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Abstract

We study a single server queue, where dependence is introduced between the
service times, or between the inter-arrival times, or both between the service times
and the inter-arrival times. This dependence arises via mixing, i.e., a parameter
pertaining to the distribution of the service times, or of the interarrival times, is
itself considered to be a random variable. We give a duality result between such
queueing models and corresponding insurance risk models, for which the respective
dependence structures have been studied before. For a number of examples we provide
exact expressions for the waiting time distribution, and compare these to the ones for
the standard M/M/1 queue. We also investigate the e�ect of dependence and derive
�rst order asymptotics for some of the obtained waiting time tails. Finally, we discuss
this dependence concept for the waiting time tail of the G/M/1 queue.

1 Introduction

In the literature on the single server queue, it is almost always assumed that the
arrival process is a renewal process, and usually even a Poisson process [16]. In recent
years, there has been a growing inclination to move away from these assumptions.
There are several reasons for this. Firstly, the arrival process may vary in the course
of a time period. This has led to the study of queues with time-inhomogeneous
Poisson arrivals [21], and of Markov-modulated arrivals, in which the arrival process
is Poisson with rate λi when some underlying Markov process is in state i ∈ I (cf.
[8, Ch.XI]). Secondly, the (homogeneous or nonhomogeneous) Poisson assumption
not always aligns well with actual data; see, e.g., [24] and references therein. More
speci�cally, Poisson processes sometimes underestimate the variability of the input
stream. This has, among other reasons, given rise to Cox input processes, which are
Poisson processes of which the time-dependent intensity, say Λ(t), itself is a stochastic
process. The variance of the number of arrivals of a Cox process in a given interval is
larger than the mean (while they are equal for the Poisson process); this phenomenon
is usually called overdispersion. In a few recent papers, {Λ(t), t ≥ 0} was taken to be
a shot-noise process; see [5] for an example in insurance mathematics and [25] for an
example in queueing. For a general recent treatment of the topic and a discussion of
estimation procedures from data, see [6, Ch.V].

As stated in [23], call center planners di�erentiate between variables such as day
of week, holidays and marketing activities, to obtain an estimate for the arrival rate;
but still one often observes overdispersion. For that reason, Jongbloed and Koole [23]
suggest to use a Poisson mixture model, i.e., they let the arrival rate of the Poisson
process itself be a random variable Λ with some distribution FΛ(·), mixing a Poisson
distribution over FΛ(·):

PΛ(X = j) =

∫ ∞
0

λj

j!
e−λdFΛ(λ), j = 0, 1, . . . .

The resulting mixed Poisson process is a special case of a Cox process with constant
stochastic intensity Λ(t) ≡ Λ. Jongbloed and Koole then proceed to estimate the
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mixing distribution, followed by a case study. A recent example of the application of
such a mixing procedure to the optimal sta�ng of large-scale service centers is given
in Section 4 of [29].

Queueing models with mixing also form the topic of the present paper. To consider
mixing distributions is not that common in the queueing literature, but more so in the
�nancial and insurance literature; e.g., Bühlmann [13] already considered them in the
context of credibility-based dynamic premium rules. Mixing also has the interesting
and useful feature of introducing dependence between successive interarrival times �
or between successive service times or successive claim sizes, if mixing is done over a
parameter pertaining to those random variables. In a recent paper [7], explicit ruin
formulas are obtained for a generalization of the Cramér-Lundberg insurance risk
model to the case in which one of the key parameters (claim size rate or arrival rate)
is itself a random variable, and in which mixing takes place over its distribution. In
that paper, much emphasis is placed on the observation that successive claim sizes,
or arrival intervals, now are no longer independent, and it is demonstrated that the
resulting dependence can be described by an Archimedean survival copula.

In the present paper we are going to consider an analogous kind of mixing for
single server queues: Suppose that successive interarrival intervals A1, A2, . . . are
exponentially distributed, with rate X, and assume that X is itself a random variable
with distribution FX(·). Then, for all n = 1, 2, . . . ,

P(A1 > a1, . . . , An > an|X = λ) =

n∏
i=1

e−λai , a1, . . . , an ≥ 0,

and

P(A1 > a1, . . . , An > an) =

∫ ∞
λ=0

e−λ
∑n
i=1 aidFX(λ), a1, . . . , an ≥ 0.

While A1, A2, . . . are conditionally independent given X = λ, unconditionally they
are dependent. It should be noticed that X is chosen once and for all, so that during
the entire period of interest we have the same realization of X.

Instead of mixing with respect to the arrival rate, we could also mix with respect
to a parameter pertaining to the service times. If the successive service times are
denoted by B1, B2, . . . , then the joint distribution of B1, . . . , Bn is for all n = 1, 2, . . .
given by

P(B1 > b1, . . . , Bn > bn) =

∫ ∞
µ=0

n∏
i=1

P(Bi > bi|X = µ)dFX(µ), b1, . . . , bn > 0. (1)

In [7, Prop 2.1], see also its Remark 2.6, it is shown that this dependence model
can equivalently be described by having marginal service times B1, B2, ... that are
completely monotone, with a dependence structure due to an Archimedean survival
copula with generator φ = (F̃X)−1, where F̃X denotes the Laplace transform of the
service rate.

The main goal of the present paper is to explore this mixing principle and the
corresponding dependence structure in relatively simple single server queueing models.
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For such models, we shall be able to obtain explicit expressions for the waiting time
distribution, which allows us to get insight into the question how mixing a�ects the
waiting time behaviour.

Before �nishing this section with an outline of the rest of the paper, we mention a
few more queueing papers in which mixing is used. In an unpublished report, Cohen
[17] studied an M/G/1 queue with Pareto distributed service times: P(B > t) =
δ( θ
θ+t)

ν . His goal was to construct a service time distribution that is on the one hand
heavy-tailed (he took 1 < ν < 2), but that on the other hand also has a tractable
expression and relatively simple Laplace transform. To reach that goal, he mixed the
parameter of the Pareto distribution with respect to a Gamma distribution. For ν =
3
2 , that gave rise to a service time distribution that is expressed in a complementary
error function. Remarkably, the waiting time distribution in this case also can be
obtained explicitly, and it involves two Erfc(·) functions, with arguments (1−√ρ)

√
t

and (1 +
√
ρ)
√
t, where ρ < 1 is the tra�c load of the server. In [11, 12] the latter

shape was one of the pointers for the authors to realize that one can obtain a heavy-
tra�c limit (ρ → 1) by scaling the waiting time by (1 − ρ)2 (more generally: by
(1−ρ)1/(ν−1)) instead of by 1−ρ, the appropriate scaling factor in the case of a �nite
second moment of the service times.

Abate, Choudhury and Whitt [2] had performed a kind of mirror operation, com-
pared to [17]; they had taken a Pareto mixture of a Gamma distribution. In [1],
Abate and Whitt generalize the class studied by Cohen [17], considering two classes
of so-called Beta mixtures of exponentials. Their focus is not on waiting times; they
aim for explicit representations of service time distributions, and of their Laplace
transforms, moments and asymptotics.

The rest of the paper is organized as follows. Section 2 provides a duality result
between queueing and insurance risk models with mixing. Section 3 illustrates the
idea in detail for the M/M/1 queueing model. In Section 4 we then allow for general
inter-arrival times, deriving an explicit expression for the waiting time distribution
for some particular cases. Section 5 contains suggestions for further research.

2 A duality result

There are close connections between the classical single server queue and the classical
Sparre-Andersen insurance risk model. In particular, there are duality results that
relate survival and ruin probabilities in the insurance risk model to waiting time
distributions in the `corresponding' queueing model. Our goal in this section is to
extend one such duality result to the case of mixing outlined in Section 1.

Let us �rst brie�y sketch the standard duality result, referring to [9], pages 45 and
161, for more detail. Let R(t) be the surplus of an insurance company, with initial
surplus R(0) = x, and with premium rate c which is normalized to be 1. Claims
arrive with interarrival times A1, A2, . . . , which are i.i.d.; the claim sizes C1, C2, . . .
are also i.i.d., and independent of the interarrival times. In the `corresponding' single
server queue, customers arrive with interarrival times A1, A2, . . . , which are i.i.d.,
and require service times C1, C2, . . . which are also i.i.d., and independent of the
interarrival times; and the server works at unit speed.
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The probability Pn(x) that the surplus stays positive after the �rst n claims (the
so-called survival probability) is

Pn(x) = P(x+A1−C1 > 0, x+
2∑
j=1

(Aj−Cj) > 0, . . . , x+
n∑
j=1

(Aj−Cj) > 0), n = 1, 2, . . . .

(2)
Denoting the waiting time of the nth arriving customer by Wn, n = 1, 2, . . . , and
using the well-known recursion

Wn+1 = max(0,Wn + Cn −An), n = 1, 2, . . . ,

one can easily prove that

P(Wn+1 < x|W1 = 0) = P(Cn −An < x,
n∑

j=n−1

(Cj −Aj) < x, . . . ,
n∑
j=1

(Cj −Aj) < x).

(3)
It is immediately obvious from (2) and (3) that

Pn(x) = P(Wn+1 < x|W1 = 0), (4)

since Cj −Aj has the same distribution as Cn−j −An−j , j = 1, . . . , n. Furthermore,
one also has

limn→∞Pn(x) = limn→∞P(Wn+1 < x), x > 0. (5)

In fact, these duality results remain valid if all Cj and Aj are dependent in the same
way, since one only needs to consider the di�erences Cj−Aj . See [10] for some further
extensions to multi-dimensional queues and insurance risk models.

If mixing with respect to a service time parameter X (which could for example
be the mean service time) with distribution FX(·) is applied to the service times in
the queueing model, and similarly to the claim sizes in the insurance risk model, then
these service times (or claim sizes) become dependent, having the joint distribution
(cf. (1))

P(C1 > c1, . . . , Cn > cn) =

∫ ∞
µ=0

n∏
i=1

P(Ci > ci|X = µ)dFX(µ), c1, . . . , cn > 0.

However, the random variables C1, . . . , Cn now are exchangeable (cf. Section 7.2 of
[28]), and hence one still has (4), while also (5) remains valid; see also Section 7.1 of
[28]. A similar reasoning holds when there is mixing with respect to the interarrival
times, or both to service times/claim sizes and interarrival times. Hence we have:

Theorem 2.1. The duality results (4) and (5) remain valid for the Sparre Andersen
insurance risk model and the `corresponding' queueing model, when mixing is applied
to the service times/claim sizes and/or the interarrival times.

The implication of this theorem is, that (i) certain results for survival proba-
bilities (or ruin probabilities) in [7] immediately translate into waiting time results,
and that (ii) some waiting time results which we shall derive in subsequent sections,
immediately translate into results for survival probabilities.
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3 An M/M/1 queue with dependence

We �rst consider the following classical model, viz., the M/M/1 queue. Customers
arrive according to a Poisson process with intensity λ and each customer requires
an exponentially distributed service time with mean 1/µ. If the service times are
independent it is well known that

P(W > x) =
λ

µ
e−(µ−λ)x, x ≥ 0, (6)

where W denotes the waiting time in stationarity of an arbitrary customer. This
steady-state distribution exists if ρ = λ

µ < 1 and for ρ ≥ 1 we know P(W > x) = 1
for all �nite x > 0.

Now let us consider an extension to this model. We assume that the service rate
is itself not a constant but a random variable, that takes the same value for all service
times. Successive service times B1, B2, ... now are no longer independent. However,
they are conditionally independent, as for each n

P(B1 > b1, ..., Bn > bn|X = µ) =

n∏
k=1

e−µbk , (7)

where the service rate X is a random variable; given X = µ, the service times are in-
dependent and exponentially distributed with mean 1/µ. Note that now, in contrast
to the standard M/M/1 model, the marginal distribution of Bk is no longer exponen-
tial. Note that one can view the unconditional probability P(Bi > b) as P(B̂i/X > b),
where B̂i ∼ Exp(1), which identi�es B1, . . . , Bn as an L1 Dirichlet sequence, see [18]
for a general discussion from this perspective.

If the mixing cumulative density function (cdf) is denoted by FX , then for the
dependence model (7) the tail of the waiting time is given by

P(Wµ > x) =

∫ ∞
0

P(W > x)dFX(µ), x ≥ 0, (8)

where Wµ denotes the waiting time of a customer, and where P(W > x) is given by
(6). In Equation (8) the random variable X is chosen once and for all. This means
that during the period of interest we take the same realization of X.

Next, we give examples regarding mixing over the service rate.

3.1 Mixing with respect to the service rate µ

Case I.1. Let X be a random variable with density function

fX(µ) =

{
0 , if 0 < µ ≤ λ,
αe−α(µ−λ) , if µ > λ,

(9)

where α > 0.
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Note that this choice for the density function satis�es the stability condition ρ =
λE[B] < 1 for each possible realization X = µ, because the density has only mass on
µ > λ. The tail of the service times is given by

F̄B(x) =

∫ ∞
0

e−µxfX(µ)dµ

=

∫ ∞
λ

e−µxαe−α(µ−λ)dµ

=
α

α+ x
e−λx.

An immediate result is that (see below (1)),

φ−1(t) =
α

α+ t
e−λt,

and with this expression for the inverse generator we can get an explicit expression
for the covariance under the dependence structure due to the Archimedean survival
copula:

Cov(Bi, Bj) = α

(
1

λ
+ αe−2αλ

(
e3αλ − Ei [−αλ]

)
Ei [−αλ]

)
,

where Ei[x] = −
∫∞
−x

e−t

t dt is the exponential integral, cf. [3].
From (8) it follows that,

P(Wµ > x) =

∫ ∞
λ

αe−α(y−λ)λ

y
e−(y−λ)xdy

= αλ

∫ ∞
0

e−(α+x)z

z + λ
dz

= −αλe(x+α)λEi[−αλ], x ≥ 0. (10)

Once an expression for the tail of the waiting time is found, one can also get an
expression for the mean waiting time and the Laplace-Stieltjes Transform (LST). In
particular,

E[Wµ] =

∫ ∞
0

P(Wµ > x)dx

=

∫ ∞
0

αλ

∫ ∞
0

e−(α+x)z

z + λ
dzdx

= α

∫ ∞
0

e−αz
λ

z(z + λ)
dz

= α

∫ ∞
0

e−αz
(

1

z
− 1

z + λ

)
dz

=∞,
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and,

E[e−sWµ ] =

∫ ∞
0

e−sxαλ

∫ ∞
0

z

(z + λ)
e−(α+x)zdzdx+ 1−

∫ ∞
0

αλ
e−αz

z + λ
dz

= αλ

∫ ∞
0

ze−αz

(s+ z)(z + λ)
dz + 1−

∫ ∞
0

αλ
e−αz

z + λ
dz.

Case I.2. In the previous example we considered a density function that satis�es the
stability condition. However, one may also wonder what happens if a density function
that violates this stability condition is taken. If X is Gamma distributed with density

fX(µ) =
βα

Γ(α)
µα−1e−βµ, µ > 0,

it follows that the tail of the service times equals

F̄B(x) =

∫ ∞
0

e−xµ
βα

Γ(α)
µα−1e−βµdµ =

(
β

β + x

)α
,

which is the tail of a Pareto distribution. Further, the generator of the Archimedean
survival copula is simply given by

φ(t) = β(t−1/α − 1),

and one can observe that this generator corresponds to the Clayton copula (see Ex-
ample 2.3 of [7]). For the covariance it follows that for α > 2,

Cov(Bi, Bj) =
β2

(α− 2)(α− 1)2
, (11)

and the Spearman's rank correlation coe�cient (or Spearman's rho), denoted by ρS
(cf. [26]; ρS is a nonparametric measure of rank correlation) is given by

ρS(Bi, Bj) = 12

∫ 1

0

∫ 1

0

(
1

a−1/α + b−1/α − 1

)α
dadb− 3, (12)

and only depends on α. Spearman's rho assesses monotonic relationships; a perfect
Spearman rank correlation of +1 or −1 occurs when each of the variables is a perfect
monotonic function of the other. Figure 1 depicts the value of ρS as a function of α
graphically.
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Figure 1: ρS(Bi, Bj) for the dependent model with Pareto distributed service times as a function
of α.

From (8), we now get

P(Wµ > x) =

∫ ∞
0

P(W > x)dFX(µ)

=

∫ λ

0
P(W > x)dFX(µ) +

∫ ∞
λ

P(W > x)dFX(µ)

= P(X ≤ λ) +

∫ ∞
λ

λ

y
e−(y−λ)x βα

Γ(α)
yα−1e−βydy

= 1− Γ(α, βλ)

Γ(α)
+ λeλx

(
β

β + x

)α−1

β
Γ(−1 + α, (β + x)λ)

Γ(α)
, (13)

where Γ(α, x) =
∫∞
x wα−1e−wdw is the incomplete Gamma function (see also [7,

Example 2.3], where this expression was already established for the ruin probability
with initial surplus x in the respective risk model).

Like in [20], where the asymptotic behavior of the ruin probability of [7] was
studied, we can establish the �rst order asymptotic behavior for the tail of the waiting
time in the same way. Indeed, using

Γ(α, x) ∼ xα−1e−x
(

1 +
α− 1

x
+

(α− 1)(α− 2)

x2
+ o

(
1

x2

))
, x→∞,

(see e.g. [3, Equ.6.5.32]), one gets

P(Wµ > x) = 1− Γ(α, βλ)

Γ(α)
+ λeλx

(
β

β + x

)α−1

β
Γ(−1 + α, (β + x)λ)

Γ(α)

∼ 1− Γ(α, βλ)

Γ(α)
+ e−βλ

(λβ)α

λΓ(α)

(
1

β + x
+

α− 2

λ(β + x)2
+ o

(
1

x2

))
, x→∞.

(14)

From this expression one immediately sees that Wµ has an atom at in�nity with

probability mass 1− Γ(α,βλ)
Γ(α) (which is the probability to violate the stability condition
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and corresponds to the event of ruin in the analogous risk theory case).
In Figure 2 we compare the exact expression (13) with the �rst-order approximation
(14) on a log-scale for the parameter values λ = 3, α = 4 and β = 1.

Exact

Asymptotic Approximation

1 5 10 50 100 500 1000
x

0.2

0.4

0.6

0.8

1.0
Probability

Tail of the waiting time, i.e. P (Wμ > x)

Figure 2: P(Wµ > x) and its �rst-order asymptotic approximation with Pareto distributed service
times (λ = 3, α = 4 and β = 1).

Case I.3. Like in [7, Example 2.4], we next consider Lévy distributed service rates
with

fX(µ) =
α

2
√
πµ3

e
−α

2

4µ , µ > 0.

Then the tail of the service times is

F̄B(x) =

∫ ∞
0

e−xµ
α

2
√
πµ3

e
−α

2

4µ dµ = e−α
√
x,

from which one sees that the marginal service times are Weibull distributed and the
dependence structure is given by a Gumbel copula with generator

φ(t) = (−(ln t)/α)2.

With this dependence structure the covariance is given by

Cov(Bi, Bj) =
8

α4
, (15)

and Spearman's rho is for each α equal to

ρS(Bi, Bj) = 12

∫ 1

0

∫ 1

0
e−
√

log(a)2+log(b)2dadb− 3 = 0.682. (16)

Interestingly, the expression for Spearman's rho ρS in (12) for the dependency
model with Gamma mixing over the service times equals ρS in (16) for the Lévy
mixing when α = 0.5.
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For the tail of the waiting times we get,

P(Wµ > x) =

∫ ∞
0

P(W > x)dFX(µ)

= P(X ≤ λ) +

∫ ∞
λ

λ

y
e−(y−λ)x α

2
√
πy3

e
−α

2

4y dy

= Erfc

(
α

2
√
λ

)
− 2
√
λ

α
√
π
e−

α2

4λ

+ λeλx
1 + α

√
x

α2
e−
√
xα · Erfc

(√
λx− α

2
√
λ

)
+ λeλx

−1 + α
√
x

α2
e
√
xα · Erfc

(√
λx+

α

2
√
λ

)
, (17)

where Erfc(x) = 1−Erf(x) = 2√
π

∫∞
x e−w

2
dw is the error function, cf. also [7, Ex.2.4].

Equivalently, using properties of the (generalized) gamma function , Equation (17)
can be written as

P(Wµ > x) = Erfc

(
α

2
√
λ

)
+
λ
√
x

α
eλx
(
− 2√

πλx
e−λx−

α2

4λ

+

(
1 +

1

α
√
x

)
eα
√
x · Erfc

(√
λx− α

2
√
λ

)
+

(
1− 1

α
√
x

)
e−α

√
x · Erfc

(√
λx+

α

2
√
λ

))
= Erfc

(
α

2
√
λ

)
+
αλ
√
x3

2
√
π
eλx · Γ

(
−3

2
, λx,

α2x

4

)
, (18)

where Γ (ζ, y, d) denotes the generalized incomplete Gamma function

Γ (ζ, y, d) =

∫ ∞
y

tζ−1e−t−
d
t dt, y ≥ 0, ζ ∈ R, d > 0.

In [14] it was shown that

Γ (ζ, y, d) ∼ yζ−1e
−y− d

y

(
1 +

d+ (ζ − 1)y

y2

+
d2 + (2ζ − 4)dy + (ζ2 − 3ζ + 2)y2

y4
+ o

(
1

y2

))
, y →∞,

so that we get from Equation (18) that

P(Wµ > x) ∼ Erfc

(
α

2
√
λ

)
+

α

2
√
πλ3

e−
α2

4λ

·
(

1

x
+
α2 − 10λ

4λ2x2
+ o

(
1

x2

))
, x→∞.

In Figure 3 we compare the asymptotic approximation with the exact expression
for the tail of the waiting time given in (17) for the values α = 1 and λ = 3.
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Exact

Asymptotic Approximation

1 5 10 50 100 500 1000
x

0.2

0.4

0.6

0.8

1.0
Probability

Tail of the waiting time, i.e. P (Wμ > x)

Figure 3: P(Wµ > x) and its asymptotic approximation with Weibull distributed service times.

3.2 Mixing with respect to the arrival rate λ

The mixing idea of Section 3.1 can also be used for mixing over the Poisson arrivals
with rate λ. If the random variable Λ with cdf FΛ denotes the arrival intensity, then
the resulting waiting time tail is

P(Wλ > x) =

∫ ∞
0

P(W > x)dFΛ(λ), x ≥ 0. (19)

Case II.1. Consider the density function

fΛ(λ) =

{
αe−αλ

1−e−αµ , if 0 < λ < µ,

0, if λ ≥ µ,
(20)

for the arrival intensity, for which the stability condition holds again. Then the
resulting marginal tail of the generic inter-arrival time A is

F̄A(t) =

∫ ∞
0

e−λtfΛ(λ)dλ =
α

α+ t

1− e−(α+t)µ

1− e−αµ
.

The resulting tail of the waiting time is

P(Wλ > x) =

∫ µ

0

y

µ
e−(µ−y)x αe−αy

1− e−αµ
dy

=
αe−µx

µ(1− e−αµ)

[
1− e(x−α)µ ((α− x)µ+ 1)

(x− α)2

]
. (21)

Here the probability that in stationarity a customer experiences a waiting time is

P(Wλ > 0) =
1

αµ
− e−αµ

1− e−αµ
.
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Case II.2. Like in Case I.2, where we took the service rate Gamma distributed, we
now consider the example where the arrival intensity is Gamma distributed, i.e.

fΛ(λ) =
βα

Γ(α)
λα−1e−βλ, λ > 0,

see also [7, Example 3.1] for the respective insurance risk model. Then for the tail of
the inter-arrival times we get

F̄A(x) =

∫ ∞
0

e−xλ
βα

Γ(α)
λα−1e−βλdλ =

(
β

β + x

)α
,

so that A is Pareto distributed (for the covariance and the Spearman's rho we corre-
spondingly get the same expressions as in (11) and (12)).

From the duality result of Section 2 in combination with [7, Example 3.1], or via
a straightforward integration, it follows that

P(Wλ > x) =

∫ ∞
0

P(W > x)dFΛ(λ)

=

∫ ∞
µ

P(W > x)dFΛ(λ) +

∫ µ

0
P(W > x)dFΛ(λ)

=
Γ(α, βµ)

Γ(α)
+

1

µ
e−xµ

(
β

β − x

)α 1

β − x

(
α− Γ(1 + α, (β − x)µ)

Γ(α)

)
. (22)

Case II.3. If Λ is Lévy distributed with density function

fΛ(λ) =
α

2
√
πλ3

e−
α2

4λ , λ > 0, (23)

then

F̄A(x) =

∫ ∞
0

e−xλ
α

2
√
πλ3

e−
α2

4λ dλ = e−α
√
x,

so A is Weibull distributed (see also [7, Example 3.2]). The expressions for the
covariance and Spearman's rho follow again from (15) and (16).

From duality, in combination with [7, Example 3.2], or via (19), we get

P(Wλ > x) = Erfc

(
α

2
√
µ

)
+
iαe−µx

4µ
√
x

(
eiα
√
x · Erfc

(
α

2
√
µ

+ i
√
µx

)
−e−iα

√
x · Erfc

(
α

2
√
µ
− i√µx

))
.

With the identities of the Error function, given in [4], it can be shown that the
imaginary part of this equation is equal to zero.
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3.3 Mixing with respect to the tra�c load ρ

Another possibility is to mix over the tra�c load ρ. Here we describe two methods.
The �rst one is to mix over µ but keep ρ < 1 �xed. This means that both µ and λ
are determined by the mixing distribution. The second method, which is in line with
Sections 3.1 and 3.2, is to mix over ρ and keep µ �xed. Let us �rst rewrite (6) as

P(W > x) = ρe−µ(1−ρ)x, x ≥ 0.

Method 1: Let X be Gamma(α, β) distributed. Note that the stability condition is
always satis�ed because ρ < 1 is �xed. For the tail of the waiting time we then get
the simple formula

P(Wµ > x) =

∫ ∞
0

ρe−y(1−ρ)x βα

Γ(α)
yα−1e−βydy

= ρ

(
β

β + (1− ρ)x

)α
. (24)

Method 2: Let the random variable R denote the tra�c load, and take the service
rate µ �xed. Then consider the example where Λ is Unif[0, µ] distributed, from which
it follows that the tra�c load is uniformly distributed between 0 and 1, i.e., R is
Unif[0, 1] distributed. Then the tail of the waiting time is

P(Wλ > x) =

∫ 1

0
ρe−µ(1−ρ)xdρ =

1

(µx)2

[
e−µx − 1 + µx

]
.

Note that in this example it is not possible to mix over µ for �xed λ and obtain
the same result.

3.4 Sensitivity with respect to dependence

In the previous sections we provided explicit formulas for the tail of the waiting time
in an M/M/1 queueing model with dependence. In this section we would like to as-
sess the e�ects of the introduced dependence on the waiting time tail, where we use
the independent M/M/1 model given by (6) with parameters λ = 3 and µ = 4 as a
benchmark. We restrict the analysis to a few examples.

Case I.2: Mixing over the service rate. Fix λ = 3 and for each choice of β (which
is the parameter driving the dependence) we take α in such a way that E[X] =
α/β = 4 remains constant, so that we can better compare the e�ect of dependence.
The variance of X then is α/β2 and decreases with increasing β, going to zero for
β →∞ (in which case the service rate is �xed at 4, which corresponds to the case of
independence). Figure 4 depicts the resulting waiting time tail for di�erent values of
β (cf. (13)).
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β = ∞ (Independent)

β = 1
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β = 25
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1.0
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Tail of the waiting time with Gamma mixing

Figure 4: Tail of the waiting time for the independent model and the dependent model (13) with
equal expected service rate.

One observes increasing dependence increases the waiting time tail for all values
of x, which in fact suggests a stochastic ordering.

One can also assess the convergence of P(Wµ > x) towards the limit value for
increasing β. To that end, note that

Γ(a, aζ)

Γ(a)
=

1

2
· Erfc

[
η
√
a/2
]

+Ra(η),

Ra(η) ∼ e−
1
2
aη2

√
2πa

∞∑
n=0

cn(η)

an
, a→∞,

where η =
√

2(ζ − 1− ln ζ) when ζ > 1 and η = −
√

2(ζ − 1− ln ζ) when ζ < 1 (cf.
[22]). Then

P(Wµ > x) = 1− Γ(cβ, βλ)

Γ(cβ)
+ λeλx

(
β

β + x

)cβ
(β + x)

Γ(−1 + cβ, (β + x)λ)

Γ(cβ)

= 1− Γ(cβ, βλ)

Γ(cβ)
+ λeλx

(
β

β + x

)cβ
(β + x)(

Γ(cβ, (β + x)λ)

(cβ − 1)Γ(cβ)
− ((β + x)λ)cβ−1e−(β+x)λ

(cβ − 1)Γ(cβ)

)

∼ λ

c
e−(c−λ)x

(
1 +

x(2 + cx)

2β
+
x3(4 + 3cx)

24β2
+ o

(
1

β2

))
, β →∞.

Case II.2: Mixing over the arrival rate. In Figure 5 we compare in an analogous
way the waiting time tail (22) for Gamma(α, β)-distributed arrival rate Λ, where for
each choice of β, α is chosen such that E[Λ] = 3, where µ = 4 is �xed. One observes
that now the respective curves of the independent model and dependent model do
intersect. Figure 6 depicts this intersection point x as a function of β.
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β = ∞ (Independent)
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Figure 5: Tail of the waiting time for the independent model and the dependent model (22) with
equal expected arrival rate.
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Figure 6: Intersection point of independent and dependent model (22).

For completeness we also give the asymptotic behavior of P(Wλ > x) for β →∞
for this case:

P(Wλ > x) =
Γ(cβ, βµ)

Γ(cβ)
+

1

µ
e−xµ

(
β

β − x

)cβ 1

β − x

(
cβ − Γ(1 + cβ, (β − x)µ)

Γ(cβ)

)
∼ c

µ
e−(µ−c)x

(
1 +

x(2 + cx)

2β
+
x2(3(cx)2 + 20cx+ 24)

24β2
+ o

(
1

β2

))
, β →∞,

so the rate of convergence of the tail of this model to the one of the independent
M/M/1 model is of order 1/β.

Finally, we consider the case of mixing over ρ according to Method 1, cf. (24).
Figure 7 shows that in this case the waiting time tail is less sensitive to dependence
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introduced via Gamma mixing. The respective asymptotic behavior is given by

P(Wλ > x) ∼ ρe−c(1−ρ)x

(
1 +

c(1− ρ)2x2

2β

+
c(1− ρ)3x3(3cx(1− ρ)− 8)

24β2
+ o

(
1

β2

))
, β →∞,

again leading to a convergence rate of order 1/β.

β = ∞ (Independent)
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Tail of the waiting time with Gamma mixing

Figure 7: Tail of the waiting time for the independent model and the dependent model with
mixing according to Method 1.

3.5 Independent parallel mixing

Until now we studied mixing over either the service rate or the arrival intensity, but
one can also mix over both the service rate and the arrival intensity. In [7, Example
4.1] this idea was already introduced for the analogous insurance risk model, without
providing further details. If we (independently) mix over both the service rate and
arrival intensity, the tail of the waiting time is given by

P(Wλµ > x) =

∫ ∞
0

∫ ∞
0

P(W > x)dFX(µ)dFΛ(λ). (25)

In the next example we assume the density of X to satisfy (9) and Λ to be
Gamma(δ, η) distributed. One can check that in this example the stability condition
is always satis�ed. From (25) it now follows that

P(Wλµ > x) =

∫ ∞
0

∫ ∞
λ

λ

µ
e−(µ−λ)xαe−α(µ−λ) ηδ

Γ(δ)
λδ−1e−ηλdµdλ

=

∫ ∞
0

αλ

∫ ∞
0

e−(α+x)z

z + λ
dz

ηδ

Γ(δ)
λδ−1e−ηλdλ

=
αδ

(1 + δ)

ηδ

(x+ α)(δ+1)
· 2F1

(
1 + δ, 1 + δ, 2 + δ,−x+ α− η

x+ α

)
, (26)
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where

2F1 (a, b, c, z) =

∞∑
n=0

(a)n · (b)n
(c)n

zn

n!

is a hypergeometric function with the Pochhammer symbol

(u)n =

{
1, if n = 0,

u · (u+ 1) · ... · (u+ n− 1), if n > 0.

Remark: If we take δ and η such that E[Λ]→ c and Var(Λ)→ 0, we get back to
(10).

In Figure 8 we compare the waiting time tails for the independent model, the
dependent model given by (10) with parameters α = 1 and λ = 3, and the dependent
model given by (26) with parameters α = 1, δ = 3 and η = 1. One observes that,
for this case, introducing additional dependence in the inter-arrival times when the
service times are already dependent does not have a signi�cant in�uence on the tail
of the waiting time.
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Independent parallel mixing
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Probability

Tail of the waiting time for different mixing models

Figure 8: Tail of the waiting time for di�erent mixing models.

Now let us consider the model where X is Gamma(δ, η) distributed and Λ has the
density given by (20). Then

P(Wλµ > x) =

∫ ∞
0

∫ µ

0

λ

µ
e−(µ−λ)x αe−αλ

1− e−αµ
ηδ

Γ(δ)
µδ−1e−ηµdλdµ

=

∫ ∞
0

αe−µx

µ(1− e−αµ)

[
1− e(x−α)µ ((α− x)µ+ 1)

(x− α)2

]
ηδ

Γ(δ)
µδ−1e−ηµdµ

=
α
(η
δ

)δ
(x− α)2(−1 + δ)

(
α · Zeta

(
−1 + δ,

x+ η

α

)
− α · Zeta

(
−1 + δ,

α+ η

α

)
+(x− α)(−1 + δ) · Zeta

(
δ,
α+ η

α

))
, (27)
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where Zeta (s, a) =
∑∞

k=0
1

(k+a)s .
In Figure 9 we compare the waiting time tails of the independent model, the

dependent model given by (21) and the dependent model given by (27). It can be
seen that, likewise, introducing additional dependence between the service times in the
model that already features dependence between interarrival times does not change
the tail of the waiting time signi�cantly.
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Figure 9: Tail of the waiting time for di�erent mixing models.

In the last example we consider the model where X has density (9) and Λ is
Lévy(δ) distributed, cf. (23). From (25) it follows that,

P(Wλµ > x) =

∫ ∞
0

∫ ∞
λ

λ

µ
e−(µ−λ)xαe−α(µ−λ) δ

2
√
πλ3

e−
δ2

4λdµdλ

=

∫ ∞
0

αλ

∫ ∞
0

e−(α+x)z

z + λ
dz

δ

2
√
πλ3

e−
δ2

4λdλ

=
αδ

2
√
x+ α

(
π cos(

√
x+ αδ) + 2 · CosIntegral(

√
x+ αδ) sin(

√
x+ αδ)

−2 · SinIntegral(
√
x+ αδ) cos(

√
x+ αδ)

)
, (28)

where CosIntegral(x) = −
∫∞
x

cos(t)
t dt and SinIntegral(x) =

∫ x
0

sin(t)
t dt.

In Figure 10 the waiting time tails of the independent model and the dependent
model given by (28) are compared for the values α = 1 and δ = 1.
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Figure 10: Tail of the waiting time for the independent model and the model with independent
parallel mixing.

4 A G/M/1 queue with dependence

We now proceed to the G/M/1 model. Let A(·) be the inter-arrival time distribution
with LST Ã(·). Furthermore, let µ denote the service rate. For this queueing model
it is known (cf. Chapter II.3 of [16]) that,

P(W > x) = σe−µ(1−σ)x, x ≥ 0,

where σ is the unique zero in [0, 1] of

σ = Ã(µ(1− σ)). (29)

We �rst study mixing over the service rate µ and subsequently mixing over the
tra�c load ρ.

4.1 Mixing with respect to the service rate µ

If the density function of X is given by (9), it follows that the general expression for
the tail of the waiting time is,

P(Wµ > x) =

∫ ∞
λ

αe−α(y−λ)σ(y)e−y(1−σ(y))xdy, (30)

where we wrote σ(y) instead of σ to emphasize that the zero in [0, 1] of (29) depends
on the actual service rate.

To get a better understanding of this model, consider the special case of an E2/M/1
queueing model, i.e. the interarrival times are Erlang(2, 2λ) distributed. From (29)
one immediately obtains

σ = 2ρ+
1

2
−
√

2ρ+
1

4
.
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Substituting this expression for σ into (30) gives

P(Wµ > x) =

∫ ∞
λ

αe−α(y−λ)

(
2λ

y
+

1

2
−

√
2λ

y
+

1

4

)
e
−y
(

1
2
− 2λ

y
+
√

2λ
y

+ 1
4

)
x
dy. (31)

Figure 11 graphically compares this expression for λ = 3 and α = 1 (i.e. E[X] = 4)
with the independent model (λ = 3, µ = 4).
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Figure 11: P(Wµ > x) for the independent and dependent model in an E2/M/1 queue.

4.2 Mixing with respect to the tra�c load ρ

We now turn to the mixing over the tra�c load for the G/M/1 model. For Method
1 from Section 3.3 and X ∼Exp(β), one gets

P(Wµ > x) =

∫ ∞
0

βe−βyσe−y(1−σ)xdy. (32)

For the E2/M/1 queue with mean interarrival time 1/λ, σ depends on λ and µ only
via their quotient ρ. Since ρ is kept constant in Method 1, formula (32) simplie�es
further to

P(Wµ > x) =
σβ

β + (1− σ)x
, (33)

where σ satis�es (29). Figure 12 depicts this function together with the independent
model for λ = 3, β = 1

4 (such that E[X] = 4) and µ = 4, respectively.
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Figure 12: Tail of the waiting time for the independent and dependent model in an E2/M/1 queue
when mixing according to Method 1.

Remark: Observe that for any Ek/M/1 queueing model (k ∈ N) σ only depends
on ρ, from which we conclude that (33) holds for all these models. Further, for a

D/M/1 queue with D = 1/λ, it follows that (29) is equivalent to σ = e
− 1−σ

ρ , and (31)
again holds for this value of σ.

For Method 2 from Section 3.3, one gets

P(Wλ > x) =

∫ 1

0
σe−µ(1−σ)xdρ, (34)

where σ can depend on ρ.
For the E2/M/1 queueing model, a substitution of the expression for σ into (34)

gives

P(Wλ > x) =

∫ 1

0

(
2ρ+

1

2
−
√

2ρ+
1

4

)
e
−µ(1−

(
2ρ+ 1

2
−
√

2ρ+ 1
4

)
)x
dρ

=
2e−xµ − 2 + 3xµ−√xµ · exµ

∫ √xµ
0 e−w

2
dw

4x2µ2
.

Recall that in Method 2 we considered R ∼ Unif[0, 1] and consequently E[R] = 1/2,
so for a comparison with the independent model we choose λ = 2 and µ = 4, cf.
Figure 13.
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Figure 13: Tail of the waiting time for the independent and dependent model in an E2/M/1 queue
when mixing according to Method 2.

5 Conclusion

We have derived explicit expressions for the tail of the waiting time for a single server
queue where dependence among service times and/or inter-arrival times is introduced
via a mixing procedure. The resulting formulas allow to study the e�ects of depen-
dence on the waiting distribution in a quantitative way. Such a mixing procedure
is a versatile tool and in principle feasible for any kind of model for which explicit
formulas for the waiting distribution exist. For instance, a similar analysis is possible
for M/Ph/1 queues.
In future work, we would like to consider other performance measures, and more ad-
vanced queueing models. As observed by Michel Mandjes (private correspondence),
it would also be interesting to assume that the mixing random variable takes a par-
ticular value only for a certain period of time; subsequently, another value is drawn
for that random variable, etc. Another possible model variant, which was already
proposed in [7, Example 4.2] for insurance risk, is a queueing model with comono-
tonic mixing (i.e., instead of mixing over both service times and inter-arrival times
independently, the mixing random variable of λ is a deterministic function of the one
for µ). In general, the advantage of the approach proposed in this paper is to obtain
explicit expressions for the waiting time tail for queueing models with a certain type
of dependence, which can be useful as benchmark expressions for other dependence
structures that may be motivated by causal or statistical considerations in concrete
applications.
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