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Abstract

This paper axiomatizes, in a two-stage setup, a new theory for decision under risk and
ambiguity. The axiomatized preference relation � on the space Ṽ of random variables
induces an ambiguity index c on the space ∆ of probabilities on the states of the world and
a probability weighting function ψ, generating the measure νψ by distorting an objective

probability measure, such that, for all ṽ, ũ ∈ Ṽ ,

ṽ � ũ⇔ min
Q∈∆

{
EQ
[∫

ṽdνψ

]
+ c(Q)

}
≥ min
Q∈∆

{
EQ
[∫

ũdνψ

]
+ c(Q)

}
.

Our theory is dual to the theory of variational preferences introduced by Maccheroni,
Marinacci and Rustichini (2006), in the same way as the theory of Yaari (1987) is dual to
expected utility of Von Neumann and Morgenstern (1944). As a special case, we obtain a
preference axiomatization of a decision theory that is dual to the popular maxmin expected
utility theory of Gilboa and Schmeidler (1989). We characterize risk and ambiguity aversion
in our theory.
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1 Introduction

The distinction between risk (probabilities given) and ambiguity (probabilities unknown), after
Keynes (1921) and Knight (1921), has become a central aspect in decision-making under un-
certainty. Already since Ellsberg (1961) the importance of this distinction had been apparent:
while in the classical subjective expected utility (SEU) model of Savage (1954) the distinction
between risk and ambiguity was nullified through the assignment of subjective probabilities
(Ramsey, 1931, de Finetti, 1931), the Ellsberg (1961) paradox showed experimentally that
decisions under ambiguity could not be reconciled with any such assignment of subjective
probabilities. It took, however, until the 1980s before decision models were developed that
could account for ambiguity without the assignment of subjective probabilities.

Among the most popular models for decision under ambiguity today are maxmin expected
utility (MEU, Gilboa and Schmeidler, 1989), also called multiple priors, and Choquet expected
utility (CEU, Schmeidler, 1986, 1989). The former model is a decision-theoretic foundation of
the classical decision rule of Wald (1950) in (robust) statistics; see also Huber (1981). More
recently, Maccheroni, Marinacci and Rustichini (2006) axiomatized the broad and appealing
class of variational preferences (VP), which includes MEU and the multiplier preferences of
Hansen and Sargent (2000, 2001) as special cases. Multiplier preferences have been widely
used in macroeconomics, to achieve “robustness” in settings featuring model uncertainty.

In the Anscombe and Aumann (1963) setting, all the aforementioned decision models reduce
to the classical Von Neumann and Morgenstern (1944) expected utility (EU) model under risk,
a property that is undesirable from a descriptive perspective: it means, for example, that
the Allais (1953) paradox and the common ratio and common consequence effects are still
present under risk; see e.g., Machina (1987). Furthermore, Machina (2009) shows that decision
problems in the style of Ellsberg (1961) lead to similar paradoxes for CEU as for SEU, arising
from event-separability properties that CEU retains in part from SEU.

In this paper, we introduce and axiomatize, in a two-stage setup similar to, but essentially
different from, the Anscombe and Aumann (1963) setting, a new theory for decision under risk
and ambiguity. As we will explicate, our theory is dual to VP of Maccheroni, Marinacci and
Rustichini (2006), in the same way as the theory of Yaari (1987) is dual to EU for decision
under risk. Thus, this paper may be viewed as an extension of the dual theory (DT) of Yaari
(1987) for decision under risk to settings involving risk and ambiguity, just like the theory of
Maccheroni, Marinacci and Rustichini (2006) is a significant extension to risk and ambiguity
of the EU model for risk. As a special case, we obtain a preference axiomatization of a decision
theory that is dual to the popular MEU model of Gilboa and Schmeidler (1989). See Table 1.

Table 1: Primal and Dual Decision Theories

Primal Dual

Risk EU (vNM, 1944) DT (Yaari, 1987)

Risk and ambiguity MEU (GS, 1989) This paper

Risk and ambiguity VP (MMR, 2006) This paper

The development of the DT of choice under risk of Yaari (1987) was methodologically mo-
tivated by the fact that, under EU, the decision-maker’s (DM’s) attitude towards wealth, as
represented by the utility function, completely dictates the attitude towards risk. However,
attitude towards wealth and attitude towards risk should arguably be treated separately, since
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they are “horses of different colors” (Yaari, 1987). This is achieved within the DT model, in
which attitude towards wealth and attitude towards risk are disentangled. From an empirical
perspective, the DT model naturally rationalizes various behavioral patterns that are incon-
sistent with EU, such as, perhaps most noticeably, the Allais (1953) paradox and the common
ratio effect. DT serves as a building block in more general theories for decision under risk such
as rank-dependent utility of Quiggin (1982) and prospect theory of Tversky and Kahneman
(1992).

Similarly, our results are both of theoretical (methodological) interest and potentially also
empirically relevant. At the theoretical level, our theory separates attitude towards wealth
from attitude towards risk and attitude towards ambiguity. We also characterize notions of
ambiguity and risk aversion in our decision model. From an empirical perspective, an important
and distinctive feature of our theory is that it accounts for ambiguity and yet does not collapse
to EU under risk, as would be the case if the Anscombe and Aumann (1963) setting would
apply, hence is not subject to the objective phenomena of the Allais paradox and the common
ratio effect. Inevitably, our theory has of course its own paradoxes, some of which may be
rationalized by VP.

The numerical representation of the decision theory we axiomatize induces that the DM
considers, for each random variable to be evaluated in the face of risk and ambiguity, a set
of potential probabilistic models rather than a single probabilistic model. In recent years,
we have seen increasing interest in optimization, macroeconomics, finance, and other fields
to account for the possibility that an adopted probabilistic model is an approximation to the
true probabilistic model and may be misspecified. Models that explicitly recognize potential
misspecification provide a “robust” approach. With the MEU model, one assigns the same
plausibility to each probabilistic model in a set of probabilistic models under consideration.
The multiplicity of the set of probabilistic models then reflects the degree of ambiguity. The
VP model significantly generalizes the MEU model by allowing to attach a plausibility (or
ambiguity) index to each probabilistic model. This plausibility index also appears in the
numerical representation of our decision model.

More specifically, our numerical representation U of the preference relation � on the space
of random variables Ṽ takes the form

U(ṽ) = min
Q∈∆

{
EQ
[∫

ṽdνψ

]
+ c(Q)

}
, ṽ ∈ Ṽ , (1.1)

with ∆ a set of probabilities on the states of the world, c : ∆ → [0,∞] the ambiguity index,
ψ : [0, 1] → [0, 1] a probability weighting function, and νψ an objective measure distorted
according to ψ. Special cases of interest occur when we specify the ambiguity index as the well-
known relative entropy (or Kullback-Leibler divergence), or, more generally, as a φ-divergence
measure (Csiszár, 1975, Ben-Tal, 1985, and Laeven and Stadje, 2013), or simply as an indicator
function that takes the value zero on a subset of ∆ and ∞ otherwise. It is directly apparent
from (1.1) that in the absence of uncertainty about the state of the world (i.e., in the case of
risk) our decision model reduces to the DT of Yaari (1987). The familiar probability weighting
function determines the attitude towards risk. In our general model, we will characterize
ambiguity and risk aversion in terms of properties of the ambiguity index and the probability
weighting function.

Contrary to the linearity in probabilities that appears in EU, the DT of Yaari (1987), to
which our decision model (1.1) reduces under risk, features linearity in wealth. Yaari (1987)
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suggests the behavior of a profit maximizing firm as a prime example in which linearity in
wealth seems particularly suitable. Other theories that stipulate linearity in wealth, and which
can be viewed to occur as special cases of our general theory, are provided by convex measures of
risk (Föllmer and Schied, 2004, Chapter 4), encompassing many classical insurance premium
principles, and by robust expectations (see e.g., Riedel, 2009, and the references therein).
Despite the popularity of these theories, neither linearity in wealth nor linearity in probabilities
as in EU is considered fully empirically viable for individual decision-making. Instead a more
general decision theory for risk and ambiguity in which preferences under risk are represented
by a more general measure on the wealth-probability plane, such as rank-dependent utility
(Quiggin, 1982) or prospect theory (Tversky and Kahneman, 1992), would be more realistic
from a descriptive perspective. Because our theory is dual to VP just like DT is dual to EU,
and because DT is a building block for rank-dependent utility and prospect theory, our results
may be viewed as a necessary building block for the future development of such general decision
theories for risk and ambiguity.

In essence, our axiomatization is based on a modification of two axioms stipulated by Gilboa
and Schmeidler (1989) and Maccheroni, Marinacci and Rustichini (2006). First, we postulate a
type of ambiguity aversion (Axiom A6 below) with respect to convex combinations of random
variables rather than with respect to probabilistic mixtures of lotteries. Consider two ambigu-
ous random variables between which the DM is indifferent. Then our axiom requires that the
DM prefers a fraction of the first ambiguous random variable and a remaining fraction of the
second (such that the fractions sum to unity) over either one in full. This constitutes a pref-
erence for diversification induced by convex combinations of ambiguous random variables. In
the primal theories of Gilboa and Schmeidler (1989) and Maccheroni, Marinacci and Rustichini
(2006), ambiguity aversion instead takes the form of a preference for randomization. Translated
to out setting of preferences over random variables, this requires that the DM prefers receiving
two random variables between which he is indifferent with probabilities p and 1− p, 0 < p < 1,
over getting one of them with certainty.

Second, we replace the (weak) certainty independence axiom of Gilboa and Schmeidler
(1989) and Maccheroni, Marinacci and Rustichini (2006) by a comonotonic type of indepen-
dence axiom (Axioms A7 and A70 below) that pertains to addition of random variables instead
of probabilistic mixtures. As is well-known, the independence axiom and its various alterna-
tives are key to obtaining, and empirically verifying, preference representations. Our approach
is based on “dual independence” as in Yaari (1987). However, in our general setting that allows
for a set of probabilistic models, the implications of comonotonicity, and its interplay with am-
biguity, need to be reconsidered: while preferences over random variables may well be invariant
to the addition of comonotonic random variables when probability distributions are given (i.e.,
under risk) as stipulated by Yaari (1987), this implication seems no longer appropriate under
ambiguity, essentially because such addition may impact the “level” of ambiguity (see Ex. 3.1).

Therefore, we postulate the following two versions of the dual independence axiom to extend
the DT to a setting featuring risk and ambiguity: (i) preferences over random variables are
invariant to the addition of a comonotonic random variable with an objectively given probability
distribution (Axiom A7); or (ii) preferences over random variables are invariant to convex
combinations of random variables and a comonotonic random variable with an objectively
given probability distribution (Axiom A70). The former yields a decision theory that is dual
to VP, the latter yields a decision theory that is dual to MEU. The mathematical details in
the proofs of our characterization results are delicate.
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This paper is organized as follows. In Section 2, we introduce our setting and notation.
In Section 3, we review some preliminaries, introduce our new axioms, and state our main
representation results. Section 4 explicates that our theory is dual to the theory of Maccheroni,
Marinacci and Rustichini (2006). Section 5 characterizes ambiguity and risk aversion in our
theory. Section 6 axiomatizes, as a special case, the dual theory of Gilboa and Schmeidler
(1989). Proofs of our main results are relegated to the Appendix.

2 Setup

We adopt a two-stage setup as in the Anscombe and Aumann (1963) approach, with a state
space that is a product space, allowing a two-stage decomposition. Different from the Anscombe
and Aumann (1963) model, however, we don’t assume nor induce EU for risk. Our theory
defines a preference relation over random variables just like Yaari (1987) for risk by which our
notation is inspired. We now formalize our two-stage setup.

Consider a possibly infinite set W of states of the world with σ-algebra Σ′ of subsets of W
that are events and, similarly, consider a possibly infinite set S of outcomes with σ-algebra Σ
of subsets of S that are events. Their product space is W × S. We suppose that:

(a) Every (fixed) w ∈W induces a probability measure Pw on (S,Σ).

(b) For every A ∈ Σ, the mapping w 7→ Pw[A] is Σ′-measurable.

(c) For every w ∈W , Pw is non-atomic, i.e., there exists a random variable Uw on S that is
uniformly distributed on the unit interval under Pw.1

The well-known interpretation of such a two-stage approach is that the objective probability
with which outcome s occurs depends on the state of the world w, which is subject to resolution
of the first-stage uncertainty. Each w ∈W induces a different state of the world with different
associated probabilities for certain events A ∈ Σ.

Let Ṽ be the space of all bounded random variables ṽ defined on the space (W ×S,Σ′⊗Σ),
i.e., ṽ is a mapping from W × S to R. Similar to Yaari (1987), realizations of the random
variables in Ṽ will be viewed as payments denominated by some monetary units. The random
variable ṽw : S → R is viewed as the outcome s contingent payment that the DM receives if
he lives in state of the world w. This makes ṽw also interpretable as a roulette lottery, in neo-
Bayesian nomenclature. Henceforth, ṽw and its associated roulette lottery are often identified.2

We denote by Ṽ0 the subspace of all random variables in Ṽ that take only finitely many values.
For fixed w ∈W , we define the conditional cumulative distribution function (CDF) Fṽ(w, t)

of the Σ-measurable random variable ṽw, given by s 7→ ṽw(s), by Fṽ(w, t) = Pw[ṽw ≤ t]. (We
sometimes omit the dependence on t, i.e., we sometimes write Fṽ(w).) From the assumptions
above it follows that for every t ∈ R, Fṽ(., t) is Σ′-measurable. Formally:

Definition 2.1 We call a function F : W × R → [0, 1] a conditional CDF if, for all w ∈ W ,
F (w) is a CDF and, for every t ∈ R, F (·, t) is Σ′-measurable.

1The dual theory needs a richness assumption as in (c) to guarantee that all the probability distributions
considered can be generated.

2We have assumed here that in every state of the world w the possible outcomes are the same. This can
simply be achieved by adding additional outcomes with associated probability zero to each state of the world.
Only the probabilities with which certain events A ∈ Σ occur differ.
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Every ṽ ∈ Ṽ induces a conditional CDF and hence can be identified with a horse (race)
lottery, in neo-Bayesian nomenclature. Furthermore, for fixed w, every horse lottery f given
by w 7→ µw, for (roulette) lotteries µw defined on the probability space (S,Σ, Pw), induces a
CDF F (w). Let q(w) be the left-continuous inverse of F (w), i.e.,

q(w, λ) = inf{t ∈ R|F (w, t) ≥ λ}, λ ∈ (0, 1).

Then we can define ṽw(s) = q(w,Uw(s)) and it is easy to see that, for every w ∈W , ṽw has the
same probability distribution as f(w). Hence, there is a one-to-one correspondence between
equivalence classes of random variables ṽ ∈ Ṽ with the same conditional distributions, and
horse lotteries f .

For some ṽ ∈ Ṽ (e.g., those that represent payoffs from games such as flipping coins) the
DM may actually know the objective probability distribution. As in Anscombe and Aumann
(1963), Gilboa and Schmeidler (1989) and Maccheroni, Marinacci and Rustichini (2006) the
associated so-called objective lotteries will play a special role for our theory. In this case, the
probability distribution of ṽ does not depend on w, i.e., for all w1, w2 ∈ W , Fṽ(w1) = Fṽ(w2).
We denote the corresponding space of all these random variables in Ṽ and Ṽ0 that carry no
ambiguity by V and V0, respectively. For random variables in v ∈ V we usually omit the w,
i.e., we just write Fv(t) instead of Fv(w, t). In the space V , vn converges in distribution to v if
Fvn converges to Fv for all continuity points of Fv.

Furthermore, let V ′ be the space defined by

V ′ =
{
ṽ ∈ Ṽ |ṽ is independent of s ∈ S,

i.e., for s1, s2 ∈ S : ṽw(s1) = ṽw(s2)
}
.

Clearly, the space V ′ of all random variables in Ṽ that carry no risk may be identified with the
space of bounded measurable functions on (W,Σ′). V ′0 is defined as the corresponding subspace
of bounded measurable functions that take only finitely many values.

Let ∆(W,Σ′) be the space of all finitely additive measures on (W,Σ′) with mass one. Denote
by ∆σ(W,Σ′) the space of all probability measures on (W,Σ′).

3 Representation

3.1 Preliminaries

We define a preference relation � on Ṽ0. As usual, � stands for strict preference and ∼ for
indifference. The preference relation � on Ṽ0 induces a preference order, also denoted by �,
over random variables s 7→ ṽw(s) through those random variables in Ṽ0 that are associated
with objective lotteries (i.e., are in V0) by defining ṽw � ũw iff v � u with v, u ∈ V0 and
Fv(t) = Fṽ(w, t), Fu(t) = Fũ(w, t) for all t ∈ R. (This, in turn, induces, similarly, a preference
relation over monetary payments.) We suppose that � satisfies the following properties:

AXIOM A1–Weak and Non-Degenerate Order: � is complete, transitive, and non-degenerate.
That is:

(a) ṽ � ũ or ũ � ṽ for all ṽ, ũ ∈ Ṽ0.

(b) If ṽ, ũ, r̃ ∈ Ṽ0, ṽ � ũ and ũ � r̃, then ṽ � r̃.
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(c) There exist ṽ, ũ ∈ Ṽ0 such that ṽ � ũ.

While Yaari (1987) assumes that the preference relation is complete on the space of all ṽ ∈ Ṽ
including those taking infinitely many values, we only assume in A1(a) that � is complete on
the space of all ṽ ∈ Ṽ0 that take finitely many values. We will see later that � and our
representation results may be uniquely extended to the entire space Ṽ . For the dual theory of
Yaari (1987) without the completeness axiom, see Maccheroni (2004).

AXIOM A2–Neutrality: Let ṽ and ũ be in Ṽ0 and have the same conditional CDF’s, Fṽ and
Fũ. Then ṽ ∼ ũ.

Axiom A2 states that � depends only on the (finite-valued) conditional distributions. In
particular, � induces a preference relation on the space of all (finite-valued) conditional CDF’s
by defining F (�)G if and only if there exist two random variables ṽ, ũ ∈ Ṽ0 such that ṽ � ũ
and Fṽ(w) = F (w), Gũ(w) = G(w) for all w ∈ W . To simplify notation, we will henceforth
use � for preferences over random variables and for preferences over conditional CDF’s.

AXIOM A3–Continuity: For every v, u ∈ V0 such that v � u, and uniformly bounded
sequences vn and un converging in distribution to v and u, there exists an n from which onwards
vn � u and v � un. Furthermore, for every ṽ ∈ Ṽ0, the sets{

m ∈ R|m � ṽ
}

and
{
m ∈ R|ṽ � m

}
are open.

When restricted to V0, our continuity condition A3 is equivalent to the one employed in
Yaari (1987). It is a little stronger than that of Maccheroni, Marinacci and Rustichini (2006)
or Gilboa and Schmeidler (1989).

AXIOM A4–Certainty First-Order Stochastic Dominance: For all v, u ∈ V0: If Fv(t) ≤
Fu(t) for every t ∈ R, then v � u.

AXIOM A5–Monotonicity: For all ṽ, ũ ∈ Ṽ0: If ṽw � ũw for every w ∈W , then ṽ � ũ.

We postulate Axioms A1-A5 for a preference relation � defined on the space of finite-valued
random variables Ṽ0. However, by A2, in view of the one-to-one correspondence explicated
in the previous section, it is straightforward to verify that this preference relation induces
a preference relation, also denoted by �, on the space of horse lotteries, satisfying the same
axioms. Consequently, all axioms considered so far, which will be maintained in our setting, are
common; see Yaari (1987), Schmeidler (1989), Gilboa and Schmeidler (1989) and Maccheroni,
Marinacci and Rustichini (2006). To (strictly speaking: a subset of) the collection of axioms
above, Gilboa and Schmeidler (1989) added the following two axioms:

AXIOM A6MEU–Uncertainty Aversion: If ṽ, ũ ∈ Ṽ0 and α ∈ (0, 1), then Fṽ ∼ Fũ implies
αFṽ + (1− α)Fũ � Fṽ.

AXIOM A7MEU–Certainty Independence: If ṽ, ũ ∈ Ṽ0 and v ∈ V0, then Fṽ � Fũ ⇔
αFṽ + (1− α)Fv � αFũ + (1− α)Fv for all α ∈ (0, 1).

With these axioms at hand, one obtains the maxmin expected utility representation, as
follows:

Theorem 3.0.(i) (Gilboa and Schmeidler, 1989)
A preference relation � satisfies A1-A5 and A6MEU-A7MEU if, and only if, there exist a

7



non-decreasing and continuous function φ : R → R and a non-empty, closed and convex set
C ⊂ ∆(W,Σ′) such that, for all ṽ, ũ ∈ Ṽ0,

ṽ � ũ⇔ min
Q∈C

EQ
[∫

φ(t)Fṽ(., dt)

]
≥ min

Q∈C
EQ
[∫

φ(t)Fũ(., dt)

]
. (3.1)

Furthermore, � has a unique extension to Ṽ which satisfies the same assumptions (over Ṽ ).

More recently, Maccheroni, Marinacci and Rustichini (2006) have obtained a more general
representation result, which includes the maxmin expected utility representation of Gilboa and
Schmeidler (1989) as a special case, but covers also the multiplier preferences employed in
robust macroeconomics; see, for instance, Hansen and Sargent (2000, 2001). If, in the certainty
independence axiom A7MEU, α is close to zero, then αFṽ + (1 − α)Fv carries “almost no
ambiguity”. Hence, if a DM prefers ṽ over ũ (as the axiom presumes), but merely because ṽ
carries less ambiguity than ũ, then he may actually prefer αFũ+(1−α)Fv over αFṽ+(1−α)Fv
when α is small and ambiguity has almost ceased to be an issue. Therefore, Maccheroni,
Marinacci and Rustichini (2006) suggest to replace the certainty independence axiom by the
following weaker axiom:

AXIOM A7’MEU–Weak Certainty Independence: If ṽ, ũ ∈ Ṽ0, v, u ∈ V0 and α ∈ (0, 1),
then αFṽ + (1− α)Fv � αFũ + (1− α)Fv ⇒ αFṽ + (1− α)Fu � αFũ + (1− α)Fu.

Denote by mṽ the certainty equivalent of ṽ, that is, mṽ ∼ ṽ, mṽ ∈ R. Replacing A7MEU
by A7’MEU (ceteris paribus) yields the following theorem:

Theorem 3.0.(ii) (Maccheroni, Marinacci and Rustichini, 2006)
A preference relation � satisfies A1-A5 and A6MEU-A7’MEU if, and only if, there exist
a non-decreasing and continuous function φ : R → R and a grounded3, convex and lower-
semicontinuous function c : ∆(W,Σ′)→ [0,∞] such that, for all ṽ, ũ ∈ Ṽ0,

ṽ � ũ ⇔ min
Q∈∆(W,Σ′)

{
EQ
[∫

φ(t)Fṽ(., dt)

]
+ c(Q)

}
≥ min

Q∈∆(W,Σ′)

{
EQ
[∫

φ(t)Fũ(., dt)

]
+ c(Q)

}
.

Furthermore, there exists a unique minimal c0 given by

c0(Q) = sup
v′∈V ′0

{
mv′ − EQ[v′]

}
.

3.2 New Axioms

We replace the uncertainty aversion axiom of Gilboa and Schmeidler (1989) and Maccheroni,
Marinacci and Rustichini (2006) (Axiom A6MEU) by the following assumption:

AXIOM A6–Ambiguity-No-Risk Aversion: If v′, u′ ∈ V ′0 and α ∈ (0, 1), then v′ ∼ u′ implies
αv′ + (1− α)u′ � v′.

Observe that, different from Axiom A6MEU (and Axioms A7MEU and A7’MEU), Axiom
A6 considers convex combinations of random variables rather than mixtures of conditional

3We say that c is grounded if minQ∈∆(W,Σ′) c(Q) = 0.
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CDF’s. We refer to this axiom as the ambiguity-no-risk aversion axiom: the DM takes convex
combinations of random variables that carry no risk (are in V ′0) and that he is indifferent to. An
ambiguity-no-risk averse DM, then, prefers the “diversified” combination of random variables
(αv′+(1−α)u′) over the original non-diversified random variable (v′ or u′). Further discussion
of Axiom A6 is deferred to Section 5.

Subsequently, we say that two random variables ṽ, r̃ ∈ Ṽ are comonotonic if, for every
w ∈W and every s, s′ ∈ S,

(ṽw(s′)− ṽw(s))(r̃w(s′)− r̃w(s)) ≥ 0.

Comonotonic random variables don’t provide hedging potential because their realizations move
in tandem without generating offsetting possibilities (Schmeidler, 1986, 1989, Yaari, 1987).

Now consider ṽ, ũ, r̃ ∈ Ṽ0 and suppose that the DM prefers ṽ over ũ. Is it natural to require
that the DM then also prefers ṽ + r̃ over ũ + r̃, or αṽ + (1 − α)r̃ over αũ + (1 − α)r̃ with
α ∈ (0, 1), in general (without comonotonicity imposed)? If ũ and r̃ are not comonotonic, then
the DM may try to employ r̃ to hedge against adverse realizations of ũ. As a result, ũ+ r̃ can
conceivably be better diversified than ṽ+ r̃ (depending on the joint stochastic nature of ũ, r̃ on
the one hand and that of ṽ, r̃ on the other), and the DM may instead prefer ũ+ r̃ over ṽ + r̃.

Yaari (1987), in the context of decision under risk, asserts that a preference of v over u
induces a preference of αv + (1 − α)r over αu + (1 − α)r, α ∈ (0, 1), in case v, r and u, r are
pairwise comonotonic (pc). (As we will see in Section 6, this assertion also implies (ceteris
paribus) a preference of v+r over u+r.) In particular, Yaari (1987) replaces the independence
axiom of EU by the following assumption, restricted to decision under risk:

AXIOM A7D–Dual Independence: Let v, u, r ∈ V0 and assume that v, r and u, r are pc.
Then, for every α ∈ (0, 1), v � u⇒ αv + (1− α)r � αu+ (1− α)r.

This yields the following representation theorem:4

Theorem 3.0.(iii) (Yaari, 1987)
A preference relation � satisfies A1-A5 on the space V0 and A7D if, and only if, there exists
a non-decreasing and continuous function ψ : [0, 1] → [0, 1] with ψ(0) = 0 and ψ(1) = 1 such
that, for all v, u ∈ V0,

v � u⇔
∫ 0

−∞
(ψ(1− Fv(t))− 1)dt+

∫ ∞
0

ψ(1− Fv(t))dt. (3.2)

Yaari (1987) referred to this result as “the dual theory of choice under risk”, because for
non-negative random variables bounded by one in V0, Axiom A7D can be obtained by replacing
probabilistic mixtures of distribution functions in the independence axiom of EU for risk by
convex combinations of associated inverse distribution functions. The function ψ may be
viewed as the reciprocal of the von Neumann-Morgenstern utility function φ. It is applied to
distribution functions instead of to corresponding monetary payments. From the numerical
representation (3.2), it becomes readily apparent that A7D (jointly with A1-A5) implies that,
for all v, u ∈ V0,

v � u⇔ λv +m � λu+m, for every λ ≥ 0, m ∈ R.
4Yaari (1987) proved the theorem under the additional condition that the random variables involved are

non-negative and bounded by one. However, we will see later that the theorem also holds on the space of all
bounded random variables.
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Thus, while the independence axiom of EU entails linearity in probabilities, Axiom A7D entails
linearity in monetary payments.

It seems natural and important to consider extending the dual theory of choice under risk to
a setting featuring ambiguity, similar to what Gilboa and Schmeidler (1989) and Maccheroni,
Marinacci and Rustichini (2006) have achieved for the EU model under risk. The importance
of this extended theory is even more evident in view of the role played by DT in more general
decision theories such as those of Quiggin (1982) and Tversky and Kahneman (1992).

But what would be the appropriate version of dual independence in our setting with risk
and ambiguity to replace the certainty independence axiom (A7MEU) or the weak certainty
independence axiom (A7’MEU)? To answer this question, consider ṽ, ũ, r̃ ∈ Ṽ0 and suppose
that ṽ � ũ, as before. Suppose furthermore that ṽ, r̃ and ũ, r̃ are pc. Should a DM then also
prefer ṽ+r̃ over ũ+r̃? (Note that this is not implied by Axiom A7D, which requires the random
variables to live in the space V0.) Even though adding r̃ does, in view of the pc assumption,
not induce any discriminatory hedging potential, it may still impact the ambiguity “level”, in
a discriminatory manner, leading to a preference reversal.

Consider the following example:

Example 3.1 Consider two urns, A and B, and 50 balls, 25 of which are red and 25 of which
are black. Every urn contains 25 balls. The exact number of balls per color in each urn is
unknown. Furthermore, consider two urns, C and D, and 50 balls, 30 of which are red and 20
of which are black. As for A and B, every urn contains 25 balls, but the exact number of balls
per color in each urn is unknown.

Denote by pi the (unknown) probability of drawing a red ball from urn i, i ∈ {A,B,C}.
Draw a random number U from the unit interval. Consider:

(i) the random variable ṽ that represents a payoff of $100 if U ≤ pC and 0 otherwise;

(ii) the random variable ũ that represents a payoff of $100 if U ≤ pA and 0 otherwise;

(iii) the random variable r̃ that represents a payoff of $100 if U ≤ pB and 0 otherwise.

Note that ṽ, r̃ and ũ, r̃ are pc. Typically, ṽ � ũ because 30 > 25. At the same time, the
DM may prefer ũ + r̃ over ṽ + r̃, because the former combination is, loosely speaking, less
ambiguous than the latter combination. In particular, the unknown probability of drawing
red from A is connected (complementary) to the unknown probability of drawing red from
B: with certainty, pA + pB = 1. By contrast, the probability of drawing red from B (or A)
is not connected to the probability of drawing red from C. Mathematically, ũ + r̃ yields at
least $100 with probability max{pA, 1−pA} ≥ 50%, and it yields exactly $200 with probability
min{pA, 1−pA} = 1−max{pA, 1−pA}. On the contrary, ṽ+ r̃ has potential realizations of $0,
$100, and $200 with unknown probabilities, where no non-trivial upper or lower bounds can
be given. O

We will assert that, if ṽ, ũ, r̃ ∈ Ṽ0, ṽ � ũ, and ṽ, r̃ and ũ, r̃ are pc, then the implication
ṽ + r̃ � ũ + r̃ only holds if r̃ carries no ambiguity (i.e., is in V0), hence cannot impact the
ambiguity level, in a discriminatory manner. This motivates to replace the weak certainty
independence axiom by the following assumption:

AXIOM A7–Weak Certainty Dual Independence: Let ṽ, ũ ∈ Ṽ0 and r ∈ V0. Suppose that
ṽ, r and ũ, r are pc. Then ṽ � ũ⇒ ṽ + r � ũ+ r.
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3.3 Main Results

Let ψ : [0, 1] → [0, 1] be a non-decreasing and continuous function satisfying ψ(0) = 0 and
ψ(1) = 1. We refer to ψ as a distortion or probability weighting function. For v ∈ V , we define
the distortion measure νψ through∫

vdνψ =

∫ 0

−∞
(ψ(1− Fv(t))− 1)dt+

∫ ∞
0

ψ(1− Fv(t))dt.

One readily verifies that, for a, b ∈ R with a > 0,
∫

(av + b)dνψ = a
∫
vdνψ + b. We now state

our main result, which provides a representation theorem characterizing a preference relation
satisfying Axioms A1-A7:

Theorem 3.2 (α) A preference relation � satisfies A1-A7 if, and only if, there exist a non-
decreasing and continuous function ψ : [0, 1] → [0, 1] with ψ(0) = 0 and ψ(1) = 1 and a
grounded, convex and lower-semicontinuous function c : ∆(W,Σ′)→ [0,∞] such that, for
all ṽ, ũ ∈ Ṽ0,

ṽ � ũ⇔ min
Q∈∆(W,Σ′)

{
EQ
[∫

ṽ�dνψ

]
+ c(Q)

}
≥ min

Q∈∆(W,Σ′)

{
EQ
[∫

ũ�dνψ

]
+ c(Q)

}
. (3.3)

Furthermore, there exists a unique minimal cmin satisfying (3.3) given by

cmin(Q) = sup
v′∈V ′0

{
mv′ − EQ[v′]

}
.

(β) There exists a unique extension of � to Ṽ satisfying A1-A7 on Ṽ and (3.3).

(Here, ṽ� denotes the random variable given by s 7→ ṽ�(s).) The proof will be deferred to the
Appendix.

The numerical representation (3.3) and Lemma I.4 below show that the weak certainty dual
independence axiom (A7) is equivalent to Yaari’s Axiom A7D when � is restricted to V0. Thus,
our theory is a true extension of Yaari (1987) to a setting in which the DM potentially faces
ambiguity; our theory reduces to Yaari’s theory on the space V0. Theorem 3.2 also immediately
yields the following corollary, which proves useful in the next section:

Corollary 3.3 Suppose that ṽ, ũ are pc and ṽ ∼ ũ. Then, for every α ∈ (0, 1), αṽ+(1−α)ũ �
ũ.

3.4 Interpretation

Define U as the numerical representation in (3.3), i.e.,

U(ṽ) = min
Q∈∆(W,Σ′)

{
EQ
[∫

ṽ�dνψ

]
+ c(Q)

}
.

A special feature of the dual theory is that, because U(U(ṽ)) = U(ṽ), the value obtained
by applying the numerical representation to ṽ ∈ Ṽ0 is equal to the certainty equivalent of ṽ.
Therefore, U may also be adopted as primitive rather than as binary preference.
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The numerical representation in (3.3) may be given the following interpretation. The func-
tion c is non-negative and grounded, i.e., for every Q ∈ ∆(W,Σ′), c(Q) ≥ 0, and there exists at
least one measure P ′ ∈ ∆(W,Σ′) such that c(P ′) = 0. This measure P ′ may be considered to be
the DM’s approximation, selected from the set of all measures on (W,Σ′). If the DM believes
that P ′ is a good (reliable) approximation, then he can simply take the (P ′-)expectation over
all certainty equivalents of an objective lottery, i.e., calculate E′[

∫
ṽ�dνψ], which would corre-

spond to c(Q) = ∞ if Q 6= P ′, Q ∈ ∆(W,Σ′), in (3.3). In many situations, however, the DM
may not fully trust his approximation P ′ and takes other measures on (W,Σ′) into account.

One way to proceed would be to assume a worst case approach and consider minQ∈∆(W,Σ′)

EQ[
∫
ṽ�dνψ] = minw

∫
ṽwdνψ, which corresponds to c(Q) = 0 for all Q ∈ ∆(W,Σ′). In this

case, the DM would consider all measures on (W,Σ′) equally plausible. Alternatively, the DM
may consider his approximation P ′ more plausible than other measures, but still wants to take
other measures into account (non-trivially). In this case, he would take the minimum over all
measures in ∆(W,Σ′), and “penalize” every measure Q not equal to P ′ by a penalty c(Q). This
penalty depends on the degree of plausibility that the DM associates to the measure Q. The
function c is therefore often referred to as an ambiguity index. Such procedures that explicitly
account for the fact that the measure P ′ is only an approximation and may deviate from
the true measure are often times referred to as robust approaches. They are robust against
“malevolent nature”.

In statistics, engineering and optimal control, risk management, and robust macroeco-
nomics, the plausibility of the measure Q is often expressed by the relative entropy of Q with
respect to the approximation P ′; see Csiszár (1975), Ben-Tal (1985), Hansen and Sargent
(2000, 2001), Maccheroni, Marinacci and Rustichini (2006), Strzalecki (2011a) and Laeven and
Stadje (2013, 2014). In our setting, this would lead to c(Q) = θR(Q|P ′) with R(Q|P ′) =

EQ
[
log
(
dQ
dP ′

)]
and θ a non-negative constant. The relative entropy, also referred to as

Kullback-Leibler divergence, measures the deviation of Q from P ′ and is zero if and only
if Q = P ′. Thus, measures that are close to the approximation P ′ are penalized weakly, while
measures that deviate strongly from the approximation P ′ are penalized strongly. Specifically,
for v′ ∈ V ′0 ,

min
Q∈∆(W,Σ′)

{
EQ[v′] + θR(Q|P ′)

}
= −θ log

{
E′
[
exp(−v′/θ)

]}
.

In general, for ṽ ∈ Ṽ0,

min
Q∈∆(W,Σ′)

{
EQ
[∫

ṽ�dνψ

]
+ c(Q)

}
= −θ log

(
E′
[
exp

(∫
−ṽ�dνψ
θ

)])
.

Other ways of penalizing “deviating beliefs” are c(Q) = θG(Q|P ′) with G(Q|P ′) the relative

Gini index given by E
[(

dQ
dP ′ − 1

)2
]
. Again, G(Q|P ′) = 0 if and only if Q = P ′; G(Q|P ′) mea-

sures how much the ratio of Q and P ′ deviates from one; see also Maccheroni, Marinacci, Rusti-
chini and Taboga (2004). Maccheroni, Marinacci and Rustichini (2006) also propose to weight
every state of the world w by a weighting function h : W → R+ satisfying

∫
W h(w)P ′(dw) = 1.

The corresponding penalty functions are then given by c(Q) =
∫
W h(w) log

(
dQ
dP ′ (w)

)
Q(dw)

and c(Q) =
∫
W h(w)

(
dQ
dP ′ − 1

)2
Q(dw).5

5Note that these two penalty functions are not probabilistically sophisticated on (W,Σ′) unless h = 1; see also
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4 Duality

In this section, we explicate why Theorem 3.2 is a genuine dual version of the representation
result obtained by Maccheroni, Marinacci and Rustichini (2006). As in Yaari (1987), we shall
refer to 1−F (t), with F (t) a CDF, as a decumulative distribution function (DDF). We suppose
throughout this section that F is supported on the unit interval. The (generalized) inverse of
a DDF is a reflected (in t=1/2) quantile function, F−1(1 − t). In brief, the reason of genuine
duality is that the numerical representation obtained in Theorem 3.2 corresponds exactly to the
numerical representation obtained by Maccheroni, Marinacci and Rustichini (2006), but with
the respective DDF’s implicitly appearing in our Axioms A1-A7 and Theorem 3.2 replaced by
their inverses. It provides the true analog for Maccheroni, Marinacci and Rustichini (2006) of
the dual theory of choice under risk in Yaari (1987) for EU under risk.

To verify, first note that � also induces a preference relation on the subspace of Ṽ0 that
is restricted to all non-negative random variables bounded by one. We will henceforth denote

this subspace by Ṽ
[0,1]

0 . Next, in view of the neutrality axiom (Axiom A2), � also induces
a preference relation on the space of conditional reflected quantile functions (inverse DDF’s):

given ṽ ∈ Ṽ [0,1]
0 with conditional quantile function qṽ, we can define its conditional reflected

quantile function G̃ṽ by
G̃ṽ(., t) = qṽ(., 1− t), t ∈ [0, 1]. (4.1)

Now define
G̃ṽ(�)G̃ũ if and only if ṽ � ũ.

With this definition, we have defined a preference relation, (�), on the convex space

Γ̃ = {G̃ : W × [0, 1]→ [0, 1]| For every fixed t ∈ [0, 1],

G̃(., t) is Σ′-measurable. For every fixed w ∈W,
G̃(w, .) is a decreasing and right-continuous step function with

G̃(w, 1) = 0}. (4.2)

Indeed, every conditional reflected quantile function is in Γ̃ and for every element G ∈ Γ̃, there

exists a random variable ṽ ∈ Ṽ
[0,1]

0 such that G = G̃ṽ.
6 For simplicity, we will henceforth

denote the preference relations on the spaces Γ̃ and Ṽ
[0,1]

0 both by �, too. We define Γ as the
subspace of all elements in Γ̃ that carry no ambiguity, i.e.,

Γ = {G ∈ Γ̃| for all w1, w2 ∈W : G(w1, ·) = G(w2, ·)}.

By Axioms A1-A7, � on the space Ṽ
[0,1]

0 induces a preference relation on Γ̃ that satisfies:

(i) Weak and Non-Degenerate Order: � is complete, transitive and non-degenerate.

Section 5.
6The latter statement can be verified as follows. Recall that if U � is uniformly distributed on the unit interval

and qX is the quantile function of the random variable X, then qX(U �) has the same distribution as X. Thus,

if we define the random variable ṽ ∈ Ṽ [0,1]
0 through ṽG̃ = G̃(w, 1− Uw), then the conditional reflected quantile

function of ṽ is equal to G̃. Furthermore, by neutrality, G̃1(�)G̃2 if and only if ṽG̃1
� ṽG̃2

.
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(ii) Continuity: For every G̃ ∈ Γ̃, the sets{
m ∈ R|m � G̃

}
and

{
m ∈ R|G̃ � m

}
are open. Furthermore, for all 1 ≥ c > 0, the restriction of � to Γ is continuous with
respect to the topology of uniformly bounded convergence in distribution.

(iii) Certainty First-Order Stochastic Dominance: For all G1, G2 ∈ Γ: If G2(t) ≥ G1(t) for
every t ∈ [0, 1], then G2 � G1.

(iv) Monotonicity: For all G̃1, G̃2 ∈ Γ̃: If G̃2(w, .) � G̃1(w, .) for every w ∈W , then G̃2 � G̃1.

(v) Uncertainty Aversion: If G̃1, G̃2 ∈ Γ̃ and α ∈ (0, 1), then G̃1 ∼ G̃2 implies αG̃1 + (1 −
α)G̃2 � G̃1.

(vi) Weak Certainty Independence: If G̃1, G̃2 ∈ Γ̃, G3, G4 ∈ Γ and α ∈ (0, 1), then αG̃1 + (1−
α)G3 � αG̃2 + (1− α)G3 ⇒ αG̃1 + (1− α)G4 � αG̃2 + (1− α)G4.

Remark 4.1 To see that these properties are indeed satisfied by � on Γ̃, note that (i), (ii),
(iii) and (iv) for � on Γ̃ follow directly from the corresponding axioms for � on Ṽ0. To see (v)
and (vi), first observe that, for G̃1, G̃2 ∈ Γ̃,

ṽαG̃1+(1−α)G̃2
= αG̃1(., 1− U �) + (1− α)G̃2(., 1− U �) = αṽG̃1

+ (1− α)ṽG̃2
. (4.3)

Now let us prove that � on Γ̃ satisfies (v). Let G̃1, G̃2 ∈ Γ̃ be such that G̃1 ∼ G̃2. By definition,
ṽG̃1
∼ ṽG̃2

. Since ṽG̃1
and ṽG̃2

are comonotonic, (4.3) and Corollary 3.3 imply that

ṽαG̃1+(1−α)G̃2
= αṽG̃1

+ (1− α)ṽG̃2
� ṽG̃1

.

Thus, αG̃1 + (1− α)G̃2 � G̃1. This proves (v).
Finally, we prove (vi). If αG̃1 + (1− α)G3 � αG̃2 + (1− α)G3, then αṽG̃1

+ (1− α)ṽG3 �
αṽG̃2

+ (1 − α)ṽG3. First, we prove that this implies that αṽG̃1
� αṽG̃2

. Suppose that αṽG̃2
�

αṽG̃1
. Then, by A7,

αṽG̃2
+ (1− α)ṽG3 � αṽG̃1

+ (1− α)ṽG3 ,

which is a contradiction. Thus, indeed αṽG̃1
� αṽG̃2

. Next, by A7, this entails that

ṽαG̃1+(1−α)G4
= αṽG̃1

+ (1− α)vG4 � αṽG̃2
+ (1− α)vG4 = αṽG̃2

+ (1− α)ṽG4 .

Hence, αG̃1 + (1− α)G4 � αG̃2 + (1− α)G4.

As Γ̃ is composed of decreasing and right-continuous step functions that map from [0, 1] to
[0, 1] for fixed w ∈ W and are zero at one, Γ̃ may also be regarded as the space of conditional
DDF’s associated with random variables that take only finitely many values on the unit interval.
This is the final key to establishing duality. Hence, we can apply the main result of Maccheroni,
Marinacci and Rustichini (2006) to obtain a numerical representation of the preference relation

14



satisfying (i) to (vi) above. This entails that, for all ṽ, ũ ∈ Ṽ [0,1]
0 , the numerical representation

U coincides with a representation Ū on Γ̃ given by

Ū(G̃ṽ) = min
Q∈∆(W,Σ′)

{
EQ
[
−
∫ 1

0
ψ(t)G̃ṽ(., dt)

]
+ c(Q)

}
= min

Q∈∆(W,Σ′)

{
EQ
[∫ 1

0
ψ(G̃−1

ṽ (., t))dt

]
+ c(Q)

}
= min

Q∈∆(W,Σ′)

{
EQ
[∫ 1

0
ψ(1− Fṽ(., t))dt

]
+ c(Q)

}
,

for some non-decreasing and continuous function ψ on the unit interval, unique up to positive
affine transformations and normalized such that ψ(0) = 0 and ψ(1) = 1. (Note that, because
G̃ṽ(., t) = qṽ(., 1− t), we have G̃−1

ṽ (., t) = (1− Fṽ(., t)).)

5 Ambiguity and Risk Aversion

5.1 Further Discussion of Axiom A6

We refer to P ′ as a reference measure on (W,Σ′) if the DM is indifferent between random
variables that have the same probability distribution under P ′. We say that a DM who adopts
a reference measure on (W,Σ′) is probabilistically sophisticated ; see Machina and Schmeidler
(1992) and Epstein (1999). Our axioms do not necessarily imply the existence of a reference
measure on (W,Σ′). But in case there is a reference measure P ′ on (W,Σ′), we define, for a
given v′ ∈ V ′0 , F ′v′ by F ′v′(t) = P ′[v′ ≤ t]. With slight abuse of notation we say that v′ �2 u

′ if,

for every t ∈ R,
∫ t
−∞ F

′
v′(τ)dτ ≤

∫ t
−∞ F

′
u′(τ)dτ . We call �2 second order stochastic dominance

(SSD) on V ′ with respect to P ′; see Rothschild and Stiglitz (1970). The following proposition
shows that, if a reference measure P ′ is available, postulating that the DM respects Axiom A6
is equivalent to requiring that the DM respects SSD on V ′0 :7

Proposition 5.1 Suppose that a preference relation � satisfies A1-A5 and that there exists a
reference measure P ′ on (W,Σ′). Then the following statements are equivalent:

(a) � respects A6;

(b) � respects SSD on V ′0 with respect to P ′.

Proof. One may verify that Axioms A1-A3 are already sufficient to guarantee the existence of
a numerical representation of �, denoted by U : Ṽ0 → R. By Axioms A4-A5, U is monotonic
in the sense that, if v′ ≥ u′ P ′-a.s., then v′ � u′ and hence U(v′) ≥ U(w′). The proposition
now follows from Proposition 2.1 in Dana (2005). �

Hence, we refer to Axiom A6 as “Ambiguity-No-Risk Aversion”; see also the following
subsection.

7The preference relation � respects SSD on V ′0 if, for all v′, u′ ∈ V ′0 with v′ �2 u
′, v′ � u′.
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5.2 Ambiguity Aversion

Subsequently, we say that � is strongly more ambiguity averse than �∗ if, for all ṽ ∈ Ṽ0 and
v ∈ V0,

ṽ � v ⇒ ṽ �∗ v.

We also introduce the notion of weakly more ambiguity averse with which one can separate
being more risk averse from being more ambiguity averse in our setting, as we will see in
Propositions 5.2-5.6 that follow. We say that � is weakly more ambiguity averse than �∗ if,
for all v′ ∈ V ′0 and m ∈ R,

v′ � m⇒ v′ �∗ m.

Similar definitions of comparative ambiguity aversion can be found, for instance, in Epstein
(1999), Ghirardato and Marinacci (2002) and Maccheroni, Marinacci and Rustichini (2006); see
also the early Yaari (1969), Schmeidler (1989) and Gilboa and Schmeidler (1989).8 Our notion
of strongly more ambiguity averse agrees with the comparative ambiguity aversion concept in
Ghirardato and Marinacci (2002) and Maccheroni, Marinacci and Rustichini (2006).

The following result completely characterizes our two notions of comparative ambiguity
aversion in the setting of our main representation result:

Proposition 5.2 Consider two preference relations, � and �∗, induced by assuming Axioms
A1-A7. Then,

(i) � is weakly more ambiguity averse than �∗ if, and only if, c∗ ≥ c.

(ii) � is strongly more ambiguity averse than �∗ if, and only if, ψ∗ = ψ and c∗ ≥ c.

Proof. (i): If c∗ ≥ c, then v′ � m, with v′ ∈ V ′0 and m ∈ R, implies that

m ≤ min
Q∈∆(W,Σ′)

{
EQ[v′] + cmin(Q)

}
≤ min

Q∈∆(W,Σ′)

{
EQ[v′] + c∗(Q)

}
.

This proves the “if” part. To prove the “only if” part, suppose that � is weakly more ambiguity
averse than �∗. Then, for every v′ ∈ V ′0 , the certainty equivalent mv′ under � is smaller than
the corresponding certainty equivalent m∗v′ under �∗. But then, for every Q ∈ ∆(W,Σ′),

c∗min(Q) = sup
v′∈V ′0

{
m∗v′ − EQ[v′]

}
≥ sup

v′∈V ′0

{
mv′ − EQ[v′]

}
= cmin(Q).

(ii) If �∗ is strongly more ambiguity averse than �, then �∗ is also weakly more ambiguity
averse than �. As we have seen in (i), this implies that c∗ ≥ c. Furthermore, because the
preferences relations necessarily agree on V0, we also have ψ∗ = ψ. This proves the “only if”

8 The difference between definitions of uncertainty aversion consists primarily in the “factorization” of am-
biguity attitude and risk attitude. Schmeidler (1989) and Gilboa and Schmeidler (1989) adopt the Anscombe-
Aumann framework with objective unambiguous lotteries. Epstein (1999), by contrast, instead of adopting a
two-stage setup and assuming that there exists a space of objective lotteries, models ambiguity by assuming
that there exists a set of events A that every DM considers to be unambiguous. Then he defines comparative
ambiguity aversion through the random variables that are measurable with respect to A. The model-free fac-
torization approach of Ghirardato and Marinacci (2002) in principle encompasses both approaches to modeling
ambiguity.
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part. To prove the “if” part, suppose that c∗ ≥ c and ψ∗ = ψ. Then ṽ � v, with ṽ ∈ Ṽ0 and
v ∈ V0, entails that

mv ≤ min
Q∈∆(W,Σ′)

{
EQ
[∫

ṽ�dνψ

]
+ cmin(Q)

}
≤ min

Q∈∆(W,Σ′)

{
EQ
[∫

ṽ�dνψ∗

]
+ c∗min(Q)

}
.

�
We note that (i) and (ii) of Proposition 5.2 hold similarly in the primal framework of

Maccheroni, Marinacci and Rustichini (2006), with the probability weighting function ψ in (ii)
replaced by the utility function φ.

In Epstein (1999), Ghirardato and Marinacci (2002) and Maccheroni, Marinacci and Rus-
tichini (2006) a DM is considered to be ambiguity averse if and only if he is more ambiguity
averse than an ambiguity neutral DM. While in Ghirardato and Marinacci (2002) and Mac-
cheroni, Marinacci and Rustichini (2006) ambiguity neutrality is equivalent to having SEU
preferences, Epstein (1999) identifies ambiguity neutrality with probabilistic sophistication.
Ghirardato and Marinacci (2002), however, argue that in full generality (unless the probability
space is rich enough) probabilistically sophisticated behavior may still include behavior that
can be considered to be ambiguity averse.9 Consequently, in our setting, instead of identifying
ambiguity neutrality (�AN) with probabilistic sophistication, it seems more natural to define
�AN via a numerical representation that induces computing a plain expectation on the space
W with respect to some measure P ′. In other words, we consider a DM to be ambiguity neutral
if there exist a measure P ′ and a distortion function ψ such that, for all ṽ, ũ ∈ Ṽ0,

ṽ � ũ⇔ EP ′
[∫

ṽ�dνψ

]
≥ EP ′

[∫
ũ�dνψ

]
.

Next, we say that a DM with a preference relation � is (strongly or weakly) ambiguity averse if
there exists an ambiguity neutral DM with a preference relation �AN such that � is (strongly
or weakly) more ambiguity averse than �AN.

Proposition 5.3 If � satisfies A1-A7, then � is strongly (hence weakly) ambiguity averse.

Proof. Assume Axioms A1-A7. By Theorem 3.2, there exist functions ψ and c such that (3.3)
hold. Set P ′ = arg minQ cmin(Q). Because cmin is grounded, cmin(P ′) = 0. Denote by �AN

the ambiguity neutral agent with measure P ′ and distortion function ψ. Suppose that ṽ � v,

9 For instance, if W has only finitely many elements, identifying ambiguity neutrality with proba-
bilistic sophistication would imply that also a DM with a numerical representation of the form U(ṽ) =
minQ∈∆(W,Σ′){EQ[

∫
ṽdνψ]} = infw

∫
ṽwdνψ would be ambiguity neutral, at least, if P ′ does not exclude any

w ∈ W . (That is, P ′[w] > 0 for all w ∈ W .) This seems counterintuitive, since the “worst ambiguity case”
possible is assumed. A worst case DM is also probabilistically sophisticated if W is a subset of Rd and P ′ ∼ Leb.
W ⊂ Rd is typically satisfied in a Bayesian framework. Strzalecki (2011b), however, proves that in the specific
framework of Maccheroni, Marinacci and Rustichini (2006), ambiguity neutrality in the sense of Epstein (1999),
with non-trivial no-ambiguity sets, implies that the DM has preferences given by SEU. Marinacci (2002) had
proven the same result under MEU.
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ṽ ∈ Ṽ0 and v ∈ V0. Then,

mv ≤ min
Q∈∆(W,Σ′)

{
EQ
[∫

ṽ�dνψ

]
+ cmin(Q)

}
≤ EP ′

[∫
ṽ�dνψ

]
+ cmin(P ′) = EP ′

[∫
ṽ�dνψ

]
.

�

5.3 Risk Aversion

Suppose that � satisfies the following property:

AXIOM A8–Risk Aversion: If v, u ∈ V0 and α ∈ (0, 1), then v ∼ u implies αv+(1−α)u � v.

Note the similarity between risk aversion (Axiom A8) and ambiguity-no-risk aversion (Ax-
iom A6). The mere difference between A8 and A6 is that risk aversion is defined on the space
of random variables that carry no ambiguity (V0) while ambiguity-no-risk aversion is defined
on the space of random variables that carry no risk (V ′0). Using these spaces we will be able to
completely separate risk aversion from ambiguity aversion, as the following proposition (jointly
with Propositions 5.2 and 5.3) makes precise:

Proposition 5.4 Suppose that � satisfies A1-A7. Then the following statements are equiva-
lent:10

(i) � satisfies A8;

(ii) � respects SSD on V0;

(iii) the function ψ in Theorem 3.2 is convex.

Proof. (ii) ⇔ (iii) follows from Theorem 2 in Yaari (1987); see also Yaari (1986). (i) ⇔ (ii)
follows from Proposition 2.1 in Dana (2005). �

It follows from Proposition 5.4 that if � is risk averse, then, for all v ∈ V0, the certainty
equivalent is smaller than the expectation, i.e., e(v) =

∫ 1
0 qv(t)dt � mv, because e(v) �2 v ∼

mv. This property (e(v) ≥ mv) is sometimes called weak risk aversion and property (ii) of
Proposition 5.4 is sometimes referred to as strong risk aversion. (As is well-known, these two
notions of risk aversion agree under EU.)

Note that if A1-A8 hold, then the expectation under the measure P ′ will always be preferred
to ṽ. This is true because

E′[e(ṽw)] = E′
[∫ 1

0
(1− Fṽ(., t))dt

]
≥ E′

[∫ 1

0
ψ(1− Fṽ(., t))dt

]
≥ min

Q∈∆(W,Σ′)

{
EQ
[∫ 1

0
ψ(1− Fṽ(., t))dt

]
+ c(Q)

}
∼ ṽ.

Now consider two preference relations, � and �∗. We say that � is more risk averse than
�∗ if, for all v ∈ V0 and m ∈ R,

v � m⇒ v �∗ m.
10We say that v �2 u, v, u ∈ V0, if, for every t ∈ R,

∫ t
−∞ Fv(τ)dτ ≤

∫ t
−∞ Fu(τ)dτ . We call �2 SSD on V . The

preference relation � respects SSD on V0 if, for all v, u ∈ V0 with v �2 u, v � u.
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The following two results characterize comparative risk aversion in our setting. They extend
results of Yaari (1986, 1987), Roëll (1987) and Chew, Karni and Safra (1985) to our setting.

Proposition 5.5 Suppose that � and �∗ both satisfy A1-A7. Then the following statements
are equivalent:

(i) � is more risk averse than �∗;

(ii) ψ ≤ ψ∗.

Proof. Suppose that ψ ≤ ψ∗. Then, v � m, with v ∈ V0, implies that

m ≤
∫ 0

−∞
(ψ(1− Fv(t))− 1)dt+

∫ ∞
0

ψ(1− Fv(t))dt

≤
∫ 0

−∞
(ψ∗(1− Fv(t))− 1)dt+

∫ ∞
0

ψ∗(1− Fv(t))dt.

In particular, v �∗ m. This proves (ii)⇒(i). To prove (i)⇒(ii), suppose that there exists
a p0 ∈ [0, 1] such that ψ(p0) > ψ∗(p0). Let v be the random variable that pays off 1 with
probability p0 and 0 else. Then, v ∼ ψ(p0). But because ψ(p0) > ψ∗(p0) ∼∗ v, the constant
amount ψ(p0) is preferred over v by the DM with preference relation �∗. Hence, we get a
contradiction. �

Proposition 5.6 Suppose that � and �∗ both satisfy A1-A8. Then the following statements
are equivalent:

(a) � is more risk averse than �∗;

(b) There exists a convex function f : [0, 1] → [0, 1] with f(0) = 0 and f(1) = 1 such that
f ◦ ψ∗ = ψ.

Proof. Suppose (b) is true. Then, f(x) ≤ x. In particular, ψ ≤ ψ∗ and by Proposition 5.5 it
follows that � is more risk averse than �∗. This proves (b)⇒(a). To prove (a)⇒(b), suppose
that � is more risk averse than �∗. Then, Proposition 5.5 implies that ψ ≤ ψ∗. Furthermore,
by Proposition 5.4, ψ and ψ∗ are both convex, hence there exists a function f with the stated
properties. �

6 A Dual Gilboa-Schmeidler Representation

In this section, we replace (ceteris paribus) Axiom A7 by the following stronger (i.e., more
restrictive) assumption:

AXIOM A70–Certainty Dual Independence: Let ṽ, ũ ∈ Ṽ0 and r ∈ V0. Suppose that ṽ, r
and ũ, r are pc. Then ṽ � ũ ⇔ αṽ + (1− α)r � αũ+ (1− α)r for all α ∈ (0, 1).

As we will see, Axiom A70 relates via duality to Axiom A7MEU in the same way as Axiom
A7 relates to Axiom A7’MEU. Furthermore, Axiom A70 can readily be seen to correspond to
Yaari’s Axiom A7D, with the difference that A70 allows ṽ and ũ to be in Ṽ0, while A7D assumes
all random variables to be in V0. At the same time, Lemma I.4 shows that Axiom A7, when
restricted to V0, corresponds to Axiom A7D. The following two results explicate the difference
between Axioms A7 and A70:
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Lemma 6.1 A70 implies that, for ṽ, ũ ∈ Ṽ0, ṽ � ũ if and only if λṽ � λũ for every λ ≥ 0.

Proof. The proof of the “if” part is straightforward. Let us prove the “only if” part. So,
suppose that ṽ � ũ. If λ ∈ [0, 1], then λṽ � λũ follows directly from Axiom A70 with α = λ
and r = 0. If λ > 1, then let us suppose that λũ � λṽ would hold. Defining α = 1

λ ∈ (0, 1)
yields, by A70,

ũ = αλũ+ (1− α)0 � αλṽ + (1− α)0 = ṽ,

which is a contradiction. Hence, indeed λṽ � λũ for every λ ≥ 0. �
Thus, Axiom A70 implies that the preference relation is scale invariant on Ṽ0, while Axiom

A7 only implies scale invariance on V0 (formally, via Lemma I.4). The next proposition shows
explicitly that Axiom A70 is stronger than Axiom A7:

Proposition 6.2 Axiom A70 implies Axiom A7.

Proof. Suppose that ṽ � ũ and that ṽ, ũ and r are pc. Let α ∈ (0, 1). Then, by Lemma 6.1,
under Axiom A70, 1

α ṽ �
1
α ũ. Next, let r̄ = r

1−α . Then, we obtain from Axiom A70 that

ṽ + r = α

(
1

α
ṽ

)
+ (1− α)r̄ � α

(
1

α
ũ

)
+ (1− α)r̄ = ũ+ r.

Hence, A7 is indeed satisfied. �
The following theorem shows that if Axioms A1-A6 and A70 hold, then we obtain the dual

analogue of the popular Gilboa and Schmeidler (1989) maxmin expected utility representation:

Theorem 6.3 (a) A preference relation � satisfies A1-A6 and A70 if, and only if, there exist
a non-decreasing and continuous function ψ : [0, 1] → [0, 1] with ψ(0) = 0 and ψ(1) = 1
and a convex set Q ⊂ ∆(W,Σ′) such that, for all ṽ, ũ ∈ Ṽ0,

ṽ � ũ⇔ min
Q∈Q

EQ
[∫

ṽ�dνψ

]
≥ min

Q∈Q
EQ
[∫

ũ�dνψ

]
. (6.1)

Furthermore, there exists a unique extension of � to Ṽ satisfying A1-A6 and A70 on Ṽ
and (6.1).

(b) If moreover the numerical representation in (6.1) is continuous from below, then Q ⊂
∆σ(W,Σ′), i.e., the minimum may be taken over a convex set of probability measures.

The proof will be deferred to the Appendix.
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I Appendix: Proofs of the Main Results

Proof of Theorem 3.2. Our proof does not rely on formalizing the duality relation to the
main characterization result of Maccheroni, Marinacci and Rustichini (2006) as explicated in
Section 4, but provides a direct construction and insightful derivation of our main representation
theorem. The only property that is not straightforward to verify in the “if” part of Theorem
3.2(α) is the continuity property (Axiom A3). Let U be the numerical representation in (3.3).
This implies that, for all v ∈ V0,

U(v) =

∫ 0

−∞
(ψ(1− Fv(t))− 1)dt+

∫ ∞
0

ψ(1− Fv(t))dt.

The first part of Axiom A3 would follow if we could show that U is continuous with respect
to weak convergence of uniformly bounded sequences. So, suppose that vn is a uniformly
bounded sequence in V0, and vn → v, in distribution. Then, by definition, Fvn converges to Fv
at all continuity points of Fv. Because Fv and the Fvn ’s are non-decreasing functions, they are
continuous, Lebesgue almost everywhere. But this implies that Fvn converges to Fv, Lebesgue
almost everywhere. Furthermore, because vn is uniformly bounded by a constant, say M ,
Fvn(t) ∈ {0, 1} for t /∈ [−M,M ]. In view of the point-wise convergence of Fvn to Fv, Lebesgue
almost everywhere, this implies that Fv(t) ∈ {0, 1} for t /∈ [−M,M ], as well. Finally, because
ψ is a continuous function, it is bounded on [0, 1]. Hence,

lim
n
U(vn) = lim

n

∫ 0

−∞
(ψ(1− Fvn(t))− 1)dt+

∫ ∞
0

ψ(1− Fvn(t))dt

= lim
n

∫ 0

−M
(ψ(1− Fvn(t))− 1)dt+

∫ M

0
ψ(1− Fvn(t))dt

=

∫ 0

−M
(ψ(1− Fv(t))− 1)dt+

∫ M

0
ψ(1− Fv(t))dt

= U(v),

as desired. Proving the second part of Axiom A3 is straightforward and will be omitted, as is
the verification of Axioms A1-A2 and A4-A7.

The proof of the “only if” part of Theorem 3.2(α) consists of the following four steps:

1. We show first that � has a numerical representation U on Ṽ0 satisfying certain properties.

2. Next, we prove that, for all v ∈ V0,

U(v) =

∫
vdνψ.

3. Then, we show that, for all v′ ∈ V ′0 ,

U(v′) = min
Q∈∆(W,Σ′)

{
EQ[v′] + c(Q)

}
.

4. Finally, we derive from Steps 2 and 3 that (3.3) holds on Ṽ0.
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Before proceeding to Step 1, we state the following preliminary lemmata, assuming Axioms
A1-A7 hold:

Lemma I.1 Let ṽ, ũ ∈ Ṽ0 and m ∈ R. If ṽ � ũ and ṽ, ũ are pc, then ṽ +m � ũ+m.

Proof. By A7, ṽ +m � ũ+m. Suppose that ṽ +m ∼ ũ+m would hold. Then, again by A7,
ṽ = ṽ +m−m ∼ ũ+m−m = ũ, which is a contradiction. �

Lemma I.2 For every ṽ ∈ Ṽ0 there exists a certainty equivalent mṽ ∈ R such that ṽ ∼ mṽ.

Proof. Suppose that the lemma does not hold. Then, the sets {m ∈ R|m � ṽ} and {m ∈ R|ṽ �
m} are disjoint, jointly contain the whole real line, and are non-empty, by A4. They must, for
example, contain the constants ||ṽ||∞ + 1 and −|| − ṽ||∞ − 1, respectively.11 But, by A3, both
sets are open, leading to a contradiction. Thus, there exists mṽ ∈ R such that ṽ ∼ mṽ. �

Lemma I.3 Let x, y ∈ R. If x > y, then x � y.

Proof. First, we prove that if m > 0, then m � 0. By non-degeneracy (Axiom A1), there exist
ṽ, ũ ∈ Ṽ0 such that ṽ � ũ, hence, there exist certainty equivalents mṽ,mũ ∈ R such that

mṽ ∼ ṽ � ũ ∼ mũ. (I.1)

By A4 and reflexivity (for all ṽ ∈ Ṽ0, ṽ ∼ ṽ, as implied by A1), (I.1) immediately yields
that mṽ > mũ. In view of Lemma I.1, this entails that ε = mṽ − mũ � 0. By A4, for
λ ≥ 1, λε � ε � 0. At the same time, for 1/2 ≤ λ < 1, if 0 � λε would hold, then, again
by A4, 0 � λε � (1 − λ)ε � 0, so λε ∼ (1 − λ)ε ∼ 0. But in that case A7 implies that
ε = λε + (1 − λ)ε ∼ 0 + (1 − λ)ε ∼ 0, which is a contradiction. Hence, for all λ > 0, λε � 0,
and therefore, for all m > 0, m � 0.

Next, let x, y ∈ R with x > y. Then, because x − y > 0, x − y � 0. By Lemma I.1 this
finally entails that x � y. �

Step 1:
We prove first that � has a numerical representation U : Ṽ0 → R, i.e., for all ṽ, ũ ∈ Ṽ0,

ṽ � ũ⇔ U(ṽ) ≥ U(ũ),

satisfying the following properties:

(i) Conditional Law Invariance: U(ṽ) depends only on Fṽ.

(ii) Continuity: Suppose that vn is a uniformly bounded sequence in V0 converging in distri-
bution to v, then limn U(vn) = U(v).

(iii) Certainty First-Order Stochastic Dominance: For all v, u ∈ V0: If Fv(t) ≤ Fu(t) for every
t ∈ R, then U(v) ≥ U(u).

(iv) Monotonicity: For all ṽ, ũ ∈ Ṽ0: If U(ũw) ≤ U(ṽw) for every w ∈W , then U(ũ) ≤ U(ṽ).

(v) Translation Invariance: For all ṽ ∈ Ṽ0 and m ∈ R, U(ṽ +m) = U(ṽ) +m.

11We define ||ṽ||∞ = supw∈W inf{c|Pw[|ṽw| ≤ c] = 1}.
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(vi) Lipschitz Continuity: For all ṽ, ũ ∈ Ṽ0, |U(ṽ)− U(ũ)| ≤ ||ṽ − ũ||∞.

(vii) Ambiguity-No-Risk Concavity: If v′, u′ ∈ V ′0 and α ∈ (0, 1), then U(αv′ + (1 − α)u′) ≥
αU(v′) + (1− α)U(u′).

(viii) Certainty Comonotonic Additivity: Let ṽ ∈ Ṽ0 and r ∈ V0. Suppose that ṽ, r are pc.
Then U(ṽ + r) = U(ṽ) + U(r).

(ix) Certainty Positive Homogeneity: For all v ∈ V0 and λ ≥ 0, U(λv) = λU(v).

Assume Axioms A1-A7 hold. For ṽ ∈ Ṽ0, set U(ṽ) = mṽ. By Lemma I.2, U is well-
defined and, by Lemma I.3, mṽ is unique. Note that with this definition, for all m ∈ R,
U(m) = m. Furthermore, it follows from the strict monotonicity on R proved in Lemma I.3
that U(ṽ) > U(ũ) if and only if ṽ � ũ. Thus, U is a numerical representation of �.

Next, let us show that U satisfies properties (i)-(ix). Properties (i)-(iv) follow directly from
Axioms A1-A5 and the fact that U is a numerical representation of �. Furthermore, Axiom
A7 implies that, for all m ∈ R,

ṽ ∼ ũ⇔ ṽ +m ∼ ũ+m. (I.2)

We claim that this implies that U is translation invariant (property (v)). This can be seen as
follows. If ṽ ∼ mṽ, then, by (I.2), ṽ +m ∼ mṽ +m. But this implies that

U(ṽ +m) = mṽ +m = U(ṽ) +m,

as desired. Property (vi) holds because, for all ṽ, ũ ∈ Ṽ0,

U(ṽ) ≤ U(ũ+ ||ṽ − ũ||∞) = U(ũ) + ||ṽ − ũ||∞,

where we used properties (iii)-(iv) in the inequality and property (v) in the equality.
Next, to prove property (vii), let α ∈ (0, 1) and let v′, u′ ∈ V ′0 . Without loss of generality

we may assume that v′ � u′. Thus, U(v′) ≥ U(u′). Let m = U(v′) − U(u′) ≥ 0. Then
U(u′ +m) = U(u′) +m = U(v′). In particular, u′ +m ∼ v′. Hence, A6 yields

U(αv′ + (1− α)u′) = U
(
αv′ + (1− α)(u′ +m)− (1− α)m

)
= U

(
αv′ + (1− α)(u′ +m)

)
− (1− α)m

≥ αU(v′) + (1− α)U(u′ +m)− (1− α)m

= αU(v′) + (1− α)U(u′),

where we used property (v) in the second and in the last equalities. Thus, U is concave on V ′0 .
To prove property (viii), let r ∈ V0 and ṽ ∈ Ṽ0 be pc. Because r ∼ mr, it follows from A7

that ṽ + r ∼ ṽ +mr. Thus,

U(ṽ + r) = U(ṽ +mr) = U(ṽ) +mr = U(ṽ) + U(r).

Hence, U satisfies (viii).
Finally, to prove property (ix), let v ∈ V0 and notice that v, v is pc. Thus, U(2v) =

U(v + v) = 2U(v), by property (viii). Iterating this argument yields that U(λv) = λU(v) for
all rational non-negative λ. Now the continuity of U on V0 implies that U(λv) = λU(v) for all
λ ≥ 0.
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Step 2:
We prove that there exists a non-decreasing and continuous function ψ : [0, 1] → [0, 1] with
ψ(0) = 0 and ψ(1) = 1 such that, for all v ∈ V0,

U(v) =

∫ 0

−∞
(ψ(1− Fv(t))− 1)dt+

∫ ∞
0

ψ(1− Fv(t))dt. (I.3)

We will use definitions and notation introduced in Section 4. The proof of Step 2 consists of
the following three parts:

(a) First, we show that it is sufficient to prove (I.3) for v ∈ V0 such that v ≥ 0.

(b) Next, we show that it is also sufficient to prove (I.3) for v ∈ V0 such that ||v||∞ ≤ 1.

(c) Then, we show that our Axiom A7, when restricted to V0, corresponds to Axiom A7D
used by Yaari (1987). Thus, we conclude that (I.3) holds.

Part (a): It is sufficient to prove (I.3) for v ∈ V0 such that v ≥ 0 because, then, for possibly
negative v,

U(v + ||v||∞)− ||v||∞ =

∫
(v + ||v||∞)dνψ − ||v||∞ =

∫
vdνψ = U(v).

Part (b): Suppose that, for a given v ∈ V0 such that v ≥ 0, sups v(s) > 1 and define λ = 1
sups v(s) .

Then, in view of positive homogeneity ((ix) of Step 1 above),

λU
(v
λ

)
= λ

∫
v

λ
dνψ =

∫
vdνψ = U(v).

Hence, it is sufficient to prove (I.3) for non-negative v ∈ V0 that are bounded by one.
Part (c): We need the following lemma:

Lemma I.4 Maintain Axioms A1-A6. On the space V0, Axioms A7D and A7 are equivalent,
i.e., for v, u, r ∈ V0 with v, r and u, r pc,

for every α ∈ (0, 1), v � u⇒ αv + (1− α)r � αu+ (1− α)r (I.4)

if, and only if,

v � u⇒ v + r � u+ r. (I.5)

Proof. For every α ∈ (0, 1), upon making the transformation r′ =
r

1− α
, we see that (I.4)

(with r replaced by r′) is equivalent to

v � u⇒ αv + r � αu+ r.

In particular, if (I.4) holds, then, for every fixed r ∈ V0 comonotonic to v and u, with v, u ∈ V0,
and every α ∈ (0, 1),

v � u⇒ αv + r � αu+ r.

Next, letting α approach (converge to) 1 and using the continuity axiom (A3), we arrive at

v � u⇒ v + r � u+ r.

24



This proves the “only if” part.
To prove the “if” part, suppose that v � u and that the implication (I.5) holds. Let

α ∈ (0, 1). Note that αv+(1−α)r′ � αu+(1−α)r′ would follow directly from (I.5) if we could
show that αv � αu. But this is an immediate consequence of the fact that U is a numerical
representation of � on V0 and satisfies (ix) of Step 1 above. �

Lemma I.4 implies that, on the space of non-negative random variables in V0 bounded by
one, Axioms A1-A4 and A7D hold. Similar to Yaari (1987), by neutrality (A2), this induces a
preference relation on the space of conditional reflected quantile functions, Γ, simply denoted
by �, that satisfies weak and non-degenerate order, continuity, certainty first-order stochastic
dominance and the independence axiom;12 see Section 4 for the exact definitions. Therefore,
by the mixture space theorem (Herstein and Milnor, 1953), there exists a non-decreasing and
continuous function ψ : [0, 1]→ [0, 1] such that the numerical representation is given by

U(v) = −
∫ 1

0
ψ(t)Gv(., dt) =

∫ 1

0
ψ(G−1

v (., t))dt =

∫ 1

0
ψ(1− Fv(., t))dt,

where Gv is defined by (4.1). Hence, (I.3) holds. Finally, it is straightforward to verify that
U(m) = m for all m ∈ [0, 1] (see Step 1 above) implies that we must have ψ(0) = 0 and
ψ(1) = 1.
Steps 3+4:
Recall Step 1. By construction, U(0) = 0. As U satisfies (i)-(ix), U may be identified with
a concave and normalized niveloid13 on the space of bounded, Σ′-measurable functions on
W . Classical duality results in convex analysis for niveloids (see, for instance, Lemma 26 in
Maccheroni, Marinacci and Rustichini, 2006 or Theorem 4.15 and Remark 4.16 in Föllmer and
Schied, 2004) then yield that, for all v′ ∈ V ′0 ,

U(v′) = min
Q∈∆(W,Σ′)

{
EQ
[
v′
]
− cmin(Q)

}
, (I.6)

with cmin defined by cmin(Q) = supv′∈V ′0{U(v′) − EQ [v′]} ≥ U(0) = 0 and being the unique
minimal function satisfying (I.6). As U(m) = m for all m ∈ R, there exists a Q such that
c(Q) <∞. Now we have

0 = U(0) = min
Q∈∆(W,Σ′)

c(Q).

In particular, c is grounded, convex and lower-semicontinuous.
For ṽ ∈ Ṽ0, define mṽw as the corresponding certainty equivalent of ṽ in the state of the

world w, i.e.,

mṽw = U(ṽw) =

∫
ṽwdνψ.

Set v̄w = mṽw . Clearly, v̄ is independent of s. Furthermore, by the Theorem of Tornelli, v̄ is
Σ′-measurable. In particular, v̄ is in V ′0 . Observe that, for every w ∈ W , U(v̄w) = U(mṽw) =
U(U(ṽw)) = U(ṽw), where we have used in the last equality that, for all m ∈ R, U(m) = m.

12The independence axiom asserts that if, for DDF’s G1, G2, G3 ∈ Γ, G1 � G2, then, for every α ∈ (0, 1),
αG1 + (1− α)G3 � αG2 + (1− α)G3.

13The mapping U from V ′0 to R is a concave and normalized niveloid if it is concave, Lipschitz continuous
with respect to the ||.||∞-norm, and satisfies U(m) = m for all m ∈ R.
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Hence, property (iii) of Step 1 implies that U(v̄) = U(ṽ). This entails that, for all ṽ ∈ Ṽ0,

U(ṽ) = U(v̄) = min
Q∈∆(W,Σ′)

{EQ[v̄] + c(Q)}

= min
Q∈∆(W,Σ′)

{∫
U(mṽw)Q(dw) + c(Q)

}
= min
Q∈∆(W,Σ′)

{∫
U(ṽw)Q(dw) + c(Q)

}
= min
Q∈∆(W,Σ′)

{∫ (∫ 0

−∞
(ψ(1− Fṽw(t))− 1)dt

+

∫ ∞
0

ψ(1− Fṽw(t))dt

)
Q(dw) + c(Q)

}
= min
Q∈∆(W,Σ′)

{
EQ
[∫

ṽ�dνψ

]
+ c(Q)

}
,

where we have used (I.6) in the second and (I.3) in the fifth equalities. This proves the “only
if” part of Theorem 3.2(α).

The proof of Theorem 3.2(β) now follows by defining, for all ṽ, ũ ∈ Ṽ ,

ṽ � ũ⇔ min
Q∈∆(W,Σ′)

{
EQ
[∫

ṽ�dνψ

]
+ c(Q)

}
≥ min

Q∈∆(W,Σ′)

{
EQ
[∫

ũ�dνψ

]
+ c(Q)

}
. �

Proof of Theorem 6.3. The “if” part of (a) follows as in the proof of Theorem 3.2. We
prove the “only if” part. For brevity and different from the proof of Theorem 3.2, the proof
that we provide below is based on formalizing the duality relation to the main characterization
result of Gilboa and Schmeidler (1989). The proof consists of the following five steps:

(i) First, we show that we may assume that ṽ ≥ 0.

(ii) Next, we show that we may also assume that ||ṽ||∞ ≤ 1.

(iii) Then, we show that our Axioms A1-A6 and A70 correspond to the axioms of Gilboa and
Schmeidler (1989), but with the roles of DDF’s and reflected quantile functions switched.

(iv) Step (iii) enables us to employ well-known results to obtain a dual representation.

(v) Finally, we show that this dual representation corresponds to the representation in (6.1).

Step (i):
It is sufficient to restrict attention to ṽ ∈ Ṽ0 such that ṽ ≥ 0, because if we have proven that
the numerical representation in (6.1) holds for non-negative ṽ, then, in view of the fact that
this numerical representation coincides with its certainty equivalent, for possibly negative ṽ,

ṽ + ||ṽ||∞ ∼ min
Q∈Q

EQ
[∫

ṽ� + ||ṽ||∞dνψ
]

= min
Q∈Q

EQ
[∫

ṽ�dνψ

]
+ ||ṽ||∞,
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which, because of comonotonicity, is equivalent to

ṽ ∼ min
Q∈Q

EQ
[∫

ṽ�dνψ

]
.

Consequently, we may assume that ṽ ≥ 0.
Step (ii):
It is also sufficient to restrict attention to ṽ ∈ Ṽ0 such that ṽ is bounded by one. To see this,
suppose that ||ṽ||∞ > 1. Let λ be a constant such that 0 < λ < 1/||ṽ||∞. Then

λṽ ∼ min
Q∈Q

EQ
[∫

λṽ�dνψ

]
= λmin

Q∈Q
EQ
[∫

ṽ�dνψ

]
,

which, because of Lemma 6.1, is equivalent to

ṽ ∼ min
Q∈Q

EQ
[∫

ṽ�dνψ

]
.

Consequently, we may assume that ṽ ≤ 1.
Step (iii):

As in Section 4, � also induces a preference relation on the subspace Ṽ
[0,1]

0 . Furthermore, since
� is conditional law invariant (by Axiom A2), � also induces a preference relation on the space
of reflected quantile functions. Thus, we can define a preference relation, denoted simply by
�, on the space Γ̃ with Γ̃ defined in (4.2).

As in Section 4, by A1-A6 and A70, � induces a preference relation on the space Γ̃ that
satisfies (i)-(v) of Section 4 and

(vi) Certainty Independence: If G̃1, G̃2 ∈ Γ̃ and G3 ∈ Γ, then

G̃1 � G̃2 ⇔ αG̃1 + (1− α)G3 � αG̃2 + (1− α)G3 for all α ∈ (0, 1).

To verify (vi), note that if G̃1 � G̃2, then A70 implies

ṽαG̃1+(1−α)G3
= αG̃1(., 1− U �) + (1− α)G3(1− U �)

� αG̃2(., 1− U �) + (1− α)G3(1− U �) = ṽαG̃2+(1−α)G3
.

Steps (iv)+(v):
The final key to establishing a dual representation is that, as in Section 4, because Γ̃ is composed
of decreasing and right-continuous step functions that map from [0, 1] to [0, 1] for fixed w ∈W
and are zero at one, Γ̃ may also be regarded as the space of conditional DDF’s associated
with random variables that take only finitely many values on the unit interval. Thus, for all

ṽ, ũ ∈ Ṽ [0,1]
0 , the numerical representation U coincides with a representation Ū on Γ̃, which, by

the representation theorem of Gilboa and Schmeidler (1989) and (3.1) is given by

Ū(G̃ṽ) = min
Q∈Q

EQ
[
−
∫ 1

0
ψ(t)G̃ṽ(., dt)

]
,
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where the function ψ is non-decreasing and continuous and unique up to positive affine trans-
formations. Because G̃ṽ � G̃ũ if and only if ṽ � ũ, we also obtain a numerical representation
U of � on Ṽ0. This yields

U(ṽ) = min
Q∈Q

EQ
[
−
∫ 1

0
ψ(t)G̃ṽ(., dt)

]
= min

Q∈Q
EQ
[∫ 1

0
ψ(G̃−1

ṽ (., t))dt

]
= min

Q∈Q
EQ
[∫ 1

0
ψ(1− Fṽ(., t))dt

]
.

Finally, the function ψ can be selected to satisfy ψ(0) = 0 and ψ(1) = 1. The unique extension
of � to Ṽ follows as in the proof of Theorem 3.2 from continuity. The proof of (b) follows from
Föllmer and Schied (2004), Chapter 4. �
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17, 298–329.

Ellsberg, D. (1961). Risk, ambiguity and the Savage axioms. Quarterly Journal of Economics
75, 643–669.

Epstein, L. G. (1999). A definition of uncertainty aversion. Review of Economic Studies 66,
579–608.
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