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in Heavy Traffic

D.T. Koops1, O.J. Boxma2, and M.R.H. Mandjes1

1Korteweg-de Vries Institute, University of Amsterdam
2Eurandom and Department of Mathematics and Computer Science, Eindhoven

University of Technology

December 15, 2015

Abstract

In this paper we study the stationary workload distribution of a fluid tandem queue
in heavy traffic. We consider different types of Lévy input, covering compound Pois-
son, α-stable Lévy motion (with 1 < α < 2), and Brownian motion. In our analysis we
separately deal with Lévy input processes with increments that have finite and infinite
variance. A distinguishing feature of this paper is that we do not only consider the
usual heavy-traffic regime, in which the load at one of the nodes goes to unity, but also
a regime in which we simultaneously let the load of both servers tend to one, which,
as it turns out, leads to entirely different heavy-traffic asymptotics. Numerical experi-
ments indicate that under specific conditions the resulting simultaneous heavy-traffic
approximation significantly outperforms the usual heavy-traffic approximation.

1 Introduction

In this paper we study a fluid tandem queue that consists of two servers in series. A
continuous-time stochastic input process, namely spectrally-positive Lévy input, feeds
into the first queue (also: upstream queue). The first server empties the upstream queue
at a deterministic rate r1, immediately feeding the second (also: downstream) queue. The
downstream server leaks at some deterministic rate r2; to make the system non-trivial we
throughout assume r2 < r1. We are interested in the stationary workloads in both queues
in heavy-traffic regimes that we specify below.
The heavy-traffic regime was first considered in [Kingman, 1962]: one lets the load of
the system tend to one, while simultaneously scaling the workload in such a way that a
non-degenerate limiting distribution is obtained. Kingman’s approach was mainly based
on manipulating Laplace-Stieltjes transforms; this approach we also follow in our paper.
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Another approach relies on the functional central limit theorem in combination with the
continuous mapping theorem, see e.g. [Prohorov, 1963]. In [Shneer and Wachtel, 2011]
both approaches are compared, and the traditional heavy-traffic results, which assume the
increments of the input process to have a finite variance, are generalized to the infinite-
variance case. For excellent surveys we refer to [Glynn, 1990] and the book [Whitt, 2002].
Tandem queueing systems in which both queues are experiencing heavy-traffic condi-
tions have been studied before. [Harrison, 1978] has focused on the classical setting of
a GI/G/1-type tandem in which discrete entities (‘customers’) arrive to the first queue,
leave this queue after their service has been completed, and then join a second queue, in
which they undergo service as well. In such queueing systems the correlation between
both queues is typically negative, as the first queue being relatively large could be a conse-
quence of long service times in that queue, which in turn correspond to long inter-arrival
times in the second queue, and hence a relative small number of customers in the second
queue. Harrison manages to quantify the resulting (negative) covariance between the
populations in both queues in heavy traffic. Importantly, in the fluid setting considered
in our work this reasoning does not hold. More specifically, for the types of models we
study, the correlation between both workloads is positive: in our setting large workloads
in the upstream queue likely correspond to large workloads in the downstream queue.

Fluid tandem queues with spectrally-positive Lévy input have been studied before, see
for example [Kella and Whitt, 1992] and [Kella, 1993]. The results concerning the joint
distribution of the steady state of the workloads were generalized to a more general class
of queueing networks in e.g. [Dȩbicki et al., 2007]. These results play an important role for
our analysis, and are therefore summarized in Section 2.2. A more extensive account of
Lévy-driven networks can be found in Chapter 12 and 13 of [Dȩbicki and Mandjes, 2015].

The load of a server is defined as the average input rate into the server divided by its ser-
vice rate. The load can thus be increased by increasing the average input rate, or lowering
the service rate. In case of a single-node system, both methods are equivalent in the sense
that they lead to the same heavy-traffic results. However, for multi-node systems (such as
tandem queues), increasing the average input to the first server only leads to heavy traffic
in the downstream server (recall that r1 > r2). To be more general we therefore adapt the
service rates appropriately, while keeping the input process fixed. Taking this approach
opens up the possibility that the servers experience heavy traffic simultaneously. In this
paper we study both types of heavy traffic, and refer to them as follows:

• Regime I: Only the downstream server has a load that tends to unity (whereas the
first queue does not operate under heavy traffic);

• Regime II: The up- and downstream server have loads that simultaneously tend to
unity.
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In general terms, the results we find for Regime I are much in line with those for heavy
traffic in single queues, whereas for Regime II we obtain limiting distributions which, to
the best of our knowledge, have not appeared before. More specifically, our contributions
are:

• For Regime I we find that the steady-state distribution of the workload in the second
queue is similar to the one of the first queue. Moreover, the up- and downstream
workloads are asymptotically independent in the heavy-traffic limit.

• In Regime II, we establish the interesting feature that the workloads do not decouple
in heavy traffic, i.e., some dependence between the up- and downstream workloads
remains. Moreover, the marginal steady-state distribution of the downstream queue
is crucially different from the one obtained in Regime I. This has practical implica-
tions: as verified through a set of experiments, Regime II approximations tend to
outperform those based on Regime I, particularly when the load of both servers is
large.

We find that, as in the single-server case, there is a dichotomy between input processes
that have increments with finite and infinite variance; as a consequence, they have to be
dealt with separately. We have derived Regime I results in both cases, and for the case
of finite variance we have also succeeded in addressing the technically more demanding
Regime II.
In Regime I we prove that the stationary workload of the downstream queue has an ex-
ponential distribution (for the case of finite variance) or Mittag-Leffler distribution (for
infinite variance). Remarkably, the same distributions (up to some factor) were found for
single queues; apparently, the fact that there is a server that modifies the input process
hardly affects the limiting distribution. In addition, similar results were also found for
waiting times in the corresponding GI/G/1 queues; see e.g. [Boxma and Cohen, 1999] for
the case of infinite variance.

The paper is organized as follows. In Section 2 we introduce our framework of queue-
ing models with Lévy input; we subsequently explain the fluid Lévy tandem queueing
model that we consider, and recall results that play a key role throughout the paper. As
mentioned above, there is a dichotomy between the case of finite (Section 3) and infinite
variance (Section 4). In Section 3 we first consider Brownian input, for which all compu-
tations can be done explicitly, and then turn to general spectrally-positive Lévy input; the
section also present numerical experiments that indicate that the Regime II approximation
typically outperforms the Regime I approximation. Section 4, which focuses on infinite
variance input, covers results for compound Poisson input and α-stable input. Finally, in
Appendix A we state Tauberian theorems, that are used in Section 4.
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2 Lévy driven queues

Let (Ω,F ,F,P) be a filtered probability space, where F = FT and the filtration F = {Ft :

t ≥ 0} satisfies the usual conditions. Let T ∈ [0,∞] denote the time horizon, which is
allowed to be infinite. We start by providing a short introduction to single-node Lévy-
driven queues; for more details, see e.g. the exposition in [Dȩbicki and Mandjes, 2015].
To define single-node Lévy-driven queues, we first switch to a discrete-time setting. Let
{Qn, n ∈ N} denote the workload process, where Qn is the workload at the beginning of
the n-th timeslot. Let Yn denote the net input in the queue during the n-th timeslot. Then
the discrete-time queue can be described through the well-known Lindley equation

Qn+1 = max{Qn + Yn, 0}.

By iterating this recursion and defining Xn :=
∑n

i=0 Yi, this eventually leads to

Qn = Xn + max

{
x, max

0≤i≤n
−Xi

}
, n ∈ N, (1)

with initial workload Q0 = x ≥ 0. Single-node Lévy-driven queues, denoted by {Qt, t ∈
R≥0}, can be seen as the continuous-time analogue of Equation (1):

Qt = Xt + max{x, Lt}, t ≥ 0,

with
Lt := sup

0≤s≤t
−Xs = − inf

0≤s≤t
Xs.

2.1 A fluid tandem queueing model

Suppose we have a Lévy driven fluid tandem queue consisting of two servers. The in-
put process J = {Jt, t ≥ 0} feeds the first server (upstream server). The workload from
the first server then flows continuously, at a fixed rate r1, to the second server (down-
stream server). The downstream server empties itself at a fixed rate r2. Consider Figure
1 for a diagram of this model and consider Figure 2 for a typical sample path when the
arrival process is a renewal process. Assume r2 < r1, as otherwise the second queue
would remain empty. We use two different parametrizations in this paper. In Regime I
we parametrize

r1 = E J1 + r, for some fixed r > 0, and r2 = E J1 + ε.

For Regime II, we take

r1 = E J1 + γε and r2 = E J1 + ε, in which γ > 1 to guarantee that r1 > r2.

In Regime I, the upstream server will have a fixed load of ρ1 = E J1/r1 < 1 as ε ↓ 0,
whereas the load of the downstream server will tend to one: ρ2 = E J1/r2 ↑ 1 as ε ↓ 0. In
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Figure 1: A diagram of the fluid tandem queueing system that we consider in this paper.
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Figure 2: A sample path for an arbitrary ω ∈ Ω in the fluid tandem queue. During busy periods of
the upstream queue, the downstream server fills up with a net rate of r1 − r2. During idle periods
the workload of the downstream server decreases with rate r2.

Regime II, on the contrary, both the up- and downstream server will have loads that tend
to one: ρ1, ρ2 ↑ 1 as ε ↓ 0. To avoid the workload from increasing indefinitely, we scale
the workloads so as to obtain a non-degenerate limit. Only the queues for which the load
is increasing require an appropriate scaling. The specific way in which the workloads
should be scaled depends on the type of input (more specifically, it matters whether the
increments have finite variance or not); this will be pointed out in detail later in the paper.
We now introduce some additional notation. We define, for i = 1, 2,X(i)

t = Jt−rit,with Jt
in the class of spectrally-positive Lévy processes S+. We denote by φ the Laplace exponent

φ(α) = logE[e−αX
(1)
1 ],

and the inverse function of φ by φ−1 ≡ ψ. To ensure stability, it is required that the average
input rate is less than the speed of the slowest working server, i.e., E J1 < r2.

2.2 Useful results on transforms

We denote the steady state workload of queue i ∈ {1, 2} by Q(i). The theorems stated be-
low, which uniquey characterize the distributions of the Q(i), play a crucial role through-
out the paper. The following assertions are Thms. 3.2, 12.11, and 12.3, respectively, in the
book [Dȩbicki and Mandjes, 2015], and were developed earlier in e.g. [Dȩbicki et al., 2007].
Thm. 2.1 gives the Laplace-Stieltjes tranform (LST) for the stationary workload if there is
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only one server, and can be considered to be a generalization of the well-known Pollaczek-
Khinchine formula. The LST for the joint stationary workload in the fluid tandem system
is presented in Thm. 2.2, which also provides us with the LST for the downstream queue
only (Corollary 2.3).

Theorem 2.1 (Generalized Pollaczek-Khinchine (PK)). Let J ∈ S+. For s ≥ 0,

E e−sQ
(1)

=
sφ′(0)

φ(s)
.

Theorem 2.2 (Two-dimensional PK for fluid tandem). Let J ∈ S+. For s1, s2 ≥ 0,

E e−s1Q
(1)−s2Q(2)

=
−EX(2)

1 s2

s2 − ψ(s2(r1 − r2))

ψ(s2(r1 − r2))− s1

(r1 − r2)s2 − φ(s1)
.

Corollary 2.3 (One-dimensional PK for fluid tandem). Let J ∈ S+. For s ≥ 0,

E e−sQ
(2)

=
−EX(2)

1

r1 − r2

ψ(s(r1 − r2))

s− ψ(s(r1 − r2))
.

Remark 2.4. Throughout the remainder of the paper, we assume J ∈ S+ and E |J1| <∞.
It is straightforward to extend our results to spectrally negative input processes J ∈ S−,
by making use of Laplace-Stieltjes transforms for S−-processes, which can be found in
e.g. Thm. 12.12 of [Dȩbicki and Mandjes, 2015].

3 Input processes with finite variance

In this section we consider the fluid tandem queue for various types of input processes
that have increments with finite variance. Since for Brownian input an explicit analysis
can be performed, we consider this case first (Section 3.1). Using appropriate expansions,
we show in Section 3.2 how these results extend to spectrally-positive Lévy processes. In
both cases we establish Regime I and Regime II results. Finally, in Section 3.3 we provide
a numerical comparison between the Regime I and Regime II approximations.

3.1 Brownian input

Assume that the input is Brownian, that is, Jt = µt + σWt, where W denotes a standard
Brownian motion. Then we have

φ(s) = logE[e−sJ1 ] = logE e−s(σW1−r) =
1

2
σ2s2 + rs,

and after some elementary algebra we find that the inverse is given by

ψ(s) = − r

σ2
+

1

σ

√
r2

σ2
+ 2s. (2)
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Regime I

In this case the upstream server has a fixed load ρ1 < 1 and the downstream server has a
load that tends to one. Therefore we have to scale the workload of the downstream server:
to obtain a non-degenerate limit, we scale by ε. Relying on Thm. 2.2,

E e−s1Q
(1)−s2εQ(2)

=
ε2s2

εs2 − ψ(εs2(r − ε))
ψ(εs2(r − ε))− s1

(r − ε)s2ε− φ(s1)
(3)

=
1

(r − ε)s2ε− s1r − 1
2s

2
1σ

2
·

(εs2 − s1) 1
σ

√
r2

σ2 + 2s2ε(r − ε)− s1s2ε− s1r
σ2 + s2ε(r−ε)

σ2

s2 + 2
σ2

,

yielding the following proposition.

Proposition 3.1. Suppose that the input process is a Brownian motion. Then, in Regime I, the
joint stationary workload in heavy traffic is given by

E e−s1Q
(1)−s2εQ(2) ε↓0−→ 2r/σ2

2r/σ2 + s1

2/σ2

2/σ2 + s2
. (4)

In particular, this implies that the distribution of εQ(2) converges to an exponential distri-
bution with rate 2/σ2, which equals the distribution of the total workload. Remarkably,
Q(1) and εQ(2) turn out to be asymptotically independent in the limit ε ↓ 0.
Although this asymptotic independence is an interesting finding from a theoretical point
of view, it has the intrinsic drawback that the original dependency structure is lost. An-
other drawback of this approximation, is that it leads to significant errors if ρ1 is large as
well, as will be illustrated in Section 3.3. This prompts us to consider Regime II.

Regime II

In this regime we scale both workloads, and we choose the service rates as explained
in Section 2.1. Thus, we take r = γε in Eqn. (2), so as to obtain

ψ(s) = −γε
σ2

+
1

σ

√
γ2ε2

σ2
+ 2s. (5)

By Thm. 2.2,

E e−s1εQ
(1)−s2εQ(2)

=
−EX(2)

1 s2ε

s2ε− ψ(s2ε(r1 − r2))

ψ(s2ε(r1 − r2))− s1ε

(r1 − r2)s2ε− φ(s1ε)
.

Using Eqn. (5) yields

E e−s1εQ
(1)−s2εQ(2)

=
s2

s2 + γ
σ2 − 1

σ

√
γ2

σ2 + 2(γ − 1)s2

− γ
σ2 + 1

σ

√
γ2

σ2 + 2(γ − 1)s2 − s1

(γ − 1)s2 − γs1 − 1
2s

2
1σ

2
,
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where it should be noted that the expression on the right-hand side does not contain any ε
anymore. This indicates that, for Brownian input, the joint distribution in the heavy-traffic
limit is of the same type as the distribution for ‘non-heavy-traffic loads’ loads ρ1 and ρ2.
After further simplification we obtain

E e−s1εQ
(1)−s2εQ(2)

=
s2(γ − 2− s1σ

2)− s1γ + (s2 − s1)σ
√

γ2

σ2 + 2(γ − 1)s2

(s2σ2 + 2)((γ − 1)s2 − γs1 − 1
2s

2
1σ

2)
. (6)

We can find the marginal distributions of the stationary workload of the first and second
queue by plugging in s2 = 0, resp. s1 = 0. This yields

E e−sεQ
(1)

=
2γ/σ2

2γ/σ2 + s
, (7)

E e−sεQ
(2)

=
1

γ − 1

−2 + γ +
√
γ2 + 2sσ2(γ − 1)

2 + sσ2
. (8)

After lengthy but elementary calculations we obtain

E[Q(1)Q(2)] = lim
s1↓0

lim
s2↓0

∂2

∂s1∂s2
E e−s1Q

(1)−s2Q(2)
=
γ2 − 1

4γ3
σ4.

Using that E[Q(1)] = 1
2σ

2/γ and E[Q(2)] = 1
2σ

2(γ − 1)/γ,

Cov(Q(1), Q(2)) = σ4
(γ2 − 1

4γ3
− γ − 1

4γ2

)
=
γ − 1

4γ3
σ4. (9)

To calculate the correlation coefficient, we also compute the variances. Since Q(1) has an
Exp(2γ/σ2) distribution, its variance is given by Var(Q(1)) = 1

4σ
4/γ2. By making use of

the LST of Q(2), we also find

Var(Q(2)) =
(γ − 1)2(γ + 2)σ4

4γ3
.

It now follows that the correlation coefficient is given by

Corr(Q(1), Q(2)) = c(γ) =
1√

γ(γ + 2)
. (10)

Observe that, when decreasing γ from∞ to 1, c(γ) increases from 0 to 1/
√

3. This result
is in line with Corollary 4.1 in [Kella, 1993]: there c(γ) is studied without heavy traffic,
and it is concluded that c(γ) ∈ (0, 1/

√
3). In the introduction we already argued why c(γ)

is anticipated to be positive, but it can also be seen that c(γ) decreases in γ. Indeed, as
γ grows, the service rate in the upstream server increases. This implies that it becomes
more likely that the downstream server has a large workload, while the workload in the
first server may be relatively small due to its fast service.
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3.2 General input

We now extend the results for the Brownian case in the previous section to spectrally-
positive Lévy input. Again we consider both regimes, starting with Regime I.

Regime I

In this section we prove the following main result.

Proposition 3.2. Let the input process J ∈ S+ be such that Var J1 = σ2 <∞. Then, in Regime
I, the stationary workloads of the up- and downstream queue are asymptotically independent, with
Q(1) given by Thm. 2.1, and Q(2) d

= Exp( 2
σ2 ).

To prove this proposition, we require the following lemma.

Lemma 3.3. Let
φ(s) = sr +

1

2
σ2s2 +K1s

η1 + o(sη1), (11)

with η1 > 2. Then the inverse function ψ with argument sε(r − ε), satisfies, for ε ↓ 0,

ψ(sε(r − ε)) = sε− 1

r
sε2 − σ2

2r
s2ε2 + o(ε2).

Proof of Lemma 3.3. Suppose that

ψ(sε(r − ε)) = C1sε+ C2sε
2 + C3s

2ε2 + o(ε2).

Consider

φ(ψ(sε(r − ε)))− sε(r − ε) = ψ(sε(r − ε))r +
1

2
σ2ψ(sε(r − ε))2

+K1ψ(sε(r − ε))η1 − sε(r − ε) + o(ε2)

= (C1r − r)sε+ (rC2 + 1)sε2 + ε2(σ2C1 + 2rC3)
1

2
s2 + o(ε2).

For ψ to be the inverse of φ for ε ↓ 0, we equate the above to zero. This is achieved by
taking the constants C1 = 1, C2 = −1

r and C3 = −σ2

2r . This proves the lemma.

At first glance, it may be unclear why ψ in Lemma 3.3 has this specific form. However,
in case of e.g. compound Poisson input, this shape arises naturally, as is demonstrated in
Example 3.4 below. We first prove the main result.

Proof of Proposition 3.2. Assume that Var J1 = σ2 < ∞. We first develop a general expan-
sion for φ. From the definition of φ, we have φ(s) = sr1 + logE e−sJ1 . Note that φ(s) is
linear in r in s = 0:

φ′(0) = r1 − E J1 = E J1 + r − E J1 = r.
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Now note that φ′′(0) = Var J1 = σ2. This means that the coefficient of s2 must be 1
2σ

2.
Upon combining all of the above, we see that necessarily

φ(s) = sr +
1

2
σ2s2 + o(s2).

We can write
φ(s) = sr +

1

2
σ2s2 +K1s

η1 + o(sη1),

for some K1 ∈ R, where η1 = 3 corresponds to the existence of a finite third moment, and
2 < η1 < 3 corresponds to an infinite third moment. It thus follows that φ as in (11) covers
all input processes with finite second moment. Therefore we can use the functions φ and
ψ in Lemma 3.3, and apply them to Thm. 2.2. By scaling only the workload of the second
queue by a factor ε and taking the heavy-traffic limit, we find

lim
ε↓0

E e−s1Q
(1)−s2εQ(2)

=
s1r

φ(s1)

1

1 + 1
2σ

2s2
=
s1φ
′(0)

φ(s1)

1

1 + 1
2σ

2s2
.

The result follows.

Example 3.4. Suppose that the input process is a compound Poisson process in which
the first two moments of the job sizes are finite: EB,EB2 < ∞. The goal is to find
an asymptotic expression for ψ(sε(r − ε)) as ε ↓ 0, while s ≥ 0 is fixed. The proof of
Lemma 3.3 is by validation. How such an expression for ψ(sε(r − ε)) can be constructed
becomes clear in this example. We approach the problem in the following steps:

• Derive the Takács equation (describing the LST π of the busy period in an M/G/1
queue) with service rate equal to r1;

• Use this Takács equation to express ψ in terms of π;

• Expand π, which yields an expansion for ψ.

Since we have a compound Poisson input process, the Laplace exponent is given by

φ(s) = sr1 − λ+ λb(s), (12)

with b(s) = E e−sB . Let τ0 denote the busy period started by a job arriving at an empty
system. Using the standard argumentation, it turns out that

π(s) = b
( 1

r1
(λ− λπ(s) + s)

)
; (13)

this functional equation is well-known for r1 = 1, cf. Section 1.3 in [Takács, 1962], but it
can be readily extended to general r1. Eqns. (12) and (13) imply

1

λ
φ
( 1

r1
(λ− λπ(s) + s)

)
− s

λ
= b
( 1

r1
(λ− λπ(s) + s)

)
− π(s) = 0.

10



Applying the inverse function ψ, we obtain

ψ(s) =
λ− λπ(s) + s

1 + r
. (14)

Now we will find an expansion for π, which in turn yields an expansion for ψ. Using Eqn.
(13) and some elementary calculus, we find

π′(0) =
−EB

r1 − λEB
and π′′(0) =

r2
1 EB2

(r1 − λEB)3
.

Recall that the above quantities are finite by the conditions we imposed on the moments
of B, and since the loads are assumed to be less than one. Therefore,

π(s) = 1− EB
r1 − λEB

s+
1

2

r2
1 EB2

(r1 − λEB)3
s2 + o(s2).

Substituting this into Eqn. (14) yields

ψ(s) =
1

r
s− 1

2

λEB2

r2
s2 + o(s2).

It follows that

ψ(sε(r1 − r2)) = ψ(sε(r − ε)) = sε− 1

r

(
sε2 +

1

2
λEB2s2ε2

)
+ o(ε2).

Noting that λEB2 = σ2, we find the structure of ψ(sε(r1 − r2)) as in Lemma 3.3.

Regime II

In the following we consider the corresponding Regime II result. It should be noted that
the methodology is similar to the one for Regime I. However, since the ε now plays a
different role, we cannot use Lemma 3.3, but we develop Lemma 3.7 instead.

Proposition 3.5. Let the input process J ∈ S+ be such that Var J1 = σ2 <∞. Then, in Regime
II, the joint scaled workload is given by

lim
ε↓0

E e−s1εQ
(1)−s2εQ(2)

=
s2(γ − 2− s1σ

2)− s1γ + (s2 − s1)σ
√

γ2

σ2 + 2(γ − 1)s2

(s2σ2 + 2)((γ − 1)s2 − γs1 − 1
2s

2
1σ

2)
.

Remark 3.6. Note that the result in Prop. 3.5 corresponds to Eqn. (6), i.e., the LST we found
in case of Brownian input, except now we do take a proper heavy-traffic limit, whereas
Eqn. (6) holds for all ε > 0.

Lemma 3.7. Let
φ(s) = sε+

1

2
s2 +K1s

η1 + o(sη1),

for some constant K1 ∈ R and 2 < η1 ≤ 3. Then, asymptotically for ε ↓ 0, we have

ψ(sε2(γ − 1)) = −ε+ ε
√

1 + 2s(γ − 1) + o(ε).
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Proof of Lemma 3.7. Suppose that

ψ(sε2(γ − 1)) = −ε+ ε
√

1 + 2s(γ − 1) +K2(s)ε2η2 ,

for some function K2 of s (and independent of ε) and for some constant η2. If we show
that

lim
ε↓0

φ(ψ(sε2(γ − 1)))

sε2(γ − 1)
= 1

and η2 ≥ 1
2 , then we have proved the lemma.

Indeed, for all s ≥ 0,

φ(ψ(sε2(γ − 1)))− sε2(γ − 1) = −ε2 + ε2
√

1 + 2s(γ − 1) +K2(s)ε2η2+1 + o(ε2η1)

+
1

2

(
− ε+ ε

√
1 + 2s(γ − 1) +K2(s)ε2η2

)2

+K1

(
− ε+ ε

√
1 + 2s(γ − 1) +K2(s)ε2η2

)η1
− sε2(γ − 1).

Hence, after simplification, we see that the following should hold for all s ≥ 0:

1

2
K2(s)2ε4η2 +K2(s)ε2η2+1

√
1 + 2s(γ − 1)

+K1

(
− ε+ ε

√
1 + 2s(γ − 1) +K2(s)ε2η2

)η1
+ o(ε2η1) = 0. (15)

Case 1. If η2 <
1
2 , then using (15) we obtain for all s ≥ 0,

1

2
K2(s)2ε4η2 +K1K2(s)η1ε2η1η2 + o(ε2η1) = 0,

which holds for ε ↓ 0 if and only if 4η2 = 2η1η2. This implies η1 = 2, but this contradicts
η1 > 2. We conclude that η2 ≥ 1

2 .
Case 2. If η2 = 1

2 , then we can write

1

2
K2(s)2ε2 +K2(s)ε2

√
1 + 2s(γ − 1) + o(ε2) = 0,

which is solved by K2 = 0. Note that the conclusion of the lemma holds in this case.
Case 3. If η2 >

1
2 , then we can write for all s ≥ 0,

K2(s)ε2η2+1
√

1 + 2s(γ − 1) +K1ε
η1
(
− 1 +

√
1 + 2s(γ − 1)

)η1
+ o(εmin{4η2,η1}) = 0.

We see that we have to make sure that 2η2 + 1 = η1, since the equation has to hold for all
s ≥ 0. So define η2 = 1

2(η1 − 1). Then, for all s ≥ 0,

K2(s)
√

1 + 2s(γ − 1) +K1

(
− 1 +

√
1 + 2s(γ − 1)

)η1
+ o(1) = 0.
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The conclusion of the lemma holds in this case, noting that η2 >
1
2 , where

K2(s) := −
K1

(
− 1 +

√
1 + 2s(γ − 1)

)η1√
1 + 2s(γ − 1)

.

This proves the claim.

Proof of Proposition 3.5. This result follows from Lemma 3.7 and Thm. 2.2, and taking the
limit ε ↓ 0. The calculations are similar to those in the Brownian case, except there are
some additional terms of small order ε that cancel in the heavy-traffic limit.

3.3 Numerical approximations for exponential jobs

Example 3.8 (Comparison of Regime I and Regime II). Suppose that we have a system
with compound Poisson input with exponential jobs, with λ = 1, µ = 1. By Eqn. (4), one

obtains the Regime I approximation Q(2) d
= Exp(ε). Due to Equation (8), the Regime II

approximation entails numerically inverting

E e−sQ
(2)

=
1

γ − 1

−2 + γ +
√
γ2 + 2 sεσ

2(γ − 1)

2 + s
εσ

2
.

In addition, we estimated the probabilities by simulation. The results are gathered in
Tables 1 and 2, and are plotted in Figs. 3 and 4. Observe from Fig. 3 that the Regime II
approximation is substantially more accurate than the Regime I approximation when ρ2 is
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Figure 3: Varying ρ1 while keeping ρ2 = 0.99. It appears that the Regime II approximation is
almost perfect, and the Regime I approximation becomes worse the higher ρ1 becomes.
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Figure 4: In the above two plots we see that again the Regime II approximation works signifi-
cantly better than the Regime I approximation. Even for ρ1 = 0.6 and ρ2 = 0.8, the Regime II
approximation shows remarkably good fit.

Fig. 3, left plot Fig. 3, right plot
x Simul R1 R2 x Simul R1 R2
1 0.975 0.990 0.984 1 0.884 0.990 0.888

20 0.800 0.817 0.810 5 0.750 0.951 0.753
40 0.653 0.668 0.662 10 0.654 0.904 0.656
80 0.436 0.446 0.442 15 0.584 0.859 0.585

100 0.356 0.364 0.362 20 0.527 0.817 0.528
150 0.215 0.220 0.219 25 0.480 0.777 0.480
200 0.129 0.133 0.132 30 0.439 0.739 0.439
250 0.077 0.080 0.080 35 0.403 0.702 0.403
300 0.047 0.048 0.049 40 0.372 0.668 0.372
400 0.017 0.018 0.019 45 0.344 0.635 0.343
500 0.006 0.006 0.008 50 0.318 0.603 0.318

Table 1: The values in this table correspond to the left and right plot in Figure 3. Simul stands
for the simulated values, and R1, R2 stand for the approximated values using Regime I, II, respec-
tively.

high (in this case ρ2 = 0.99). By comparing the two plots in Fig. 3, we see that increasing
ρ1 negatively affects the performance of the Regime I approximation. Figure 4 shows that
the Regime II approximation works remarkably well even when relatively low loads are
imposed on both servers. Our experiments reveal that it is only reasonable to use Regime I
approximations in a tandem queue when the load of the first server ρ1 is low; in all other
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Fig. 4, left plot Fig. 4, right plot
x Simul R1 R2 x Simul R1 R2
1 0.498 0.777 0.551 0.5 0.719 0.945 0.761
2 0.362 0.605 0.387 1.0 0.630 0.894 0.665
3 0.273 0.471 0.283 1.5 0.565 0.846 0.594
4 0.210 0.367 0.210 2.0 0.512 0.800 0.537
5 0.163 0.286 0.157 2.5 0.468 0.757 0.489
6 0.128 0.223 0.119 3.0 0.429 0.716 0.447
7 0.101 0.173 0.090 3.5 0.395 0.677 0.410
8 0.080 0.135 0.069 4.0 0.365 0.640 0.378
9 0.064 0.105 0.053 4.5 0.338 0.606 0.349

10 0.051 0.082 0.040 5.0 0.313 0.573 0.323

Table 2: The values in this table correspond to the left and right plot in Figure 4. The abbreviations
are as in Table 1.

cases it is outperformed by the Regime II approximation. If ρ1 is high, then there is a
stronger dependence between the up- and downstream workloads (cf. Eqn. (10), noting
that ρ1 increases as γ decreases). Apparently, the dependence between both workloads,
which is ignored in Regime I, has a crucial impact.

4 Heavy-tailed input

In this section we consider spectrally-positive Lévy input processes with increments with
infinite variance. Unlike in the finite variance case, the precise form of the heavy-traffic
limit depends on the specific features of the Lévy input process. In Section 4.1 we consider
compound Poisson input with heavy-tailed jobs, and in Section 4.2 we consider α-stable
Lévy input (where 1 < α < 2). Note that α-stable Lévy motion can be regarded as a
generalization of Brownian motion. Indeed, for α = 2, an α-stable Lévy motion reduces
to a Brownian motion.

Remark 4.1. We only consider Regime I results, because we have not managed to com-
pute Regime II results here. In the finite variance case, we relied on the existence of the
inverse function of φ in the Brownian case, to construct the ψ(sε(r1 − r2)) as in Lemma
3.7. However, for heavy-tailed input, there is in general no inverse function of φ available,
except for some special cases, such as 3

2 -stable Lévy motion.

Before we state the result, we introduce some notation. We denote

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)

for the Mittag-Leffler function with parameter α. Random variables that have a distribu-
tion function 1−Eα(x) are called Mittag-Leffler distributed with parameter α. Suppose that
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M is Mittag-Leffler distributed with parameter α, then the LST of M is given by

E e−sM =
1

1 + sα
.

Furthermore, suppose a measurable function L defined on some neighborhood [X,∞) of
∞, satisfies

lim
x→∞

L(ax)

L(x)
= 1, ∀a > 0,

then it is called a slowly varying function [Bingham et al., 1987]. For notational brevity
we sometimes write f(x) ∼ g(x) (as x→∞), to denote limx→∞ f(x)/g(x) = 1, for generic
functions f, g.

4.1 Compound Poisson

In this section we consider spectrally positive compound Poisson input processes with
heavy-tailed jobs.

Remark 4.2. In [Boxma and Cohen, 1999] a heavy-traffic problem for heavy-tailed input
was studied in a GI/G/1 setting. In their paper, the correct scaling function ∆(ε) was also
found by letting it be the zero of an appropriate equation. We follow a similar approach.

Proposition 4.3. Let the input process J ∈ S+ to the first queue be a compound Poisson pro-
cess with heavy-tailed service requirements, that is, the distribution of the service requirement B
satisfies

P(B > x) ∼ x−νL(x), as x→∞, (16)

where L is some slowly varying function. Suppose that the load of the first queue is fixed and the
load of the second queue is increasing to one as ε ↓ 0. For ε > 0 small enough, there is a unique
solution s = ∆(ε) to

−λΓ(1− ν)
(r − ε)ν

rν+1
sν−1

2 L(1/s2) = ε,

such that ∆(ε) ↓ 0. It holds that

lim
ε↓0

E e−s1Q
(1)−s2∆(ε)Q(2)

=
rs1

φ(s1)
· 1

1 + sν−1
2

.

Proof. Suppose the input process J is of the compound Poisson type. More precisely, we
have a Poisson process N with rate λ and we assume

Jt =

N(t)∑
k=1

Bk, where the Bk are i.i.d., independent of N(t), and such that E J1 = 1.

Then the cumulative net input processes for the first server and the whole system (i = 1, 2

respectively) are defined by

X
(i)
t =

N(t)∑
k=1

Bk − rit.
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Suppose we have a compound Poisson input process, then φ(s) = sr1 − λ+ λb(s), where
b(s) = E e−sB (cf. Eqn. (12)). Suppose the service time B is regularly varying, with index
1 < ν < 2. Then it takes the form of Eqn. (16). By applying Thm. A.1,

b(s)− 1− c1s ∼ −Γ(1− ν)sνL(1/s) as s ↓ 0,

with 1 < ν < 2. Substitution yields φ(s) ∼ (λc1 + r1)s− λΓ(1− ν)sνL(1/s). We assumed
λEB = 1, so b′(0) = − 1

λ = c1. Recall that r1 − 1 = r, and therefore

φ(s)− rs ∼ −λΓ(1− ν)sνL(1/s).

By Lemma 9.2 from [Dȩbicki and Mandjes, 2015] (see also Lemma A.2 in Appendix A),
we find

ψ(s)− 1

r
s ∼ λΓ(1− ν)

1

rν+1
sνL(1/s) as s ↓ 0. (17)

We now identify a scaling function ∆(ε) such that we have convergence to a non-degenerate
distribution. By making use of Eqn. (17) and by scaling the workload of the downstream
queue by a function ∆(ε), for which ∆(ε) ↓ 0 as ε ↓ 0, we obtain

E e−s1Q
(1)−s2∆(ε)Q(2) ∼ 1

1 + 1
εC(r − ε)νsν−1

2 ∆(ε)ν−1L( 1
s2∆(ε))

(18)

·
(r − ε)s2∆(ε)− Csν2(r − ε)ν∆(ε)νL( 1

s2∆(ε)(r−ε))− rs1

(r − ε)s2∆(ε)− φ(s1)
,

where C := −λΓ(1− ν)r−ν−1, for s1, s2 ≥ 0 fixed and ε ↓ 0. Consider the equation

C(r − ε)νsν−1
2 L(1/s2) = ε. (19)

We will show that this equation has a unique zero for ε close enough to zero, and we call
the zero ∆(ε). Indeed, by Thm. 1.5.4 in [Bingham et al., 1987], we have that

C(r − ε)νsν−1L(1/s) ∼ ξ(1/s), s ↓ 0,

where s 7→ ξ(s) is a non-decreasing function (hence s 7→ ξ(1/s) non-increasing). So if ε is
chosen small enough, the s solving Eqn. (19) also becomes small and

C(r − ε)νsν−1L(1/s)

ξ(1/s)
ξ(1/s) ≈ ξ(1/s),

so the left-hand side of Eqn. (19) is asymptotically monotone. This ensures that there is
exactly one root ∆(ε) for all ε > 0 small enough. Moreover, note that ∆(ε) indeed satisfies
∆(ε) ↓ 0 as ε ↓ 0.
Therefore, we have

C(r − ε)ν∆(ε)ν−1L(1/(s2∆(ε))) = ε. (20)
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Now consider the first factor on the right-hand side in Eqn. (18). Substituting Eqn. (20)
into this factor,

1

1 + 1
εC(r − ε)νsν−1

2 ∆(ε)ν−1L( 1
s2∆(ε))

=
1

1 + sν−1
2

L(1/(s2∆(ε)))
L(1/s2)

ε↓0−→ 1

1 + sν−1
2

,

where we make use of the fact that L is slowly varying at∞. Now consider the following
part of the second factor in Eqn. (18):

Csν2(r − ε)ν∆(ε)νL
( 1

s2∆(ε)(r − ε)

)
=

[
C(r − ε)ν∆(ε)ν−1L(

1

s2∆(ε)
)

]
∆(ε)

L
(

1
s2∆(ε)(r−ε)

)
L
(

1
s2∆(ε)

)
= ε∆(ε)

L
(

1
s2∆(ε)(r−ε)

)
L
(

1
s2∆(ε)

) ∼ ε∆(ε),

where we substituted the part between square brackets by making use of Eqn. (20), and
used that L is slowly varying. By again exploiting the fact that ∆(ε) ↓ 0 as ε ↓ 0, the result
now follows from Eqn. (18).

Example 4.4. Suppose that we are in the setting of Prop. 4.3, but we are in the special case
that limx→∞ L(x) = L ∈ R. Then a correct scaling function is

∆(ε) =

(
ε

λ
rΓ(1− ν)L

) 1
ν−1

.

Prop. 4.3 can be used to find a heavy-traffic approximation as follows. We have

lim
ε↓0

E e−s∆(ε)Q(2)
=

1

1 + sν−1
,

so that, for x ≥ 0, and ε > 0 small,

P(∆(ε)Q(2) > x) ≈ Eν−1(−xν−1).

By substitution we thus obtain the heavy-traffic approximation for x ≥ 0, and ε > 0 small,

P(Q(2) > x) ≈ Eν−1

(
−∆(ε)ν−1xν−1

)
.

4.2 α-stable Lévy motion

In this subsection we prove the following result. It entails that the workloads are asymp-
totically independent in the heavy-traffic limit, and that the marginals correspond to
scaled Mittag-Leffler distributed random variables.
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Proposition 4.5. Let the input process J ∈ S+ to the first queue be a spectrally positive α-stable
Lévy motion, with 1 < α < 2. Suppose that the load of the first queue is fixed and the load of the
second queue is increasing as ε ↓ 0 and scaled by εβ , with β := (α− 1)−1. It holds that

lim
ε↓0

E e−s1(C/r)βQ(1)−s2(εC)βQ(2)
=

1

1 + sα−1
1

· 1

1 + sα−1
2

,

with C := (cos(π(α2 − 1)))−1.

Proof of Proposition 4.5. The Laplace exponent is given by φ(s) = (r1−1)s+Csα. It follows
by Lemma 9.2 from [Dȩbicki and Mandjes, 2015], that

ψ(s) = c1 + c2s−
C

r1 − 1

( s

r1 − 1

)α
+ o(sα).

We know that ψ(0) = 0, hence c1 = 0, and ψ′(0) = 1
φ′(0) = 1

r1−1 , hence c2 = 1
r1−1 . This

leads to
ψ(s) =

s

r1 − 1
− C

r1 − 1

( s

r1 − 1

)α
+ o(sα).

It follows from Thm. 2.2, that

E e−s1Q
(1)−ε

1
α−1 s2Q(2)

=
εs2ε

1
α−1 (1 + o(sαε

α
α−1 ))

ε
1

α−1 s2 − ε
1

α−1
s2(r−ε)

r + C
r

(
s2(r−ε)

r

)α
ε

α
α−1

·
1
r ε

1
α−1 s2(r − ε)− C

r

(
s2(r−ε)

r

)α
ε

α
α−1 − s1

ε
1

α−1 (r − ε)s2 − rs1 − Csα1
.

Consequently,

lim
ε↓0

E e−s1Q
(1)−ε

1
α−1 s2Q(2)

=
r

r + Csα−1
1

1

1 + Csα−1
2

, (21)

which implies the claim.

In case α = 3
2 , ψ can be calculated explicitly and the result can be obtained without the use

of Tauberian theorems. We include it in the paper, as the calculations potentially contain
clues as to how Regime II results can be eventually obtained.

Example 4.6 (Explicit calculations for α = 3
2 ). We assume a 3

2 -stable input process, so that
the Laplace exponent is given by

φ(s) = rs+
1

cos(π(α2 − 1))
s

3
2 = rs+

√
2s
√
s.

Define

R(s) := − r3

54
√

2
+

√
1

8
s2 − sr3

108
+

s

2
√

2
. (22)
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By making a substitution s2 ← s, φ turns into a third order polynomial., which can be
inverted by using Cardano’s formula. It follows that the inverse function of φ is given by

ψ(s) =

(
R(s)

1
3 +

r2

18R(s)
1
3

− r

3
√

2

)2

. (23)

Note that s = φ(ψ(s)) = rψ(s) +
√

2ψ(s)
3
2 . Define the function ζ such that ζ(s)2 = ψ(s).

Then ψ(s) = ζ(s)2 = r−1(s−
√

2ζ(s))3. So

ψ(sε2(r − ε)) =
1

r
sε2(r − ε)−

√
2

r
ζ(sε2(r − ε))3. (24)

Now we can focus on

ζ(sε2(r − ε)) = R(sε2(r − ε))
1
3 +

r2

18R(sε2(r − ε))
1
3

− r

3
√

2
, (25)

where we can simplify by constructing the Taylor series of R
1
3 . First note that

R(sε2(r − ε)) = − r3

54
√

2
+

√
1

8
s2ε4(r − ε)2 − sε2(r − ε)r3

108
+ o(ε).

By rewriting this and using Taylor expansions for the square roots, neglecting all terms of
smaller order than ε, we obtain

R(sε2(r − ε)) = − r3

54
√

2
+

√
r4s

108
εi
√

1 + o(ε) + o(ε) = − r3

54
√

2
(1− gε) + o(ε),

where i denotes
√
−1 and we defined g := 3

√
6

r

√
si. Again using a Taylor expansion, we

find

R(sε2(r − ε))
1
3 = (−1)

1
3
r

3
√

2

(
1− 1

3
gε
)

+ o(ε),

R(sε2(r − ε))−
1
3 = (−1)−

1
3

3
√

2

r

(
1 +

1

3
gε
)

+ o(ε).

Substituting this into Eqn. (25) yields

ζ(sε2(r − ε)) =
rgε

9
√

2

(
− (−1)

1
3 + (−1)−

1
3

)
=

rgε

9
√

2
(−
√

3i) + o(ε),

by making use of (−1)
1
3 = eiπ/3 = 1

2 + 1
2

√
3i and (−1)−

1
3 = e−iπ/3 = 1

2 −
1
2

√
3i. Recalling

the definition of g, we find ζ(sε2(r − ε)) = ε
√
s + o(ε). Substituting this into Eqn. (24),

yields ψ(sε2(r − ε)) = sε2 − (1 +
√

2s) sε
3

r + o(ε3). It can be verified that terms of smaller
magnitudes do not contribute to the heavy-traffic version of Corollary 2.3. Using this
corollary yields

lim
ε↓0

E e−sε
2Q(2)

= lim
ε↓0

1− (1 +
√

2s) εr + o(ε)

1 +
√

2s+ o(1)
=

1

1 +
√

2s
,

which corresponds to Eqn. (21) with α = 3
2 (and here we considered s1 = 0).
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ρ2 = 0.95 ρ2 = 0.99

x Simul M-L diff (%) Simul M-L diff (%)
10 0.744 0.775 4.2 0.943 0.949 0.64
20 0.676 0.705 4.3 0.924 0.929 0.54
40 0.597 0.622 4.2 0.900 0.903 0.33
60 0.546 0.569 4.2 0.879 0.883 0.46
80 0.508 0.530 4.3 0.863 0.867 0.46

100 0.478 0.499 4.4 0.850 0.853 0.35
150 0.424 0.443 4.5 0.823 0.824 0.12
200 0.387 0.404 4.4 0.801 0.802 0.12
300 0.335 0.351 4.8 0.766 0.766 0.00
400 0.300 0.315 5.0 0.739 0.737 -0.27
500 0.274 0.288 5.1 0.716 0.714 -0.28

Table 3: The x indicates the size of the workload. The columns Simul and M-L show the proba-
bilities that P(Q(2) > x), for the simulated sample paths and the heavy-traffic approximation from
Example 4.4, respectively. The last column shows the relative difference between the two values,
that is, diff equals (M-L − Simul)/ Simul ·100%.
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Figure 5: Using the Mittag-Leffler function as an approximation. We simulated 288 sample paths
each consisting of 50 ·106 arrivals of Pareto distributed jobs. In both cases we used λ = 1, ν = 1.5,
ρ1 = 1

2 , and we only varied ρ2 as indicated above the plots.
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4.3 Numerical heavy-traffic approximations

Suppose the tandem system is fed by a compound Poisson input process with jobs that
are Pareto distributed. In this case, the slowly varying function from Prop. 4.3 is actu-
ally a constant. In Example 4.4, we obtained the corresponding heavy-traffic approxima-
tion. Fig. 5 facilitates a comparison between estimates obtained from simulations and the
Mittag-Leffler (Regime I) heavy-traffic approximation. As expected, we see that as ρ2 in-
creases, the heavy-traffic approximation becomes more accurate, by comparing the left
plot (where ρ2 = 0.95) to the right plot (where ρ2 = 0.99). We show the plotted values in
Table 3, along with the relative difference between the two values.

5 Discussion and concluding remarks

In this paper we considered two types of heavy-traffic regimes for a two-node fluid tan-
dem queue with spectrally-positive Lévy input. In Regime I, only the second server ex-
periences heavy traffic. In this case, the load of the first server has no influence on the
steady-state distribution of the workload in the second server. In Regime II, where both
servers experience heavy traffic, the dependence structure between both workloads is
preserved. In case the increments of the Lévy input process have finite variance, we have
obtained Regime I and II results, whereas for the infinite variance case we established
Regime I results.
The numerical experiments led to the interesting insight that (for finite-variance input
processes) the Regime II approximation performs typically better than the Regime I ap-
proximation, particularly when the load of the first server is high as well. This leads us
to wonder if results of this kind carry over to a more general setting. More specifically,
when considering a more general fluid tandem network (e.g., a n-node tandem system)
with multiple ‘bottlenecks’, does Regime II provide better approximations than Regime I?

An open problem concerns Regime II results in case the increments of the input process
have infinite variance. It is not clear how such results can be established. In the finite
variance case we could define an inverse Laplace exponent that was in line with the exact
inverse for Brownian motion. However, in the case of heavy-tailed input, e.g. for α-stable
Lévy motion, there is no explicit inverse Laplace exponent for all 1 < α < 2, and hence a
fundamentally different approach needs to be developed.
Another direction for further research concerns weak convergence results at the path level
(rather than the stationary workload that was considered in the present paper).
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A Useful Tauberian results

We turn to a law F defined on [0,∞). We study the LST F̂ . Write

µn := EXn =

∫
[0,∞)

xndF (x) (n = 0, 1, . . .)

for the n-th moment. When µn <∞, F̂ (s) may be expanded in a Taylor series as far as the
sn term:

F̂ (s) =
n∑
r=0

µr(−s)r/r! (s ↓ 0).

To relate the tail behaviour of F to the behavior of F̂ at zero, one needs to eliminate the
polynomial

∑n
r=0 µr(−s)r/r!, which can be done by subtraction or differentiation. This

leads to the following definitions:

fn(s) := (−1)n+1

(
F̂ (s)−

n∑
r=0

µr(−s)r/r!

)
,

gn(s) :=
dnfn(s)

dsn
= µn − (−1)nF̂ (n)(s),

thus f0(s) = g0(s) = 1−F̂ (s). Now we are ready to state the following important theorem.

Theorem A.1 (Theorem 8.1.6 in [Bingham et al., 1987]). Let L be a slowly varying function,
µn <∞, where n ∈ Z+, and ν = n+ β with 0 ≤ β ≤ 1. Then the following are equivalent:

• fn(s) ∼ sνL(1/s) as s ↓ 0;

• 1− F (x) ∼ (−1)n

Γ(1−ν)x
−νL(x) as x→∞ when 0 < β < 1.

Lemma A.2 (Lemma 9.2 in [Dȩbicki and Mandjes, 2015]). Suppose that for s ↓ 0,

φ′(s) ∼
n−1∑
i=0

cis
i + ηsν−1L(1/s),

for some constants c0, . . . , cn−1 with ν ∈ (n, n + 1), and L a slowly varying function. Then for
s ↓ 0:

ψ(s) ∼
n∑
i=0

ĉis
i − η

ν

1

(φ′(0))ν+1
sν−1L(1/s),

for some constants ĉ0, . . . , ĉn.
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