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Abstract

Synchronization of neurons forming a network with a hierarchical structure is es-
sential for the brain to be able to function optimally. In this paper we study syn-
chronization of phase oscillators on the most basic example of such a network, namely,
the hierarchical lattice. Each oscillator has a natural frequency, drawn independently
from a common probability distribution. In addition, pairs of oscillators interact with
each other at a strength that depends on their hierarchical distance, modulated by
a sequence of interaction parameters. We look at block averages of the oscillators on
successive hierarchical scales, which we think of as block communities. Also these block
communities are given a natural frequency, drawn independently from a common prob-
ability distribution that depends on their hierarchical scale. In the limit as the number
of oscillators per community tends to infinity, referred to as the hierarchical mean-field
limit, we find a separation of time scales, i.e., each block community behaves like a
single oscillator evolving on its own time scale. We show that the evolution of the block
communities is given by a renormalized mean-field noisy Kuramoto equation, with a
synchronization level that depends on the hierarchical scale of the block community.
We identify three universality classes for the synchronization levels on successive hier-
archical scales, with explicit characterizations in terms of the sequence of interaction
parameters and the sequence of natural frequency probability distributions. We show
that disorder reduces synchronization when the natural frequency probability distri-
butions are symmetric and unimodal, with the reduction gradually vanishing as the
hierarchical scale goes up.
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1 Introduction

The concept of spontaneous synchronization is ubiquitous in nature. Single oscillators
in a population (like flashing fireflies, chirping crickets or spiking brain cells) may rotate
incoherently, at their own natural frequency, when they are isolated from the population,
but within the population they adapt their rhythm to that of the other oscillators, acting as
a system of coupled oscillators. There is no central driving mechanism, yet the population
reaches a globally synchronized state via mutual local interactions.

The omnipresence of spontaneous synchronization triggered scientists to search for a
mathematical approach in order to understand the underlying principles. The first steps
were taken byWinfree [16], [17], who recognized that spontaneous synchronization should be
understood as a threshold phenomenon: if the coupling between the oscillators is sufficiently
strong, then a macroscopic part of the population freezes into synchrony. Although the
model that Winfree proposed was too difficult to solve analytically, it inspired Kuramoto [6],
[7] to suggest a more mathematically tractable model that captures the same phenomenon.
The Kuramoto model has since been used successfully to study synchronization in a variety
of different contexts. By now there is an extended literature, covering aspects like phase
transition, stability, and effect of disorder (for a review, see Acébron et al. [1]).

Mathematically, the Kuramoto model still poses many challenges. As long as the in-
teraction is mean-field (meaning that every oscillator interacts equally strongly with every
other oscillator), a fairly complete theory has been developed. However, as soon as the
interaction has a non-trivial geometry, computations become cumbersome. There is a large
literature for the Kuramoto model on complex networks, where the population is viewed as
a random graph whose vertices carry the oscillators and whose edges represent the interac-
tion. Numerical and heuristic results have been obtained for networks with a small-world,
scale-free and/or community structure, showing a range of interesting phenomena (for a
review, see Arenas et al. [2]). In the present paper we focus on one particular network with
a community structure, namely, the hierarchical lattice.

The remainder of this paper is organised as follows. Sections 1.1–1.3 are devoted to the
mean-field noisy Kuramoto model. In Section 1.1 we recall definitions and basic properties.
In Section 1.2 we recall the McKean-Vlasov equation, which describes the evolution of
the probability density for the phase oscillators and their natural frequencies in the mean-
field limit. In Section 1.3 we take a closer look at the scaling properties of the order
parameters towards the mean-field limit. In Section 1.4 we define the hierarchical lattice and
in Section 1.5 introduce the noisy Kuramoto model on the hierarchical lattice, which involves
a sequence of interaction strengths (Kk)k∈N and a sequence of disorder distributions (µk)k∈N
acting on successive hierarchical levels. Section 2 contains our main results, presented
in the form of three theorems for the non-disordered system and their analogues for the
disordered system. These theorems are valid in the hierarchical mean-field limit and show
that, for each k ∈ N, the block communities at hierarchical level k behave like the mean-
field noisy Kuramoto model, with an interaction strength and a noise that depend on k
and are obtained via a renormalization transformation connecting successive hierarchical
levels. There are three universality classes for (Kk)k∈N and (µk)k∈N, corresponding to loss
of synchronization at a finite hierarchical level, loss of synchronization as the hierarchical
level tends to infinity, and no loss of synchronization. The renormalization transformation
allows us to describe these classes in some detail. In Section 3 we prove the renormalization
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scheme, in Section 4 we prove the criteria for the universality classes subject to a technical
inequality that is verified numerically for three different types of disorder. Appendix A
contains the proof of certain inequalities linking the system with disorder to the system
without disorder. Appendix B provides numerical examples and computations.

1.1 Mean-field Kuramoto model

We begin by reviewing the mean-field Kuramoto model. Consider a population of N ∈ N
oscillators, and suppose that the ith oscillator has a natural frequency ωi, such that

I ωi, i = 1, . . . , N, are i.i.d. and are drawn from
a common probability distribution µ on R. (1.1)

Let the phase of the ith oscillator at time t be θi(t) ∈ R. If the oscillators were not
interacting, then we would have the system of uncoupled differential equations

dθi(t)

dt
= ωi, i = 1, . . . , N. (1.2)

Kuramoto [6], [7] realized that the easiest way to allow for synchronization was to let every
oscillator interact with every other oscillator according to the sine of their phase difference,
i.e., to replace (1.2) by:

dθi(t)

dt
= ωi +

K

N

N∑
j=1

sin
[
θj(t)− θi(t)

]
, i = 1, . . . , N. (1.3)

Here, K ∈ (0,∞) is the interaction strength, and the factor 1
N is included to make sure that

the total interaction per oscillator stays finite in the thermodynamic limit N → ∞. The
coupled evolution equations in (1.3) are referred to as the mean-field Kuramoto model. An
illustration of the interaction in this model is given in Fig. 1.

𝜔1 𝜔2 

𝜔3 

𝜔5 

𝜔6 

𝜃6 

𝜃5 

𝜔4 𝜃4 

𝜃3 

𝜃2 
𝜃1 

Figure 1: Mean-field interaction of N = 6 oscillators with natural frequencies ωi and phases
θi = θi(t), evolving according to (1.3).
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If noise is added, then (1.3) turns into the mean-field noisy Kuramoto model, given by

dθi(t) = ωi dt+
K

N

N∑
j=1

sin
[
θj(t)− θi(t)

]
dt+D dWi(t), i = 1, . . . , N. (1.4)

Here, D ∈ (0,∞) is the noise strength, and (Wi(t))t≥0, i = 1, . . . , N , are independent
standard Brownian motions on R. The coupled evolution equations in (1.4) are stochastic
differential equations in the sense of Itô (see e.g. Karatzas and Shreve [5]).

In order to exploit the mean-field nature of (1.4), the complex-valued order parameter

rN (t) eiψN (t) =
1

N

N∑
j=1

eiθj(t) (1.5)

is introduced. In (1.5), rN (t) is the synchronization level at time t and takes values in
[0, 1], while ψN (t) is the average phase at time t and takes values in [0, 2π]. (Note that
ψN (t) is properly defined only when rN (t) > 0.) The order parameter (r, ψ) is illustrated
in Fig. 2 (r = 0 corresponds to the oscillators being completely unsynchronized, r = 1 to
the oscillators being completely synchronized).

(a) r = 0.095. (b) r = 0.929.

Figure 2: Phase distribution of oscillators for two different values of r. The arrow represents
the complex number reiψ.

By rewriting (1.4) in terms of (1.5) as

dθi(t) = ωi dt+KrN (t) sin
[
ψN (t)− θi(t)

]
dt+D dWi(t), i = 1, . . . , N, (1.6)

we see that the oscillators are coupled via the order parameter, i.e., the phases θi are pulled
towards ψN with a strength proportional to rN .

In the mean-field limit N →∞, the system in (1.6) exhibits what is called “propagation
of chaos”, i.e., the evolution of single oscillators becomes autonomous. Indeed, suppose that

I θi(0), i = 1, . . . , N, are i.i.d. and are drawn from
a common probability distribution ρ on [0, 2π].

(1.7)
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The order parameter associated with ρ is the pair (R,Φ) defined by

R eiΦ =

∫ 2π

0
ρ(dθ) eiθ. (1.8)

Suppose that R > 0, so that Φ is properly defined. Suppose further that

I the disorder distribution µ is symmetric. (1.9)

Then, as we will see in Section 1.2–1.3 and 3.1, the limit as N → ∞ of the evolution of a
single oscillator, say θ1, is given by

dθ1(t) = ω1 dt+Kr(t) sin
[
Φ− θ1(t)

]
dt+D dW1(t), (1.10)

where (W1(t))t≥0 is a standard Brownian motion, and r(t) is driven by a deterministic
relaxation equation such that

r(0) = R, lim
t→∞

r(t) = r for some r ∈ [0, 1). (1.11)

The parameter r = r(µ,D,K) will be identified in (1.21) below (and the convergence holds
at least when R is close to r; see Remark 1.1 below). The evolution in (1.10) is not closed
because of the presence of r(t), but after a transient period it converges to the closed
evolution equation

dθ1(t) = ω1 dt+Kr sin
[
Φ− θ1(t)

]
dt+D dW1(t). (1.12)

Without loss of generality, we may calibrate Φ = 0 by rotating the circle [0, 2π) over −Φ.
After that the parameters R,Φ associated the initial distribution ρ are gone, and only r
remains as the relevant parameter. It is known (see e.g. (1.22) below) that there exists a
critical threshold Kc = K(µ,D) ∈ (0,∞) separating two regimes:

(I) For K ∈ (0,Kc) there is relaxation to an unsynchronized state (r = 0).

(II) For K ∈ (Kc,∞) there is relaxation to a partially synchronized state (r ∈ (0, 1)).

See Strogatz [13] and Luçon [9] for overviews.

1.2 McKean-Vlasov equation

For the system in (1.4), Sakaguchi [10] showed that in the limit as N →∞, the probability
density for the phase oscillators and their natural frequencies (with respect to λ× µ, with
λ the Lebesgue measure on [0, 2π] and µ the disorder measure on R) evolves according to
the McKean-Vlasov equation

∂

∂t
p(t; θ, ω) = − ∂

∂θ

[
p(t; θ, ω)

{
ω +Kr(t) sin

[
ψ(t)− θ

]}]
+
D

2

∂2

∂θ2
p(t; θ, ω), (1.13)

where

r(t) eiψ(t) =

∫
R
µ(dω)

∫ 2π

0
dθ eiθ p(t; θ, ω), (1.14)
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is the continuous counterpart of (1.5). If ρ has a density, say ρ(θ), then p(0; θ, ω) = ρ(θ)
for all ω ∈ R.

By (1.9), we can again calibrate the average phase to be zero, i.e., ψ(t) = ψ(0) = Φ = 0,
t ≥ 0, in which case the stationary solutions of (1.13) satisfy

0 = − ∂

∂θ

[
p(θ, ω) (ω −Kr sin θ)

]
+
D

2

∂2

∂θ2
p(θ, ω) (1.15)

and therefore are of the form

pλ(θ, ω) =
Aλ(θ, ω)∫ 2π

0 dφAλ(φ, ω)
, λ = 2Kr/D, (1.16)

with

Aλ(θ, ω) = Bλ(θ, ω)

(
e4πω

∫ 2π

0

dφ

Bλ(φ, ω)
+ (1− e4πω)

∫ θ

0

dφ

Bλ(φ, ω)

)
,

Bλ(θ, ω) = eλ cos θ+2θω.

(1.17)

After rewriting

Aλ(θ, ω) = Bλ(θ, ω)

(∫ 0

θ−2π

dφ

Bλ(−φ,−ω)
+

∫ θ

0

dφ

Bλ(φ, ω)

)
(1.18)

and noting that Bλ(φ, ω) = Bλ(−φ,−ω), we easily see that

pλ(θ, ω) = pλ(−θ,−ω), (1.19)

a property we will need later. In particular, in view of (1.9), we have∫
R
µ(dω)

∫ 2π

0
dθ pλ(θ, ω) sin θ = 0. (1.20)

Since ψ(t) = ψ(0) = Φ = 0, we see from (1.14) that pλ(θ, ω) in (1.16) is a solution if
and only if r satisfies∫

R
µ(dω)

∫ 2π

0
dθ pλ(θ, ω) cos θ = r, λ = 2Kr/D. (1.21)

This gives us a self-consistency relation for r, which can in principle be solved (and possibly
has more than one solution). The equation in (1.21) always has a solution with r = 0: the
unsynchronized state (I) corresponding to p0(θ, ω) = 1

2π for all θ, ω. A (not necessarily
unique) solution with r ∈ (0, 1) exists when the coupling strength K exceeds a critical
threshold Kc = Kc(µ,D). When this occurs, we say that the oscillators are in a partially
synchronized state (II). As K increases also r increases. Moreover, r ↑ 1 as K →∞ and we
say that the oscillators convergence to a fully synchronized state. When K crosses Kc, the
system exhibits a second-order phase transition.

For the case where the frequency distribution µ is symmetric and unimodal, an explicit
expression is known for Kc:

1

Kc
=

∫
R
µ(dω)

D

D2 + 4ω2
. (1.22)
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Thus, when the spread of µ is large compared to K, the oscillators are not able to syn-
chronize and they rotate near their own frequencies. As K increases, this remains the case
until K reaches Kc. After that a small fraction of synchronized oscillators starts to emerge,
which becomes of macroscopic size when K moves beyond Kc. For µ symmetric and uni-
modal it is conjectured that for K > Kc there is a unique synchronized solution pλ(·, ·)
with r ∈ (0, 1) solving (1.21) (Luçon [9, Conjecture 3.12]). This conjecture has been proved
when µ is narrow, i.e., the disorder is small (Luçon [9, Proposition 3.13 3.12]).

Remark 1.1. Stability of stationary solutions has been studied by Strogatz and Mo-
rillo [14], Strogatz, Morillo and Matthews [15], Luçon [9, Section 3.4]. For symmetric
unimodal disorder, the unsynchronized state is linearly stable for K < Kc and linearly
unstable for K > Kc, while the synchronized state for K > Kc is linearly stable at least for
small disorder. Not much is known about stability for general disorder.

There is no closed form expression for Kc beyond symmetric unimodal disorder, except
for special cases, e.g. symmetric binary disorder. We refer to Luçon [9] for an overview.

1.3 Scaling towards mean-field

In Section 3.1 below we will prove the following key property.

Theorem 1.2. Assume that r > 0. Then

lim
N→∞

ψN (Nt) = ψ∗(t), dψ∗(t) = D∗ dW∗(t), ψ∗(0) = Φ,

lim
N→∞

rN (t) = r(t), lim
t→∞

r(t) = r, r(0) = R,
(1.23)

where (W∗(t))t≥0 is a standard Brownian motion and D∗ ∈ (0,∞) is a diffusion constant.

Thus, for large N and in a partially synchronized state, the average phase evolves on time
scale Nt. In particular, limN→∞ ψN (t) = limN→∞ ψN (0) = Φ = 0 for fixed t ≥ 0, i.e.,
the average phase does not evolve on time scale t. A similar result was proved by Ha and
Slemrod [4] for the Kuramoto model with disorder and without noise, while an approximate
solution was obtained by Sonnenschein and Schimansky-Geier [12] for the Kuramoto model
without disorder and with noise.

Theorems 2.2 and 2.6 below will expand on the above observations. In the next section
we take a closer look at the hierarchical mean-field limit.

1.4 Hierarchical lattice

The hierarchical lattice of orderN consist of countable many vertices that form communities
of sizes N , N2, etc. For example, the hierarchical lattice of order N = 3 consists of vertices
that are grouped into 1-block communities of 3 vertices, which in turn are grouped into
2-block communities of 9 vertices, and so on. Each vertex is assigned a label that defines
its location at each block level (see Fig. 3).

Formally, the hierarchical group ΩN of order N ∈ N\{1} is the set

ΩN =

{
η = (η`)`∈N0 ∈ {0, 1, . . . , N − 1}N0 :

∑
`∈N0

η` <∞
}

(1.24)
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Figure 3: The hierarchical lattice of order N = 3. The vertices live at the lowest level. The tree
visualizes their distance: the distance between two vertices η, ζ is the height of their lowest common
branching point in the tree: d(η, ζ) = 2 in the picture.

with addition modulo N , i.e., (η + ζ)` = η` + ζ` (modN), ` ∈ N0. The distance on ΩN is
defined as

d : ΩN × ΩN → N0, (η, ζ) 7→ min
{
k ∈ N0 : η` = ζ` ∀ ` ≥ k

}
, (1.25)

i.e., the distance between two vertices is the smallest index from which onwards the se-
quences of hierarchical labels of the two vertices agree. This distance is ultrametric:

d(η, ζ) ≤ min{d(η, ξ), d(ζ, ξ)} ∀ η, ζ, ξ ∈ ΩN . (1.26)

For η ∈ ΩN and k ∈ N0, the k-block around η is defined as

Bk(η) = {ζ ∈ ΩN : d(η, ζ) ≤ k}. (1.27)

In what follows, for each ` ∈ N0 we write Ω
[`]
N to denote the set of vertices in the tree at

height `, and η[`] to denote the ancestor of η in Ω
[`]
N .

1.5 Hierarchical Kuramoto model

We are now ready to define the model that will be our object of study. Each vertex η ∈ ΩN

carries a phase oscillator, whose phase at time t is denoted by θη(t). Oscillators interact
in pairs, but at a strength that depends on their hierarchical distance. To modulate this
interaction, we introduce a sequence of interaction strengths

(Kk)k∈N ∈ (0,∞)N, (1.28)

and we let each pair of oscillators η, ζ ∈ ΩN at distance d(η, ζ) = d interact as in the
mean-field Kuramoto model with K/N replaced by Kd/N

2d−1, where the scaling factor is
chosen to ensure that the model remains well behaved in the limit as N →∞. In addition,
we subject each oscillator to a sequence of random natural frequencies at each hierarchical
level. Thus, our coupled evolution equations read

dθη(t) =
∑
k∈N0

1

Nk
ωη[k] dt+

∑
ζ∈ΩN

Kd(η,ζ)

N2d(η,ζ)−1
sin
[
θζ(t)−θη(t)

]
dt+D dWη(t), η ∈ ΩN , t ≥ 0,

(1.29)
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where (Wη(t))t≥0, η ∈ ΩN , are i.i.d. standard Brownian motions, and

I (ωζ)ζ∈Ω
[k]
N

are i.i.d. and are drawn from a common probability
distribution µ[k](dω) at each height k ∈ N0 in the tree.

(1.30)

As initial condition we take, as in (1.7),

I θη(0), η ∈ ΩN , are i.i.d. and are drawn from
a common probability distribution ρ(dθ) on [0, 2π].

(1.31)

We will be interested in understanding the evolution of the order parameter associated with
the Nk oscillators in the k-block around η at time Nk−1t, defined by

R[k]
η (t) eiΦ

[k]
η (N−1t) =

1

Nk

∑
ζ∈Bk(η)

eiθζ(Nk−1t), η ∈ ΩN , t ≥ 0, (1.32)

where R[k]
η (t) is the synchronization level and Φ

[k]
η (N−1t) is the average phase. The time

scales in (1.32) are a natural choice in view of (1.23) and the scaling factors in (1.29). Our
goal will be to pass to the limit N →∞, look at the limiting synchronization levels around
a given vertex, say η = 0, and classify the scaling behavior of these synchronization levels
as k →∞ into universality classes according to the choice of (Kk)k∈N in (1.28).

Note that, for every η ∈ ΩN , we can telescope to write∑
ζ∈ΩN

Kd(ζ,η)

N2d(η,ζ)−1
sin
[
θζ(t)− θη(t)

]
=
∑
k∈N

Kk

N2k−1

∑
ζ∈Bk(η)/Bk−1(η)

sin
[
θζ(t)− θη(t)

]
=
∑
k∈N

( Kk

N2k−1
− Kk+1

N2(k+1)−1

) ∑
ζ∈Bk(η)

sin
[
θζ(t)− θη(t)

]
.

(1.33)
Inserting (1.33) into (1.29) and using (1.32), we get

dθη(t) =
∑
k∈N0

1

Nk
ωη[k] dt

+
∑
k∈N

1

Nk−1

(
Kk −

Kk+1

N2

)
R[k]
η (N1−kt) sin

[
Φ[k]
η (N−kt)− θη(t)

]
dt+D dWη(t).

(1.34)
This shows that, like in (1.6), the oscillators are coupled via the order parameters associated
with the k-blocks for all k ∈ N, suitably weighted.

When we pass to the limit N →∞ in (1.34), in the first sum only the term with k = 0
survives, while in the second sum only the term with k = 1 survives, so that we end up
with an autonomous evolution equation similar to (1.10). The goal of the present paper is
to show that when (compare with (1.9))

I the disorder distributions µ[k], k ∈ N0, are symmetric, (1.35)

a similar decoupling occurs at all block levels. Indeed, we expect the successive time scales
at which synchronization occurs to separate. If there is synchronization at scale k, then we
expect the average of the k-blocks around the origin forming the (k + 1)-blocks (of which
there are N in total) to behave as if they were single oscillators at scale k + 1.
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2 Main theorems

In Sections 2.1 and 2.2 we state our main theorems for the multi-scaling of the system
without disorder (Theorems 2.2–2.4 below), respectively, the system with disorder (Theo-
rems 2.6–2.8 below). The proofs of these theorems are given in Sections 3–4. In Section 2.2
we further show that spreading out the disorder lowers the synchronization level (Theo-
rem 2.9 below). The proof of this fact is given in Appendix A.1. The system without
disorder already exhibits interesting and intricate scaling behaviour, which is why we treat
it separately and do not present it as a special case of the system with disorder.

Without loss of generality we set D = 1 in (1.29). Throughout this section we assume
that (1.30)–(1.31) and (1.35) are in force. We further assume that the disorder is small,
although we believe this assumption to be redundant (see Remark 4.1 below).

2.1 Non-disordered system

Define

Z(λ) =
1

2π

∫ 2π

0
dφ eλ cosφ, λ > 0. (2.1)

After normalization, the integrand becomes what is called the von Mises probability density
function on the unit circle with parameter λ, which is φ 7→ pλ(φ, 0) (recall (1.16)–(1.17)).

Definition 2.1. (Renormalization map) For K ∈ (0,∞), let TK : [0, 1] × [1
2 , 1] →

[0, 1]× [1
2 , 1] be the map

(R̄, Q̄) = TK(R,Q) (2.2)

defined by

R̄ = R
Z ′

Z

(
2KR̄

√
Q
)
,

Q̄− 1
2 = (Q− 1

2)

[
2
Z ′′

Z

(
2KR̄

√
Q
)
− 1

]
.

(2.3)

The first equation is a consistency relation and the second equation is a recursion relation.
They must be used in that order to find the image point (R̄, Q̄) of the original point (R,Q)
under the map TK .

Our first theorem shows that the average phase of the k-blocks behaves like that of the
noisy mean-field Kuramato model described in Theorem 1.2.

Theorem 2.2. (Multi-scaling for the block average phases) Fix k ∈ N and assume
that R[k] > 0. Then, in the limit as N → ∞, (Φ

[k]
0 (t))t≥0 evolves according to the Itô-

equation

dΦ
[k]
0 (t) = Kk+1

Q[k]

R[k]
R

[k+1]
0 (t) sin

[
Φ− Φ

[k]
0 (t)

]
dt+

√
Q[k]

R[k]
dW

[k]
0 (t), t ≥ 0, (2.4)

where (W
[k]
0 (t))t≥0 is a standard Brownian motion, Φ = 0 by calibration, and

(R[k], Q[k]) =
(
TKk ◦ · · · ◦ TK1

)
(R[0], Q[0]), k ∈ N, (2.5)

with (R[0], Q[0]) = (1, 1).
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The evolution in (2.4) is that of a mean-field noisy Kuramoto model with renormalized
coefficients (compared with (1.6)). The composition in (2.5) is to be viewed as the result of
the iteration of renormalization maps TK1 , . . . , TKk acting on block communities at levels
1, . . . , k successively, starting from the initial value (R[0], Q[0]) = (1, 1). This initial value
comes from the fact that single oscillators are completely synchronized by definition.

The evolution in (2.4) is not closed because of the presence of the term R
[k+1]
0 (t), which

comes from the (k + 1)-st block community one hierarchical level up from k. Similarly as
in (1.11), R[k+1]

0 (t) is driven by a deterministic relaxation equation such that

R
[k+1]
0 (0) = R, lim

t→∞
R

[k+1]
0 (t) = R[k+1]. (2.6)

This relaxation equation will be of no concern to us here. Convergence holds at least for R
close to R[k+1] (recall Remark 1.1). Thus, after a transient period, (2.4) converges to the
closed evolution equation

dΦ
[k]
0 (t) = Kk+1

Q[k]

R[k]
R[k+1] sin

[
Φ− Φ

[k]
0 (t)

]
dt+

√
Q[k]

R[k]
dW

[k]
0 (t), t ≥ 0. (2.7)

We will see that k 7→ (R[k], Q[k]) is non-increasing in both components. In particular,
synchronization cannot increase when the hierarchical level goes up.

There are three universality classes depending on the choice of (Kk)k∈N in (1.28), illus-
trated in Fig. 4:

(1) Synchronization is lost at a finite level:
R[k] > 0, 0 ≤ k < k∗, R[k] = 0, k ≥ k∗ for some k∗ ∈ N.

(2) Synchronization is lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞
R[k] = 0.

(3) Synchronization is not lost asymptotically:
R[k] > 0, k ∈ N0, lim

k→∞
R[k] > 0.

Q

R
0

1

1

(1)
(3)

(2)

1
2

1
2

Figure 4: The dots represent the map k 7→ (R[k], Q[k]) for the three universality classes,
starting from (R[0], Q[0])(1, 1). The dots move left and down as k increases.

Our second theorem provides sufficient conditions for universality classes (1) and (3) in
terms of the sum

∑
k∈NK

−1
k .

11



Theorem 2.3. (Criteria for the universality classes)

•
∑

k∈NK
−1
k ≥ 4 =⇒ universality class (1).

•
∑

k∈NK
−1
k ≤ 1√

2
=⇒ universality class (3).

Two examples are: (1) Kk = 3
2 log 2 log(k + 1); (3) Kk = 4ek. The scaling behaviour for

these examples can be seen from the numerical analysis in Appendix B (see, in particular,
Fig. 8 and Fig. 9 below).

The criteria in Theorem 2.3 are not sharp. Universality class (2) corresponds to a
critical surface in the space of parameters (Kk)k∈N that appears to be rather complicated
and certainly is not (!) of the type

∑
k∈NK

−1
k = c for some 1√

2
< c < 4 (see Fig. 5). Note

that the full sequence (Kk)k∈N determines in which universality class the system is.

(1)

(3)

(2)

Figure 5: Caricature showing the critical surface in the parameter space and the bounds
provided by Theorem 2.3.

The behaviour of Kk as k → ∞ determines the speed at which R[k] → R[∞] in univer-
sality classes (2) and (3). Our third theorem provides upper and lower bounds.

Theorem 2.4. (Bounds for the block synchronization levels)

• In universality classes (2) and (3),

1
4σk ≤ R

[k] −R[∞] ≤
√

2σk, k ∈ N0, (2.8)

with σk =
∑

`>kK
−1
` .

• In universality class (1), the upper bound holds for k ∈ N0, while the lower bound is
replaced by

R[k] −R[k∗−1] ≥ 1
4

k∗−1∑
`=k+1

K−1
` , 0 ≤ k ≤ k∗ − 2, (2.9)

which implies that

k∗ ≤ max

{
k ∈ N :

k−1∑
`=1

K−1
` < 4

}
(2.10)

because R[0] = 1 and R[k∗−1] > 0.
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In universality classes (2) and (3) we have limk→∞ σk = 0. Depending on how fast k 7→ Kk

grows, various speeds of convergence are possible: logarithmic, polynomial, exponential,
superexponential.

2.2 Disordered system

In this section we show how Definition 2.1 and Theorems 2.2–2.4 generalize in the presence
of disorder.

Once the stationary state has been reached by the k-blocks in a given (k+1)-block with
a current synchronization level R[k+1], the k-blocks have an equilibrium distribution that
is given by

p[k](θ, ω) =
Aλ(θ, ω)∫ 2π

0 dφAλ(φ, ω)
, λ = 2Kk+1R

[k+1]
√
Q[k]. (2.11)

Indeed, these are the expressions in (1.16)–(1.17) with the replacements

K → Kk+1Q
[k]/R[k], r → R[k+1], D →

√
Q[k]/R[k], (2.12)

which are the renormalized coefficients in (2.4).

Definition 2.5. (Renormalization map) For k ∈ N0, let TKk+1
: [0, 1]× [1

2 , 1]→ [0, 1]×
[1
2 , 1] be the map

(R[k+1], Q[k+1]) = TKk+1
(R[k], Q[k]) (2.13)

with

R[k+1] = R[k]

(∫ 2π

0
dθ cos θ

∫
R
µ[k](dω) p[k](θ, ω)

)
, (2.14)

Q[k+1] − 1
2 =

(
Q[k] − 1

2

) [(
2

∫ 2π

0
dθ cos2 θ

∫
R
µ[k](dω) p[k](θ, ω)

)
− 1

]
. (2.15)

The derivation of (2.14)–(2.15) is given in Section 3.3. It is easy to see that k 7→ (R[k], Q[k])
is non-increasing in both components, and that (R[k], Q[k]) ∈ [0, 1]× [1

2 , 1].

Theorem 2.6. (Multi-scaling for the block average phases) Fix k ∈ N and assume
that R[k] > 0. Then, in the limit as N →∞, the same evolution equation as in (2.4) holds,
but with an extra term ω0[k] dt in the right-hand side, and with TKk replaced by the map
defined in (2.13)–(2.15).

The same observations apply as for the non-disordered case: there are three univer-
sality classes, illustrated by Fig. 4–5. The following two theorems are the analogues of
Theorems 2.3–2.4, and require that, in addition to (1.35),

I the disorder distributions µ[k], k ∈ N0, are unimodal. (2.16)

Let
Ik =

∫
R
µ[k](dω)

1

1 + 4ω2
. (2.17)

The following two theorems are subject to a technical inequality, stated in Lemma 4.9 below,
which is verified numerically in Appendix B.2 for three different types of disorder.
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Theorem 2.7. (Criteria for the universality classes)

•
∑

k∈NK
−1
k ≥ 4 =⇒ universality class (1).

•
∑

k∈N(IkKk)
−1 ≤ 1√

2
=⇒ universality class (3).

Theorem 2.8. (Bounds for the block synchronization levels)

• In universality classes (2) and (3),
1
4σk ≤ R

[k] −R[∞] ≤
√

2 σ̂k, k ∈ N0, (2.18)

with σk =
∑

`>kK
−1
` and σ̂k =

∑
`>k(I`K`)

−1.

• In universality class (1), the upper bound holds for k ∈ N0, while the same lower
bound holds as in (2.9), which again implies (2.10).

Theorems 2.7–2.8 indicate how the disorder affects the presence of synchronization.
Indeed, the integral in (2.17) is < 1 unless µ[k] = δ0. Hence, with disorder synchronization
is harder: universality class (3) comes with a more stringent criterion in Theorem 2.7 than
in Theorem 2.3. We expect that, similarly, universality class (1) should come with a less
stringent criterion in Theorem 2.7 than in Theorem 2.3. However, our estimates are not
good enough to make this apparent. The reason is that, as we move up the hierarchy and
look at larger and larger blocks, the disorder has a tendency to wash out (because µ is
symmetric), so that for large k the evolution of the k-th block average gets close to that
without disorder. See Section 4 for more details.

In Appendix A.1 we show that synchronization is monotone in the spread of the disorder.
More precisely, recall (1.35) and let µ̄[k](dω) = µ[k](dω) + µ[k](−dω) be the projection of
µ[k] on [0,∞) obtained by reflection.

Theorem 2.9. (Less synchronization for more spread-out disorder) For all k ∈ N0,
if µ̄[k],∗ is stochastically strictly larger than µ̄[k], then the synchronization level under µ̄[k],∗

is strictly smaller than the synchronization level under µ̄[k].

3 Proof of the multi-scaling for the block average phases

In Section 3.1 we prove Theorem 1.2. The proof of the diffusive scaling of the average phase
in the mean-field noisy Kuramato model, as shown in the first line of (1.23), serves as a
prelude to the proof of the multi-scaling of the block average phases in the hierarchical
noisy Kuramoto model, stated in Theorems 2.2 and 2.6. The proof of the latter is given
in Section 3.2. In Section 3.3 we derive (2.14)–(2.15), the formulas for the renormalization
map.

3.1 Scaling of average phase for mean-field Kuramato

Proof. For the derivation of the second line of (1.23) we combine (1.13)–(1.14), to obtain

d

dt
r(t) =

∫
R
µ(dω)

∫ 2π

0
dθ cos θ

×
{
− ∂

∂θ

[
pλ(t; θ, ω)

{
ω +Kr(t) sin[ψ(t)− θ]

}]
+
D

2

∂2

∂θ2
pλ(t; θ, ω)

} (3.1)
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with λ = 2Kr/D. After partial integration with respect to θ this becomes (use that
θ 7→ pλ(t; θ, ω) is periodic)

d

dt
r(t) =

∫
R
µ(dω)

∫ 2π

0
dθ pλ(t; θ, ω)

{
(− sin θ)

{
ω +Kr(t) sin(−θ)

}
+ (− cos θ)

D

2

}
,

(3.2)
where we use that ψ(t) = ψ(0) = 0. Define

C(t) =

∫
R
µ(dω)

∫ 2π

0
dθ pλ(t; θ, ω)ω sin θ,

q(t) =

∫
R
µ(dω)

∫ 2π

0
dθ pλ(t; θ, ω) cos2 θ.

(3.3)

Then (3.2) reads
d

dt
r(t) = −C(t) +

[
K(1− q(t))− D

2

]
r(t). (3.4)

We know that limt→∞ r(t) = r, limt→∞C(t) = C and limt→∞ q(t) = q, with 0 = −C +
[K(1− q)− D

2 ] r. The details of the relaxation are delicate and depend on the full solution
of the McKean-Vlasov equation in (1.13).

For the derivation of the first line of (1.23) we use the symmetry of the equilibrium
distribution (recall (1.16)–(1.17)), i.e.,

pλ(θ, ω) = pλ(−θ,−ω) (3.5)

and the symmetry of the disorder distribution (recall (1.9)), i.e.,

µ(dω) = µ(−dω), (3.6)

together with the fact that x 7→ cosx is a symmetric function and x 7→ sinx is an asym-
metric function.

Itô’s rule applied to (1.5) gives

dψN (t) =
N∑
i=1

∂ψN
∂θi

(t) dθi(t) +
1

2

N∑
i=1

∂2ψN
∂θ2

i

(t)
(
dθi(t)

)2 (3.7)

with

∂ψN
∂θi

=
1

Nr
cos(ψ − θi), (3.8)

∂2ψN
∂θ2

i

= − 1(
Nr)2

sin
(
2(ψ − θi)

)
+

1

Nr
sin(ψ − θi). (3.9)

Inserting (1.6), we get

dψN (t) =
[
I1(N ; t) + I2(N ; t) + I3(N ; t)

]
dt+ dJ(N ; t) (3.10)
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with

I1(N ; t) =
1

NrN (t)

N∑
i=1

cos
[
ψN (t)− θi(t)

]
ωi(t),

I2(N ; t) =
K

N

N∑
i=1

cos
[
ψN (t)− θi(t)

]
sin
[
ψN (t)− θi(t)

]
,

I3(N ; t) = − D2

2
(
NrN (t)

)2 N∑
i=1

sin
(
2
[
ψN (t)− θi(t)

])
,

dJ(N ; t) =
D

NrN (t)

N∑
i=1

cos
[
ψN (t)− θi(t)

]
dWi(t),

(3.11)

where we use that
∑N

i=1 sin[ψN (t) − θi(t)] = 0 by (1.5). We assume that the system
converges to a partially synchronized state, i.e.,

lim
N→∞

rN (t) = r > 0. (3.12)

Consequently, as N →∞ the first term in (3.11) vanishes in distribution because of (3.5)–
(3.6), limN→∞ ψN (t) = ψ(t) = ψ(0) = Φ = 0 for all t ≥ 0 (recall Section 1.2), and the
fact that the oscillators decouple from the average phase. The second term vanishes in
distribution for the same reasons, while the third term vanishes trivially. The fourth term
is equal in distribution to J̄(N ; t) dW∗(t/N) with

J̄(N ; t) =
D

rN (t)

√√√√ 1

N

N∑
i=1

cos2
[
ψN (t)− θi(t)

]
. (3.13)

Replacing t by Nt, we see that

lim
N→∞

ψN (Nt) = ψ∗(t) with ψ∗(t) = D∗W∗(t), ψ∗(0) = Φ = 0, (3.14)

where

D∗ = lim
N→∞

J̄(N ;Nt) = lim
N→∞

D

rN (Nt)

√√√√ 1

N

N∑
i=1

cos2
[
ψN (Nt)− θi(Nt)

]
. (3.15)

But limN→∞ rN (Nt) = r, while the term under the square root converges to q defined in
(3.3). The latter holds because θi(Nt), i = 1, . . . , N , are asymptotically independent and
θi(Nt) converges in distribution to θ 7→ pλ(θ, ωi) relative to the value of ψN (Nt), which
itself evolves but only slowly on time scale Nt. Hence we get the claim in the first line of
(1.23) with D∗ = D

√
q/r.

3.2 Multi-scaling of block average phases for hierarchical Kuramoto

We give only the main idea behind the proof of Theorems 2.2 and 2.6. The argument
runs along the same line as in Section 3.1, but is more involved because of the hierarchical
interaction. The details can be filled in with more effort, based on the techniques developed
for the McKean-Vlasov equation in (1.13)–(1.14) (see e.g. Dai Pra and den Hollander [3]).

What is crucial for the argument is the separation of space-time scales:
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• Each k-block consists of N disjoint (k− 1)-blocks, and evolves on a time scale that is
N times larger than the time scale on which the constituent blocks evolve.

• In the limit as N → ∞, the constituent (k − 1)-blocks rapidly achieve equilibrium
subject to the current value of the k-block, which allows us to treat them as a noisy
mean-field Kuramoto model with coefficients that depend on their synchronization
level and their average phase, with an effective interaction that depends on the current
value of the synchronization level of the k-block (recall (2.12)).

• The k-block itself interacts with the (k+1)-block it is part of, with interaction strength
Kk+1, while the interaction with the even larger blocks it is part of is negligible as
N →∞.

Recall that in (1.32) we already reduced the times scale of the average phase by a factor
N−1, in accordance with the scaling found in the first line of (1.23). Thus, we have that
Φ

[k]
0 (t) is the average phase of the k-block around 0 at time Nkt.

Proof. Itô’s rule applied to (1.32) gives

dΦ
[k]
0 (t) =

∑
ζ∈Bk(0)

∂Φ
[k]
0

∂θζ
(t) dθζ(N

kt) +
1

2

∑
ζ∈Bk(0)

∂2Φ
[k]
0

∂θ2
ζ

(t)
(
dθζ(N

kt)
)2 (3.16)

with

∂Φ
[k]
0

∂θζ
=

1

NkR
[k]
0

cos
[
Φ

[k]
0 − θζ

]
, (3.17)

∂2Φ
[k]
0

∂θ2
ζ

= − 1[
N2kR

[k]
0

]2 sin
(
2
[
Φ

[k]
0 − θζ

])
+

1

NkR
[k]
0

sin
[
Φ

[k]
0 − θζ

]
. (3.18)

Inserting (1.34), we find

dΦ
[k]
0 (t) =

[
I1(k,N ; t) + I2(k,N ; t) + I3(k,N ; t)

]
dt+ dJ(k,N ; t) (3.19)

with

I1(k,N ; t) =
1

R
[k]
0 (Nt)

∑
`∈N0

1

N `

∑
ζ∈Bk(0)

cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
ωζ[`] ,

I2(k,N ; t) =
1

R
[k]
0 (Nt)

∑
`∈N

(
K` −

K`+1

N2

)
× 1

N `−1

∑
ζ∈Bk(0)

R
[`]
ζ (Nk−`+1t) sin

[
Φ

[`]
ζ (Nk−`t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
,

I3(k,N ; t) = − 1

2Nk
[
R

[k]
0 (Nt)

]2 ∑
ζ∈Bk(0)

sin
(
2
[
Φ

[k]
0 (t)− θζ(Nkt)

])
,

dJ(k,N ; t) =
1

Nk/2R
[k]
0 (Nt)

∑
ζ∈Bk(0)

cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
dWζ(t).

(3.20)
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We assume that the k-block converges to a partially synchronized state, i.e.,

lim
N→∞

R
[k]
0 (Nt) = R[k] > 0. (3.21)

We must take the limit N → ∞ and show that (3.19)–(3.20) reduces to (2.4) with ω0[k]dt
added on the right-hand side. To do so we will use the symmetry of the equilibrium
distribution at all levels (recall (2.11)), i.e.,

p[k](θ, ω) = p[k](−θ,−ω), k ∈ N0, (3.22)

and the symmetry of the disorder distribution at all levels (recall (1.35)), i.e.,

µ[k](dω) = µ[k](−dω), k ∈ N0. (3.23)

The key idea is that, in the limit as N → ∞, the average phases of the k-blocks around ζ
decouple and converge in distribution to θ 7→ p[k](θ, ω

[k]
ζ ) for all k ∈ N0, just as for the noisy

mean-field Kuramoto model discussed in Section 3.1. This is the reason why a recursive
structure is in place, captured by the renormalization maps TKk , k ∈ N.

Along the way we need the quantities

R
[k]
0 (Nt) =

1

Nk

∑
ζ∈Bk(0)

cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
,

Q
[k]
0 (Nt) =

1

Nk

∑
ζ∈Bk(0)

cos2
[
Φ

[k]
0 (t)− θζ(Nkt)

]
.

(3.24)

I1(k,N ; t). The terms with ` ≥ k + 1 vanish trivially. The terms with ` ≤ k − 1 vanish
in distribution because of (3.23) and the fact that the k-block average decouples from the
disorder at levels ` ≤ k − 1. Hence only the term with ` = k survives, which converges to
ω0[k] because ζ

[k] = 0[k] for all ζ ∈ Bk(0).

I2(k,N ; t). The terms with ` ≥ k + 2 vanish trivially. The terms with ` ≤ k − 1 vanish
in distribution, as can be shown with the help of a telescoping argument. Indeed, we may
write

Φ
[`]
ζ (Nk−`t)− θζ(Nkt) =

∑̀
m=1

[
Φ

[m]
ζ (Nk−mt)− Φ

[m−1]
ζ (Nk−(m−1)t)

]
. (3.25)

Since

sin

(∑̀
m=1

xm

)
=

∑
J⊂{1,...,`}
|J| odd

(−1)(|I|−1)/2
∏
m/∈J

cosxm
∏
i∈J

sinxm,

cos

(∑̀
m=1

xm

)
=

∑
J⊂{1,...,`}
|J| even

(−1)|J |/2
∏
m/∈J

cosxm
∏
i∈J

sinxm,

x1, . . . , x` ∈ R, ` ∈ N,

(3.26)
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we see that sin[Φ
[`]
ζ (Nk−`t)−θζ(Nkt)] is a sum of terms containing an odd number of factors

of the form
sin
[
Φ

[m]
ζ (Nk−mt)− Φ

[m−1]
ζ (Nk−(m−1)t)

]
, 1 ≤ m ≤ `, (3.27)

while cos[Φ
[k]
0 (t)− θζ(Nkt)] is a sum of terms containing an even number of factors of the

form
sin
[
Φ

[m]
ζ (Nk−mt)− Φ

[m−1]
ζ (Nk−(m−1)t)

]
, 1 ≤ m ≤ k, (3.28)

where we note that Φ
[k]
0 (t) = Φ

[k]
ζ (t) for all ζ ∈ Bk(0). However, for every 1 ≤ m ≤ `,

• Φ
[m−1]
ζ (Nk−(m−1)t) decouples from R

[`]
ζ (Nk−`+1t) and Φ

[m]
ζ (Nk−mt)

and converges in distribution to θ 7→ p[m−1](θ, ωζ[m−1]) relative to Φ
[m]
ζ (Nk−mt),

which itself evolves slowly compared to Φ
[m−1]
ζ (Nk−(m−1)t).

Therefore the factor in (3.27) vanishes on average because of (3.22). By the same telescoping
argument also the term with ` = k vanishes in distribution, where we note that R[k]

ζ (Nt) =

R
[k]
0 (Nt) for all ζ ∈ Bk(0). Hence only the term with ` = k + 1 survives.

I3(k,N ; t). This term vanishes trivially.

dJ(k,N ; t). This term is equal in distribution to√
Q

[k]
0 (Nt)

R
[k]
0 (Nt)

dW
[k]
0 (t) (3.29)

and converges in distribution to √
Q[k]

R[k]
dW

[k]
0 (t) (3.30)

with
R[k] = lim

N→∞
R

[k]
0 (Nt),

Q[k] = lim
N→∞

Q
[k]
0 (Nt).

(3.31)

The quantities defined in (3.31) are relaxation limits and do not depend on t (recall the
remark leading up to (2.6)).

Combining the above observations we see that, in the limit as N → ∞, (3.19)–(3.20)
reduce to

dΦ
[k]
0 (t) = ω0[k] dt+Kk+1

R
[k+1]
0 (t)

R[k]
Ī2(k,N ; t) dt+

√
Q[k]

R[k]
dW

[k]
0 (t) (3.32)

with

Ī2(k,N ; t) =
1

Nk

∑
ζ∈Bk(0)

sin
[
Φ

[k+1]
0 (N−1t)− θζ(Nkt)

]
cos
[
Φ

[k]
0 (t)− θζ(Nkt)

]
, (3.33)
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where we use that Φ
[k+1]
ζ (N−1t) = Φ

[k+1]
0 (N−1t) for all ζ ∈ Bk(0). With the help of the

trigonometric identity sin(x−y+z) cos z = sin(x−y) cos z− 1
2 cos(x−y) sin(2z), x, y, z ∈ R,

we can rewrite (pick x = Φ
[k+1]
0 (N−1t), y = Φ

[k]
0 (t), z = Φ

[k]
0 (t)− θζ(Nkt))

Ī2(k,N ; t) = sin
[
Φ

[k+1]
0 (N−1t)− Φ

[k]
0 (t)

]
Q

[k]
0 (Nt)

− 1
2 sin

[
Φ

[k+1]
0 (N−1t)− Φ

[k]
0 (t)

] 1

Nk

∑
ζ∈Bk(0)

sin
(
2
[
Φ

[k]
0 (t)− θζ(Nkt)

])
.

(3.34)
Because of (3.22), the last term vanishes in distribution, where we again use a telescoping
argument. Combining (3.31)–(3.34) and using that limN→∞Φ

[k+1]
0 (N−1t) = Φ = 0, we get

the evolution equation in Theorem 2.6, which is (2.4) with an extra term ω0[k]dt in the
right-hand side.

The proof for Theorem 2.2 is identical, except that the term I1(k,N ; t) is absent in the
non-disordered system, and hence so is the term ω0[k] to which it converges.

3.3 Renormalization map for disordered system

Proof. To derive (2.15), we return to the definition of Q[k+1]
0 (Nt) in the second line of

(3.24). With the help of the trigonometric identity cos2 x = 1
2 + 1

2 cos(2x), x ∈ R, we can
rewrite (pick x = Φ

[k+1]
0 (t)− θζ(Nk+1t))

Q
[k+1]
0 (Nt)− 1

2 = 1
2

 1

Nk+1

∑
ζ∈Bk+1(0)

cos
(
2
[
Φ

[k+1]
0 (t)− θζ(Nk+1t)

]) . (3.35)

Split the sum over ζ ∈ Bk+1(0) into a sum over the constituent k-blocks Bi
k, i = 1, . . . , N ,

and a sum over ζ ∈ Bi
k. With the help of the trigonometric identity cos(y+z) = cos y cos z−

sin y sin z, y, z ∈ R, we can rewrite the term between square brackets in the right-hand side
as (pick y = 2[Φ

[k+1]
0 (t)− Φ

[k]

Bik
(Nt)], z = 2[Φ

[k]

Bik
(Nt)− θζ(Nk+1t)])

1

N

N∑
i=1

cos
(
2
[
Φ

[k+1]
0 (t)− Φ

[k]

Bik
(Nt)

]) 1

Nk

∑
ζ∈Bik

cos
(
2
[
Φ

[k]

Bik
(Nt)− θζ(Nk+1t)

])

− 1

N

N∑
i=1

sin
(
2
[
Φ

[k+1]
0 (t)− Φ

[k]

Bik
(Nt)

]) 1

Nk

∑
ζ∈Bik

sin
(
2
[
Φ

[k]

Bik
(Nt)− θζ(Nk+1t)

])
,

(3.36)
where Φ

[k]

Bik
(Nt) denotes the average phase of the block Bi

k at time Nk+1t. Because of
(3.22), the fourth sum vanishes in distribution as N →∞, where we again use a telescoping
argument. Moreover, the second sum equals 2(Q

[k]

Bik
(N2t)− 1

2), with Q[k]

Bik
(N2t) the analogue

of Q[k]
0 (N2t) that is obtained after replacing Bk(0) by Bi

k in the second line of (3.24). Since
Q

[k]

Bik
(N2t) is equal in distribution to Q[k]

0 (N2t) for every Bi
k, we can combine (3.35)–(3.36)
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with the second lines of (3.24) and (3.31), to get

Q[k+1] − 1
2 =

(
Q[k] − 1

2

)
lim
N→∞

1

N

N∑
i=1

cos
(
2
[
Φ

[k+1]
0 (t)− Φ

[k]

Bik
(Nt)

])
=
(
Q[k] − 1

2

)([
2 lim
N→∞

1

N

N∑
i=1

cos2
[
Φ

[k+1]
0 (t)− Φ

[k]

Bik
(Nt)

]]
− 1

)
.

(3.37)

However,

• Φ
[k]

Bik
(Nt), i = 1, . . . , N , are asymptotically independent and

converge in distribution to θ 7→ p[k](θ, ω[k]) relative to Φ
[k+1]
0 (t),

which itself evolves slowly compared to Φ
[k]

Bik
(Nt).

Hence we have

lim
N→∞

1

N

N∑
i=1

cos2
[
Φ

[k+1]
0 (t)− Φ

[k]

Bik
(Nt)

]
=

∫
R
µ[k](dω)

∫ 2π

0
dθ p[k](θ, ω) cos2 θ. (3.38)

Combine (3.37)–(3.38) to get (2.15).
The proof of (2.14) is similar and is based on the first line of (3.24).

4 Universality classes and synchronization levels

In Section 4.1 we derive some basic properties of the renormalization map (Lemmas 4.2–4.4
below). In Section 4.2 we prove Theorems 2.3 and 2.7 for the non-disordered system. The
proof relies on convexity and sandwich estimates (Lemmas 4.5–4.7 below). In Section 4.3
we prove Theorems 2.4 and 2.8 for the disordered system. The convexity and sandwich
estimates are more delicate in the presence of disorder (Remark 4.1 and Lemma 4.9 below).
The latter are proved in Appendix A.

4.1 Properties of the renormalization map

For λ ∈ [0,∞), define

Vµ(λ) =

∫ 2π

0
dθ cos θ

∫
R
µ(dω) pλ(θ, ω),

Wµ(λ) =

∫ 2π

0
dθ cos2 θ

∫
R
µ(dω) pλ(θ, ω),

(4.1)

where the probability distribution pλ(θ, ω) is given by (1.16) with D = 1. The renormal-
ization map TK in (2.2) can be written as (R̄, Q̄) = TK(R,Q) with

R̄ = RVµ(λ),

Q̄− 1
2 = (Q− 1

2)
[
2Wµ(λ)− 1

]
, (4.2)

and λ = 2KR̄
√
Q. In the non-disordered case, we have Vδ0 = V = Z ′/Z, Wδ0 = W = Z ′′/Z

with Z(λ) the integral defined in (2.1). In the disordered case, Vµ andWµ are more difficult.
Nevertheless it is possible to prove some general properties.
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Remark 4.1. It is believed that λ 7→ Vµ(λ) is strictly concave on [0,∞) when µ is sym-
metric and unimodal (see Luçon [9, Conjecture 3.12]). However, this conjecture has only
been proved when µ is also narrow, i.e., the disorder is small (see Luçon [9, Proposition
3.13]).

Lemma 4.2. The map K 7→ R̄(R,K) is strictly increasing.

Proof. The derivative of R̄ w.r.t. K exists by the implicit function theorem, so that

dR̄

dK
= 2RV ′(2KR̄)

[
R̄+K

dR̄

dK

]
,

dR̄

dK

[
1− 2KRV ′(2KR̄)

]
= 2RR̄V ′(2KR̄). (4.3)

Note that R̄ is the solution to R̄ = RV (2KR̄), which is non-trivial only when 1 <
2RKV ′(2KR̄) due to the concavity of the map R 7→ RV (2KR̄). This implies that
2KRV ′(2KR̄) < 1 at the solution, which makes the term in (4.3) between square brackets
positive. The claim follows since we proved previously that R, R̄ ∈ [0, 1) and V ′(2KR̄) >
0.

Lemma 4.3. The map K 7→ Q̄(R̄,K,Q) is strictly increasing.

Proof. The derivative of Q̄ w.r.t. K exists by the implicit function theorem, so that

dQ̄

dK
= (Q− 1

2) 4
√
QW ′

(
2
√
QKR̄

) [
R̄+K

dR̄

dK

]
. (4.4)

We have that (Q− 1
2)
√
Q ≥ 0 because Q ∈ [1

2 , 1), W ′(2
√
QKR̄) > 0 as proven before, and

[R̄+K dR̄
dK ] > 0 as in the proof of Lemma 4.2. The claim therefore follows.

Lemma 4.4. The map (R,Q) 7→ (R̄, Q̄) is non-increasing in both components, i.e.,

(i) R 7→ R̄(K,R) is non-increasing.

(ii) Q 7→ Q̄(K, R̄,Q) is non-increasing.

Proof. (i) We have
R̄ = RV

(
2
√
QKR̄

)
. (4.5)

But V (
√
QKR̄) ∈ [0, 1), and so R̄ ≤ R.

(ii) We have
Q̄− 1

2 = (Q− 1
2)
[
2W

(
2
√
QKR̄

)
− 1
]
. (4.6)

ButW (2
√
QKR̄) ∈ [1

2 , 1), and so Q̄ ≤ Q. In fact, since both V (2
√
QKR̄) andW (2

√
QKR̄)

are < 1, both maps are strictly decreasing until R = 0 and Q = 1
2 are hit, respectively.
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4.2 Non-disordered system

Recall (2.1). To prove Theorems 2.3 and 2.7 we need the following lemma.

Lemma 4.5. The map λ 7→ logZ(λ) is analytic, strictly increasing and strictly convex on
(0,∞), with

Z(λ) = 1 + 1
4λ

2 [1 +O(λ2)], λ ↓ 0, Z(λ) =
eλ√
2πλ

[1 +O(λ−1)], λ→∞. (4.7)

Proof. Analyticity is immediate from (2.1). Strict convexity follows because the numerator
of [logZ(λ)]′′ equals

Z ′′(λ)Z(λ)− Z ′(λ)Z ′(λ) =
1

2π

∫ 2π

0
dφ

∫ 2π

0
dψ [cos2 φ− cosφ cosψ] eλ(cosφ+cosψ)

=
1

2π

∫ 2π

0
dφ

∫ 2π

0
dψ [cosφ− cosψ]2 eλ(cosφ+cosψ) > 0,

(4.8)

where we symmetrize the integrand. Since logZ(0) = 0, logZ(λ) > 0 for λ > 0 and
limλ→∞ logZ(λ) = ∞, the strict monotonicity follows. The asymptotics in (4.7) is easily
deduced from (2.1) via a saddle point computation.

Since V = Z ′/Z = [logZ]′, we obtain from (4.7) and convexity that

V (λ) ∼ 1
2λ, λ ↓ 0, (4.9)

1− V (λ) ∼ 1

2λ
, λ→∞. (4.10)

This limiting behaviour of V (λ) inspires the choice of bounding functions in the next lemma.

Lemma 4.6. V +(λ) ≥ V (λ) ≥ V −(λ) for all λ ∈ (0,∞) with (see Fig. 6)

V +(λ) =
2λ

1 + 2λ
,

V −(λ) =
1
2λ

1 + 1
2λ
.

(4.11)

Proof. Recall that V = Z ′/Z, with Z = I0 and Z ′ = I1 modified Bessel functions of the
first kind. Segura [11, Theorem 1] shows that

V (λ) < V +
∗ (λ) =

λ

1
2 +

√
(1

2)2 + λ2
, λ > 0. (4.12)

Since λ <
√

(1
2)2 + λ2, it follows that V +

∗ (λ) < V +(λ). Laforgia and Natalini [8, Theorem
1.1] show that

V (λ) > V −∗ (λ) =
−1 +

√
λ2 + 1

λ
, λ > 0. (4.13)
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Abbreviate η =
√
λ2 + 1. Then λ =

√
(η − 1)(η + 1), and we can write

V −∗ (λ) =

√
η − 1

η + 1
=

λ

η + 1
=

λ

2 + (η − 1)
. (4.14)

Since λ > η − 1, it follows that V −∗ (λ) > V −(λ).
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V*
+(λ)

V*
-(λ)

Figure 6: Plots of the tighter bounds in the proof of Lemma 4.6 and the looser bounds
needed for the proof of Theorem 2.3.

Note that both V + and V − are strictly increasing and concave on (0,∞), which guarantees
the uniqueness and non-triviality of the solution to the consistency relation in the first line
of (4.2) when we replace V (λ) by either V +(λ) or V −(λ).

In the sequel we write V,W,Rk, Qk instead of Vδ0 ,Wδ0 , R
[k], Q[k] to lighten the notation.

We know that (Rk)k∈N0 is the solution of the sequence of consistency relations

Rk+1 = RkV
(
2
√
QkKk+1Rk+1

)
, k ∈ N0. (4.15)

This requires as input the sequence (Qk)k∈N0 , which is obtained from the sequence of
recursion relations

Qk+1 − 1
2 = (Qk − 1

2)
[
2W

(
2
√
QkKk+1Rk+1

)
− 1
]
. (4.16)

By using that Qk ∈ [1
2 , 1] for all k ∈ N0, we can remove Qk from (4.15) at the cost of

doing estimates. Namely, let (R+
k )k∈N0 and (R−k )k∈N0 denote the solutions of the sequence

of consistency relations

R+
k+1 = RkV

+
(
2Kk+1R

+
k+1

)
, k ∈ N0,

R−k+1 = RkV
−(2√1

2Kk+1R
−
k+1

)
, k ∈ N0.

(4.17)

Lemma 4.7. R+
k ≥ Rk ≥ R

−
k for all k ∈ N.

Proof. If we replace V (λ) by V +(λ) (or V −(λ)) in the consistency relation for Rk+1 given
by (4.15), then the new solution R+

k+1 (or R−k+1) is larger (or smaller) than Rk+1. Indeed,
we have

Rk+1 = RkV (2Kk+1Rk+1

√
Qk) ≤ RkV +(2Kk+1Rk+1). (4.18)

Because V + is concave, it follows from (4.18) and the first line of (4.17) that Rk+1 ≤
R+
k+1.
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We are now ready to prove Theorems 2.3–2.4.

Proof. From the first lines of (4.11) and (4.17) we deduce

Rk >
1

4Kk+1
⇐⇒ R+

k+1 > 0 =⇒ Rk −R+
k+1 =

1

4Kk+1
. (4.19)

Hence, with the help of Lemma 4.7, we get

Rk >
1

4Kk+1
=⇒ Rk −Rk+1 ≥

1

4Kk+1
. (4.20)

Iteration gives (recall that R0 = 1)

1−Rk ≥ min

{
1,

k∑
`=1

1

4K`

}
. (4.21)

As soon as the sum in the right-hand side is ≥ 1, we know that Rk = 0. This gives us the
criterion for universality class (1) in Theorem 2.3. Similarly, from the second lines of (4.11)
and (4.17) we deduce

Rk >
2
√

2

Kk+1
⇐⇒ R−k+1 > 0 =⇒ Rk −R−k+1 =

√
2

Kk+1
. (4.22)

Hence, with the help of Lemma 4.7, we get

Rk >

√
2

Kk+1
=⇒ Rk −Rk+1 ≤

√
2

Kk+1
. (4.23)

Iteration gives

1−Rk ≤ max

{
1,

k∑
`=1

√
2

K`

}
. (4.24)

As soon as the sum in the right-hand side is < 1, we know that Rk > 0. This gives us the
criterion for universality class (3) in Theorem 2.3.

In universality classes (2) and (3) we have R+
k ≥ Rk > 0 for k ∈ N, and hence

Rk −R∞ =
∑
`≥k

(R` −R`+1) ≥
∑
`≥k

(R` −R+
`+1) =

∑
`≥k

1

4K`+1
, k ∈ N0. (4.25)

In universality class (1), on the other hand, we have R+
k ≥ Rk > 0 for 1 ≤ k < k∗ and

Rk = 0 for k ≥ k∗, and hence

Rk−Rk∗−1 =

k∗−2∑
`=k

(R`−R`+1) ≥
k∗−2∑
`=k

(R`−R+
`+1) =

k∗−2∑
`=k

1

4K`+1
, 0 ≤ k ≤ k∗−2. (4.26)

Finally, with no assumption on (Rk)k∈N, we have

Rk −R∞ =
∑
`≥k

(R` −R`+1) ≤
∑
`≥k

(R` −R−`+1) ≤
∑
`≥k

√
2

K`+1
, (4.27)

where the last inequality follows from (4.22). The bounds in (4.25)–(4.27) yields the sand-
wich in Theorem 2.4.
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Remark 4.8. In the proof of Theorem 2.3–2.4 we exploited the fact that Qk ∈ [1
2 , 1] to get

estimates that involve a consistency relation in only Rk. In principle we can improve these
estimates by exploring what effect Qk has on Rk. Namely, in analogy with Lemma 4.6, we
have W+(λ) ≥W (λ) ≥W−(λ) for all λ ∈ (0,∞) with (see Fig. 7)

W+(λ) =
1 + λ

2 + λ
, W−(λ) =

1− λ+ λ2

2 + λ2
. (4.28)

This allows for better control on Qk and hence better control on Rk. However, the formulas
are cumbersome to work with and do not lead to a sharp condition anyway.
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Figure 7: Bounding functions for W (λ).

4.3 Disordered system

In this section we analyze what has to be modified in Section 4.2 to prove the analogues of
Theorem 2.3–2.4. Clearly, we need to find simple bounds for Vµ(λ).

The analogues of (4.9)–(4.10), proven in Appendix A.2, read

Vµ(λ) ∼ 1
2Iµλ, λ ↓ 0, (4.29)

1− Vµ(λ) ∼ 1

2λ
, λ→∞, (4.30)

where Iµ is given by (2.17). Note that the scaling for small λ is modified by the disorder,
while the scaling for large λ is not. The key is the following analogue of Lemma 4.6.

Lemma 4.9. Vδ0(λ) ≥ Vµ(λ) ≥ Vδ0(Iµλ) for all λ ∈ (0,∞).

Proof. The upper bound is proven in Appendix A.1. The lower bound is verified numerically
in Appendix B.2 for three different types of disorder.

With the help of the bounds in Lemma 4.9 we can repeat the proof in Section 4.2.
Indeed, since the bounds on Vµ are in terms of Vδ0 = V , we can use Lemma 4.6 to obtain

V+(λ) ≥ V (λ) ≥ Vµ(λ) ≥ V (Iµλ) ≥ V−(Iµλ). (4.31)

With the help of this sandwich we can prove Theorems 2.7–2.8 in the same way as Theo-
rems 2.3–2.4.
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A Comparison of the systems with and without disorder

In Appendix A.1 we prove Theorem 2.9, which states that the synchronization level strictly
decreases when the spread of the disorder strictly increases. In Appendix A.2 we prove the
asymptotics in (4.29)–(4.30).

A.1 Monotonicity in the spread of the disorder

Proof. It follows from (1.16)–(1.17) and (4.1) that

Vµ(λ) =

∫ ∞
0

µ̄(dω)F (ω, λ), (A.1)

where µ̄ is the projection of µ on [0,∞) obtained by reflection (recall that µ is assumed to
be symmetric), and

F (ω, λ) =

∫ 2π
0 dθ (cos θ)S(θ, ω, λ)∫ 2π

0 dθ S(θ, ω, λ)
= F (−ω, λ). (A.2)

with

S(θ, ω, λ) =

∫ θ

0
du eGλ,ω(θ,u) + e4πω

∫ 2π

θ
du eGλ,ω(θ,u) (A.3)

and
Gλ,ω(θ, u) = 2ω(θ − u) + λ(cos θ − cosu). (A.4)

Noting that
4πω +Gλ,ω(θ, u) = Gλ,ω(θ, u− 2π), (A.5)

we can apply the transformation u → u − 2π in the second integral of (A.3) to get the
expression

S(θ, ω, λ) =

∫ θ

θ−2π
du eGλ,ω(θ,u). (A.6)

The following lemma implies that Vµ(λ) ≤ Vδ0(λ) for all λ ∈ (0,∞), as claimed in
Lemma 4.9.

Lemma A.1. For all λ ∈ (0,∞), the map ω 7→ F (ω, λ) is strictly decreasing on [0,∞).

Proof. We show that ∂
∂ωF (ω, λ) < 0. By (A.2), this amounts to showing that ∆ < 0 with

∆ =

∫ 2π

0
dθ (cos θ)

∫ 2π

0
dφ

[(
∂

∂ω
S(θ, ω, λ)

)
S(φ, ω, λ) − S(θ, ω, λ)

(
∂

∂ω
S(φ, ω, λ)

)]
.

(A.7)
It follows from (A.6) that

∂

∂ω
S(θ, ω, λ) =

∫ θ

θ−2π
du

(
∂

∂ω
Gλ,ω(θ, u)

)
eGλ,ω(θ,u). (A.8)

Since ∂
∂ωGλ,ω(θ, u) = 2(θ − u), substitution into (A.7) yields the expression

∆ =

∫ 2π

0
dθ

∫ 2π

0
dφ

∫ θ

θ−2π
du

∫ φ

φ−2π
dv eGλ,ω(θ,u) eGλ,ω(φ,v)

[
(cos θ)2(θ−u)−2(φ−v)

]
. (A.9)
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By the symmetry of the integrals, the term between square brackets may be replaced by

(cos θ)(θ−u)+(cosφ)(φ−v)−(θ−u)−(φ−v) = −(θ−u)(1−cos θ)−(φ−v)(1−cosφ). (A.10)

Since this is manifestly ≤ 0, the claim follows.

Lemma A.1 implies Theorem 2.9. Indeed, if µ̄′ is stochastically strictly larger than µ̄,
then (A.1) and the fact that ω 7→ F (ω, λ) is strictly decreasing imply that Vµ′(λ) < Vµ(λ)
for all λ ∈ (0,∞), which via (4.2) implies the claim.

A.2 Asymptotics

Proof. The asymptotics for λ ↓ 0 in (4.29) is derived in Luçon [9]. The asymptotics for
λ→∞ in (4.30) is obtained as follows.

Return to (A.6). The map u 7→ Gλ,ω(θ, u) achieves its maximum at u solving sinu =
2ω/λ and cosu < 0. For λ large this means that π − u is close to 2ω/λ. Writing u = π − ε
with ε = −2ω/λ and expanding up to order ε2, we get

Gλ,ω(θ, u) = 2ω(θ − π + ε) + λ cos θ + λ− λ

2
ε2 +O(λε4). (A.11)

Writing θ = π − δ, we get

S(θ, ω, λ) =

{
e4πωe−2ωδ+λ[1+cos(π−δ)] ∫ δ

−π e2ωε−λ
2
ε2+O(λε4)dε, δ > 0,

e−2ωδ+λ[1+cos(π−δ)] ∫ π
δ e2ωε−λ

2
ε2+O(λε4)dε, δ < 0.

(A.12)

To perform the integrals over ε, we write

2ωε− λ

2
ε2 = −λ

2

(
ε− 2ω

λ

)2
+

2ω2

λ
, (A.13)

put v = ε− 2ω
λ and integrate over v, to obtain

S(θ, ω, λ) =
[
(i) e4πω 1{θ<π} + (ii)1{θ>π}

]
e−2ω(π−θ)+λ(1+cos θ). (A.14)

with

(i) =

∫ δ

−π
e2ωε−λ

2
ε2+O(λε4)dε = e

2ω2

λ

√
π

2λ

(
erf
[λδ − 2ω√

2λ

]
+ erf

[πλ+ 2ω√
2λ

])[
1 +O(1/λ)

]
,

(A.15)

(ii) =

∫ π

δ
e2ωε−λ

2
ε2+O(λε4)dε = e

2ω2

λ

√
π

2λ

(
erf
[πλ− 2ω√

2λ

]
− erf

[λδ − 2ω√
2λ

])[
1 +O(1/λ)

]
.

(A.16)

We next integrate (cos θ)S(θ, ω, λ) over θ. The map θ 7→ −2ω(π − θ) + λ(1 + cos θ)
achieves its maximum when sin θ = 2ω/λ and cos θ > 0. For large λ this means that θ is
close to 2ω/λ. Expanding around θ = 0, we get∫ 2π

0 dθ (cos θ)S(θ, ω, λ)∫ 2π
0 dθ S(θ, ω, λ)

= 1 +
−1

2

∫ 2π
0 dθ [θ2 +O(θ4)]S(θ, ω, λ)∫ 2π

0 dθ S(θ, ω, λ)
. (A.17)
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To find the term of order 1/λ, the asymptotics we are after, we calculate the numerator
and denominator separately. The numerator equals

−1
2

∫ 2π

0
dθ θ2 S(θ, ω, λ) = −1

2

∫ 2π

0
dθ θ2 (i) e4πω e−2ω(π−θ)+λ(1+cos θ) (A.18)

= −[1 +O(e−2λ)] 1
2(i) e2πω+2λ

∫ 2π

0
dθ θ2 e2ωθ−λ

2
θ2+O(λθ4), (A.19)

where we may pull (i) in front because the main contribution comes from θ = π − δ small,
namely, order 1/

√
λ. Similarly, the denominator equals

[1 +O(e−2λ)] (i) e2πω+2λ

∫ 2π

0
dθ e2ωθ−λ

2
θ2+O(λθ4). (A.20)

The prefactor cancels in the quotient, which leaves us with

−1
2

∫ 2π
0 dθ θ2 e2ωθ−λ

2
θ2∫ 2π

0 dθ e2ωθ−λ
2
θ2

[1 +O(1/λ)] . (A.21)

The quotient equals

−1
2

(
2ω
λ2
−2λ−2 e−2π2λ+4πω(πλ+ω)+ 1

2λ5/2
e
2ω2

λ
√

2π(λ+4ω2)
(
erf
[√

2(πλ−ω)√
λ

]
+erf

[√
2ω√
λ

])
e
2ω2
λ
√

π
2λ

(
erf
[√

2(πλ−ω)√
λ

]
+erf

[√
2ω√
λ

])
)
, (A.22)

which equals − 1
2λ +O(1/λ2).

B Numerical analysis

In Appendix B.1 we numerically compute the iterates of the renormalization map for the
non-disordered system for two specific choices of (Kk)k∈N, belonging to universality classes
(1) and (3), respectively. In Appendix B.2 we numerically compare the bounds in Lemma 4.9
for three types of disorder and show that they are asymptotically sharp.

B.1 Non-disordered system: renormalization

In Fig. 8 we show an example in universality class (1): Kk = 3
2 log 2 log(k + 1). Synchro-

nization is lost at level k = 4. When we calculate the sum that appears in our sufficient
criterion for universality class (1), stated in Theorem 2.3, up to level k = 4, we find that

4∑
k=1

2 log 2

3 log(k + 1)
= 1.70774. (B.1)

This does not exceed 4, which shows that our sufficient criterion is not tight. It only gives
us an upper bound for the level above which synchronization is lost for sure (recall (2.10)),
although it may be lost earlier.
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Figure 8: A plot of the renormalization map (R[k], Q[k]) for k = 0, . . . , 7 (left) and the
corresponding values of R[k] (right) for the choice Kk = 3

2 log 2 log(k + 1).

In Fig. 9 we show an example of universality class (3), where Kk = 4 ek. There is
synchronization at all levels. To check our sufficient criterion we calculate the sum∑

k∈N

1

4 ek
≈ 0.145494 <

1√
2
≈ 0.7071. (B.2)
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Figure 9: A plot of the renormalization map (R[k], Q[k]) for k = 0, . . . , 7 (left) and the
corresponding values of R[k] (right) for the choice Kk = 4 ek.

To find a sequence (Kk)k∈N for universality class (2) is difficult because we do not know
the precise criterion for criticality. An artificial way of producing such a sequence is to
calculate the critical interaction strength at each hierarchical level and taking the next
interaction strength to be 1 larger.

B.2 Disordered system: bounds

In this section we show that the bounds for Vµ(λ) in Lemma 4.9 are satisfied for three types
of disorder and are sharp in the limit as λ ↓ 0 and λ→∞, respectively,

Gaussian disorder

In Fig. 10 we take the disorder to be Gaussian with mean zero and standard deviation
σ = 1

2 and σ = 3. The numerics show that both the upper and the lower bound are correct.
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Figure 10: Vµ(λ) (dotted), Vδ0(λ) (yellow) and Vδ0(Iµλ) (blue) for Gaussian disorder with
σ = 1

2 (left) and σ = 3 (right).

In Fig. 11 the second plot in Fig. 10 is continued for large λ.
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Figure 11: Vµ(λ) (dotted), Vδ0(λ) (yellow) and Vδ0(Iµλ) (blue) for Gaussian disorder with
σ = 3.

Tent disorder

Here we take the disorder to be

µ̃(ω) = 2

(
− ω

A2
+

1

A

)
, ω ∈ [0, A]. (B.3)

Fig. 12 provides numerics for A = 1.
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Figure 12: Vµ(λ) (dotted), Vδ0(λ) (yellow) and Vδ0(Iµλ) (blue) for tent disorder with A = 1.

Wigner semicircle disorder

Here we take the disorder to be

µ̃(ω) =
4

πB2

√
B2 − ω2, ω ∈ [0, B]. (B.4)

Fig. 13 provides numerics for B = 1.
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Figure 13: Vµ(λ) (dotted), Vδ0(λ) (yellow) and Vδ0(Iµλ) (blue) for Wigner semicircle disor-
der with B = 1.
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