write

N(∞)(ε) :=N (M (1),ε) and N(n)(ε) :=N (C (1),εnη).

Since the convergence in (7.1) holds with respect to Gromov-Hausdorff topology,

P
(
N(∞)(2ε) > x

)É limsup
n

P
(
N(n)(ε) > x

)
(7.2)

for every x,ε> 0.
Fix an arbitrary δ> 0 and for any ε> 0, define

xε := ε−δ−π, uε := | logε|, δ′ := δ

2

(
τ−1

τ−2

)
, and N (ε) = ε−δ′−1/η. (7.3)

Let En be the event defined in (6.3). Clearly, on the event En ∩ {
N(n)(ε) > xε

}
, any v ∈ C (1) is

within distance εnη from a point in C (1)∩ [N (ε)]. Hence

P
(
N(n)(ε) > xε

)ÉP(E c
n)+P (|C (1)∩ [N (ε)]| Ê xε) , (7.4)

and by Proposition 6.3,

limsup
n

P(E c
n) É cδ′ exp

(
−C /εδ

′η
)

. (7.5)

It remains to prove a bound on P (|C (1)∩ [N (ε)]| Ê xε). To this end, note that by [17, Proposition
3.7],

|C (1)∩ [N (ε)]| w−→
N (ε)∑
q=1

Iq
(
HS (1)(0)

)
, (7.6)

where Iq (·) and HS (1)(·) are as defined around (6.15). Further, [45, Theorem 1.4] implies the
existence of positive constants A1 and A2 such that

P
(
HS (1)(0) > uε

)É A1 exp(−A2uτ−1
ε ). (7.7)

Combining (7.4),(7.5), (7.6) and (7.7), we conclude that

limsup
n

P
(
N(n)(ε) > xε

)É cδ′ exp
(
−Cε−δ

′η
)
+ A1 exp(−A2uτ−1

ε )+P
(

N (ε)∑
q=1

Iq (uε) Ê xε

)
. (7.8)
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Now Iq (uε) are i.i.d. Bernoulli random variables with

P(Iq (uε) = 1) = 1−exp
(−auε/q1/(τ−1))=: pq

where a is as in (6.14). Choose v > 0 small so that ev −1 É 2v . Clearly

Eexp
(
vIq (uε)

)= 1+pq
(
ev −1

)É exp
(
pq

(
ev −1

))É exp(2v pq ).

Hence, there exists a constant A3 > 0 such that

P

(
N (ε)∑
q=1

Iq (uε) Ê xε

)
É exp

(
−v xε+2v

N (ε)∑
q=1

pq

)
(7.9)

É exp
(−v xε+2v A3uεN (ε)ρ

)
= exp

(
−v xε+2v A3uεε

− δ
2 −π

)
.

Combining (7.2), (7.8) and (7.9), we see that
∑∞

k=1P
(
N(∞)(2/k) > kδ+π

) < ∞. Since δ > 0 was
arbitrary, we conclude that

limsup
k

log
(
N(∞)(2/k)

)
log(k/2)

Éπ a.s.

By sandwiching ε between 2/(k −1) and 2/k, we get the desired bound on dim(M (1)). ■
Proof of (1.10) and (1.23): We only give the proof of (1.10). This will imply (1.23) because of
(2.18). Fix i Ê 1 and let

Kn := min
{

j ∈ [n]
∣∣ j ∈Ci (λ)

}
.

By Proposition 6.2, Kn is tight. By passing to a subsequence if necessary, we can assume that we
are working on a space where(

n−ηMnr
n (λ),Kn

)→ (
Mnr

∞(λ),K∞
)

a.s.

for some (integer valued) random variable K∞. Then

P
(
dim

(
M nr

i (λ)
)>π)

=
∞∑

j=1
P

(
dim

(
M nr

i (λ)
)>π, K∞ = j

)
.

By Lemma 7.1, P
(
dim

(
M nr

i (λ)
)>π, K∞ = j

)
= 0 for every j Ê 1. This completes the proof. ■

8. OPEN PROBLEMS

In Theorem 1.7, we have considered a general entrance boundary c ∈ l0. To study specific
properties of the limit objects, we focused mainly on the special case c = c(α,τ) as in (1.22)
and in this case, we have shown compactness as well as established an upper bound on the
box counting dimension in Theorem 1.8. An important problem in this context is to establish
necessary and sufficient conditions on c that ensure compactness of the limiting spaces.

Another motivation for pursuing this problem comes from the following simple Corollary of

Theorem 1.8: For any i Ê 1, consider the sequence θ(i ) as in (2.13). Then T θ(i )

(∞) is almost surely
compact. Similarly, compactness of M (1) (as defined in (7.1)) implies compactness of the as-

sociated ICRT T θ
(∞) where θ = (θi : i Ê 1) is given by the following prescription: Let qk be such
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that

qk∑
q=1

Iq
(
HS (1)(0)

)= k

where Iq (·) and HS (1)(·) are as defined around (6.15). Define

θi =
q−1/(τ−1)

i(∑∞
k=1 q−2/(τ−1)

k

)1/2
for i Ê 1.

These can be thought of as “annealed results," since θ(i ) and θ are random. No result is known
in this direction without a prior distribution on θ, i.e., sufficient conditions on non-random
θ ∈Θ that ensure compactness of the tree T θ

(∞) are not known. In [11, Section 7], Aldous, Mier-
mont and Pitman conjecture that boundedness of T θ

(∞) forθ ∈Θ is equivalent to
∫ ∞

1 (ψθ(u))−1du,
where ψθ, in our situation, is given by

ψθ(u) =
∞∑

i=1

(
exp(−uθi )−1+uθi

)
. (8.1)

This conjecture, however, is open to date. Our proof technique demonstrates a method of prov-
ing such annealed results via approximation by random graphs. Thus, classification of those
c ∈ l0 for which the spaces M c

i (λ) are compact will lead to a broad class of prior distributions on

θ for which T θ
(∞) is compact.

Problem 8.1. Find necessary and sufficient conditions on c that ensure compactness of the spaces
M c

i (λ) for i Ê 1.

Another related problem is to find the fractal dimensions of the limiting spaces. As a corollary
to Theorem 1.8, we get

dim
(
T θ(i )

(∞)

)
É (τ−2)/(τ−3) a.s. (8.2)

where θ(i ) is as in (2.13) corresponding to c of the form (1.22). Lemma 7.1 shows that the asser-
tion in (8.2) remains true if we replace θ(i ) by θ. Now, it is not hard to prove that

inf
j
θ j j 1/(τ−2) > 0 a.s. and sup

j
θ j j 1/(τ−2) <∞ a.s.

It then follows that

τ−2 = sup
{

a Ê 0 : lim
u→∞u−aψ

θ
(u) =∞

}
= inf

{
a Ê 0 : lim

u→∞u−aψ
θ

(u) = 0
}

a.s.,

which in turn implies that the Minkowski dimension, Hausdorff dimension and packing dimen-
sion of a ψ

θ
Lévy tree is (τ−2)/(τ−3) a.s. (see [34, 40]). Using the analogy between ICRTs and

Lévy trees as in [11, Section 7], it is natural to expect that the same is true for T θ
(∞) and hence for

M (1). This is the heuristic behind Conjecture 1.2.

Problem 8.2. Prove Conjecture 1.2.
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