PARTIAL COVERAGE BY A RICH UNCLE UNTIL RUIN:
A REINSURANCE MODEL
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ABSTRACT. We consider the capital of an insurance company that em-
ploys reinsurance. The reinsurer is assumed to have infinite sources of
capital. The reinsurer covers part of the claims, but in return it receives
a certain part of the income from premiums of the insurance company.
In addition, the reinsurer receives some of the dividends that are with-
drawn when a certain surplus level b is reached.

A special feature of our model is that both the fraction of the pre-
mium that goes to the reinsurer and the fraction of the claims covered by
the reinsurer are state-dependent. We focus on five performance mea-
sures, viz., time to ruin, deficit at ruin, the dividend withdrawn until
ruin, and the amount of money transferred to the reinsurer, respectively
covered by the reinsurer.

Keywords: reinsurance, time to rwin, deficit at ruin, dividend

1. INTRODUCTION

An effective way of a normal sized insurance firm to refrain from a risky
situation of rapid ruin is to reinsure the surplus capital (the cash fund) by a
large reinsurer, in this paper called rich uncle. We use the latter terminology
since it is assumed that reinsurance is always instantaneously provided, and
that the reinsurer has infinite sources of capital in the sense that it will
never go bankrupt. The rich uncle is guided by purely economical interests
of business, not by considerations of altruism or philanthropy. According to
the reinsurance contract, part of the expenditure burden caused by claims
is covered by the rich uncle, but in return a certain part of the income from
premiums is transferred to the rich uncle. In addition part of the dividends,
that are withdrawn when a certain surplus level b is reached, also go to the
rich uncle. The reinsurance policy, if implemented wisely, should delay the
time of ruin significantly, and should increase the expected profit due to the
withdrawn dividends.
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In our model of the capital of the insurance firm, the input is a fluid
stream of premiums with general state-dependent input rate, and the out-
put is generated by negative state-dependent jumps corresponding to the
claims that are partially covered by the rich uncle (in a state-dependent
way). When the surplus reaches a certain level b (which could be a decision
variable) the extra input from premiums is taken as a dividend, so that the
surplus is bounded by b. Then the withdrawal of dividend is stopped once
the surplus drops below b (at the time of a claim) and so forth.

Let R = {R(t) : t > 0} be the stopped finite risk-type process, whose
content level is the surplus cash where both the input and the output in R
are state-dependent.

Input: We assume without loss of generality and without any impact on the
analysis, that the gross input rate is the constant ¢, but the net input rate
(the dominant factor in the analysis) is a general deterministic function,
say 0 < ag(r) < c¢. However, when level b is reached all the extra input
from premiums is taken as dividends. This means that R < b and during a
dividend period, say I, ar(b—)I represents the net income from dividend
that is taken by the insurance firm, while the part [c — ag(b—)]|I of the div-
idend is transferred to the rich uncle. Overall, ag(x)dz for 0 < x < b is the
net amount of infinitesimal input added to the cash of the insurance firm,
whenever the state is x.

Output: The net infinitesimal output rate Sp(x)dx is a general deterministic
function where 0 < Sp(x) < 1; it means that Sp(x)dx is the net infinites-
imal loss that is subtracted from the content level of the cash, whenever
x is downcrossed at moments of claims (negative jumps); the infinitesimal
amount [1 — Sp(x)]dx is covered by the rich uncle.

Remark 1. The gross input rate and the gross output rate were chosen to
be ¢ and 1, respectively. This choice of gross input and output rates is of
marginal impact on the model; any arbitrary deterministic functions for the
gross input and for the gross output can be taken. From the point of view of
the insured client these gross input and output rates are important, since the
insured clients pay the premiums and get back the entire compensations on
their claims. In practice, the insured clients may not care about the business
agreement between the insurance firm and the rich uncle as long as they pay
and get what they deserve according to the insurance policy.

However, from the point of view of the insurance firm the net input rate
ar(z) and the net output rate Sr(x) are of great importance, since the net
incomes and the net costs of both the insurance firm and the rich uncle are
determined by these functions. In this study we are interested in analyzing
the problem from the point of view of the insurance firm and the rich uncle.
In conclusion, the virtual (gross) claims are iid random variables but the
actual (net) negative jumps in the surplus are state-dependent.

Remark 2. Regarding the choice of b, there clearly is a trade-off with two
opposing effects. If b is large, then there is a risk that the insurance firm
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will not benefit from dividends. On the other hand, as b becomes smaller the
time to ruin also should become stochastically smaller and as a result, the
dividend withdrawn until ruin decreases.

A well-motivated problem of stochastic operations research usually con-
sists of two phases; performance analysis and optimization according to a
certain objective function. In this study, we restrict the attention to the per-
formance analysis part. We focus on the analysis of the relevant functionals
and measures which, in the second phase, can be used as the components
of the objective function. Thus, we refer to the natural decision variable b
as a given parameter without finding its optimal value. Optimization is an
important issue, but we leave it for further research.

The most interesting five performance measures of this model are (i) the
time to ruin, (ii) the deficit at ruin, (iii) the dividend withdrawn until ruin,
(iv) the amount of money transferred to the rich uncle until ruin and (v)
the total insurance coverage until ruin whose source is the rich uncle. In
this paper we shall study the functionals and measures associated with all
these five performance measures. An important feature of the paper is the
fact that the net premium rate and the net claim sizes are state-dependent
in a quite general way, giving us considerable modelling flexibility. However,
this comes at a price; for example, we only determine the mean value of the
time to ruin. When more explicit assumptions are being made about the rate
functions ar(-) and Br(-), one might also be able to determine the Laplace
transform of the time to ruin.

Related literature
Reinsurance in principle gives rise to multidimensional risk reserve processes.
However, despite their obvious relevance, exact analytic studies of multidi-
mensional risk reserve processes are scarce in the insurance literature. An
early attempt to assess multivariate risk measures can be found in Sundt [28],
where multivariate Panjer recursions are developed which are then used to
compute the distribution of the aggregate claim process, assuming simulta-
neous claim events and discrete claim sizes. Other approaches are deriving
integro-differential equations for the various measures of risk and then it-
erating these equations to find numerical approximations [16, 19], or com-
puting bounds for the different types of ruin probabilities that can occur in
a setting where more than one insurance line is considered [14, 15]. In [5]
a two-dimensional functional equation is taken as a departure point. The
authors show how one can find transforms of ruin related performance mea-
sures by solving a Riemann-Hilbert type boundary value problem. It is also
shown that the boundary value problem has an explicit solution in terms of
transforms, if the claim sizes are ordered. In [6] this is generalized to the
case in which the claim amounts are also correlated with the time elapsed
since the previous claim arrival.

A special, important case is the setting of proportional reinsurance, which
was studied in Avram et al. [3]. There it is assumed that there is a single
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arrival process, and the claims are proportionally split among two reserves.
The two-dimensional exit (ruin) problem then becomes a one-dimensional
first-passage problem above a piece-wise linear barrier. Badescu et al. [4]
have extended this model by allowing a dedicated arrival stream of claims
into only one of the insurance lines. They show that the transform of the
time to ruin of at least one of the reserve processes can be derived by applying
similar ideas as in [3].

Bivariate models where one company can transfer its capital to the other
have also been considered in the literature. Recently, Avram et al. [2] pro-
posed a model of an insurance company which splits its premiums between a
reinsurance/investment fund and a reserves fund necessary for paying claims.
In their setting only the second fund receives claims, and hence all capital
transfers are one way: from the first fund to the second. Another example is
the capital-exchange agreement in Chapter 4 of [24], where two insurers pay
dividends according to a barrier strategy and the dividends of one insurer
are transferred to the other unless the other is also fully capitalized. This
work led to systems of integro-differential equations for the expected time
of ruin and expected discounted dividends, which are hard to solve even in
the case of exponential claims.

In [20] a bivariate risk process is considered with the feature that each
insurance company agrees to cover the deficit of the other. Under the as-
sumptions that capital transfers between companies incur a certain propor-
tional cost, and that ruin occurs when neither company can cover the deficit
of the other, the survival probability is studied as a function of initial cap-
itals. The bivariate transform of the survival probability is determined, in
terms of Wiener-Hopf factors associated with two auxiliary compound Pois-
son processes. The case of a non-mutual agreement, i.e., reinsurance, is also
discussed in [20].

Like the present paper, [7] is also devoted to a reinsurance model with
an infinitely rich reinsurer, who pays part of the claim when it would bring
the surplus below a certain threshold. The focus in that paper is on the
discounted case, and on the Gerber-Shiu penalty function.

The features of having a dividend barrier, and of having state-dependent
premium rates, appear in quite a few papers in the insurance literature. The
following is a far from exhaustive list: [8, 9, 11, 23, 25, 29, 31].

Finally, we would like to point out that, methodologically, when it comes
to studying the density of the surplus capital, this paper bears some rela-
tionship to [10]. The latter paper is concerned with a dam process, and does
not consider insurance risk performance measures.

Organization of the paper

The model under consideration is described in Section 2. We there introduce
not only the surplus cash model, but also a strongly related dam process
(taking D(t) = b — R(t)), as well as an other, regenerative, dam process.
The five key performance measures mentioned in Remark 2 are studied in
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Section 4, by relating the surplus cash process to those dam processes. Our
results are mostly expressed in the steady-state density of the amount of
cash, or of the dam content. That density is determined in Section 3. For the
model in full generality, that density is expressed in the form of a Neumann
series which is the solution of a Volterra integral equation of the second
kind. Under specific assumptions on the claim size distribution and the
functions agr(-) and BR(-), more explicit formulas for the density of the
surplus and the five key performance measures can be obtained. In Section 5
we consider the case that the claim arrivals do not follow a Poisson process,
but in which the gross negative jump sizes are exponentially distributed. We
subsequently consider not only the dam model with D(¢t) = b— R(t), but we
also construct a model that is in a sense dual to that dam model, applying
a similar duality as exists between the M/G/1 queue and the G/M/1 queue
(where interarrival and service times are swapped).

2. THE MODEL

The surplus cash process R is a stopped risk-type process with general
fluid state-dependent input of rate ar(z) € (0, c), with ¢ —ar(x) the rate of
transferring funds to the rich uncle; see Figure 1. We assume that R(0) =
b— a, where b— a is the initial investment of the insurance firm. The claims
arrive according to a Poisson process with rate A (can be extended as in
[10] to A(x)). The successive gross claims form a sequence of iid random
variables whose generic size is Srp and whose generic distribution is G(-).
However, the net jump size which is the amount subtracted from the cash
is less than Sp, since a certain part of Sg is covered by the rich uncle.
More specifically: when the cash drops below level > 0 due to a claim, the
infinitesimal gross payment due to that claim equals dz but the net payment
is Br(z)dz (0 < Br(z) < 1) and (1 — Br(z))dz is covered by the rich uncle.
Hence the negative jumps of process R are also state-dependent.

The process R is stopped at 7 which is the time of ruin. That is, 7 =
inf{t : R(t) < 0}, so that R(7) < 0 and if we define Si(x) = 1 for z < 0,
|R(7)| > 0 is interpreted as the deficit at ruin.

We assume that the insurance firm applies a dividend policy such that
whenever the cash reaches level b the whole excess input is taken as a div-
idend; therefore, every interval of time that R spends at level b is called
a dividend period. Then, during an arbitrary dividend period of length I
the dividends are divided between the insurance firm and the rich uncle ac-
cording to the proportion of ar(b—)/c and 1 — ar(b—)/c, respectively (we
assume that ar(b) = 0 but ag(b—) > 0). That is, during / an income of
apr(b—)I goes to the insurance firm and [¢ — ag(b—)][I is transferred to the
rich uncle.

Clearly, by the above dividend policy R never upcrosses level b until 7,
so that for all t <7, 0 < R(t) <b.
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It is natural to assume that

/y ! d d/y ! d
w < 00 an w < 00,
» ar(w) + PBr(w)

for every 0 < x < y < b. The former integral represents the time it takes
to go from any level x up to level y, if no jumps occur in between. This
means that the boundary b will be reached in a finite amount of time from
any level z < b. The latter condition, combined with the finiteness of the
upper boundary b, implies that ruin will occur within a finite time.

A related dam process

b /‘// /‘//
b-a

Dan(t)

LN AN ISR

- - —»

/ z

FIGURE 1. The surplus cash process R and the artificial dam
process Day¢

For the sake of analysis, we define a related process D = {D(t) : t > 0}
where D(t) = b— R(t); see Figure 1. D is called the dam version of the risk
process R and by definition the analysis of D is equivalent to the analysis
of R. It is clear that by definition D(0) = a and 7 = inf{t : D(t) > b}.
In addition, if ag() is the increase rate of R, then ap(-) where ap(z) =
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apr(b—x) can be interpreted as the release rate function with respect to the
dam D and the integral [Y[1/ap(w)]dw represents the time it takes to go
from state y down to state z (where z < y), if no jumps occur, in D. The
so-called dry periods of the dam (where D(t) = 0) are the dividend periods
of the risk process and by definition D(7) — b is interpreted as the deficit at
time of ruin of the surplus in R. The jumps in D are positive and state-
dependent. In a similar way to ag(-) and ap(-) we define Bp(z) = Br(b—z).
Then, every negative jump Sg in the risk process can be interpreted as a
positive jump Sp in the dam process. Notice that a net jump in D has
distribution

1
Bp(v)

€T
(1)  P(net jump size < z — w|jump from level w) = G(/ dy).
w

A regenerative dam process

To analyze the 5 performance measures mentioned in Remark 2 we con-
struct an artificial dam process Dayt = {Dgre(t) : t > 0} from D as follows
(see also Figure 1). Recall that D is a stopped process that is terminated
when it upcrosses b. We construct the process Dgay¢ such that it is a regen-
erative process. For the first cycle we replicate the process D until time 7
— where an overshoot above b occurs. Then, at time 7 the artificial process
Dyt decreases at rate 1 until level b is reached. At that moment, the cycle
of Dayt is terminated and a new cycle restarts from level a. In other words,
{D(t):0<t<7}and {Dgy(t) : 0 <t <7} areequal, but D, (t) contin-
ues after 7, going down at rate 1 until it reaches b. Then the cycle of Dayt
ends, so that the cycle length of Day¢ is T' = 7+ Dyt (7) —b. The dam Dayg
can be interpreted as a special version of a Markov regenerative dam with
general release rate ap(w), state dependent jumps rate 8p(w) and pseudo
finite capacity b. The pseudo finiteness of the dam is introduced with the
convention that the content of the dam is not finite, but jumps that arrive
and find the content level above b are not admitted to the buffer. As will
be seen below, the performance measures (i)-(v) mentioned in Remark 2
depend on the steady state distribution of Day¢.

3. THE DENSITY OF THE ARTIFICIAL DAM PROCESS

In this section we shall analyze the law of D,p¢. That law will be used in
the next section for determining the five key performance measures listed in
Remark 2.

Let m denote the probability mass of Day¢ at 0. Remember that ap(x) =
ar(b—z) for 0 < x < b, and Bp(x) = Br(b — x). Furthermore, define
ap(z) := 1 for z > b, because by construction Dg(t) decreases at rate 1
above level b. Also, define Sp(x) := 1 for > b, because the reduction of
the gross claim sizes by Br(x) € (0,1) only applies as long as the surplus
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x > 0. For simplicity of representation we define

(2) B(z) = [ mdy, z > 0.

Theorem 1. The density f(-) of the stationary distribution of the Markov
process Dayt satisfies the integral equation

Ao L= G(B(z) = B(w))]f(w)dw
+Ar[L - G(B(2))], O<z<a,
A Jy 1 = G(B(z) — B(w))] f(w)dw

(3) ap(@)f(z)= +An[l — G(B(z))] — f(b), a<xz<b,
AU = G(B(x) — B(w))]f (w)dw
+A7r[l — G(B(2))], x> b.

\

Proof. Equation (3) can be derived by level crossing theory (LCT). The key
idea is that, in steady state, the rate of downcrossings of a level should equal
the rate of upcrossings. In each of the three intervals, ap(z)f(x) is the rate
of downcrossings of level z. For z € (0,a) U [b, c0), the righthand side in (3)
gives the rate of upcrossings of level . Note that the arrival rate of upward
jumps is A, and when starting from w € (0, A b) the probability to jump
above x is [1 — G(B(z) — B(w))]. Thus, by PASTA (Poisson Arrivals See
Time Averages, cf. [30]) the steady-state probability to upcross level x by
a jump is given by )\fox/\b[l — G(B(z) — B(w))]f(w)dw. Moreover, level x
can also be upcrossed with a jump from level 0. The rate of such jumps is
An[l — G(B(x))].

However, the situation is more complicated for = € [a, ). Here the number
of upcrossings until ruin minus the number of downcrossings until ruin (until
Dyt reaches b) is equal to one. ap(b)f(b) = f(b) is equal to one divided
by the mean length of a cycle of Dagt (f(+) is right-continuous; we shall see
that f(b—) = 0). Hence for = € [a,b), the rate of downcrossings of level
x equals the rate of upcrossings of level  minus f(b). That results in the
second equality of (3). B

To solve for f(-) define

AL - G, gy )]

K(z,w) = o (@)
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to get the integral equations

foxK(wi)f(w)dw+7rK(fU70), 0<z<a,
(4)  f(z)= fO’“" K(z,w)f(w)dw + 7K (z,0) — aj;(fi), a<z<b,
f(f K(z,w)f(w)dw + 7K (x,0), x >b.

Formula (4) is a Volterra integral equation of the second kind on (0, a) and
on [a,b). These equations are known to be uniquely solvable by a Neumann
series (in the space of continuous functions). We shall now provide that
solution. Define
x xX
Knn(ww) = [ KoKl = [ KiK.y
y=w y=w

where Ki(x,w) := K(z,w) for 0 < z < a,

o
(5) fl@) =7 Kn(z,0) = 7K*(2,0), 0<z<a,
n=1
where it is easy to show that the Neumann series > 2 | Ky (x,0) = K*(z,0)
in (5) converges for every = > 0.
Next, for a < z < b,

:/O“K(x,w)f(w)dw+/””K(g;7w)f(w)dw+wK(x’0)_ £(b)

ap(z)’

Note that f(x) is known on (0,a) except for the factor . Let
f(b)

ap(z)

/ K(z,w)f(w)dw + 7K (z,0) — , * € [a,b).

[(+) is a known function except for the constants 7 and f(b). Also note that
only given functions and parameters and f(-) restricted to (0,a) appear in
the definition of I(-). We have

(7) f@) =1(z)+ [ K(z,w)f(w)dw, a<az<b.

Iterating, we get another Neumann series: f(-) can be written for x € [a, b)

* f@) = 1)+ [7 K w) f(w)dw

= (=) + 300 J, Kn(z,w)l(w)dw.
To determine f(-) for z > b one can simply substitute the solution of f(-)
for z < bin (4).
We have determined f(-) except for the constants 7 and f(b). These
unknowns can now be computed from two equations. By substituting z =
b— and x = b in (4) (or in (3)) we get

(8) f(b=) =0,
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which by (6), using ap(b) = 1, is tantamount to

b
£(b) = 7K (b,0) + /0 K (b, w) f (w)duw.

Finally use the normalizing condition

(9) /0 " fe)de =1,

and f(-) is found for all z > 0.

3.1. Special Case - Exponential Jumps. In this subsection we consider
the special case of exponentially distributed gross jumps: G(z) =1 — e %,
x > 0. Now a direct solution for f(-) is possible. Next to B(-) introduced in
(2) we also define:

(10) A@) = J§ spm®-

We get in (3):
(11)

(A [ [eHB@=BWI £ (w)dw + Are B, 0<z<a,

A Jy [e HB@=BW f(w)dw + Ame #B@) — f(b), a <z <b,
ap(x)f(r) =

A fob[e_“[B(x)_B(w)]f(w)dw + A #B(@), x>D.

Now multiply both sides of (11) by e*B®) We get
(12)
Ay e B f(w)dw + A, 0<z<a,

A [T erBW) f(w)dw + A — etB@ £(b), a <z <b,
aD(x)euB(w)f(x) _ fO f( ) f( ) >

A fob etBW) f(w)dw + A, x>b.
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Solving for f(-) in (12) we get

(13)
a;‘:(()x)e*“B(x)“‘A(“), 0<zx<a,
fla) =4 ki emuBEa@ SO @A) [ %dy, a<z<b,
koe™HT T >b,

where kg, k1, and ko are constants. To find the constants we have the
following:
(1) We have kg = Am. To see this, substitute = 0 in both (11) and
(13).
(2) Clearly f(b—) = 0 (see also (8)); this may be seen by compar-
ing the second and third equations of (11). It implies that k1 =

b enB(y)—AA(y)
f(b) fo Wdy
3) Level a is point of discontinuity for f(-). We have (cf. (11)):
(3) P y
ap(a)f(a—) = ap(a)f(a) + f(b).
By substituting © = a in (13) we get
Fo = ks — (D) /a et BY)—AA(y)
0=Fk1— —
0 Bpy)
(4) To compute kg recall that for x > b we take ap(x) = fp(z) = 1. By
substituting the solutions of f(-) for z < bin (12) for x > b we get

f(z) = e rB@ fob etBW) f (w)dw + \weHB@)

dy.

— e~ HIBO)+z-b] [ Ji L M)y
ap(w

+fb< ki AA(w)

a \ ap(w)

e ) ]

so that
ky = Mme HBO= 4 )\o—nlB0)-b] [/a AT AAW) g1,
0 ap(w)
b w B(y)—\A
—i—/( Z M) _ 1(b) e)‘A(w)/ Mdy)dw _
o ap(w) ap(w) 0 0

Now kg, k1 and ko are expressed in terms of each other and 7. The
final solution is obtained via the normalizing condition (9).
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Example 1. We briefly consider a special choice for ap(z) and Bp(x),
in addition to the assumption that the jump sizes are exponential. More
precisely, we take

g, T <V,

(14) ap(x)=¢ o v<x<b
1, x>0,
and
BO) T < 77
(15) Bp(x) =4 B, v<z<b,
1, x>b.

We assume, without loss of generality, that 0 < v < a < v < b, but a similar
analysis can be performed for some other combination of the parameters v,y
and a. It is natural to assume that oy > ag but this assumption does not
have any effect on the analysis. It is now trivial to verify that

T

o0’ r<v,
(16) Alx) =3 s %55 v<uxz<b,

b—
OCLO‘FTV‘FJ?—(), l’Zb,

1

and
6%’ x <7,
(17) B(x)=4 7 T 55 v <z <b,
l—|—bﬁf—7+x—b, x> b.
0 1

Substitution in (13) gives the density f(-).

4. ANALYSIS OF THE MAIN PERFORMANCE MEASURES

In this section we express the five key performance measures of the cash
surplus model in the density f(-) that was determined in the previous sec-
tion.

Performance measures (i) and (ii): Time to ruin and deficit at
ruin

Lemma 1. Let f(-) be the steady state density of Dayt and let Z be the
deficit at ruin of R (which is also the overflow Dgy(T) — b) and define the
distribution Hz(x) = Pr(Z < z). Then

() Hzw)=1- 155

so that foo Fw)d
b w)dw
B2

(i6) Er= bty

and
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Proof. (i) The function

f(xz+b)

—_— > 0,
fo f(z+b)dz’ v

is the conditional steady state density of Dart given Dayty > b. By deleting
the time periods in which D,y < b and gluing together the time periods in
which Dayt > b we obtain a typical sample path of the forward recurrence
time of a renewal process whose interrenewal times have the same distribu-
tion as Z. Designate the equilibrium density of Z by h(-). Then by renewal
theory

. 1-— Hz(.fv)
he(z) = A
That means that
fo (z+b)d EZ
Substituting x = 0 we get
fo (z+b)d
19 PZ="=""‘
(19) 70)

The proof of (i) is complete by substituting (19) into (18).

(ii) By definition of Day¢, ET = ET — EZ. Thus, it is enough to show that
ET = ﬁ. But level b is downcrossed only once during a cycle of Dayt, and
this downcrossing occurs at the end of the cycle T. By the strong Markov
property, it is possible to define the cycle as the time between successive
downcrossings of level b. Clearly the expected cycle length and the rate
of renewals are reciprocal to each other. But by LCT, f(b) is the rate of
downcrossings of level b, since ap(b) = 1 and the cash process decreases at
rate 1 whenever it is above level b. The proof is complete. 1

Performance measure (iii): The dividend until ruin

Lemma 2. Let Ry;, be the dividend withdrawn until ruin. Then

ap(0+)[1 — [;° f(x)dz]
f(b)

Proof. By the normalizing condition (9), 1 — fo x)dz is the steady state
probability 7w that the dam is empty, Wthh equals the steady state proba-
bility of being in a dividend period for the surplus process. The mean total
length of all the dividend periods during the cycle T is obtained by multi-
plication with ET', which equals W Finally observe that the net income

ERdiv =

fraction for the insurance firm during dividend periods is ar(b—) = ap(0+).
The result follows. &
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Performance measures (iv) and (v): The amount of money trans-
ferred to/from the rich uncle

Designate the expected amount of money transferred from the firm to the
rich uncle until ruin by R, and the expected amount of money transferred
from the rich uncle to the firm until ruin by R¢..,. We compute Ry, with
the convention that during dividend periods the proportion 1 — % of
the dividend is transferred to the rich uncle. Similarly, we compute R .o,
with the convention that ruin means bankruptcy, which means that all the

deficit at ruin is covered by the rich uncle.

Lemma 3.

(S le=ap @) f(@)dw+rle—ap(0+)]

(@) o = 7 :

.. bri— z)]ap(x) f(x)dx
(1) Rypom = LE=PREIEPOIOE 4 oy — g, (a)]da,

where the payment of the deficit by the rich uncle is not taken into account
Proof. (i) We have
Ry = E|f) e = ap(Dant(®)Ip,,.c ]

= ETE[(C - aD(Dart(OO)))IDart(oo)<b]
(20) b
= ET [fo [c — ap(x)]f(z)dx + 7[c — OZD((H‘)]}

_ Jle—ep@)]f(@)drtmlc—ap(0+)]

- f(®) ’
where D,,+(00) is the steady state random variable of Dyyt. The first step of
(20) is the definition of Ry,. The second step is obtained by renewal theory.
To explain the third step we note that up to time 7 the process Dapt < b.
Finally, in the fourth step we substitute ET = 1/f(b).

(ii) Similarly to (i), we have, with N(z,dt) the number of downcrossings

of level x in [t, ¢ + dt):

T
(21) Rprom = F [ | 1= 8o Dur )N (D0, 1)

Let us now take a closer look at the rate of downcrossings of level x. Every
cycle of Dyyt starts at level Dy, (0) = a and after a single upcrossing of
level b (at 7) the cycle T (T = 7 + D(7) — b) is terminated at level b+.
Accordingly, by level crossing theory for any x € (0,a) U [b, 00) the long run
average number of upcrossings is equal to the long run average number of
downcrossings. Here, since Dap¢ is an artificial process, the set of states
{z : x € [b,00)} is not of relevance, since [p(x) = 1 by assumption for
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{z:x € [b,00)}. However, for any = € [a,b) the number of upcrossings until
ruin minus the number of downcrossings until ruin per cycle is equal to 1,
which is the number of downcrossings of level b+. By renewal theory this
means that in Day¢ for any = € [a,b) (in terms of long run average) we have

{rate of upcrossings of level £} — {rate of downcrossings of level b+}
= {rate of downcrossings of level z}.

Formally, since by definition ap(b+) = 1, we have

aD(I)f(x)7 0<$<a7
{rate of upcrossings of level z} = ¢ ap(z)f(z)+ f(b+), a<z <b,
f(x)a x>0,

where in the region © > b we take into account that, by construction of
Dart, ap(z)=1. It now follows that
(22)

Bjrom = B Jy L= Bp(Dart ()N (Dare(), d1)|
= BT [[J[L - Bp(@)an(@)f(2)ds + f(b) [/[1 - Bp(x)]dz

b
_ z)]ap(z) f(x)dz
Jol1=8p( ])c](b)D( Jf(@dw | S = Bp()lda.

Remark 3. At first glance, it looks surprising that the second component
of Rerom in Lemma 3 is independent of the expected cycle length 1/f(b).
However, in every cycle there is one extra downcrossing between a and b,
that gives a contribution to Rtrom.

4.1. A Proportionality Result. We derive two results which are formu-
lated in terms of the steady state density f(-). The first result is used as a
preliminary for the second, which is a proportionality result. In Subsection
5.1 below we consider the special case of exponential interarrival times and
exponential gross jumps. Then, the proportionality result becomes a more
explicit result.

(1) Let J be the number of dividend periods until ruin. Then

B 1— [ f(z)da
Af(b)
To see this note that, with Ry, the dividend withdrawn until ruin:

ERgyiy = ap(0+)EJEI. Clearly, for the mean dividend period we
have EI = 1/\. Now the result follows by Lemma 2.

(23)
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(2) Let 6(x;b) be the probability that level 0 is reached before level b is
upcrossed by Dart when the starting point is 0 < x < b, and let

ob) = /0 " 0w b)AG(B(x)).

Then 1 — 6(a;b) can be interpreted as the probability that no divi-
dend period occurred until ruin and 1 — O(b) can be interpreted as
the probability that by looking backward in time, the latter divi-
dend period was the last dividend period until ruin. Then the next
proportionality result holds:

6la;b) _1— [y fla)de
1-e(0)  Af()
To see this recall that by the strong Markov property

(24)

1—0(a;b), n =0,
Pr(J =n) = { )
O(a;b)(1 —O(b)O(B)", n>1.
Then,
_ 0(a;0)
EJ —_— 1_7(_‘)(@-

Now compare with (23) and the result follows.

5. THE DuUAL MODEL

A key tool of the analysis in Section 3 is level crossing theory. The solution
of the balance equation is based on the assumption that the arrival process
of claims is a Poison process with rate A and the claim sizes are iid random
variables with general distribution G(-). We then solve the balance equation
(3), where, by PASTA, the same steady state density appears in both sides
of the balance equation (3).

In most cases in which the arrival process is not a Poisson process an exact
analysis seems very intricate if not impossible. Indeed, a balance equation
of type (3) still holds (see Cohen [17]), but it does not provide a solution of
the steady state density, since the steady state law and the law just before
jumps in the risk process are different. As a result, the balance equation
comprises two unknowns which are the steady state density and the limiting
density of the state just before jumps (in the language of queueing these are
the densities of the work and that of the waiting time). However, there is
a special case that is tractable although the arrival process is not a Poisson
process. This is the case in which the claims arrive according to a renewal
process (with interarrival times having distribution C(+), say) and the gross
negative jump sizes in the surplus Ryoq are exp(u) distributed.

Clearly, under this assumption the surplus cash process is not a Markov
process. To solve the steady state density we use an approach based on
duality between M/G/1 type dams and G/M/1 type dams. Other variants
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of this approach have been introduced in [1], [26] and [27].

The non-Markov model R,,0q4

Between negative jumps the original risk process R increases at input rate
ar(z) (0 < z < b) until level b is reached. After reaching level b the risk
process R stays at level b until the next negative jump and so forth. We
now define a modified risk process Rmod = {Rmod(t) : ¢ > 0} such that
below level b the modified process Ryoq is a probabilistic replication of R,
but when R reaches level b (if reached) the process Rpmoq still continues to
increase at rate 1. Then, the time of the first negative jump in R (at the
end of I) is also the time of a negative jump in Rynod, but the latter jump
equals I plus an exp(u) distributed amount — and from that time R and
Runod are again stochastically equal until the moment (if it occurs) that
level b is reached again and so forth. This means that every negative jump
in Rpmoq that starts from any level > b is also a downcrossing of level b.

The gross negative jumps in Ryeq are iid, exp(u), random variables, but
the net jumps are neither independent nor identically distributed; cf. (1).

Formally, we define the stopping time Lg for both R and Ry,0q such that
Lo = inf{t : R(t) = b} = inf{t : Rmoa(t) = b}. Thus {R(t) : t < Lo} 2
{Rmod(t) : t < Lo}. The time of a negative jump from level b in R is also the
time of a negative jump in Ry,0q, but while the starting points are different
the end points of the jumps are stochastically the same. From that time
on the probabilistic replication of Ryoq from R is renewed (until reaching
level b again, if this event occurs). For every increment of time ¢ such that
R(Lp +t) = b we have Ryodq(Lo +t) = b+t. Next, let Ly = inf{t > Lo :
R(t) < b}. We then define Rynoq such that Ry,oq(L1+) = R(L1+). In words,
the probabilistic replication of Ry,0q from R is renewed at Li. Note that
every time of a negative jump in R is also the time of a negative jump in
Rmod, but a negative jump that occurs whenever Ry,0q>b automatically
downcrosses level b and by the memoryless property of the negative gross
jumps the gross undershoot below b in Ryoq is also exp(u) distributed.
Finally, we assume that R,oq is a regenerative process whose first cycle
was described above. That is, after downcrossing level 0 (time of ruin) a
new cycle starts from level b — a.

The steady state analysis of Rmoq is based on a certain duality argument
between non-Markov risk processes with exponential negative jumps and
Markov dam processes with positive jumps. This argument was developed
in Perry and Stadje [26]. In fact, the risk model introduced in [26] is only
a special case of Rmod, because the negative jumps there are iid random
variables, while the negative jumps of Ry0q here are not iid random vari-
ables, since they are state dependent. It should be noted that despite the
model here is more general than that of [26] the idea behind the methodol-
ogy is the same, since the construction of the Markovian dual dam process
Dgual = {Dduai(t) : t > 0} from Rpyoq is due to sample paths.
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FIGURE 2. The construction of Dgyal from Riodq, via M

The construction of Dgual from Ry,oq is carried out in two phases; cf.
Figure 2. First, we construct the artificial mountain process M = {M(¢) :
t > 0} from Rynoq by replacing the negative state dependent jumps of Ryod
with decreasing fluid OFF periods. That is, the state of M at the end of
each OFF period is stochastically equal to the state of Ryoq immediately
after the corresponding negative jump. As a result, the mountain M is
a process whose continuous sample path alternates between independent
ON and OFF periods, where the ON periods are iid random variables with
generic distribution G(-) and the OFF periods are independent and exp(u)
distributed. Also, when the content level is equal to z > 0 then during the
ON periods the rate of upward slope in M is ar(x) and during OFF periods
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the rate of downward slope in M is Sz (z). In the second phase we construct
the dual dam process Dgyual from M by deleting the ON periods and gluing
together the OFF periods. Dgual is a Markov process, since the positive
jumps arrive according to a Poisson process of rate A, but note that the
positive jumps of Dgyal are state dependent (cf. Figure 2) in the sense that
if the jump starts at level  the probability that the jump will be greater
than y is equal to 1 — G(f;”y aRl(w) dw) (note that ar(x) =1 for all z > b).

We designate the cycle of M by Tiod + Tdual, Where T,,0,q is the cycle
(time to ruin) of Rimod and Tgyq is the cycle of Dgyal. The next lemma
relates the law of Ry0q4 and that of Dgua) where, for the sake of simplicity,
we assume that the starting point of Ryneq is a (instead of b — a).

Lemma 4. Let fr__,(-) and fp,,.,(-) be the steady state densities of Rmod
and Dqual, respectively. Then for any z > 0,

T T 0
% ggiga;;fDdual (:E) - g;gg;)) fDdual (0) ) 0 <z < a”

meod (:C) = ET dual Br(T)
ETmod aR(CE)

fDdual(x)7 x 2 a.

Proof. (i) x > a. Let Ur,,,(x) and Dgr__,(x) be the number of upcross-
ings and the number of downcrossings of level  during the cycle 7,04 of
Rmod, respectively. Similarly, let Up,,,(z) and Dp,,,(z) be the number
of upcrossings and the number of downcrossings of level x during the cycle
Tdual Of Dgual- Rmod and Dgua) are regenerative processes; thus, for every
x > a every upcrossing in Ryod [Ddual] is compensated by a downcrossing
and thus Ur,__,(z) = DR, ,(x) and Up,,,, () = Dp,,,, (7).

By the construction of Dgua1 from Rynoq (via M) the probability law
of the number of upcrossings in R4, of any level z > a, is equal to the
probability law of the number of upcrossings in Dgual, which means that
the expected number of upcrossings in one cycle of Ryoq is equal to the
expected number of upcrossings in one cycle of Dgyar. Thus

(25) EURmod (;U) = EDRmod (J:) = EUDdual (x) = EDDdual (x)

By renewal theory EUR,,,(2)/ETmod and EUpyg,,, (z)/ETua are inter-
preted as the long-run rates of upcrossings in Rnoq and in Dgyal, respec-
tively. By LCT (see Cohen [17])

(26) EUR,p0q(®)/ ETmod = AR() [Rpmoa (¥)

and

(27) BEUD 401 (%) / ETdual = BR(2) fDyye (2)-
Now substitute (26) and (27) in (25) to obtain

(28) ETmod - OR(%) fRumoa (¥) = ETduat - Br(2) [Daya (%)

(i) 0 < x < a. Consider the sample path of a cycle of the mountain M.
On the one hand, for every x € [0, a) the number of downcrossings is 1 larger
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than the number of upcrossings. Thus, by construction of Dgya) this means
that the number of downcrossings of level x in Dgya; is 1 larger than the
number of upcrossings in Rmoq- On the other hand, level 0 is downcrossed
only once (at the end of each cycle) in both Dgua and Ryeq. Thus, with
probability 1

(29) URmod (0) = DDdual (O) = 1
Thus
(30) URppoa (%) + URppou (0) = DRy (2) 2 Doy (@),

where the second step of (30) is obtained by the construction of Dgya; from
Rumod. Take expectations in (30) and substitute (29) to obtain

(31) EURmod (LU) = E‘DDdual (ﬂ?) - E‘DDdual (O)
Now apply (26) and (27) to (31) in order to obtain

ETmod - O‘R(x)meod (z) = ETdual Br(T) fDaua (z) = BT dual 'ﬁR(O)fDdual(O)-

The proof is complete. I

It follows by Lemma 4 that the steady state law of Ry0q4 can be expressed
in terms of the steady state law of Dgual- Before calculating the density
fDgua (+), We introduce

Ar@) =[5 anar @
z

The Markov model
The process Dgual is a Markov process. The times between positive jumps
are exp(u) distributed and the gross positive jumps have distribution C(-),
so that the probability that a net positive jump will be greater than zx is
1 — C(Ag(z)). In order to ease the notation we introduce the constant
(unknown yet) ¢ := Br(0) fDgyu (0)-

The next theorem is a balance LCT equation for the steady state density
of Ddual-
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Theorem 2. Let C(-) be the distribution of the gross jump sizes in Dgual-
Then, the balance equation for the steady state density fpg,,,(-) is given by:
(32)

oy [1— C(Ar(z) — Ar(w))] fDgue (W)dw + ¢, 0 <z < a,

pfy 1 = C(Ar(z) — AR(w))] fD gar (W) dw
BRr() fDgua () = +([1 = C(Ar(z) — Ar(a))],

a<x<hb,

wfy Il — C(Ar(z) — AR(w))] fDgua (w)dw
+([1 - C(Ag(x) — Ag(a))],

x > b.

Proof. For all x > 0 in Dgya) the long run average number of upcrossings is
equal to the long run average number of downcrossings (per time unit). The
left hand side of (32) is the long run average number of downcrossings of
level z, so that the right hand side should be the long run average number of
upcrossings of the same level. The long run average number of upcrossings
per time unit is analyzed in three regions.

(i) The region (0,a). There are two types of net positive jumps in Dgyar:
Poisson jumps and jumps that occur after reaching level 0. The latter jumps
occur only at the beginning of the cycle (or alternatively, at the end of the
previous cycle) and they upcross level a with probability 1. The component
pfy 1 — C(Ar(x) — Ar(w))]fDyye (w)dw is the rate of upcrossings due to
the Poisson jumps and the rate ( is the rate of upcrossings after reaching
level 0.

(ii) The region [a,b). Similar to case (i), but the rate of upcrossings of level
x is ¢[1 — C(Ar(x) — Ar(a))], since the jump starts at level a.

(iii) The region [b, 0o0). Similar to case (ii), but jumps that arrive to find the
surplus Dgua1 above level b are not admitted to the system. [

To solve for fp,,,,(«) in (32) we use the notation

pll — C(AR(z) — Ap(w))]

Q(z,w) = Q1(x,w) := Bn(r)

Also, define

T

Quir(z,w) = / Q1 (2, 9)Qu(y w)dy.

w
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We get in (32)

% + fox Q(m7w)fDdual (w)dw7 0 <x < a,

(33)  fDaua(®) = %Q(m, a) + [ Q@,w) foguu (w)dw, a <z <D,

%Q(az, a) + fé) Q(z,w) fogy. (w)dw, x >b.

Solving for fp,,, (") in 0 <z <a we get

anw ¢ g
BR S+ Z/ ¢ = g HOValo)

n=1

(34) fDdual (:U

where V,,(z) := OmQ”(?wl;)d

To solve for fp,,,,(-) ina <z <b we introduce

= £ T, a ’ X, w w)aw
m(e) = > Q) + /0 Q) g (w)d

so that, for a < x < b:

FDgua(2) = mlz) + " Qs w) fpg (w)dw

Iteration now yields:

(35) e +Z / Qu(, w)m(w)dw.

In the region x > b we simply substitute the solutions (34) and (35) into (33).
From the first equation of (33) it follows that ¢ = Sr(0) fDy,.(0). Finally
we obtain fp,,,,(0) by using the normalizing condition, as ¢ appears linearly
in each of the fp,,,,(«) expressions on (0,a), [a,b) and [b,00). Lemma 4
finally gives fr,_ . ().

Now we are in position to find the five performance measures for the risk
model with renewal arrivals and exponentially distributed gross claim sizes.

Performance measure (i): Time to ruin

To find the mean time to ruin E7,,,4, we observe that
(36) ET 04 = [rate of downcrossings of level 0 by Rmod]fl ,

so that we need to find the rate of downcrossings of level 0 by Rynoa. To0
this end we designate H(-) as the limiting distribution of the state in Rpmod
just before a negative jump. Clearly, H(-) is an absolutely continuous dis-
tribution for all 0 < x < b, but it has an atom at level b. Let h(-) be the
density with respect to H(-). Then, with A denoting one divided by the
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mean interval between two negative jumps of the renewal process of claim
arrivals, the rate of downcrossings of level 0 by Rmoq is equal to

b
(37) /\/ efuBR(w)h(x)d:E—|—aR(b—)meod(b—)e*“BR(b),
0

The first component corresponds to jumps in Ryoq from some level z €
(0,b). The second component is the rate of downcrossings that start from
(above) level b. The downcrossing rate of level b also equals the upcross-
ing rate of level b, which is ag(b—)fr,,,q(b—). It has to be multiplied by
e "Br(®) hecause it has to go all the way through 0.

Now let us determine the density A(-). From the duality between Rmod
and Dgqua) the level just before a negative jump in Ry0q is stochastically
equal to the sum of the level just before a positive jump and the net jump
size in Dgual. But by PASTA the law of the state just before a positive
jump in Dgyar equals the steady state law of Dgyar (here the usefulness of
the duality becomes evident: in the original R4 process we cannot use
PASTA because the times between negative jumps follow a renewal process
but not a Poisson process, but in the dual process Dquai PASTA can be
applied). This means that

(33) W) = [ o0 ClAn(z) = Anu).
We thus have, combining Equations (36), (37) and (38):

b x
ETmoa = 1/]A /O e HBr(z) /O D g (W)dwC(AR(z) — Ag(w))da

(39) +  ar(b=)fr.,(b—)e HBRO)],

Performance measure (ii): Deficit at ruin

Clearly, by the memoryless property the deficit is exp(u) distributed, since
it is the undershoot below level 0 in Ryo4-

Performance measure (iii): The dividend until ruin

By the duality between Rpyoq and Dgual, the length of the dividend
period in Ry,0q is stochastically equal to the size of the overshoot in Dgyar-
The proof of Lemma 1 holds also in this case with respect to fp,,,,(-). That
is, let I be a dividend period in Dgua1- Then

_ fboo ID gy (W)dw

B = o (0) faa )
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Performance measures (iv) and (v): The amount of money trans-
ferred to/from the rich uncle

In the proof of the next lemma we use similar arguments as in that of
Lemma 3. However, there are several changes.

Lemma 5.

() Rio = ETmon | gle = @r(@)] Romoa (@)d2 + e = ar(6-)]] [ fRomaa (#)de,

(i) Rfrom = ETmod Ji [l — Br(2)] fDgue (x)dz
= Bmod | Jy[1 = Bp(@)lan(@) fRpmea ()| + [5[1 = Bp(a)]da,
where ETpoq is given in (39).
Proof. (i)
Rio = E[[y™"[c — ar(Rmoal(t))]dt]
= ETmodF[c — ar(Rmod(0))]

= ETmod | [1e = QR (@) fRymoa (0)d2 + [ = aR(6=)] [} fRpmaa (2)de]

(i)
b
Rirom = ETmOd[/ [1—Bgr(x)]x(rate of downcrossings of level  byRmod )dz.
0

That rate of downcrossings equals the rate of downcrossings in the dual
process, and hence

b
(40) Rifrom = BT /O 1 — B ()8 () D g (2)d2].

Using Lemma 4 we can also write this as

b
Rprom = Efmo / 1~ Br(0))BR(@) fgun (2)dz

(41) T B(0) fgn (0) /0 (1= B (@) fgun (x)da].

The last part of (ii) now follows by observing that E7,,00 = (B5(0) fDyue (0)) 71 B

5.1. Poisson Arrivals: Explicit Result for 6(a;b). We now consider
the special case in which the times between successive claims and the gross
claim sizes are exp(A) distributed and exp(u) distributed, respectively. In
this special case the probability #(a;b) can be computed explicitly. The
computation is carried out with regard to the dual dam process Dgual and
it is based on cycle maximum analysis. Define M as the cycle maximum of
Ddual — with the restriction that if the cycle maximum exceeds b, we put
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M equal to b. By the duality concept M is also the maximal value of the
surplus Ryoq until ruin.
The approach is based on the idea that for = < b:

(42) 6(a;b) = Pr(M < b | Dgyar(0) = ).

The analysis of the latter probability is an important issue since 1 — 6(a;b)
is the probability that no dividend is paid until ruin.

The next theorem is applied to the process Dgual and it is similar in
spirit to Theorem 1 in [13]. Recall that 6(z;y) can be interpreted as the
probability to reach level 0 before upcrossing level y when the starting point
iszforalla <z <y <band let rp(z) be the hazard rate function of M at
x. In the theorem, we express ry(x) into 6(x;x). Thereafter we determine
0(x; x), thus also obtaining ry/(z) and hence Pr(M < z). Finally we use
(42) to obtain 6(a;b).

Theorem 3. Fora <x <,

ry(x) = 0(x; x).

ap(z)
Proof. By assumption, the times between negative jumps in R are exp(\)
distributed and the gross negative jumps are exp(u) distributed. It follows
by the duality argument that the times between successive positive jumps in
Dguar are exp(u) distributed and the gross jump sizes are exp(\) distributed.
Thus, by the lack of memory property of the gross jumps (in Dgya)) the
hazard rate at [z,z + dx) is Adz/ap(x). Since the latter argument holds
for every = < b, regardless of the history of Dqual suppose that x, for any
arbitrary a < x < b, is a record value. This means that M € [z,x + dx) if
and only if the latter record value at z is the last record value in the wet (i.e.,
non-zero) period of Dgyual and the probability of the latter event is 0(x; ).
By the strong Markov property, we find rj/(x) by taking the product of
A and 6(z;z). N

ap(x)

To compute O(x;z) note that, due to the fact that Dgyal is a Markov
process, we have for all a < z < b the equation
(43)

O(x;z + dx) = [1 Ade

ap(z)

- B/;d(fc)} [e(w;@ (1= b))

To understand the right hand side of (43) note that the paths with ar-
rivals in [0, ﬁgg(ﬁx)) do not provide a contribution to Dgqual, since they have
probability pdx and will upcross level x + dx unless the further event of

service termination in [0, =% <) (having probability a);d(ﬁ: )) occurs. The

> ap(z)
term 6(z;x) in (43) then corresponds to paths which downcross level x and
do not upcross it again. The term (1 — 6(z;x)) a/]\;lé)H(:x; x) corresponds to
paths which downcross level x and upcross again before hitting level 0, with

O(x;z)| + o(dx).
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a jump terminating at u € [ x, x+dx] where the value of u does not matter,

since 0(z;u) = a)]‘jd(g;) (x; ) + o(dz). Hence, from (43) we get
. . 2( .
(44) 0 (2;3) = N (z; ) B ub(x; x) M (:E,:C)

ap(z)  fpr)  ap(z)

To simplify (44) substitute for x > a:

n(z) =1/6(x; ).

We get after some elementary algebra

(45) 7@ 400 (= 5 ) = oy

ap(e)  Bp(r))  ap(z)
Recall the definitions of B(x) and A(zx), cf. (2) and (10). By multiplying
both sides of (45) by e} @)~#B(®) we get
(46)

M@ -1B@) |0y Loy (2 | Z p@-uBe) A
' [””*””(a]a(m) ﬁD<x>>] @

Solving for n(x) in (46) we get

n(z) = L(x)e—AA(wHuB(x) + coe M@ +1B(@)

)

where L(z) = [¢ AW =1BY) aD)‘(y) dy and cp is a constant. Obviously,

n(0) = 1 so that ¢y = 1. We thus get
(47) n(x) = [L(x) + L) M@ TrBE),
Now substituting (47) in Theorem 3 we obtain

Ae A () —pB(z)

rM(x> = OéD(x)[L(:c) T 1},
so that
0, r <a,
(48) Pr(M <z) = )
1—e Ja TM(y)dy’ a<xz<b,
(49) Pr(M = b) = e~ Ja ru@)dy,

Finally, one can conclude from (48) and (42) that

b AAA(@)—pB(o)

0(a;b) =1 — ¢ Jo ap@i@r @
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