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METASTABILITY ON THE HIERARCHICAL LATTICE

FRANK DEN HOLLANDER, OLIVER JOVANOVSKI

Abstract. We study metastability for Glauber spin-flip dynamics on the N -dimensional hierar-
chical lattice with n hierarchical levels. Each vertex carries an Ising spin that can take the values
−1 or +1. Spins interact with an external magnetic field h > 0. Pairs of spins interact with each
other according to a ferromagnetic pair potential ~J = {Ji}ni=1, where Ji > 0 is the strength of
the interaction between spins at hierarchical distance i. Spins flip according to a Metropolis dy-
namics at inverse temperature β. In the limit as β →∞, we analyse the crossover time from the
metastable state � (all spins −1) to the stable state � (all spins +1). Under the assumption that
~J is non-increasing, we identify the mean transition time up to a multiplicative factor 1 + oβ(1).
On the scale of its mean, the transition time is exponentially distributed. We also identify the set
of configurations representing the gate for the transition. For the special case where Ji = J̃/N i,
1 ≤ i ≤ n, with J̃ > 0 the relevant formulas simplify considerably. Also the hierarchical mean-field
limit N →∞ can be analysed in detail.

1. Introduction

Interacting particle systems evolving according to a Metropolis dynamics associated with an
energy functional, called the Hamiltonian, may end up being trapped for a long time near a state
that is a local minimum but not a global minimum. Just how long it takes for the system to escape
from the energy valley around a local minimum and reach the global minimum depends on how deep
this valley is. The deepest local minima are called metastable states, the global minimum is called
the stable state. While being trapped near a metastable state, the system is said to be in a quasi-
equilibrium. The transition to the stable state marks the relaxation of the system to equilibrium.
To describe this relaxation, it is of interest to compute the transition time and to identify the set
of critical configurations the system has to cross in order to achieve the transition. The critical
configurations constitute the lowest saddle points in the energy landscape encountered along paths
that achieve the crossover.

Metastability for interacting particle systems on lattices has been studied intensively in the
past three decades. Various different approaches have been proposed, which are summarised in the
monographs by Olivieri and Vares

OV05
[5], Bovier and den Hollander

BdH15
[1]. Recently, there has been interest

in metastability for interacting particle systems on random graphs, which is much more challenging
because the transition time depends in a delicate manner on the realisation of the graph.

In the present paper we are interested in metastability for Glauber spin-flip dynamics on the
N -dimensional hierarchical lattice at low temperature. We obtain a full description of both the
transition time and the set of critical configurations representing the gate for the transition. Our
results are part of a larger enterprise in which the goal is to understand metastability on large
graphs. The hierarchical lattice is interesting because it has a non-trivial geometric structure and
allows for a rich variability in the choice of the interaction parameters.

The outline of the paper is as follows. In Section 1.1 we recall the definition of Glauber spin-
flip dynamics on an arbitrary finite connected graph. In Section 1.2 we recall the basic geometric
definitions that are needed for the description of metastability and recall three key theorems from
the literature that are valid in the limit of low temperature. These theorems, which are based on
a certain key hypothesis but are otherwise model-independent, state that the mean transition time
equals [1 + oβ(1)]K? eβΓ? , with β the inverse temperature, and that the gate for the transition
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is C?, where (Γ?, C?,K?) is a model-dependent triple. The theorems also show that the spectral
gap of the generator of the dynamics scales like the inverse of the mean transition time and that
the transition time divided by its mean is exponentially distributed asymptotically. In Section 1.3
we recall that the prefactor K? is given by a variational formula. In Section 1.4 we define the
hierarchical lattice. In Section 1.5 we verify the key hypothesis for Glauber spin-flip dynamics on
the hierarchical lattice and state five assumptions on the interaction parameters. In Section 1.6 we
state our main theorems, which identify the triple (Γ?, C?,K?) for the hierarchical lattice subject
to these assumptions. In Section 1.7 we close with a discussion and point to related literature.
The proofs of the main theorems are given in Sections 2–4. The framework that is recalled in
Sections 1.1–1.3 is taken from Bovier and den Hollander

BdH15
[1, Chapter 16].

1.1. Ising model and Glauber spin-flip dynamics. Given a finite connected graph G = (V,E),
let Ω = {−1,+1}V be the set of configurations σ = {σ(v) : v ∈ V } that assigns to each vertex v ∈ V
a spin-value σ(v) ∈ {−1,+1}. Two configurations that will be of particular interest to us are those
where all spins point up, respectively, down:

(1.1) � ≡ +1, � ≡ −1.

For β ≥ 0, playing the role of inverse temperature, we define the Gibbs measure
eq:Gibbs

(1.2) µβ (σ) =
1

Zβ
e−βH(σ), σ ∈ Ω,

where H : Ω→ R is the Hamiltonian that assigns an energy to each configuration given by
eq:hamiltonian

(1.3) H (σ) = −1

2

∑
(v,w)∈E

J(v,w) σ(v)σ(w)− h

2

∑
v∈V

σ(v), σ ∈ Ω,

where ~J = {Je}e∈E is the ferromagnetic pair potential acting along edges, satisfying Je ≥ 0 for all
e ∈ E, and h > 0 is the external magnetic field.

For two configurations σ, η ∈ Ω, we write σ ∼ η when σ and η agree at all but one vertex.
A transition from σ to η corresponds to a flip of a single spin, and is referred to as an allowed
move. Glauber spin-flip dynamics on Ω is the continuous-time Markov process (σt)t≥0 defined by
the transition rates

(1.4) cβ (σ, η) =

{
e−β[H(η)−H(σ)]+ , σ ∼ η,
0, otherwise.

The Gibbs measure in (1.2) is the reversible equilibrium of this dynamics. We write PG,βσ to denote
the law of (σt)t≥0 given σ0 = σ, LG,β to denote the associated generator, and λG,β to denote
the principal eigenvalue of LG,β . The upper indices G, β exhibit the dependence on the underlying
graph G and the interaction strength β between neighbouring spins. For A ⊆ Ω, we write

(1.5) τA = inf
{
t > 0: σt ∈ A, ∃ 0 < s < t : σs 6= σ0

}
to denote the first hitting time of the set A after the starting configuration is left.

1.2. Metastability. To describe the metastable behaviour of our dynamics we need the following
geometric definitions.

Definition 1.1. (a) The communication height between two distinct configurations σ, η ∈ Ω is

(1.6) Φ(σ, η) = min
γ : σ→η

max
ξ∈γ
H(ξ),

where the minimum is taken over all paths γ : σ → η consisting of allowed moves only. The com-
munication height between two non-empty disjoint sets A,B ⊂ Ω is

(1.7) Φ(A,B) = min
σ∈A,η∈B

Φ(σ, η).
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(b) The stability level of σ ∈ Ω is
eq:Stability

(1.8) Vσ = min
η∈Ω:

H(η)<H(σ)

Φ(σ, η)−H(σ).

(c) The set of stable configurations is

(1.9) Ωstab =

{
σ ∈ Ω: H(σ) = min

η∈Ω
H(η)

}
.

(d) The set of metastable configurations is

(1.10) Ωmeta =

{
σ ∈ Ω\Ωstab : Vσ = max

η∈Ω\Ωstab

Vη

}
.

It is easy to check that Ωstab = {�} for all G because h > 0 and Je ≥ 0 for all e ∈ E. In general,
Ωmeta is not a singleton. In order to proceed, we need the following key hypothesis:
eq:Hhyp

(1.11) (H) Ωmeta = {�}.
Hypothesis (H) states that {�,�} is a metastable pair. The energy barrier between � and � is

eq:defGammastar

(1.12) Γ? = Φ(�,�)−H(�),

which is a key quantity for the description of the metastable behaviour of our dynamics. We will
say that a path γ : �→ � is an optimal path when

eq:optimal-path

(1.13) max
η∈γ
H(η) = Φ (�,�) .

P? C?

σ

η

�

�

< Φ(�,�) ≤ Φ(�,�)s s
s

s
��

��
��1A

A
A
A
A
AU

�
���

Figure 1. Schematic picture of the protocritical set and the critical set.

Definition 1.2. Let (P?, C?) be the unique maximal subset of Ω× Ω with the following properties
(see Fig. 1):

(1) ∀σ ∈ P? ∃ η ∈ C? : σ ∼ η,
∀ η ∈ C? ∃σ ∈ P? : η ∼ σ.

(2) ∀σ ∈ P? : Φ(σ,�) < Φ(σ,�).
(3) ∀σ ∈ C? ∃ γ : σ → � :

(i) maxη∈γ H(η) ≤ Φ(�,�).
(ii) γ ∩ {η ∈ Ω: Φ(η,�) < Φ(η,�)} = ∅.

Think of P? as the set of configurations where the dynamics, on its way from � to �, is ‘almost
at the top’, and of C? as the set of configurations where it is ‘at the top and capable of crossing
over’. We refer to P? as the protocritical set and to C? as the critical set. Uniqueness follows
from the observation that if (P?1 , C?1 ) and (P?2 , C?2 ) both satisfy conditions (1)–(3), then so does
(P?1 ∪ P?2 , C?1 ∪ C?2 ). Note that

(1.14)
H(σ) < Φ(�,�) ∀σ ∈ P?,
H(σ) = Φ(�,�) ∀σ ∈ C?.
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It is shown in Bovier and den Hollander
BdH15
[1, Chapter 16] that subject to hypothesis (H) the

following three theorems hold.

Theorem 1.3. limβ→∞ PG,β� (τC? < τ� | τ� < τ�) = 1.

Theorem 1.4. There exists a K? ∈ (0,∞) such that

(1.15) lim
β→∞

e−βΓ? EG,β� (τ�) = K?.

Theorem 1.5. (a) limβ→∞ λG,β EG,β� (τ�) = 1.
(b) limβ→∞ PG,β� (τ�/E

G,β
� (τ�) > t) = e−t for all t ≥ 0.

6
?

Γ?

� C? �
σ

H(σ)

s s
s

Figure 2. Schematic picture of H, �, �, Γ? and C?. Lemma 1.6 shows that 1/K? is in
essence proportional to |C?|.

The proofs of Theorems 1.3–1.5 in
BdH15
[1] do not rely on the details of the graph G, provided it is finite,

connected and non-oriented. For concrete choices of G, the task is to verify hypothesis (H) and to
identify the triple

eq:triple

(1.16)
(
Γ?, C?,K?

)
.

A schematic picture of the role of these quantities is given in Fig. 2.

1.3. Variational formula for the prefactor. The prefactor K? in Theorem 1.4 is given by a
variational formula (see

BdH15
[1, Lemma 16.17]):

eq:variationalform

(1.17)
1

K?
= min
C1,...,CI

min
f : S?→[0,1]:

f|S�
≡1, f|S�

≡0, f|Sk
=Ck

1

2

∑
σ,η∈S?

1{σ∼η} [f (σ)− f (η)]
2
.

Here, {Sk}Ik=1 is the unique sequence of maximally connected disjoint sets Sk ⊆ Ω defined by
eq:wells

(1.18) σ ∈ Sk ⇐⇒ H (σ) < Φ (�,�) , Φ (σ,�) = Φ (σ,�) = Φ (�,�) .

Think of {Sk}Ik=1 as ‘wells at the top’ (see Fig. 3). The sets S�, S� are defined by

(1.19)
S� = {σ ∈ Ω: Φ (σ,�) < Φ (�,�)} ,
S� = {σ ∈ Ω: Φ (σ,�) < Φ (�,�)} ,

and are to be thought of as the ‘valleys’ around � and �. The set S? is defined by

(1.20) S? = {σ ∈ Ω: Φ (σ,�) ∨ Φ (σ,�) ≤ Φ (�,�)} ,

i.e., the maximally connected set with energy ≤ Φ(�,�) containing � and �. Note that {Sk}Ik=1,
S�, S� ⊆ S?.

The variational problem in (1.17) has the interpretation of the capacity between S� and S�

for simple random walk on S? jumping at rate 1 after the sets {Sk}Ik=1 , S�, S� are wired. If we
impose additional constraints on the optimal paths and their behaviour near the set C?, then (1.17)
simplifies considerably, as is shown in the following lemma.
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S� S�

sC? S1

Figure 3. Schematic picture of the wells {Sk}Ik=1. Note that C? ⊆ S\(S� ∪ S�).

Lemma 1.6. Suppose that there exists a k? ∈ N such that the following are true:
(i) C? = {σ ∈ S? : |σ| = k?}.
(ii) For all σ ∈ C? the sets

Udefs

(1.21)
U−σ = {η ∈ S? : η ∼ σ, |η| = |σ| − 1} ,
U−σ = {η ∈ S? : η ∼ σ, |η| = |σ|+ 1} ,

satisfy
eq:condition-lemma

(1.22) Φ (η,�) < Φ (�,�) ∀ η ∈ U−σ , Φ (η,�) < Φ (�,�) ∀ η ∈ U+
σ .

Then (1.17) simplifies to
eq:reduced-varform-0

(1.23)
1

K?
=
∑
σ∈C?

|U−σ | |U+
σ |

|U−σ |+ |U+
σ |
.

Proof. The proof is analogous to that in
BdH15
[1, Section 17.5]. The variational problem in (1.17) simplifies

because of the following two facts that are specific to Glauber dynamics:
• S?\[S� ∪ S�] = C?, i.e., there are no wells inside C?.
• There are no allowed moves within C?, i.e., critical configurations cannot transform into

each other via single spin-flips.
Consequently, (1.17) reduces to
varfor1

(1.24)
1

K?
= min
h : C?→[0,1]

∑
σ∈C?

[1− h(σ)] 2|U−σ |+ [h(σ)] 2|U+
σ |,

where U−σ and U+
σ consist of the configurations in S� and S�, respectively, that can reached from

σ ∈ C? by a single spin-flip. The solution of (1.24) is computed easily to obtain (1.23) �

Remark 1.7. An immediate consequence of the additional assumptions in Lemma 1.6 is that I = 0
(‘no wells at the top’) and that all configurations in S? that are neighbours of configurations in C?
have an energy that is strictly below Φ(�,�) (‘the top is not flat’). Consequently, only transitions
from C? to S� and S� (‘down from the top’) contribute to the prefactor (see Fig. 4).

�
�

S� S�

qC?

Figure 4. Configurations in C? are strict maxima in the energy profile of an optimal
path. No plateau or wells are present.
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1.4. The hierarchical lattice. Let N ∈ N\{1}, and define the N -dimensional hierarchical lattice
ΛN to be the metric space (N, d) with N the set of positive integers and d the ultrametric defined
by

eq:metric-d

(1.25) d (a, b) = max
{
k ∈ N0 : amodNk 6= bmodNk

}
, a, b ∈ N,

which is called the hierarchical distance. We say that A ⊆ N is a k-block of ΛN when |A| = Nk and
d (a, b) ≤ k for all a, b ∈ A. In particular, we define ΛnN to be the n-block
orderdef

(1.26) ΛnN = {1, 2, . . . , Nn} ,

which is the N -dimensional hierarchical lattice with n hierarchical levels (see Fig. 5).

Figure 5. Schematic representation of Λ3
4. The distance from the vertex in the lower-

left corner to any vertex in the lower-left 1-block different from that vertex equals 1, to
any vertex in the lower-left 2-block that is not in the lower-left 1-block equals 2, and to
any vertex in the lower-left 3-block that is not in the lower-left 2-block equals 3. Note
that, with this interpretation, for any two vertices v and w the size of the smallest box
containing both v and w is Nd(v,w).

The set ΛnN is the underlying graph from which we build our state space Ω = {−1,+1}ΛnN . We
may alternatively write ΛnN = {v1, . . . , vNn} with va the vertex corresponding to the integer a. Note
that d(va, vb) = d(a, b). We define γ : � → � to be the path γ = (γ0, . . . , γNn), where γk is the
configuration with γk (va) = +1 for a ≤ k and γk (va) = −1 for a > k, i.e., spins are flipped upward
in the order in which they are labelled. We refer to γ as the reference path, and it will play a crucial
role in our analysis.

Whenever convenient, we may think of Ω as the power set of ΛnN and of configurations σ ∈ Ω as
subsets of ΛnN . Thus, we may identify a configuration σ ∈ {−1,+1}ΛnN with the set {v ∈ ΛnN : σ(v) =
+1} and its flipped image σ with the set {v ∈ ΛnN : σ(v) = −1}.

To define the interaction, we make ΛnN into a complete graph by placing an edge between all
pairs v, w ∈ ΛnN with v 6= w. The ferromagnetic pair potential between such pairs equals Jd(v,w),
where

(1.27) ~J = {Ji}ni=1

is chosen such that Ji > 0 for 1 ≤ i ≤ n. Hence the Hamiltonian in (1.3) becomes
eq:Hamiltonian

(1.28) H (σ) = −1

2

∑
v,w∈Λn

N
:

v 6=w

Jd(v,w) σ(v)σ(w)− h

2

∑
v∈ΛnN

σ(v).

1.5. Hypothesis and Assumptions. We want to apply the theory behind Theorems 1.3–1.5, for
which we need to verify Hypothesis (H) in (1.11). In the sequel we will need five assumptions on
the interaction parameters of our model.
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Assumption (A1): (
1− 1

N

) n∑
i=1

JiN
i > h.(1.29)

(A1) guarantees that � is a local minimum and corrresponds to the range of parameters for which
the system is in the metastable regime.

Theorem 1.8. Suppose that ~J is monotone, i.e. either non-increasing or non-decreasing, and that
(A1) holds. Then hypothesis (H) is verified.

We will see from the proof of Theorem 1.8 that without (A1) there are no local minima in the
energy landscape.

Our main task is to identify the triplet (Γ?, C?,K?) in (1.16). To do so, we require four assump-
tions on ~J , which we list below.

Assumption (A2):

(a) ∃ δ > 0, M ∈ N : 1− δ ≥ dŝe − ŝ ≥ δ ∀N ≥M,(1.30)

(b) lim inf
N→∞

∣∣∣∣∣
n∑

i=m̂+1

JiN
i − h

∣∣∣∣∣ > 0,

where

m̂ = max

{
0 ≤ m ≤ n− 1:

(
1− 1

N

) n∑
i=m+1

JiN
i > h

}
,(1.31)

ŝ =
N

2
(Jm̂+1N

m̂+1)−1

[(
1− 1

N

) n∑
i=m̂+1

JiN
i − h

]
.(1.32)

(A2)(a) guarantees that ŝ is not an integer when N is sufficiently large, and does not approach
an integer either as N → ∞. (A2)(b) guarantees that the interaction is not ‘conspiring’ to allow
|
∑n
i=m̂+1 JiN

i−h| to vanish as N →∞. Both assumptions are made to avoid certain degeneracies.
These would not pose an essential problem, but would complicate our analysis unnecessarily.

Assumption (A3):

eq:A2

(1.33)

For all 1 ≤ k ≤ N m̂ with N -ary decomposition k = am̂−1N
m̂−1 + . . .+ a0 :

lim
N→∞

m̂−1∑
i=0

Ji+1N
i
[
(N − ai − 1)

( i∑
j=0

ajN
j
)

+ ai

(
N i −

i−1∑
j=0

ajN
j
)]

+ k
n∑

i=m̂+1

JiN
i

dŝe(2ŝ− dŝe+ 1)Jm̂+1N2m̂
= 0.

This assumption has a somewhat unappealing form. Its purpose is to ensure that, in the limit as
N →∞, the energy along optimal paths fluctuates by relatively small amounts over short distances.
We will see that it is satisfied when Ji = o(N−i+1) as N →∞.

Assumption (A4):
eq:A3decayrateofJi

(1.34)
Ji+1

Ji
= O

(
1

N

)
∀ 1 ≤ i ≤ m̂.

This assumption guarantees that the total interaction between a given spin and all the spins at a
given hierarchical level remains bounded as N →∞.

Assumption (A5):
eq:AssumptionUniquemax

(1.35) No linear combination of J1, . . . , Jn is a multiple of h.

This assumption again avoids certain degeneracies, and is valid for all but countably many choices
of h and ~J .
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1.6. Main theorems. We are now ready to state our main results. The seven theorems and two
corollaries given below identify the triple in (1.16), consisting of the communication height Γ?, the
set of critical configurations C? and the prefactor K?. Formulas simplify as more constraints are
placed on ~J .

• Communication height. Recall the definition of Γ? in (1.12).

Theorem 1.9. Suppose that ~J is non-increasing and that (A1) and (A3) hold. Then

eq:thrm-Gamma value

(1.36) Γ? = [1 + oN (1)]
1

4
(Jm̂+1)

−1

(
n∑

i=m̂+1

JiN
i − h

)2

, N →∞.

Corollary 1.10. Suppose that Ji = J̃i/N
i with J̃i = o(N) and that (A2)(b) holds. Then (A3) holds

and

(1.37) Γ? = [1 + oN (1)]
1

4
(J̃m̂+1)−1

(
n∑

i=m̂+1

J̃i − h

)2

N m̂+1, N →∞.

Our next result gives a formula for Γ? when Ji = J̃/N i for some J̃ > 0. Let
eq:indexI

(1.38) I = {(m, s) : 0 ≤ m ≤ n− 1, 1 ≤ s ≤ N − 1} ∪ {(n− 1, N)} ⊆ N2,

and for (m, s) ∈ I define
eq:hdagger

(1.39) h(m,s) = J̃

[(
1− 1

N

)
(n−m)− (s− 1)

1

N

]
∈
[
0, J̃

(
1− 1

N

)
n

]
.

Theorem 1.11. Suppose that Ji = J̃/N i for some J̃ > 0. Let (m, s) ∈ I be such that h satisfies

(1.40) h(m,s) ≤ h < h(m,s−1).

(1) If N is odd, then

eq:thrm-Gamma-case3a

(1.41)
Γ? =

J̃

4N

[
Nm

(
2s
(
N − s

2
+ smod 2

)
−N − smod 2

)
+N − 2s− (−1)

smod 2
]

+
1

2

[
J̃

(
1− 1

N

)
(n−m− 1)− h

] (
Nm

(
s− smod 2

)
+ 1
)
.

(2) If N is even and s is odd, then

(1.42) Γ? = Γ?m,s

with

Γ?m,s =
J̃

2
N−mmod 2(Am − 1) + J̃

[
1

2
Bm −Nmmod 2Am

]
(N − s)(1.43)

+ J̃

[
N

4
Bm −Nmmod 2Am +Nm−1

(
s− 1

2

)(
N − s− 1

2

)]
+

[(
s− 1

2

)
Nm +

N

2
Bm −N1+mmod 2Am

] [
J̃

(
1− 1

N

)
(n−m− 1)− h

]
,

where Am =
(
Nm−mmod2−1

N2−1

)
and Bm =

(
Nm−1
N−1

)
.

(3) If N is even and s is even, then
eq:thrm-Gamma-case3c

(1.44) Γ? = Γ?m,s−1 +
(
h(m,s−1) − h

)[
sNm −

(
s− 1

2

)
Nm −

(
N

2

)
Bm +N1+mmod 2Am

]
.

Corollary 1.12. Suppose that Ji = J̃/N i for some J̃ > 0. Let α ∈ (0, 1) and 0 ≤ m ≤ n − 1 be
such that h = J̃ (n−m− α). Then

eq:thrm-Gamma-case4

(1.45) Γ? = [1 + oN (1)]
J̃

4
α2Nm+1.
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• Critical configurations. Recall the definition of C? in Definition 1.2. Recall from Section 1.4
that every integer a ∈ ΛnN corresponds to a vertex va in such a way that d (a, b) = d (va, vb), and that
γ : �→ � is the reference path γ = (γ0, . . . , γNn), where γk is the configuration with γk (va) = +1

for a ≤ k and γk (va) = −1 for a > k. If ~J is monotone, then γ is an optimal path as defined in
(1.13).

Theorem 1.13. Suppose that ~J is strictly monotone. Then there exists a 1 ≤ M ≤ Nn such that
C? is the set of isometric translations of γM . Furthermore, if (A1), (A2) and (A4) hold, then the
N -ary decomposition M = an−1N

n−1 + . . .+ a0 satisfies
eq:thrm - K decomp

(1.46) lim
N→∞

1

N

n−1∑
i=0

|ai − ηi| = 0,

where the coordinates η0, . . . , ηn−1 are as follows: ηi = 0 for m̂ < i ≤ n − 1, ηm̂ = dŝe, and
ηm̂−1, . . . , η0 are defined recursively in (3.28) and (3.32) below.

By isometric translation we mean any bijection φ : ΛnN → ΛnN such that d (va, vb) = d (φ (va) , φ (vb)),
1 ≤ a, b ≤ Nn.

Theorem 1.14. Suppose that ~J is strictly monotone and that Ji = J̃i/N
i with J̃i = o (N). If (A1),

(A2) and (A4) hold, then the coordinates η0, . . . , ηn−1 in Theorem 1.13 are as follows:

(1.47) ηi =


0, m̂ < i ≤ n− 1,

dŝe , i = m̂,
N
2 , i = m̂− 1,
N
2

[∑i+1
j=1

(
J̃m̂−i+j
J̃m̂−i

)(
1− 2ηm̂−i

N

)
+
∑n−m̂
j=2

(
J̃m̂+j

J̃m̂−i

)
− h

J̃m̂−i
+ 1
]
, 1 ≤ i ≤ m̂− 1.

Theorem 1.15. Suppose that Ji = J̃/N i for some J̃ > 0. Let (m, s) ∈ I be such that h satisfies

(1.48) h(m,s) ≤ h < h(m,s−1).

Then C? is the set of all isometric translations of the configuration γM , where

eq: K in Cstar3

(1.49) M =


⌈
s
2
Nm

⌉
, N is odd and s is odd,⌈(

s−1
2

)
Nm

⌉
+ 1, N is odd and s is even,(

s−1
2

)
Nm +

∑m−1
j=1

(
N
2
− (s+ j + 1) mod 2

)
Nm−j + N

2
, N is even and s is odd,(

s−2
2

)
Nm +

∑m−1
j=1

(
N
2
− (s+ j + 1) mod 2

)
Nm−j + N

2
, N is even and s is even.

• Prefactor. We finally turn to the prefactor K? defined in (1.17).

Theorem 1.16. Suppose that ~J is strictly monotone and that (A1)–(A5) hold. Then

eq:thrm Kstar-case1

(1.50)

1

K?
= [1 + oN (1)]

×

[∑
i∈Bd ηi−1N

i−1
][∑

i∈Bu

(
N i − ηi−1N

i−1
) ][∑

i∈Bd ηi−1N i−1
]

+
[∑

i∈Bu (N i − ηi−1N i−1)
] Nn−m̂−1

N − η0

m̂∏
i=0

(
N

ηi

)
(N − ηi) ,

where η0, . . . , ηn−1 are the coordinates defining the critical configurations in Theorem 1.13, and the
integer sets Bd and Bu are defined in (3.39) below.

Theorem 1.17. Suppose that Ji = J̃/N i for some J̃ > 0 and that h satisfies

(1.51) h(m,s) < h < h(m,s−1)

for some (m, s) ∈ I. If N is odd, N 6= 2, 4 and m ≥ 1, then
eq:thrm Kstar-case2

(1.52)
1

K?
= a0N

n−m−2
m∏
i=0

(
N

ai

)
(N − ai) ,
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where a0 = N−1
2 + 1, ai = N−1

2 for i = 1, . . . ,m− 1, and am = s−1−(s+1)mod2
2 .

1.7. Discussion. The theorems and corollaries in Section 1.6 provide a full description of the
metastable behaviour of Glauber spin-flip dynamics on the hierarchical lattice, for any dimension
N and any number of hierarchical levels n. The formulas are somewhat complicated for general ~J ,
but simplify considerably as more restrictions are imposed on ~J , such as Ji = J̃/N i, 1 ≤ i ≤ n and
J̃ > 0, and in the hierarchical mean-field limit N → ∞. The formulas even allow us to investigate
the limit n→∞ towards the infinite hierarchical lattice.

The case of ‘standard’ interaction, defined by Ji = J̃/N i and treated in Section 4, is the easiest
to interpret. The magnetic field h defines the integer pair (m, s) through the inequality

(1.53) J̃

[(
1− 1

N

)
(n−m)− (s− 1)

1

N

]
≤ h < J̃

[(
1− 1

N

)
(n−m)− (s− 2)

1

N

]
.

It turns out that the pair (m, s) captures the size of a critical configuration. Indeed, from Theorem
1.15 we see that if N is odd, then every critical configuration is of size M = d sN

m

2 e when s is odd
andM = d (s−1)Nm

2 e when s is even, with similar results for N even. In particular, the set of critical
configurations corresponds precisely to the set of all configurations of said size that are an isometric
translation of γM .

Equations (1.41) and (1.44) in Theorem 1.11 are not particularly elegant, but in the hierarchical
mean-field limit, and with α ∈ (0, 1) and 1 ≤ m ≤ n − 1 defined through the equation h =

J̃ (n−m− α), we find that

eq:Gamma limit

(1.54) lim
N→∞

Γ?

Nm+1
=
J̃α2

4
,

while for α = 0 we have limN→∞
Γ?

Nm = 1
4 J̃ .

The prefactor K? in Theorem 1.17 in the hierarchical mean-field limit scales like

(1.55)
1

K?
∼
(

1− α
2

)
2m(N− 1

2 )Nn

(
N

αN

)
,

in which the dominant term is exponential in N .
Our results are part of a larger enterprise in which the goal is to understand metastability on

large graphs. Jovanovski
Jpr
[4] analysed the case of the hypercube, Dommers

Dpr
[2] the case of the random

regular graph, and Dommers, den Hollander, Jovanovski and Nardi
DdHJNpr
[3] the case of the configuration

model. Each requires carrying out a detailed combinatorial analysis that is model-specific, even
though the metastable behaviour expressed in Theorems 1.3–1.5 is universal. For lattices like the
hypercube and the hierarchical lattice a full identification of the triple in (1.16) is possible, while
for random graphs like the random regular graph and the configuration model so far only the
communication height is well understood, while the set of critical configurations and the prefactor
remain somewhat elusive.

2. Monotone pair potentials

In Section 2.1 we study the change in energy when all spins in two hierarchical blocks are
switched (Lemma 2.1 below). In Section 2.2 we show that the reference path γ is an optimal paths
for monotone pair potentials (Lemma 2.2 below). In Section 2.3 we give the proof of Theorem 1.8.

2.1. Energy landscape. Let m ≤ n−1, let U be an m+ 1-block in ΛnN , and let U1 and U2 be two
disjoint m-blocks in U . Suppose that U ′1 ⊂ U1 is a k-block in U1 and U ′2 ⊂ U2 is a k-block in U2,
for some k < m. Let σ ∈ Ω be any configuration, and let σ′ be the result of switching the values of
σ at U ′1 and U ′2. More precisely, let ϕ : U ′1 → U ′2 be any isometric (with respect to d) bijection, and
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set

(2.1) σ′(v) =


σ(v), v /∈ U ′1 ∪ U ′2,
σ(ϕ(v)), v ∈ U ′1,
σ(ϕ−1(v)), v ∈ U ′2.

For k + 1 ≤ i ≤ m, let Ai = {x ∈ U1 ∩ σ : d (x, U ′1) = i} (which is well defined because all
v ∈ U ′1 are at the same distance from any x ∈ U1\U ′1), Bi = {x ∈ U1 ∩ σ : d (x, U ′1) = i}, Ci =
{x ∈ U2 ∩ σ : d (x, U ′2) = i} and Di = {x ∈ U2 ∩ σ : d (x, U ′2) = i}.

Lemma 2.1. For any σ ∈ Ω,

(2.2) H (σ′)−H (σ) =

m∑
i=k+1

2 (Ji − Jm+1) (|Ai| − |Ci|) (|U ′2 ∩ σ| − |U ′1 ∩ σ|) .

Proof. Note that the number of interacting pairs (i.e., pairs (v, w) such that σ(v) = −σ(w)) in
U ′1 × U ′2 in σ is the same as in σ′. Hence

(2.3) −
∑
v∈U ′1
w∈U ′2

Jd(v,w)σ(v)σ(w) = −
∑
v∈U ′1
w∈U ′2

Jd(v,w)σ
′(v)σ′(w).

The same is true for interacting pairs in
(
U ′1 ∪ U ′2

)
×
(
U ′1 ∪ U ′2

)
, U ′1×U ′1, U ′2×U ′2, as well as U×ΛnN ,

where U is the complement of U . Thus, we only need to consider interacting pairs coming from
U ′1 × (U1\U ′1), U ′1 × (U2\U ′2), U ′2 × (U2\U ′2) and U ′2 × (U1\U ′1). The contribution to H (σ)−H (�)
of interacting pairs in U ′1 × (U1\U ′1) is given by

(2.4) −
∑
v∈U ′1

w∈U1\U ′1

Jd(v,w)σ(v)σ(w) =

m∑
i=k+1

Ji (|Ai| |U ′1 ∩ σ|+ |Bi| |U ′1 ∩ σ|) .

Thus by moving the set U ′1 ∩ σ from U1 to U2, this contribution is replaced by

(2.5) −
∑
v∈U ′2

w∈U1\U ′1

Jd(v,w)σ
′(v)σ′(w) =

m∑
i=k+1

Jm+1 (|Ai| |U ′1 ∩ σ|+ |Bi| |U ′1 ∩ σ|) .

Similarly, the contribution to H (σ)−H (�) of interacting pairs in U ′1 × (U2\U ′2) is given by

(2.6)
m∑

i=k+1

Jm+1 (|Ci| |U ′1 ∩ σ|+ |Di| |U ′1 ∩ σ|) ,

which is subsequently replaced by

(2.7)
m∑

i=k+1

Ji (|Ci| |U ′1 ∩ σ|+ |Di| |U ′1 ∩ σ|) .

Similar observations follow for interacting pairs in U ′2 × (U2\U ′2) and U ′2 × (U1\U ′1). Hence

(2.8)
H (σ′)−H (σ) =

m∑
i=k+1

(Ji − Jm+1)

×
(

[|Ai| − |Ci|] (|U ′2 ∩ σ| − |U ′1 ∩ σ|) + [|Bi| − |Di|] (|U ′2 ∩ σ| − |U ′1 ∩ σ|)
)
.
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Noting that |Bi|+ |Ai| = (N − 1)N i−1 = |Di|+ |Ci|, we get

(2.9)

H (σ′)−H (σ) =

m∑
i=k+1

(Ji − Jm+1)

×
(

[|Ai| − |Ci|] (|U ′2 ∩ σ| − |U ′1 ∩ σ|) + [|Ci| − |Ai|] (|U ′2 ∩ σ| − |U ′1 ∩ σ|)
)

=

m∑
i=k+1

(Ji − Jm+1)

×
(

[|Ai| − |Ci|] (|U ′2 ∩ σ| − |U ′1 ∩ σ|) + [|Ai| − |Ci|] (|U ′1 ∩ σ| − |U ′2 ∩ σ|)
)
.

Finally, noting that |U ′1 ∩ σ| = Nk − |U ′1 ∩ σ| and |U ′2 ∩ σ| = Nk − |U ′2 ∩ σ|, we complete the
proof. �

2.2. Optimal paths. Recall the definition of an optimal path from (1.13). We call a path γ : �→
�, denoted by {γi}Mi=0 for some M ≥ Nn, uniformly optimal when, for all 0 ≤ i ≤M ,

eq:unif-optimal

(2.10) H (γi) = min
σ∈Ω:

|σ|=|γi|
H (γi) ,

and strictly optimal when the minimum in the right-hand side of (1.13) is only attained by configura-
tions that belong to some uniformly optimal path. We think of a path γ between two configurations
in Ω both as a sequence of configurations denoted by {γi}Mi=1 and as a sequence of vertices denoted
by {γ (i)}Mi=1, where γ (i) is the single vertex in the symmetric difference γi−14γi.

Order the vertices {vi}N
n

i=1 in ΛnN in a natural order so that, for all 1 ≤ k ≤ n − 1 and for all
0 ≤ j ≤ Nn/Nk, {vjNk+1, . . . , v(j+1)Nk} belong to the same k-block. Let γMD : �→ � be the path
defined by γMD (i) = vi for 1 ≤ i ≤ Nn. Let γMI : �→ � be defined by γMI (k) = vθ(k) and

(2.11) θ (k) = 1 +

n−1∑
i=0

Nn−1−i
(⌊

k − 1

N i

⌋
modN

)
.

Thus, the vertex γMI (k) belongs to the ((k − 1) modN)
th

(n− 1)-block, and within that block it
belongs to the (bk−1

N2 cmodN)th (n−2)-block, etc. We can now use Lemma 2.1 to draw the following
conclusions.

Lemma 2.2. (1) If ~J is non-increasing, then γMD is a uniformly optimal path.
(2) If ~J is non-decreasing, then γMI is a uniformly optimal path.
(3) If ~J is strictly decreasing or strictly increasing, then γMD or γMI is strictly optimal.

Proof. We treat the non-increasing case and the non-decreasing case separately.

Non-increasing case: Let σ ∈ Ω be given. We will construct a sequence of configurations {ψi}ni=1, all
of volume |σ| and with ψn = γMD

|σ| , such that H (σ) ≥ H (ψ1) ≥ . . . ≥ H (ψn), and the inequalities
being strict whenever ~J is strictly decreasing. This will prove the claim for the non-increasing case.

For 1 ≤ k ≤ n, define ψk to be the (unique) configuration that satisfies the following two
conditions:

1. For every k-block U ⊂ ΛnN , |U ∩ σ| = |U ∩ ψk|.
2. For all i < j with vi and vj belonging in the same k-block, vj ∈ ψk implies vi ∈ ψk.

In particular, note that ψ1 is obtained from σ by “shifting” the +1 values of σ found inside every
1-block as far left as possible (i.e., with the lowest possible index) within the same 1-block. It is
obvious that H (ψ1) = H (σ). It is also clear from this recursive definition that ψn = γMD

|σ| .
Starting with ψk, we will show how to obtain ψk+1 by a series of transformations that are

non-increasing in H. Let U be the first k + 1 block of ΛNn , and let U1, . . . , UN be its k-blocks,
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arranged so that |Ui ∩ σ| ≥ |Ui+1 ∩ σ|. Note that this may be achieved by re-arranging (or re-
labeling) the blocks U1, . . . , UN , and any such re-arranging is an H-preserving operation. Let a =
min

{
i : |Ui ∩ σ| < Nk

}
and b = max {i : |Ui ∩ σ| > 1}. Note that if a = b, then U ∩σ is already in

the correct form, satisfying the definition of ψk+1. Thus, we may assume that a 6= b. Find a maximal
block Ũb ( Ub with |Ũb∩σ| > 0 such that, for some block of equal size Ũa ( Ua, |Ũb∩σ| > |Ũa∩σ|.
To do this, take the first k − 1-block U ′b in Ub and the last k − 1-block U ′a in Ua that satisfies
|U ′a ∩ σ| > 0, and check whether |U ′b ∩ σ| > |U ′a ∩ σ|. If not, then proceed by taking the first k − 2-
block in Ub, etc. By the definition of a and b, this constructive search for Ũa and Ũb always yields
two such blocks. Once these are found, perform the switching operation in Lemma 2.1 on the blocks
Ũa and Ũb, and denote the resulting configuration by ψ′k (see Fig. 6). Then, by Lemma 2.1, with s
denoting the size of the blocks Ũa and Ũb,

(2.12) H (ψ′k)−H (ψk) =

k∑
i=s+1

2 (Ji − Jk+1) [|Ai| − |Ci|]
(
|Ũb ∩ σ| − |Ũa ∩ σ|

)
,

where we recall that Ai = {x ∈ Ua ∩ σ : d(x, Ũa) = i} and Ci = {x ∈ Ub ∩ σ : d(x, Ũb) = i}. By
definition, we have |Ũb ∩ σ| − |Ũa ∩ σ| > 0, and from the monotonicity we get that Ji − Jm+1 ≥ 0.
Lastly, by the fact that |Ua ∩ σ| ≥ |Ub ∩ σ| and the construction of ψk, as well as the definition of
Ũb and Ũa, it also follows that |Ai| − |Ci| ≤ 0 for all s+ 1 ≤ i ≤ k. Therefore H (ψ′k)−H (ψk) ≤ 0.
Repeating this construction until min

{
i : |Ui ∩ σ| < Nk

}
= max {i : |Ui ∩ σ| > 1} (which happens

in a finite number of moves), and repeating the same construction for all other k+ 1-blocks, we get
the configuration ψk+1, and hence H (ψk+1)−H (ψk) ≤ 0.

Ua · · · Ub Ua · · · Ub

Figure 6. The transformation ψk → ψ′k. The blocks Ũa and Ũb are drawn with a
dashed outline. Solid black circles represent elements of ψk (i.e., vertices on which the
configuration ψk takes the value +1), while blank circles are elements of ψk.

Non-decreasing case: Given a configuration σ, we again apply a series of transformations involving
switching and re-arranging of blocks in σ (all of which are non-increasing in H) and ending with
the configuration γMI

|σ| . Firstly, through a series of re-arrangements, we may assume that σ is left-
aligned : for any 0 ≤ k ≤ n − 1 and any k-blocks Ui and Ui+1 contained in the same (k + 1)-block
(a lower index on a block implies that it contains vertices that also have a lower index), we have
|Ui ∩ σ| ≥ |Ui+1 ∩ σ|. It is clear that these re-arrangements are H-invariant.

Start with k = n− 1 and check whether |U1 ∩ σ| ≥ |UN ∩ σ|+ 2. If so, then switch the value at
v1 ∈ U1 (equal to +1) with the value at vNn ∈ UN (equal to −1). Denote the result of this switch
by σ′. From Lemma 2.1 we have

(2.13) H (σ′)−H (σ) =

n−1∑
i=1

2 (Ji − Jn) [|Ai| − |Ci|] (0− 1) .

Since σ is left-aligned, we know that |An−1| ≤ |Cn−1|. Inductively it follows that |Ai| ≤ |Ci| for all
1 ≤ i ≤ n− 1. Since, by the monotonicity, we also have Ji − Jn ≤ 0 for all 1 ≤ i ≤ n− 1, it follows
that H (σ′)−H (σ) ≤ 0.

Next re-arrange σ′ to make it left-aligned (at no cost in H), and repeat this construction until
|UN ∩ σ| ≤ |U1 ∩ σ| ≤ |UN ∩ σ| + 1. Note that this takes a finite number of steps. Once this is
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accomplished, resume by recursively repeating the construction for k = n − 2, within each n − 1-
block, etc. This terminates with γMI

|σ| . �

2.3. Proof of Theorem 1.8. The proof is analogous to that given in
BdH15
[1, Section 17.3.1], and relies

on the existence of a uniformly optimal path.

Proof. Let σ ∈ Ω\ {�,�}. Find two vertices vi, vj ∈ ΛnN such that vi ∈ σ and vj /∈ σ. By translation
invariance, we can construct a uniformly optimal reference path γ that is a translation (via some d-
preserving bijection of ΛnN ) of the path γMD in the non-increasing case and γMI in the non-decreasing
case, and that satisfies γ (1) = vj and γ (2) = vi. Note that in both cases

eq:intersectedpath

(2.14)
σ ∩ γ1 = �,

1 ≤ |σ ∩ γk| < k ∀ k ≥ 2.

Furthermore,
eq:refpathcompare

(2.15) H (σ ∪ γ1)−H (σ) =
∑
w 6=vj
w/∈σ

Jd(w,vj) −
∑
w 6=vj
w∈σ

Jd(w,vj) − h <
∑
w 6=vj

Jd(w,vj) − h = H (γ1)−H (�)

where we use the fact that Ji > 0, 1 ≤ i ≤ n. Similarly, if we let k′ = min {k ∈ N : H (γk) ≤ H (�)},
then by (A1) it follows that k′ ≥ 2, and so for 2 ≤ k ≤ k′,

eq:refpath

(2.16)

H (σ ∪ γk)−H (σ) =
∑

w∈γk\σ

∑
v/∈σ∪γk

Jd(w,v) −
∑

w∈γk\σ

∑
v∈σ

Jd(w,v) − h |γk\σ|

≤
∑

w∈γk\σ

∑
v/∈γk

Jd(w,v) −
∑

w∈γk\σ

∑
v∈σ∩γk

Jd(w,v) − h |γk\σ|

= H (γk)−H (γk ∩ σ) ≤ H (γk)−H
(
γ|γk∩σ|

)
< H (γk)−H (�) ,

where the last inequality follows from the fact that |γk ∩ σ| < k (by (2.14)) because γ is uniformly
optimal. Taking k = k′, we get from (2.16) that H (σ ∪ γk′) < H (σ), and hence that the stability
level Vσ of σ defined in 1.8 satisfies

(2.17) Vσ < max
1≤k≤k′

{0, (H (γk)−H (�))} ≤ Γ?.

This settles the claim because V� = Γ?. �

Remark 2.3. Note that if (A1) is not satisfied, or in other words if
eq:nometastability

(2.18)
(

1− 1

N

) n∑
i=1

JiN
i ≤ h,

then it follows from the inequality in 2.15 (note that without (A1) this is not a strict inequality)
that

(2.19) H (σ ∪ γ1)−H (σ) ≤ H (γ1)−H (�) ≤ 0,

and hence σ is not a local minimum of H. Since σ is arbitrary, it follows that H has no local minima.
This again illustrates why assumption (A1) is needed.

3. Non-increasing pair potential

In Section 3.1 we prove a concavity property for the energy profile along the reference path
inside hierarchical blocks (Lemma 3.1 below). In Section 3.2 we show that the flucuations of the
energy profile inside a hierarchical block are relatively small (Lemma 3.2 below) and use this to
prove Theorem 1.9 in the hierarchical mean-field limit (Corollary 3.3 and Remark 3.4 below). In
Section 3.3 we identify the critical configurations and check that the conditions in Lemma 1.6 are
satisfied (Lemmas 3.5–3.6 below). We use these results in Section 3.4 to prove Theorem 1.16 and
in Section 3.5 to prove Theorems 1.13–1.14.
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3.1. Concavity along the reference path. From now on we will only consider the case where
~J is non-increasing. We will drop the superscript MD and denote the uniformly optimal path γMD

defined in Section 2 by γ. We observe that

H (γk)−H (�) =

k∑
i=1

Nn∑
j=k+1

Jd(vi,vj) − hk, 1 ≤ k ≤ Nn,(3.1)

and it is not difficult to show that (3.1) can be written as

eq:HMDheight2

(3.2)

H (γk)−H (�) =

n∑
i=1

JiN
i−1

(
kmodN i

(
N −

⌊
k

N i−1

⌋
modN − 1

)

+
(
N i−1 − kmodN i−1

) ⌊ k

N i−1

⌋
modN

)
− hk.

Hence the communication height between � and � is given by

eq:gammastarMD

(3.3)

Γ? = max
1≤k≤Nn

{
n∑
i=1

JiN
i−1

(
kmodN i

(
N −

⌊
k

N i−1

⌋
modN − 1

)

+
(
N i−1 − kmodN i−1

) ⌊ k

N i−1

⌋
modN

)
− hk

}
.

However, it is not clear from (3.3) how Γ? and the energy values along the path γ depend on ~J . We
will therefore derive Γ? in a different way, obtaining a more insightful expression.

Note that if j < k, then

eq:genincrement

(3.4) H (γk)−H (γj) =

k∑
i=j+1

(
Nn∑

s=k+1

Jd(vi,vs) −
j∑
s=1

Jd(vi,vs)

)
− h (k − j) .

In particular, we observe that, for any 0 ≤ a ≤ n− 1,

eq:base-increment

(3.5) H (γNa)−H (γ0) = H (γNa)−H (�) = (N − 1)Na
n−1∑
i=a

N iJi+1 − hNa.

We are interested in the global maxima of the energy profile. In order to locate where these occur, we
analyse the geometric properties of the sequence {H(γi)}N

n

i=0. The following result describes concave
subsequences that appear in {H(γi)}N

n

i=0 (see Fig. 7) and that will be used repeatedly in Section 4
to locate the global maxima of the energy landscape.

Lemma 3.1. Suppose that k = j+Na and l = k+Na for some a ≥ 0 and j ≥ 0. Suppose that the
three vertices vj, vk and vl all lie in the same (a+ 1)-block. Then

(3.6) (H (γk)−H (γj))− (H (γl)−H (γk)) = 2Ja+1N
2a.

Proof. Note that, for any 1 ≤ s ≤ Na, b ≥ 1, b 6= a+ 1,

(3.7) |{t > j +Na : d (vj+s, vt) = b}| = |{t > k +Na : d (vk+s, vt) = b}| ,

while

(3.8) |{t > j +Na : d (vj+s, vt) = a+ 1}| = |{t > k +Na : d (vk+s, vt) = a+ 1}|+Na.

Similarly, for b ≥ 1, b 6= a+ 1,

(3.9) |{t ≤ j : d (vj+s, vt) = b}| = |{t ≤ k : d (vk+s, vt) = b}| ,

while

(3.10) |{t ≤ j : d (vj+s, vt) = a+ 1}|+Na = |{t ≤ k : d (vk+s, vt) = a+ 1}| .
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Hence, by rewriting the sum in (3.4), we get

eq:difference-increments

(3.11)

(
H
(
γMD
k

)
−H

(
γMD
j

))
−
(
H
(
γMD
l

)
−H

(
γMD
k

))
=

(
Na∑
s=1

n∑
b=1

Jb |{t > j +Na : d (vj+s, vt) = b}| −
Na∑
s=1

n∑
b=1

Jb |{t ≤ j : d (vj+s, vt) = b}|

)

−

(
Na∑
s=1

n∑
b=1

Jb |{t > k +Na : d (vk+s, vt) = b}| −
Na∑
s=1

n∑
b=1

Jb |{t ≤ k : d (vk+s, vt) = b}|

)
= 2Ja+1N

2a.

This shows that the energy profile along the path γ is made up of periodic segments that are concave
(see Definition 4.1 below). �

i

H
(γ
i)

Concave subsequences of {H (γi)}N
n

i=1

Figure 7. The solid circles represent a periodic subsequence of {H (γi)}N
n

i=0 of period
Nn−1, while the hollow circles represent points of period Nn−2 that are contained within
the same (n− 1)-block.

3.2. Hierarchical mean-field limit. The hierarchical mean-field limit corresponds to letting the
hierarchical dimension N tend to infinity while keeing the hierarchical height n fixed. We will show
that, under certain assumptions on the rate of decay of the sequence {Ji}ni=1, in the hierarchical
mean-field limit the sequence {H(γi)}N

n

i=0 attains its global maximum at a location that is close
to a multiple (by some factor in {1, . . . , N}) of the largest block size where the corresponding
configuration has energy larger than H (�). We define this explicitly as follows.

Recall from (1.31) that

m̂ = max

{
0 ≤ m ≤ n− 1:

(
1− 1

N

) n∑
i=m+1

JiN
i > h

}
= max {0 ≤ m ≤ n− 1: H (γNm) ≥ H (�)} ,(3.12)

where the second line follows from (3.5).
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From Lemma 3.1 it follows that, for all M > m̂ and all 1 ≤ s ≤ N − 1, H (γsNM ) < H (�). Note
also that, by Lemma 3.1 and equation (3.5), we define

αm̂,s = H (γsNm̂)−H (�)

=

s−2∑
i=0

(
H(γ(s−i)Nm̂)−H(γ(s−i−1)Nm̂)

)
+H (γNm̂)−H (γ0)

= s
[(
H (γNm̂)−H (γ0)

)
− (s− 1) Jm̂+1N

2m̂
]

= sN m̂

[(
1− 1

N

) n−1∑
k=m̂

Jk+1N
k+1 − h− (s− 1) Jm̂+1N

m̂

]
.(3.13)

Increments of values given by (3.13) are equal to

αm̂,s+1 − αm̂,s = N m̂

[(
1− 1

N

) n−1∑
k=m̂

Jk+1N
k+1 − h− 2sJm̂+1N

m̂

]
.(3.14)

By the concavity implied by Lemma 3.1, we have that αm̂,s+1 − αm̂,s ≤ 0 if and only if s ≥
ŝ, where ŝ is defined in (1.32). Under Assumption (A1)(a) it is easy to see that the sequence
{H (γsNn−1)−H (�)}Ns=0 attains a unique maximum at 1 ≤ dŝe < N , with value

H(γdŝeNm̂)−H (�) = dŝe (2ŝ− dŝe+ 1) Jm̂+1N
2m̂.(3.15)

Furthermore, we claim that for any N < t ≤ Nn−m̂, H(γtNm̂) < H(γdŝeNm̂). Indeed, define d̄ =

d(vdŝeNm̂ , vtNm̂) > m̂, and note that tN m̂ = ηN ḋ + sN m̂ for some 0 ≤ η, s < N . Hence

eq:allatlevelm

(3.16)

H (γtNm̂)−H (�) = H(γηN d̄)−H (�) +H (γtNm̂)−H(γηN d̄)

≤ H (γtNm̂)−H(γηN d̄)

= sN m̂

[(
1− 1

N

) n∑
k=m̂+1

JkN
k − h− (s− 1) Jm̂+1N

m̂ − ηJd̄+1N
ḋ

]
< H (γsNm̂)−H (�) ≤ H(γdŝeNm̂)−H (�) ,

where the first inequality follows from the definition of m̂ and the fact that d̄ > m̂.
We next show that fluctuations in energy |H (γi)−H (γj)| for |i− j| ≤ N m̂ are relatively small

compared to H
(
γdŝe

)
−H (�).

Lemma 3.2. Let k =
∑s
i=0 aiN

i with 0 ≤ ai ≤ N−1, and let M =
∑n−1
i=t aiN

i with 0 ≤ bi ≤ N−1
and n− 1 ≥ t > s. Then

(3.17) H (γM+k)−H (γM ) ≤ H (γk)−H (�)

and

(3.18) |H (γM+k)−H (γM )| ≤ |H (γk)−H (�)|+ hk.

Proof. Note that, during the move from γM to γM+k, the total change in energy due to interacting
pairs at distance i is given by

(
1− 1

N

)
k
∑t
i=s+2 JiN

i for s+ 2 ≤ i ≤ t, while for i ≥ t+ 1 it is given
by k

∑n−1
i=t Ji+1N

i (N − 2bi − 1). Now, for 1 ≤ i ≤ s+ 1, this change is equal to

(3.19) J1N
0a0 (N − a0) +

s∑
i=1

Ji+1N
i

(N − ai − 1)

 i∑
j=0

ajN
j

+ ai

N i −
i−1∑
j=0

ajN
j

 ,
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which is also the same during the move from γ� to γk. Thus, we get

eq:gamma-m+k

(3.20)

H (γM+k)−H (γM )

=

s∑
i=0

Ji+1N
i

(N − ai − 1)

 i∑
j=0

ajN
j

+ ai

N i −
i−1∑
j=0

ajN
j


+

(
1− 1

N

)
k

t∑
i=s+2

JiN
i + k

n−1∑
i=t

Ji+1N
i (N − 2bi − 1)− hk

≤
s∑
i=0

Ji+1N
i

(N − ai − 1)

 i∑
j=0

ajN
j

+ ai

N i −
i−1∑
j=0

ajN
j


+

(
1− 1

N

)
k

n∑
i=s+2

JiN
i − hk

= H (γk)−H (γ�) .

Note, furthermore, that the right-hand side of the first line of (3.20) is non-negative, as is the first
sum in the second line and both sums in the third line. Making use of the triangle inequality, we
get the second claim of the lemma. �

We will assume for now that m̂ ≥ 1 and consider the case m̂ = 0 in Remark 3.4. It follows from
Lemma 3.2 and Assumption (A3) that, for any 0 ≤ k < N m̂ and ` ≥ 1,

|H(γk+`Nm̂)−H(γ`Nm̂)|
|H(γdŝeNm̂)−H(�)|

≤ |H(γk)−H(γ�)|+ hk

|H(γdŝeNm̂)−H(�)|
→ 0 as N →∞,(3.21)

since from (3.20) we see that the numerator in the right-hand side of (3.21) equals the numerator
in the condition of Assumption (A3), and from (3.13) the same follows for the denominator. Thus,
using (3.13) we conclude the following.

Corollary 3.3 (Proof of Theorem 1.9). Suppose that Assumption (A2) holds. Then

Γ? = [1 + oN (1)]
(
H
(
γdŝeNm̂

)
−H (�)

)
(3.22)

= [1 + oN (1)] dŝe (2ŝ− dŝe+ 1) Jm̂+1N
2m̂

= [1 + oN (1)] ŝ2Jm̂+1N
2m̂.

Remark 3.4. The special case m̂ = 0 can be considered seperately. By Lemma 3.2 it follows, for
any 0 ≤ t ≤ Nn and with

ŝ = (2J1)
−1

[(
1− 1

N

) n−1∑
i=0

Ji+1N
i+1 − h

]
,(3.23)

that

(3.24) H (γt)−H (�) ≤ H
(
γdŝe

)
−H (�)

and hence Γ? = H(γdŝe)−H (�) = dŝe (2ŝ− dŝe+ 1) J1.

3.3. Critical configurations. It is clear from (1.17) that the prefactor K? is closely related to
the set of critical configurations C?, in particular, the cardinality of this set. The symmetry of ΛnN
implies that the image of any critical configuration under an isometric translation is also a critical
configuration. Thus, we have to count the number of isometries that result in distinct elements of
C?, which is a problem related to the N -ary decomposition of the size of a critical configuration. To
do so, we first establish a result that determines the N -ary decomposition of any global maximum
subject to Assumption (A3).

The following lemma gives us the asymptotic value of the terms in the N -ary decomposition of
the size of a critical configuration.
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Lemma 3.5. Suppose that (A1)–(A4) holds, and that the path γ attains a global maximum at γM .
Let

(3.25) M = an−1N
n−1 + . . .+ k1N + a0

be the N -ary decomposition of the integer M . Then

(3.26) lim
N→∞

1

N

n−1∑
i=0

|ai − ηi| = 0,

where ηi = 0 for m̂ < i ≤ n− 1, ηm̂ = dŝe, and ηm̂−1, . . . , η0 are defined in (3.28) and (3.32) below.

Proof. From the definition of m̂ in (1.31) and the argument leading up to (3.22), it is clear that
limN→∞ |ai| = 0 for i > m̂. Let ηm̂ = dŝe. Then, for any 0 ≤ σ < N ,

eq:diffinzetas

(3.27)

H
(
γηm̂Nm̂+σNm̂−1

)
−H

(
γηm̂Nm̂

)
= Jm̂N

2m̂−2σ (N − σ) + Jm̂+1N
2m̂−1σ (N − ηm̂ − 1)

+

(
1− 1

N

) n∑
i=m̂+2

σJiN
m̂−1+i − Jm̂+1ηm̂σN

2m̂−1 − hσN m̂−1

= Jm̂N
2m̂−2σ (N − σ) + Jm̂+1N

2m̂−1σ (N − 2ηm̂ − 1)

+

(
1− 1

N

) n∑
i=m̂+2

σJiN
m̂−1+i − hσN m̂−1.

By the concavity in Lemma 3.1, H(γηm̂Nm̂+(σ+1)Nm̂−1)−H(γηm̂Nm̂+σNm̂−1) ≤ 0 if and only if

eq:zetamhat-1

(3.28)

0∨

⌈
1

2

(((Jm̂+1

Jm̂

)
N
(
N − 2ηm̂ − 1

)
+
(

1− 1

N

) n−m̂∑
i=2

(Jm̂+i

Jm̂

)
N i+1 − h

Jm̂N m̂−1

)
+N − 1

)⌉
= ηm̂−1 ≤ σ.

Observe that (3.28) is continuous in ηm̂. Hence, if ϕm̂ ∈ [dŝe (1− ε) , dŝe (1 + ε)] for some ε > 0, and
ϕm̂−1 is equal to (3.28) with ηm̂ replaced by ϕm̂, then

eq:zeta-varphi

(3.29)
1

N
|ηm̂−1 − ϕm̂−1| ≤

(
Jm̂+1

Jm̂

)
|ηm̂ − ϕm̂| = εO (1) +

2

N
.

Since we already know from the reasoning leading up to Corollary 3.3 that any global maximum
M must satisfy ai = 0 for i > m̂ and am̂ ∈ [dŝe (1− ε) , dŝe (1 + ε)], by (3.29) we also have that
am̂−1 ∈ [ηm̂−1 (1− ε′) , ηm̂−1 (1 + ε′)], with ε′ allowed to be arbitrarily small as N → ∞. We can
now repeat these computations recursively, to conclude the same for am̂−2, . . . , a0.

Given ηm̂, . . . , ηm̂−i, let 0 ≤ σ < N and s (i, j) =
∑i
t=0 ηm̂−tN

m̂−t + jN m̂−i−1, and note that

H
(
γs(i,σ)

)
= H

(
γs(i,0)

)
+ Jm̂−iN

2(m̂−i−1)σ (N − σ)(3.30)

+

i+1∑
j=1

Jm̂−i+jN
2(m̂−i−1)+jσ (N − 2ηm̂−i+j−1 − 1)

+

(
1− 1

N

) n∑
j=m̂+2

σJjN
m̂−i−1+j − hσN m̂−i−1.
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Thus, we have

H
(
γs(i,σ+1)

)
= H

(
γs(i,σ)

)
+ Jm̂−iN

2(m̂−i−1) (N − 2σ − 1)(3.31)

+

i+1∑
j=1

Jm̂−i+jN
2(m̂−i−1)+j (N − 2ηm̂−i+j−1 − 1)

+

(
1− 1

N

) n∑
j=m̂+2

JjN
m̂−i−1+j − hN m̂−i−1,

and hence H(γs(i,σ+1))−H(γs(i,σ)) ≤ 0 whenever

eq:zetai+1

(3.32)

0 ∨

⌈
1

2

((
i+1∑
j=1

(Jm̂−i+j
Jm̂−i

)
N j
(
N − 2ηm̂−i − 1

)
+
(

1− 1

N

) n−m̂∑
j=2

(Jm̂+j

Jm̂−i

)
N i+j+1 − h

Jm̂−iN m̂−i−1

)
+N − 1

)⌉
= ηm̂−i−1 ≤ σ.

Again it follows that if ϕm̂−i ∈ {0, . . . , N − 1} and ϕm̂−i−1 is equal to the left-hand side of (3.32)
with ηm̂−i replaced by ϕm̂−i in (3.32), then

(3.33) |ηm̂−i−1 − ϕm̂−i−1| ≤
(
Jm̂−i+1

Jm̂−i

)
|ηm̂−i − ϕm̂−i|+

2

N
.

This proves the statement of the lemma. �

We need to look at the change in energy when we go from a critical configuration in the set C?
to a neighbouring configuration obtained by changing the sign at one vertex. Our next observation
concerns the sets U−σ and U+

σ defined in the statement of Lemma 1.6.

Lemma 3.6. Suppose that (A1) holds and that every ξ ∈ C? has the same volume |ξ| = k?, and
that every configuration of volume k? has energy at least Φ (�,�). Suppose furthermore that for
every configuration σ ∈ U+

ξ , H (σ) 6= Φ (�,�). Then (1.22) is satisfied.

Proof. Let ξ ∈ C?, and suppose that σ ∈ U−ξ , so that σ = ξ\ {va} for some a < k?. If σ lies on some
optimal path, then, by the assumption that this path has a unique maximum, (1.22) is satisfied.
Else, since ξ lies on an optimal path, there exists some configuration ξ′ = ξ\ {vb} on the same
path, of volume |ξ′| = k? − 1 (note that by (A1) k? > 0) and with Φ (ξ′,�) < Φ (�,�). We claim
that the path σ → σ ∩ ξ′ → ξ′ stays strictly below Φ (�,�), which proves the statement of the
lemma. Since by definition H (σ) < Φ (�,�) and H (ξ′) < Φ (�,�), we only need to show that
H (σ ∩ ξ′) < Φ (�,�). However, note that

(3.34)

H (σ ∩ ξ′)−H (σ) =
∑
i≤k?
i 6=b,a

Jd(vb,vi) −
∑
i>k?

Jd(vb,vi) − Jd(vb,va) + h

≤
∑
i≤k?
i6=b

Jd(vb,vi) −
∑
i>k?

Jd(vb,vi) + h = H (ξ′)−H (ξ) < 0,

where the last inequality uses the fact that Φ (ξ′,�) < Φ (ξ,�). This proves the claim for σ ∈ U−ξ .
The argument for σ ∈ U+

ξ makes use of the fact that by assumption H (σ) 6= Φ (�,�), and is
otherwise identical to the argument above. �

Next, let us first consider any configuration γk lying on the path γ, with k = an−1N
n−1 +. . .+a0,

and let σb be a configuration obtained from γk by flipping the sign at a vertex w such that d (w, vk) =
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b for b ∈ {1, . . . , n}. Note that by symmetry it makes no difference which particular vertex we select.
If σb (w) = −γk (w) = −1, then for b = 1 we have

eq:vertexflip-s1

(3.35) H (σb)−H (γk) = J1 (2a0 −N − 1) +

n−1∑
i=1

Ji+1N
i (2ai −N + 1) + h,

while for 2 ≤ b ≤ n,

eq:vertexflip-s2

(3.36)

H (σb)−H (γk)

=

b−1∑
i=1

JiN
i

(
1− 1

N

)
+ Jb

(
2

b−1∑
i=0

aiN
i −N b −N b−1

)
+

n−1∑
i=b

Ji+1N
i (2ai −N + 1) + h.

Similarly, if σb (w) = −γk (w) = +1, then for b = 1 we have

eq:vertexflip+s1

(3.37) H (σb)−H (γk) =

n−1∑
i=0

Ji+1N
i (N − 2ai − 1)− h,

while for 2 ≤ b ≤ n,

eq:vertexflip+s2

(3.38)

H (σb)−H (γk)

=

b−1∑
i=1

JiN
i

(
1− 1

N

)
+ Jb

(
N b − 2

b−1∑
i=0

aiN
i −N b−1

)
+

n−1∑
i=b

Ji+1N
i (N − 2ai − 1)− h.

Under Assumption (A5), {H (γi)}N
n

i=0 attains a unique maximum. Indeed, this is immediate from
(3.4). Furthermore, from Assumption (A4) it follows that ~J is strictly monotone, and hence by
Lemma 2.2 the path γ is strictly optimal. This implies that all σ ∈ C? must have the same vol-
ume, and that every other configuration of that volume has larger energy. Hence the conditions of
Lemma 3.6 are met.

3.4. Proof of Theorem 1.16. Define

eq:Bd Bu

(3.39)

Bd =

{
1 ≤ b ≤ m̂ :

b−1∑
i=1

JiN
i
(

1− 1

N

)
+ Jb

(
2

b−1∑
i=0

ηiN
i −N b −N b−1

)

+

n−1∑
i=b

Ji+1N
i
(
2ηi −N + 1

)
+ h < 0

}

Bu =

{
1 ≤ b ≤ n :

b−1∑
i=1

JiN
i
(

1− 1

N

)
+ Jb

(
N b − 2

b−1∑
i=0

ηiN
i −N b−1

)

+

n−1∑
i=b

Ji+1N
i
(
N − 2ηi − 1

)
− h < 0

}
,

where {ηi}n−1
i=0 is defined as in the statement of Lemma 3.5. By (3.36) and (3.38), Bd gives the

distances to the ‘critical’ vertex of the vertices that are flipped in obtaining configurations that
result in a lower energy than the critical configuration. Thus

(3.40)

N− (σ) =
∣∣{σ ∈ U−σ : H (σ) < H (σ)

}∣∣ = [1 + oN (1)]
∑
i∈Bd

ηi−1N
i−1,

N+ (σ) =
∣∣{σ ∈ U+

σ : H (σ) < H (σ)
}∣∣ = [1 + oN (1)]

∑
i∈Bu

(
N i − ηi−1N

i−1
)
.
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Hence, by Lemma 1.6, we have

(3.41)

1

K?
= [1 + oN (1)]

∑
σ∈C?

(∑
i∈Bd ηi−1N

i−1
)(∑

i∈Bu(N i − ηi−1N
i−1)

)
(∑

i∈Bd ηi−1N i−1
)

+
(∑

i∈Bu(N i − ηi−1N i−1)
)

= [1 + oN (1)]

(∑
i∈Bd ηi−1N

i−1
)(∑

i∈Bu(N i − ηi−1N
i−1)

)
(∑

i∈Bd ηi−1N i−1
)

+
(∑

i∈Bu(N i − ηi−1N i−1)
)

× Nn−m̂−1

N − η0

m̂∏
i=0

(
N

ηi

)
(N − ηi) .

3.5. Proof of Theorems 1.13–1.14. Let {J̃i}ni=1 be such that J̃i/N → 0 for all i ∈ {1, . . . , n}
as N → ∞, and take Ji = J̃i/N

i. It is easy to check that Assumption (A3) is satisfied given that
Assumption (A2)(b) is also satisfied.

Proof of Theorem 1.13. From (1.32) and (3.32) we learn that

ηm̂ = dŝe =

⌈
N

2J̃m̂+1

((
1− 1

N

) n∑
i=m̂+1

J̃i − h

)⌉

= [1 + oN (1)]
1

2

N

J̃m̂+1

(
n∑

i=m̂+1

J̃i − h

)
(3.42)

and

eq:special-case-zetam-i

(3.43)

ηm̂−1 = [1 + oN (1)]
N

2
,

ηm̂−i = [1 + oN (1)]
N

2

i+1∑
j=1

(
J̃m̂−i+j

J̃m̂−i

)(
1− 2ηm̂−i+1

N

)
+

n−m̂∑
j=2

(
J̃m̂+j

J̃m̂−i

)
− h

J̃m̂−i
+ 1

 ,

for i = 1, . . . , m̂. This identifies the configurations announced in (1.46). �

Proof of Theorem 1.14. Observe from (1.32) that

ŝ =
N

2J̃m̂+1

((
1− 1

N

) n∑
i=m̂+1

J̃i − h

)
,(3.44)

and by assumption (A1)(b) we have that

(3.45) lim
N→∞

(
1− 1

N

) n∑
i=m̂+1

J̃i − h = lim
N→∞

n∑
i=m̂+1

J̃i − h > 0.

Then

eq:A2 check1

(3.46)

k
∑n
i=m̂+1 JiN

i

dŝe (2ŝ− dŝe+ 1) Jm̂+1N2m̂
=

k
∑n
i=m̂+1 J̃i

dŝe (2ŝ− dŝe+ 1) J̃m̂+1N m̂−1

≤
N
∑n
i=m̂+1 J̃i

dŝe (2ŝ− dŝe+ 1) J̃m̂+1

= O
(
N−1

) (
J̃m̂+1

)−1 n∑
i=m̂+1

J̃i,
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and similarly

eq: A2 check2

(3.47)

∑m̂−1
i=0 Ji+1N

i
(

(N − ai − 1)
(∑i

j=0 ajN
j
)

+ ai

(
N i −

∑i−1
j=0 ajN

j
))

dŝe (2ŝ− dŝe+ 1) Jm̂+1N2m̂

≤
N
∑m̂−1
i=0 J̃i+1

dŝe (2ŝ− dŝe+ 1) J̃m̂+1

= O
(
N−1

) (
J̃m̂+1

)−1 n∑
i=m̂+1

J̃i.

Summing (3.46) and (3.47) we get Assumption (A2). From (3.22) we get

(3.48) Γ? = [1 + oN (1)]
1

4
N m̂+1

(
J̃m̂+1

)−1
((

1− 1

N

) n∑
i=m̂+1

J̃i − h

)2

.

�

4. Standard interaction

In this section we consider the special case
eq:regulardef

(4.1) Ji = J̃/N i, 1 ≤ i ≤ n,

for some J̃ > 0. The Hamiltonian in (1.28) becomes

(4.2) H (h;σ) = − J̃
2

∑
a,b∈Λn

N
:

a 6=b

N−d(va,va)σ(va)σ(va)− h

2

∑
a∈ΛnN

σ(va),

where we exhibit the dependence on h. In Sections 4.1 we show that the energy landscape has
certain symmetries. In Section 4.2 we exploit these symmetries to identify the location of the global
maximum of the energy along the reference path γ. In Section 4.3 we use these results to prove
Theorems 1.11 and 1.15. In Section 4.4 we compute the prefactor and prove Theorem 1.17.

4.1. Symmetries in the energy landscape. In this section we derive four lemmas (Lemmas 4.2–
4.5 below) exhibiting certain symmetries in the energy landscape for the case of standard interaction
(see Fig. 4.1). These symmetries will be crucial later on.

For any h1, h2 > 0 and 0 ≤ a, b ≤ Nn,
eq:differenthdifference

(4.3) H (h1; γa)−H (h1; γb) = H (h2; γa)−H (h2; γb) + (h2 − h1) (a− b) .

Definition 4.1. A sequence {ai}Mi=1 ∈ RM is called symmetric when

(4.4) ai = aM−i+1, 1 ≤ i ≤M,

and concave when
eq:concavityproperty

(4.5) ai − ai−1 ≥ ai+1 − ai, 2 ≤ i ≤M − 1.

The following lemma is elementary.

Lemma 4.2. Suppose that the sequence {ai}Mi=1 is symmetric and concave. Then

(4.6) max
1≤i≤M

ai = adM2 e.

Recall the definition of m̂ from (1.31), and note that now

eq:mhatregular

(4.7) m̂h =

⌊
n− h

J̃

(
1− 1

N

)−1
⌋
,

where again we exhibit the dependence on h. It was shown in Section 3.2 that, in the hierarchical
limit N → ∞, m̂h gives the order of magnitude of a critical configuration (in particular, the
asymptotic size of a critical configuration was shown to be ŝN m̂). We will now show that for the
standard interaction in (4.1), m̂h plays a similar role.
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Let γ : � → � be the optimal path defined in Section 1.4. We begin by considering the Hamil-
tonian i 7→ H(h; γi) for certain special values of h. Recall h(m,s) defined in (1.39). In terms of this
quantity, we have

(4.8)

H
(
h(m,s); γsNm̂

)
−H

(
h(m,s);�

)
=

J̃

N
sNm (N − s) + J̃sNm

n∑
i=m+2

(
1− 1

N

)
− sh(m,s)Nm

= sNm

(
J̃ (N − s) 1

N
+ J̃

(
1− 1

N

)
(n−m− 1)− h(m,s)

)
= 0

and
eq:mhat-hms

(4.9) m̂h(m,s) =

⌊
m+ (s− 1)

1

N

(
1− 1

N

)−1
⌋

= m.

A magnetic field that takes the form h(m,s) gives rise to symmetries in the energy landscape along
the path γ, which we can exploit in order to find the values at which i 7→ H

(
h(m,s); γi

)
attains its

global maximum. Later we will use this information to find the location of the global maxima for
general values of h. First we show that the global maximum of i 7→ H

(
h(m,s); γi

)
is attained in the

interval [0, sNm].

Lemma 4.3. For any 1 ≤ s ≤ N and 0 ≤ m ≤ n− 1,
eq:Hineq

(4.10) max
1≤i≤Nn

H
(
h(m,s); γi

)
= max
i≤sNm

H
(
h(m,s); γi

)
.

Proof. Let K = an−1N
n−1 + . . .+a0 and u(i) = an−1N

n−1 + . . .+aiN
i, and note that, by Lemma

3.2,

(4.11) H
(
h(m,s); γu(m+1)

)
≤ H

(
h(m,s); γu(m+2)

)
+H

(
h(m,s); γam+1Nm+1

)
−H

(
h(m,s);�

)
.

By Lemma 3.1 and the definition of m = m̂ in (3.12), we have, for 0 ≤ m < n− 1,

(4.12)
H
(
h(m,s); γam+1Nm+1

)
−H

(
h(m,s); γ(am+1−1)Nm+1

)
≤ H

(
h(m,s); γNm+1

)
−H

(
h(m,s);�

)
≤ 0.

Hence, by induction,

eq:inductsetp

(4.13)
H
(
h(m,s); γam+1Nm+1

)
≤ H

(
h(m,s); γ(am+1−1)Nm+1

)
≤ . . . ≤ H

(
h(m,s); γNm+1

)
≤ H

(
h(m,s);�

)
and therefore

(4.14) H
(
h(m,s); γu(m+1)

)
≤ H

(
h(m,s); γu(m+2)

)
.

Once again it follows from inductive reasoning that

(4.15) H
(
h(m,s); γu(m+1)

)
≤ H

(
h(m,s); γan−1Nn−1

)
.

By the same reasoning as in (4.13), we have

(4.16) H
(
h(m,s); γan−1Nn−1

)
≤ H

(
h(m,s); γNn−1

)
≤ H

(
h(m,s);�

)
and hence

(4.17) H
(
h(m,s); γu(m+1)

)
≤ H

(
h(m,s);�

)
.
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Thus

eq:slowing2-inequality

(4.18)

H
(
h(m,s); γK

)
−H

(
h(m,s);�

)
= H

(
h(m,s); γK

)
−H

(
h(m,s); γu(m+1)

)
+H

(
h(m,s); γu(m+1)

)
−H

(
h(m,s);�

)
≤ H

(
h(m,s); γK

)
−H

(
h(m,s); γu(m+1)

)
≤ H

(
h(m,s); γamNm+...+a0

)
−H

(
h(m,s);�

)
,

where the last inequality again follows from Lemma 3.2. Moreover, for m = n − 1 the inequality
in (4.18) is immediate. If am < s, then the claim in (4.10) follows immediately. Otherwise we
have H

(
h(m,s); γamNm

)
≤ H

(
h(m,s);�

)
and hence, by Lemma 3.2 and using the abbreviation

v(i) = aiN
i + . . .+ a0,

(4.19)

H
(
h(m,s); γv(m)

)
−H

(
h(m,s);�

)
≤ H

(
h(m,s); γv(m)

)
−H

(
h(m,s); γamNm

)
+H

(
h(m,s); γamNm

)
−H

(
h(m,s);�

)
≤ H

(
h(m,s); γv(m−1)

)
−H

(
h(m,s);�

)
≤ max

1≤i≤sNm
H
(
h(m,s); γi

)
−H

(
h(m,s);�

)
,

which settles the claim. �

We next derive two results stating {H(h(m,s), γi)}sN
n

i=1 (illustrated in Fig. 4.1) is symmetric and
fractal-like, which is used later to locate the global maxima of this sequence.

Lemma 4.4. The sequence {H(h(m,s); γi)}sN
m

i=0 is symmetric, i.e.,

(4.20) H
(
h(m,s); γK

)
= H

(
h(m,s); γsNm−K

)
, 0 ≤ K ≤ sNm.

Proof. Let K = kn−1N
n−1 + . . .+ k0 , so that

(4.21)

H
(
h(m,s); γK

)
−H

(
h(m,s);�

)
+ h(m,s)K

=

n−1∑
i=0

Ji+1N
i

 i∑
j=0

kjN
j

 (N − ki − 1) + ki

N i −
i−1∑
j=0

kjN
j


=

n−1∑
i=0

Ji+1N
i

i−1∑
j=0

kjN
j

 (N − ki − 1) + kiN
i (N − ki − 1) + kiN

i − ki
i−1∑
j=0

kjN
j


=

n−1∑
i=0

Ji+1N
i

i−1∑
j=0

kjN
j

 (N − 2ki − 1) + kiN
i (N − ki)


=

n−1∑
i=0

J̃

N

i−1∑
j=0

kjN
j

 (N − 2ki − 1) + kiN
i (N − ki)

 .

Since ki = 0 for i > m and km < s, this simplifies to

eq:HKregsymetric

(4.22)

H
(
h(m,s); γK

)
−H

(
h(m,s);�

)
=

m∑
i=0

J̃

N

i−1∑
j=0

kjN
j

 (N − 2ki − 1) + kiN
i (N − ki)


+K

(
J̃

(
1− 1

N

)
(n−m− 1)− h(m,s)

)
.
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Note that if K̃ = sNm −K, then the number of interacting pairs at distance i = 0, . . . ,m in the
configuration γK̃ (i.e., vertices va, vb such that γK̃ (va) = −γK̃ (vb) and d (va, vb) = i) is the same
as in the configuration γK . At distance m+ 1 this number is equal to

(4.23) Nm

K (s− km − 1) +

Nm −
m−1∑
j=0

kjN
j

 km + (sNm −K) (N − s)


and therefore we conclude that

(4.24)

H
(
h(m,s); γK̃

)
−H

(
h(m,s);�

)
=

m−1∑
i=0

J̃

N

i−1∑
j=0

kjN
j

 (N − 2ki − 1) + kiN
i (N − ki)


+
J̃

N

K (s− km − 1) +

Nm −
m−1∑
j=0

kjN
j

 km + (sNm −K) (N − s)


+

n−1∑
i=m+1

J̃

(
1− 1

N

)sNm −
m∑
j=0

kjN
j

− h(m,s)K̃.

Thus, we have

(4.25)
H
(
h(m,s); γK̃

)
−H

(
h(m,s); γK

)
=

n−1∑
i=m+1

J̃

(
1− 1

N

)
(sNm − 2K)

+
J̃

N
(K (s− km − 1) + (sNm −K) (N − s)−K (N − ki − 1))− h(m,s) (sNm − 2K) ,

which is equal to 0 if and only if

(4.26)

h(m,s) (sNm − 2K)

= J̃

(
1− 1

N

)
(sNm − 2K) (n−m− 1)

+
J̃

N
(K (s− km − 1) + (sNm −K) (N − s)−K (N − km − 1))

= J̃

(
1− 1

N

)
(sNm − 2K) (n−m− 1) +

J̃

N
(K (s−N) + (sNm −K) (N − s))

= J̃ (sNm − 2K)

((
1− 1

N

)
(n−m)− (s− 1)

1

N

)
,

which indeed is true by the definition of h(m,s) in (1.39). �

To state the second result we need some more notation. Let Q : N0 → {0, 1} be defined by
eq:def Q

(4.27) Q (a) = amod 2.

For all integers k ∈ {1, . . . ,m} taking the form k = a(1 +Q(N + 1))−Q((N + 1)(s+ 1)) for some
a ∈ {1, . . . ,m}, define the integer intervals Sk = [S−k , S

+
k ], where

eq:SetSk

(4.28)

S−k =
(⌊s

2

⌋
− 1 +Q (s (N + 1))

)
Nm +

k−1∑
j=1

am−jN
m−j + (1 +Q (sN))Nm−k,

S+
k =

(⌊s
2

⌋
− 1 +Q (s (N + 1))

)
Nm +

k−1∑
j=1

am−jN
m−j +Nm−k+1,
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and

(4.29) am−j =

⌊
N

2
−Q ((j + s+ 1) (N + 1))

⌋
.

The following clarification regarding (4.28) is in order. For odd values of N , (4.28) defines the sets
S1, . . . , Sm, and the coefficients am−j are all equal to

⌊
N
2

⌋
= N−1

2 . For even values of N and even
values of s, (4.28) defines the odd-indexed sets S1, S3, . . . , S2bm2 c+1 and the coefficients am−j are

given by am−1 = N
2 , am−2 = N

2 − 1, etc. For even values of N and odd values of s, (4.28) defines
the even-indexed sets S2, S4, . . . , S2bm2 c and the coefficients am−j are given by am−1 = N

2 − 1,

am−2 = N
2 , etc.

Lemma 4.5. For every k ∈ {1, . . . ,m} that takes the form

(4.30) k = a (1 +Q (N + 1)) +Q ((N + 1) (s+ 1))

for some a ∈ N0, the sequence {H(h(m,s); γi)}i∈Sk is symmetric.

Proof. Suppose that K ∈ Sk, so that

(4.31) K =

m∑
i=0

aiN
i =

(⌊s
2

⌋
− 1 +Q (s (N + 1))

)
Nm +

k−1∑
j=1

am−jN
m−j +R,

where

(4.32) R = am−kN
m−k + am−k−1N

m−k−1 + . . .+ a0

for 1 +Q (sN) ≤ am−k ≤ N − 1 and 0 ≤ ai ≤ N − 1 for 0 ≤ i < m− k. Also let

(4.33)

K̃ =
(⌊s

2

⌋
− 1 +Q (s (N + 1))

)
Nm

+

k−1∑
j=1

am−jN
m−j +Nm−k+1 −R+ (1 +Q (sN))Nm−k

= K +Nm−k+1 − 2R+ (1 +Q (sN))Nm−k,

so that K and K̃ are mirrored points in Sk (i.e., if K is the ith point in Sk, then K̃ is the (|Sk|− i)th
point). Note that, by (4.22),

(4.34)
H
(
h(m,s); γK

)
−H

(
h(m,s);�

)
=

m∑
i=0

J̃

N

i−1∑
j=0

ajN
j

 (N − 2ai − 1) + aiN
i (N − ai)


+K

(
J̃

(
1− 1

N

)
(n−m− 1)− h(m,s)

)
.

Observe that, for 1 ≤ i ≤ m − k, the total number of interacting pairs at distance i in γK̃ (i.e.,
vertices v, w such that d (v, w) = i and γK̃ (v) = −γK̃ (w)), is the same as in γK . At distance
m − k + 1, the number of interacting pairs in γK̃ is equal to the number of interacting pairs in
γK plus (1 +Q(sN))Nm−k(R − (1 +Q(sN))Nm−k) minus (1 +Q(sN))Nm−k(Nm−k+1 − R). For
m − k + 2 ≤ i, the number of interacting pairs at distance i in γK̃ is equal to the number of
interacting pairs in γK plus aiN i(R − (1 + Q(sN))Nm−k) minus aiN i(Nm−k+1 − R), and plus
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(N − ai − 1)N i(Nm−k+1 −R) minus (N − ai − 1)N i(R− (1 +Q(sN))Nm−k). Thus, we have

(4.35)

(
H
(
h(m,s); γK̃

)
−H

(
h(m,s);�

))( J̃

N

)−1

=

m−k∑
i=0

i−1∑
j=0

ajN
j

 (N − 2ai − 1) + aiN
i (N − ai)


+ (1 +Q (sN))

(
2R−Nm−k+1 − (1 +Q (sN))Nm−k)

+

m∑
i=m−k+1

i−1∑
j=0

ajN
j

 (N − 2ai − 1) + aiN
i (N − ai)


+

m∑
i=m−k+1

(N − 2ai − 1)
(
Nm−k+1 − 2R+ (1 +Q (sN))Nm−k)

+

n−1∑
i=m+1

J̃

(
1− 1

N

) m∑
j=0

ajN
j +

(
Nm−k+1 − 2R+ (1 +Q (sN))Nm−k)

− h(m,s)K̃.

Hence it follows thateq:HKtildeKdifference

(4.36)

H
(
h(m,s); γK̃

)
−H

(
h(m,s); γK

)
=

J̃

N
(1 +Q (sN))

(
2R−Nm−k+1 − (1 +Q (sN))Nm−k)

+

m∑
i=m−k+1

J̃

N
(N − 2ai − 1)

(
Nm−k+1 − 2R+ (1 +Q (sN))Nm−k)

+

n−1∑
i=m+1

J̃

(
1− 1

N

)(
Nm−k+1 − 2R+ (1 +Q (sN))Nm−k)− h(m,s)

(
K̃ −K

)
.

Note that (4.36) is equal to zero if and only if

(4.37)

h(m,s)
(
K̃ −K

)
= h(m,s)

(
Nm−k+1 − 2R+Nm−k)

=
J̃

N
(1 +Q (sN))

(
2R−Nm−k+1 − (1 +Q (sN))Nm−k)

+

m∑
i=m−k+1

J̃

N
(N − 2ai − 1)

(
Nm−k+1 − 2R+ (1 +Q (sN))Nm−k)

+

n−1∑
i=m+1

J̃

(
1− 1

N

)(
Nm−k+1 − 2R+ (1 +Q (sN))Nm−k) ,

which holds whenever

(4.38)

h(m,s) = − J̃
N

(1 +Q (sN)) +

m∑
i=m−k+1

J̃

N
(N − 2ai − 1) +

n−1∑
i=m+1

J̃

(
1− 1

N

)

= − J̃
N

(1 +Q (sN)) +
J̃

N

m−1∑
i=m−k+1

(N − 2ai − 1)

+
J̃

N

(
N − 2

⌊s
2

⌋
+ 1−Q (s (N + 1))

)
+ (n−m− 1) J̃

(
1− 1

N

)
.
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If N is odd, then (N − 2ai − 1) = (N − 2bN2 c − 1) = 0, and hence
∑m−1
i=m−k+1 (N − 2ai − 1) = 0.

If N is even, then the terms (N − 2ai − 1) alternate between −1 and 1. Thus, if s is even, k is odd
and

∑m−1
i=m−k+1 (N − 2ai − 1) = 0 because the sum has an even number of terms, while if s is odd,

then the sum adds up to J̃
N . We can encode this as

(4.39)
J̃

N

m−1∑
i=m−k+1

(N − 2ai − 1) =
J̃

N
Q (s (N + 1)) .

Recalling (1.39), it remains to show that

(4.40)

(
1− 1

N

)
(n−m)− (s− 1)

1

N
= − 1

N
(1 +Q (sN)) +

1

N
Q (s (N + 1))

+
1

N

(
N − 2

⌊s
2

⌋
+ 1− 2Q (s (N + 1))

)
+ (n−m− 1)

(
1− 1

N

)
,

or equivalently

(4.41) − (s− 1)
1

N
= − 1

N

(
2
⌊s

2

⌋
+Q (sN)− 1 +Q (s (N + 1))

)
= − (s− 1)

1

N
,

which is trivially true. �

The symmetries in Lemmas 4.2–4.5 are depicted in Fig. 4.1.
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Figure 8. Plot of i 7→ H(γi) for Λ9
5, with J̃ = 10.3 and h = h(m,s) = J̃((1 − 1

N
)(n −

m) − (s−1)
N

) with m = 4 and s = 8. The solid-line in the left plot corresponds to values
i = 0, 1, . . . , sNm, and is symmetric as shown in Lemma 4.4. The solid-line in the right
plot shows symmetry of H(γi) for values i ∈ S1, as shown in Lemma 4.5.

4.2. Global maximum along the reference path. In this section we derive two propositions
(Propositions 4.6–4.7 below) identifying the location of the global maximum of i 7→ H(h(m,s); γi).

Proposition 4.6. Suppose that N is odd. If s is odd, then

eq:maxloc

(4.42)
H
(
h(m,s); γbsNm/2c

)
= H

(
h(m,s); γbsNm/2c+1

)
= max

1≤i≤sNm
H
(
h(m,s); γi

)
= max

1≤i≤Nn
H
(
h(m,s); γi

)
,

and for all i < bsNm/2c,
eq:1st max s odd

(4.43) H
(
h(m,s); γi

)
< H

(
h(m,s); γbsNm/2c

)
.
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If s is even, then
eq:maxloc2

(4.44) H
(
h(m,s); γb(s−1)Nm/2c+1

)
= max

1≤i≤sNm
H
(
h(m,s); γi

)
= max

1≤i≤Nn
H
(
h(m,s); γi

)
and for all i < b(s− 1)Nm/2c+ 1,

eq: 1st max s even

(4.45) H
(
h(m,s); γi

)
< H

(
h(m,s); γb(s−1)Nm/2c+1

)
.

Proof. The first equality in (4.42) is immediate from Lemma 4.4 since bsNm/2c + 1 = sNm −
bsNm/2c, while the third equality follows from Lemma 4.3. We claim that the second equality in
(4.42) follows from both Lemma 4.4 and Lemma 4.2. Indeed, note that by Lemma 3.1 the sequence

(4.46) {H (h; γi)} ,
⌊
sNm

2

⌋
−
⌊
N

2

⌋
+ 1 ≤ i ≤

⌊
sNm

2

⌋
+

⌊
N

2

⌋
+ 2.

is concave, and by Lemma 4.4 is also symmetric. Therefore, by Lemma 4.2, we have that H(γi) ≤
H(γbsNm/2c) for all i such that d(vi, vbsNm/2c) = d(vi, vbsNm/2c+1) = 1. In fact, from Lemma 3.1
we have a strict form of concavity,

(4.47)
H
(
h(m,s); γbsNm/2c

)
−H

(
h(m,s); γbsNm/2c

)
= H

(
h(m,s); γbsNm/2c+1

)
−H

(
h(m,s); γbsNm/2c

)
+ 2J̃ = 2J̃ ,

which shows that

(4.48) H(γbsNm/2c) > H(γi) ∀ i < bsNm/2c : d(vi, vbsNm/2c) = d(vi, vbsNm/2c+1) = 1.

Suppose that this is also true for all i such that d(vi, vbsNm/2c) = r, and let z be such that
d(vz, vbsNm/2c) = r + 1. Note that if r + 1 < m + 1, then z belongs to a sequence of the form
{z0 + tNr}N−1

t=0 for some z0 such that all N terms in the sequence belong to the same (r + 1)-block,
while if r+1 = m+1, then z ∈ {z0 +tNr}s−1

t=0 such that again all s terms belong to the first (m+ 1)-
block. Observe that the sequence {H(h(m,s); γi)}i∈A is concave by Lemma 3.1 and symmetric by
Lemma 4.4, where

(4.49) A =
{
{z0 + tNr}N−1

t=0

⋂
[0, bsNm/2c] , {sNm − z0 − tNr}N−1

t=0

⋂
[bsNm/2c+ 1, sNm]

}
if r + 1 < m+ 1, and

(4.50) A =
{
{z0 + tNr}s−1

t=0

⋂
[0, bsNm/2c] , {sNm − z0 − tNr}s−1

t=0

⋂
[bsNm/2c+ 1, sNm]

}
if r+ 1 = m+ 1. Hence it attains its maximum only at the two midpoints of the sequence A (which
has N + 1 terms in total). At least one of these two points is at distance r from vbsNm/2c. Thus, by
the inductive hypothesis we have that H(h(m,s); γz) < H(h(m,s); γbsNm/2c).

Next, we look at the case when s is even. By (4.3) and the above result for the odd value s− 1,
we have that, for t < b(s− 1)Nm/2c+ 1,

(4.51)
H
(
h(m,s); γb(s−1)Nm/2c+1

)
−H

(
h(m,s); γt

)
≥ H

(
h(m,s−1); γb(s−1)Nm/2c+1

)
−H

(
h(m,s−1); γt

)
> 0,

and thus we only need to show that
eq:otherside

(4.52) H
(
h(m,s); γb(s−1)Nm/2c+1

)
≥ H

(
h(m,s); γt

)
∀ b(s− 1)Nm/2c+ 1 ≤ t ≤ bsNm/2c+ 1.

To do this, recall first that by Lemma 4.5 the sequence {H(h(m,s); γi)}i∈Sm is symmetric, concave
and of odd cardinality. Furthermore, H(h(m,s); γb(s−1)Nm/2c+1) is the midpoint of this sequence,
and for all i, j ∈ Sm we have d(vi, vj) = 1. Hence

(4.53) H
(
h(m,s); γb(s−1)Nm/2c+1

)
> H

(
h(m,s); γi

)
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for all i < b(s− 1)Nm/2c+ 1 such that d(vi, vb(s−1)Nm/2c+1) = 1. Now observe that Sm ⊂ Sm−1 ⊂
. . . ⊂ S1, and suppose that H(h(m,s); γb(s−1)Nm/2c+1) > H(h(m,s); γi) for all i < b(s− 1)Nm/2c+ 1
such that d(vi, vb(s−1)Nm/2c+1) = r. If i is such that d(vi, vb(s−1)Nm/2c+1) = r + 1, then like in the
s-odd case we can construct a concave and symmetric sequence such that the midpoint (and hence
maximum) of this sequence is at distance r or less from vb(s−1)Nm/2c+1. It follows that (4.44) and
(4.45) hold. �

Proposition 4.7. Suppose that N is even, and let

eq:max-index-r

(4.54) r =

(
s− 1

2

)
Nm +

m−1∑
j=1

am−jN
m−j +

N

2
,

where
eq:amj-Neven

(4.55) am−j =
N

2
−Q (j + s+ 1) .

If s = 2a+ 1 for some a ∈
{

0, . . . , N2 − 1
}
, then

eq:maxloc-1

(4.56) H
(
h(m,s); γr

)
= max

1≤i≤sNm
H
(
h(m,s); γi

)
= max

1≤i≤Nn
H
(
h(m,s); γi

)
and, for all i < r,

(4.57) H
(
h(m,s); γi

)
< H

(
h(m,s); γr

)
.

Similarly,
eq:maxloc2-1

(4.58) H
(
h(m,s+1); γr

)
= max

1≤i≤(s+1)Nm
H
(
h(m,s+1); γi

)
= max

1≤i≤Nn
H
(
h(m,s+1); γi

)
and, for all i < r,

(4.59) H
(
h(m,s+1); γi

)
< H

(
h(m,s); γr

)
.

Proof. The coordinates am−j are defined below (4.28). Noting that r is the midpoint of the smallest
of the sets {Sk} (for odd or even indices k depending on the case in question), we see that the claim
follows from similar computations as those in the proof of Proposition 4.6. �

4.3. Proof of Theorems 1.11 and 1.15. We now use Propositions 4.6 and 4.7 to determine the
size of the critical configurations and prove Theorems 1.15 and 1.11 (Propositions 4.8 and 4.10
below). Recall the definition of the index set I in (1.38).

Proposition 4.8 (Proof of Theorem 1.15). Let h > 0, and take let (m, s) ∈ I be such that
eq:h-between-hs

(4.60) h(m,s) ≤ h < h(m,s−1).

If s is odd, then for N odd
eq:max-odd

(4.61) max
1≤i≤Nn

H (h; γi) = H
(
h; γbsNm/2c

)
and for N even

eq:max-even,even

(4.62) max
1≤i≤Nn

H (h; γi) = H (h; γr) ,

where r is given in (4.54). If s is even, then for N odd
eq:max-odd,even

(4.63) max
1≤i≤Nn

H (h; γi) = H
(
h; γb(s−1)Nm/2c+1

)
,

and for N even
eq:max-even,odd

(4.64) max
1≤i≤Nn

H (h; γi) = H (h; γr′) ,
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where r′ is obtained by replacing s by s − 1 in the leading term in (4.54). If h ≥ J̃(1 − 1
N )n, then

max1≤i≤Nn H(h; γi) = H(h; γ0). If the inequality on the left side of h in (4.60) is also strict, then
these are the unique maxima.

Proof. We give the proof for N odd and s even, the proof for all other cases being similar. From
(4.3) and Proposition 4.6 we have that, for all i ≤ b(s− 1)Nm/2c+ 1,

eq:h-gen-max-ineq

(4.65) H
(
h; γb(s−1)Nm/2c+1

)
−H (h; γi) ≥ H

(
h(m,s−1); γb(s−1)Nm/2c+1

)
−H

(
h(m,s−1); γi

)
≥ 0

and, for i ≥ b(s− 1)Nm/2c+ 1,
eq:h-gen-max-ineq2

(4.66) H
(
h; γb(s−1)Nm/2c+1

)
−H (h; γi) ≥ H

(
h(m,s); γb(s−1)Nm/2c+1

)
−H

(
h(m,s); γi

)
≥ 0.

This proves the first claim. If the inequalities in (4.60) are both strict, then both (4.65) and (4.66)
are strict whenever i 6= b(s− 1)Nm/2c+ 1. �

Remark 4.9. It is easy to check that if we take h = J̃((1 − 1
N )(n −m) − (s − 1) 1

N ) = h(m,s) or
h = h(m,s−1) = J̃((1− 1

N )(n−m)− (s− 2) 1
N ) in (4.60), then (4.63) and (4.61) remain true.

Proposition 4.10 (Proof of Theorem 1.11). Let h > 0, and let m and s satisfy (4.60).
(1) Suppose that N is odd. For s even,

(4.67)
Γ? =

J̃

4N

(
Nm

[
2s
(
N − s

2
+ 1
)
−N − 1

]
+N − 2s+ 1

)
+

1

2

(
J̃

(
1− 1

N

)
(n−m− 1)− h

)
(Nm (s− 1) + 1)

while for s odd

(4.68)
Γ? =

J̃

4N

(
Nm

[
2s
(
N − s

2

)
+N

]
+N − 2s− 1

)
+

1

2

(
J̃

(
1− 1

N

)
(n−m− 1)− h

)
(sNm + 1) .

(2) Suppose that N is even. For s odd,

(4.69)

Γ? = Γ?s

=
J̃

2
N1+Q(m+1)

(
Nm−2+Q(m) − 1

N2 − 1

)
+ J̃

(
1

2

(
Nm − 1

N − 1

)
−NQ(m)

(
Nm−Q(m) − 1

N2 − 1

))
× (N − s)

+

[
N

4

(
Nm − 1

N − 1

)
−NQ(m)

(
Nm−Q(m) − 1

N2 − 1

)
+Nm−1

(
s− 1

2

)(
N − s− 1

2

)]
+

((
s− 1

2

)
Nm +

N

2

(
Nm − 1

N − 1

)
−N1+Q(m)

(
Nm−Q(m) − 1

N2 − 1

))
×
(
J̃

(
1− 1

N

)
(n−m− 1)− h

)
,

while for s even,

eq:shifted-Gamma

(4.70)
Γ? = Γ?s−1 +

(
h(s−1) − h

)
×
(
sNm −

(
s− 1

2

)
Nm −

(
N

2

)(
Nm − 1

N − 1

)
+N1+Q(m)

(
Nm−Q(m) − 1

N2 − 1

))
.

Proof. From Proposition 4.8 we have that, for N odd and s even,
eq:GammastarNoddseven

(4.71) Γ? = H
(
h; γb(s−1)Nm/2c+1

)
−H (h;�) ,



METASTABILITY ON THE HIERARCHICAL LATTICE 33

where we also note that

(4.72) b(s− 1)Nm/2c+ 1 = b(s− 1) /2cNm + 1 +

m−1∑
i=0

⌊
N

2

⌋
N i =

(s
2
− 1
)
Nm +

1

2
(Nm + 1) .

We can now use this decomposition together with (4.22) to calculate Γ? (after a fair deal of tedious
computations). For the case where N is odd and s is odd, Γ?s is calculated in the same manner,
while (4.70) follows immediately from (4.3). �

4.4. Proof of Theorem 1.17. In this section we identify the configurations in the sets U−σ and U+
σ

defined in Lemma 1.6 and compute the prefactor K? (Corollary 4.12 and Proposition 4.13 below).
Let M be the volume of the critical configurations, whose value was determined in Proposition

4.8 (i.e., M = bsN m̂/2c if N is odd and s is odd, etc.). Recall that vM is the last vertex flipped
(from −1 to +1) in obtaining the configuration γM along the path γ. Let b ≥ 1 and let w be any
vertex such that d (w, vM ) = b. Define the configuration σb by

eq:sigma_b

(4.73) σb (v) =

{
γM (v) , v 6= w,

−γM (v) , v = w.

Assuming that h satisfies (4.60) with strict inequalities, we know from Proposition 4.8 that any
uniformly optimal path attains a unique global maximum. Hence if b = 1, then H (σb) < H (γM ),
since H (σb) ∈ {H (γM−1) ,H (γM+1)}. The following lemma shows that if N 66= 2, 4 andm ≥ 1, then
the only neighbours of γM with lower energy are those obtained by flipping a vertex at distance
b = 1.

Lemma 4.11. Let σb be defined as in (4.73). Suppose that N 6= 2, 4 and m = m̂ ≥ 1. Then
H (σb) > H (γM ) whenever b ≥ 2.

Proof. We first consider σb (w) = −1, where w is the vertex at which σb differs from γM . Note that
b ≤ m+ 1, since there are no +1-valued vertices in γM that are at distance larger than m+ 1 from
each other. By (3.36) we have that

H (σb)−H (γM ) = J̃ (b− 1)

(
1− 1

N

)
+ J̃N−b

(
2

b−1∑
i=0

aiN
i −N b −N b−1

)

+
J̃

N

n−1∑
i=b

(2ai −N + 1) + h.(4.74)

If b = m+ 1, then the right-hand side gives

J̃
(

(b− 1)
(
1− 1

N

)
+N−b

(
2
∑b−1
i=0 aiN

i −N b −N b−1
)
−
(
1− 1

N

)
(n−m− 1) + h

J̃

)
≥ J̃

(
(m+ 1)

(
1− 1

N

)
+N−m−1

(
2M −Nm+1 −Nm

)
− (s− 1) 1

N

)
,(4.75)

where the inequality follows from the bounds on h in (4.60). It is easy to see from the value of M
in Theorem 1.15 that the above is strictly larger than

(4.76)
J̃

(
(m+ 1)

(
1− 1

N

)
+

1

N
((s− 1−Q (s+ 1))−N − 1)− (s− 1)

1

N

)
≥ J̃

(
m

(
1− 1

N

)
− 2

N

)
≥ 0.

Hence we conclude that for b = m+ 1 and σb (w) = −1 the claim of the lemma holds.
Now assume that b ≤ m. If N is odd, then a0 = N−1

2 +Q (s+ 1) and ai = N−1
2 for 1 ≤ i ≤ m−1,

while am = b s−1
2 c = s−1−Q(s+1)

2 and ai = 0 for i > m. If h satisfies (4.60) for some 1 ≤ s ≤ N − 1
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and 2 ≤ m ≤ n − 1 (we do not need to consider the case m = 1 because m ≥ b ≥ 2), then this
implies

(4.77)
H(σb)−H(γM ) = J̃

(
(b− n+m)

(
1− 1

N

)
+N−b (2Q(s+ 1)− 1)

− 1

N
(N − s+ 1 +Q (s+ 1)) +

h

J̃

)
and hence H (σb) ≤ H (γk) if and only if

eq:bineq-Nodd

(4.78)

b ≤ 1 +

(
1− 1

N

)−1
(

1

N
(N − s+ 1 +Q (s+ 1))

+

(
1− 1

N

)
(n−m− 1)−N−b (2Q (s+ 1)− 1)− h

J̃

)
.

From (4.60) we have that the right-hand side of (4.78) is less than or equal to

(4.79)
Q (s+ 1) + 1

N
−N−b (2Q (s+ 1)− 1)

and hence is less than 2 when N ≥ 3. This implies that H(σb) > H(γk) when b ≥ 2. If N is even,
then

(4.80)

(H (σb)−H (γM )) J̃−1 = (b− 1)

(
1− 1

N

)
+N−b

(
2

b−1∑
i=0

aiN
i −N b −N b−1

)

− 1

N
(N − s+ 1 +Q (s+ 1))− 1

N
(N − 1) (n−m− 1)

+
1

N
(1−Q (s+m)−Q (s+ b+ 1)) +

h

J̃
,

and hence H (σb) ≤ H (γk) if and only ifeq:bineq-Neven

(4.81)

(b− 1)

(
1− 1

N

)
≤ 1− s

N
+
Q (s+ 1)

N
+

(
1− 1

N

)
(n−m− 1)

+
Q (s+m)

N
+
Q (s+ b+ 1)

N
− h

J̃
−N−b

(
2

b−1∑
i=0

aiN
i −N b −N b−1

)
.

Since h satisfies (4.60), this implies

(4.82)

b ≤ 1 +

(
1− 1

N

)−1
(
Q (s+ 1) +Q (s+ b+ 1) +Q (s+m)

N

−N−b
(

2

b−1∑
i=0

aiN
i −N b −N b−1

))

≤ 1 +

(
1− 1

N

)−1(
Q (s+ 1) +Q (s+ b+ 1) +Q (s+m) + 2Q (s+m− b)

N
−Rb

)
,

where Rb = N−b(( 1
N−1 )(N b−1 −N − 2N b−2)). The right-hand side is less than 2 when N ≥ 6, in

which case H (σb) > H (γk) when b ≥ 2.
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Now suppose that σb (w) = +1. Let us first consider the case when N is odd. Suppose that
b > m. Then by (3.38)
(4.83)
H (σb)−H (γk)

= J̃

(
1− 1

N

)
(b− 1) + J̃N b−1

(
N b − 2

b−1∑
i=0

aiN
i −N b−1

)
+

n−1∑
i=b

J̃i+1N
i (N − 2ai − 1)− h

= J̃

((
1− 1

N

)
(b− 1) +N b−1

(
N b − (s−Q (s+ 1))Nm + 1− 2Q (s+ 1)−N b−1

)
+

(
1− 1

N

)
(n− b)− h

J̃

)
.

From (4.60) it follows that this is larger than or equal to

(4.84)

J̃

(
N−b

(
N b − (s−Q (s+ 1))Nm + 1− 2Q (s+ 1)−N b−1

)
+

(
1− 1

N

)
(m− 1) + (s− 2)

1

N

)
> 0.

Hence, the inequality H (σb) ≤ H (γk) is at most possible for b ≤ m. In this case we get that
H (σb) ≤ cH (γk) if and only if

eq:bineq+Nodd

(4.85)

b ≤ 1 +

(
1− 1

N

)−1
(
h

J̃
−
(

1− 1

N

)
(n−m− 1)

− 1

N
(N − s+Q (s+ 1)− 1)−N−b (1− 2Q (s+ 1))

)
.

Once again, from (4.60) it follows that (4.85) is satisfied if and only if

(4.86) b ≤ 1 +

(
1− 1

N

)−1(
− 1

N
(Q (s+ 1)− 1)−N−b (1− 2Q (s+ 1))

)
< 2 ∀N ≥ 2.

Similarly, if N is even, then for b > m we get

(4.87)

H (σb)−H (γM ) ≥ J̃

((
1− 1

N

)
(b− 1)− 1

N (N − 1)
+
Q (s+ 1)

N
+
Q (s+m)

N

+
Q (s+ b+ 1)

N
+
Q (s+m− b)

N
− 2

N

)
,

which is larger than 0 when N ≥ 4. Thus, once again we only need to consider b ≤ m, for which
H (σb)−H (γk) ≤ 0 if and only if

eq:bineq+Neven

(4.88)

b ≤ 1 +

(
1− 1

N

)−1
(
− 1

N
(N − s+ 1 +Q (s+ 1))−

(
1− 1

N

)
(n−m− 1)

+
1

N
(1−Q (s+m)−Q (s+ b+ 1)) +

h

J̃
−N−b

(
N b − 2

b−1∑
i=0

aiN
i −N b−1

))

≤ 1 +

(
1− 1

N

)−1
(

1

N

(
1−Q (s+m)−Q (s+ b+ 1)−Q (s+ 1)

− 2Q (s+m− b)
)

+
1

N (N − 1)

)
,
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which is less than 2 when N ≥ 4. �

The prefactor K? can now be easily computed.

Corollary 4.12. Suppose that N 6= 2, 4 and m ≥ 1. Then
eq:corollary 1/K

(4.89)
1

K?
= a0N

n−m̂−2
m̂∏
i=0

(
N

ai

)
(N − ai) .

Proof. By Lemma 4.11 we have that, for all σ ∈ C?,

(4.90)

∣∣U−σ ∣∣ = |w ∈ ΛnN : d (w, vM ) = 1, γM (w) = −1| = a0,∣∣U−σ ∣∣ = |w ∈ ΛnN : d (w, vM ) = 1, γM (w) = −1| = N − a0.

Furthermore, it is a simple combinatorial fact that

(4.91)

|C?| = |{σ ∈ Ω: σ = ϕ (γM ) for some isometric bijection ϕ : ΛnN → ΛnN}|

= Nn−m̂−1 (N − a0)
−1

m̂∏
i=0

(
N

ai

)
(N − ai) .

Equation (4.89) now follows from Lemmas 1.6 and 3.6. �

We can also investigate what the prefactor amounts to when the precondition of Corollary 4.12
is not satisfied. For this, we define

Od = {1}
⋃
{2 ≤ b ≤ m̂ : b satisfies inequality (4.78) } ,

Ou = {1}
⋃
{2 ≤ b ≤ m̂ : b satisfies inequality (4.85) } ,(4.92)

and

Ed = {1}
⋃
{2 ≤ b ≤ m̂ : b satisfies inequality (4.81) } ,

Eu = {1}
⋃
{2 ≤ b ≤ m̂ : b satisfies inequality (4.88) } .(4.93)

Then the following is immediate from Lemmas 1.6 and 3.6.

Proposition 4.13. Suppose that h satisfies

h(m,s) < h < h(m,s−1)

for some (m, s) ∈ I. If N is odd, then the prefactor K? is given by

eq:1/Kstar

(4.94)
1

K?
=

[∑
i∈Od ai−1N

i−1
] [∑

i∈Ou

(
N i − ai−1N

i−1
)][∑

i∈Od ai−1N i−1
]

+
[∑

i∈Ou (N i − ai−1N i−1)
] Nn−m̂−1

N − a0

m̂∏
i=0

(
N

ai

)
(N − ai) ,

where a0 = N−1
2 + 1, ai = N−1

2 for i = 1, . . . , m̂ − 1 and am̂ = s−1−(s+1) mod 2
2 . If N is even,

then the summations in (4.94) are over Ed and Eu, respectively, and the terms ai are replaced by
āi defined in (4.54).
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