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Abstract. We consider a linear network under Markov modulation, with a focus on the

probability that the joint storage level attains a value in a rare set at a given point in time.

The main objective is to develop efficient importance sampling algorithms with provable

performance guarantees. For linear networks without modulation, we prove that the number

of runs needed (so as to obtain an estimate with a given precision) increases polynomially

(whereas the probability under consideration decay essentially exponentially); for networks

with modulation our algorithm is asymptotically efficient.
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1. Introduction

Linear networks, as introduced in [12], can be informally described as follows. Consider a

network consisting of L stations. Jobs, whose sizes are i.i.d. samples from some general L-

dimensional distribution, arrive at the stations according to a Poisson process. At each of

the nodes, in between arrivals the storage level decreases exponentially. Processed traffic

is either transferred to the other nodes or leaves the network (according to a given routing

matrix). In addition to this basic version of the linear network, there is also its Markov

modulated counterpart [11], in which the arrival rate, the distribution of the job sizes, and

the routing matrix depend on the state of an external, independently evolving finite-state

continuous-time Markov chain (usually referred to as the background process).

Linear networks can be seen as natural fluid counterparts of corresponding infinite-server

queues. As such, they inherit several nice properties of those infinite-server queues. In

particular, separate infinitesimally small fluid particles, moving through the network, do not

interfere, and are therefore mutually independent. Essentially due to this property, linear

networks allow explicit analysis; in particular, the joint Laplace transform of the storage

levels at a given point in time can be expressed in closed form as a function of the arrival

rate, the Laplace transform of the job-sizes and the routing matrix [12, Thm. 5.1].

When Markov modulation is imposed, the analysis becomes substantially harder. Conditional

on the path of the background process, again explicit expressions can be derived, cf. [11,

Thm. 1]. Deconditioning, however, cannot be done in a straightforward manner. As a

consequence the results found are substantially less explicit than for the non-modulated

linear network. In [11] also a system of ordinary differential equations has been set up that

provides the transform of the stationary storage level; in addition, conditions are identified

that guarantee the existence of such a stationary distribution.

In this paper we focus on rare events for Markov-modulated linear networks. More specifically,

in a particular scaling regime (parameterized by n) we analyze the probability pn that at a

given point in time the network storage vector is in a given rare set. By scaling the arrival

rate as well as the rare set (which amounts to multiplying them by a scaling parameter

n), the event of interest becomes increasingly rare. More specifically, under a Cramér-type

assumption on the job-size distribution, application of large-deviations theory yields that

pn decays (roughly) exponentially. As pn can be characterized only asymptotically, one

could consider the option of using simulation to obtain precise estimates. The effectiveness,

however, of such an approach is limited due to the rarity of the event under consideration: in

order to get a reliable estimate, one needs sufficiently many runs in which the event occurs.

This is the reason why one often resorts to simulation using importance sampling (or: change

of measure). This is a variance reduction technique in which one simulates, rather than with

the actual measure, using an alternative measure under which the event under consideration

is not rare; correcting the simulation output with appropriate likelihood ratios yields an

unbiased estimate.

The crucial issue when setting up an importance sampling procedure concerns the choice of

the alternative measure: one would like to select one that provides a substantial variance

reduction, or is even (in some sense) optimal. The objective of this paper is to develop a

change of measure with performs provably optimal.

Our ultimate goal is to obtain an efficient simulation procedure for Markov-modulated linear

networks. We do so by (i) first considering a single node without modulation, (ii) then multi-

node systems, still without modulation, and (iii) finally modulated multi-node systems. There

are two reasons for this step-by-step setup:
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◦ For the non-modulated models we have more refined results than for the modulated

models. More specifically, for the non-modulated models we have developed estimates

for the number of runs required to obtain an estimate with predefined precision (and

this number grows polynomially in the rarity parameter n), whereas for modulated

models we can just prove that this number grows subexponentially.

◦ In addition, this approach allows the reader to get gradually familiar with the concepts

used in this paper. Directly analyzing the most general model, would make it hard

to digest the underlying ideas.

In passing, we also point out how to set up a recursion to evaluate the (transient and sta-

tionary) moments of the joint storage level in Markov-modulated linear networks (where the

results in [11] are restricted to just the first two stationary moments at epochs that the

background process jumps).

The single-node model without modulation falls in the class of (one-dimensional) shot-noise

models, for which efficient rare-event simulation techniques have been developed over the

past, say, two decades. Asmussen and Nielsen [2] and Ganesh et al. [8] consider the prob-

ability that a shot-noise process decreased by a linear drift ever exceeds some given level.

Relying on sample-path large deviations results, an asymptotically efficient importance sam-

pling algorithm is developed, under the same scaling as the one we consider in our paper.

The major difference with our model (apart from the fact that we can deal with considerably

more general models, as we focus on networks and allow modulation) is that we focus on a

rare-event probability that relates to the position of the process at a fixed point in time; in

this setting we succeed in finding accurate estimates of the number of runs needed to get an

estimate of given precision.

This paper is organized as follows. In Section 2 the focus is on a single-node network, with-

out Markov modulation, Section 3 addresses the extension to multi-node systems, and in

Section 4 the feature of modulation is added. In each of these three sections, we propose a

change of measure, quantify its performance, and demonstrate its efficiency through simula-

tion experiments. A discussion and concluding remarks are found in Section 5.

2. Single resource, no modulation

To introduce the concepts we work with in this paper, we analyze in this section a linear

network consisting of a single node, in which the input is just compound Poisson (so no

Markov modulation is imposed). More precisely, in the model considered, jobs arrive accord-

ing to a Poisson process with rate λ, bring along i.i.d. amounts of work (represented by the

sequence of i.i.d. random variables (B1, B2, . . .)), and the workload level decays exponentially

at a rate r > 0. This model belongs to the class of shot-noise processes. As mentioned in the

introduction, we gradually extend the model in the next sections.

2.1. Preliminaries. We first present a compact representation for the amount of work in

the system at time t, which we denote by X(t), through its moment generating function.

To this end, let N(t) denote a Poisson random variable with mean λt, and (U1, U2, . . .) i.i.d.

uniformly distributed random variables (on the interval [0, t]). Assume in addition that the

random objects (B1, B2, . . .), N(t), and (U1, U2, . . .) are independent. Then it is well-known

that the value of our shot-noise process at time t can be expressed as

X(t) =

N(t)∑
j=1

Bje
−r(t−Uj) d

=

N(t)∑
j=1

Bje
−rUj , (1)
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where the distributional equality is a consequence of the fact that the distribution of U is

symmetric on the interval [0, t]. It is easy to compute the moment generating function (mgf)

of X(t), by conditioning on the value of N(t):

M(ϑ) := E eϑX(t) =
∞∑
k=0

e−λt
(λt)k

k!

(
E exp(ϑB e−rU )

)k
= exp

(
λ

∫ t

0

(
β(e−ru ϑ)− 1

)
du

)
, (2)

where β(·) is the mgf corresponding to B (throughout assumed to exist). By differentiating

and inserting ϑ = 0, it follows immediately that

EX(t) =
λ

r
(1− e−rt)EB =: m(t).

Higher moments can be found by repeated differentiation. We note that, as t is held fixed

throughout the document, we often write N rather than N(t).

2.2. Tail probabilities, change of measure. The next objective is to consider the asymp-

totics of the random variable X(t) under a particular scaling. In this scaling we let the arrival

rate be nλ rather than just λ. The value of the shot-noise process is now given by

Yn(t) :=
n∑
i=1

Xi(t),

with the vector (X1(t), . . . , Xn(t)) consisting of i.i.d. copies of the random variable X(t)

introduced above; here the infinite divisibility of a Compound Poisson distribution is used.

Our goal is to devise techniques to analyze the tail distribution of Yn(t). Standard theory now

provides us with the asymptotics of P(Yn(t) > na) for some a > m(t); we are in the classical

‘Cramér setting’ [7, Section 2.2] if it is assumed that M(ϑ) is finite in a neighborhood around

the origin (which requires that the same property is satisfied by β(·)). Let ϑ? ≡ ϑ?(a) be

defined as

arg sup
ϑ

(
ϑa− logM(ϑ)

)
,

with M(·) as above. Using ‘Cramér’, we obtain that, under mild conditions,

lim
n→∞

1

n
log pn(a) = −I(a) = −ϑ?a+ logM(ϑ?), pn(a) := P (Yn(t) > na) .

More refined asymptotics are available as well; we get back to this issue in Section 2.3.

As these results apply in the regime that n is large, a relevant issue concerns the development

of efficient techniques to estimate pn(a) through simulation. An important rare-event simu-

lation technique is importance sampling, relying on the commonly used exponential twisting

technique. We now investigate how to construct the exponentially twisted version Q (with

twist ϑ?) of the original probability measure P. The main idea is that under Q the Xi(t) have

mean a, such that under the new measure the event under study is not rare anymore.

More concretely, exponential twisting with parameter ϑ? means that under the new measure

Q, the Xi(t) should have the mgf

EQ eϑX(t) =
E e(ϑ+ϑ

?)X(t)

E eϑ?X(t)
=
M(ϑ+ ϑ?)

M(ϑ?)
; (3)

under this choice the random variable has the desired mean:

EQX(t) =
M ′(ϑ?)

M(ϑ?)
= a.
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The question is now: how to sample a random variable that has this mgf? To this end, notice

that

M(ϑ+ ϑ?) =
∞∑
k=0

e−λt
(λtE exp(ϑ?B e−rU ))k

k!

(
E exp((ϑ+ ϑ?)B e−rU )

E exp(ϑ?B e−rU )

)k
,

such that (3) equals

∞∑
k=0

exp(−λtE exp(ϑ?B e−rU ))
(λtE exp(ϑ?B e−rU ))k

k!

(
E exp((ϑ+ ϑ?)B e−rU )

E exp(ϑ?B e−rU )

)k
.

From this expression we can see how to sample the Xi(t) under Q, as follows. In the first

place we conclude that under Q the number of arrivals becomes Poisson with mean

λtE exp(ϑ?B e−rU ) = λ

∫ t

0
β(e−ru ϑ?)du, (4)

rather than λt (which is an increase). Likewise, it entails that under Q the distribution of

the Bje
−rUj should be twisted by ϑ?, in the sense that these random variables should have

under Q the mgf

E exp((ϑ+ ϑ?)B e−rU )

E exp(ϑ?B e−rU )
.

We now point out how such a random variable should be sampled. To this end, observe that

E exp((ϑ+ ϑ?)B e−rU ) =

∫ t

0

β(e−ru(ϑ+ ϑ?))

β(e−ru ϑ?)

1

t
β(e−ru ϑ?)du,

so that
E exp((ϑ+ ϑ?)B e−rU )

E exp(ϑ?B e−rU )
=

∫ t

0

β(e−ru(ϑ+ ϑ?))

β(e−ru ϑ?)

β(e−ru ϑ?)∫ t

0
β(e−rv ϑ?)dv

du.

From this representation two conclusions can be drawn. In the first place, supposing there

are k arrivals, then the arrival epochs U1, . . . , Uk are i.i.d. under Q, with the density given by

fQU (u) =
β(e−ru ϑ?)∫ t

0
β(e−rv ϑ?) dv

.

In the second place, given that the k-th arrival occurs at time u, the density of the corre-

sponding job size Bk should be exponentially twisted by e−ru ϑ? (where each of the job sizes

is sampled independently of everything else).

Now that we know how to sample from Q it is straightforward to implement the importance

sampling. Before we describe its complexity (in terms of the number of runs required to obtain

an estimate with given precision), we first provide an example in which we demonstrate how

the change of measure can be performed.

Example 1. In this example we consider the case that the Bi are exponentially distributed

with mean µ−1. Applying the transformation w := e−ru ϑ/µ, it is first seen that∫ s

0
β(e−ru ϑ)du =

∫ s

0

µ

µ− e−ru ϑ
du =

1

r

∫ ϑ/µ

e−rsϑ/µ

1

1− w
1

w
dw

=
1

r

[
log

w

1− w

]ϑ/µ
e−rsϑ/µ

=
1

r
log

(
µers − ϑ
µ− ϑ

)
.

As ϑ? solves the equation M ′(ϑ?)/M(ϑ?) = a, we obtain the quadratic equation

m(t) = a

(
1− ϑ

µ

)(
1− ϑ

µ
e−rt

)
,
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leading to

ϑ? =
µert

2

(
(1 + e−rt)−

√
(1− e−rt)2 + 4e−rt

m(t)

a

)
(where it is readily checked that ϑ? ∈ (0, µ)).

Now we compute what the alternative measure Q amounts to. In the first place, the number

of arrivals should become Poisson with parameter

λ

r
log

(
µert − ϑ?

µ− ϑ?

)
(which is larger than λt). In addition, we can check that

FQ
U (u) := Q(U 6 u) = log

(
µeru − ϑ?

µ− ϑ?

)/
log

(
µert − ϑ?

µ− ϑ?

)
(rather than u/t). The function FQ

U (u) has the value 0 for u = 0 and the value 1 for u = t,

and is concave. This concavity reflects that the arrival epochs of the shots tend to be closer

to 0 under Q than under P. This is because we swapped U and t− U in (1); along the most

likely path of Yn(t) itself the shots will be typically closer to t under Q. Observe that one can

sample U under Q using the classical inverse distribution function method [1, Section II.2a]:

with H denoting a uniform number on [0, 1), we obtain such a sample by

1

r
log

((
ert − ϑ?

µ

)H (
1− ϑ?

µ

)1−H
+
ϑ?

µ

)
.

Also, conditional on a Ui having attained the value u, the jobs Bi should be sampled from

an exponential distribution with mean (µ− e−ru ϑ?)−1.

Remark 1. In the model we study in this section, the input of the linear network is a

compound Poisson process. As pointed out in [12] the class of inputs can be extended to the

more general class of increasing Lévy processes in a straightforward manner.

Remark 2. Consider the situation that the Xi(t) are i.i.d. copies of
∑N

i=1Bje
−rUj , but now

we do not impose the assumption of the Uj having a uniform distribution. It is readily

checked that under Q the arrival rate becomes (in self-evident notation)

λ

∫ t

0
fPU (u)β(e−ruϑ?) du,

the arrival epochs have density

fQU (u) =
fPU (u)β(e−ruϑ?)∫ t

0
fPU (v)β(e−rvϑ?) dv

,

whereas the job sizes are exponentially twisted by e−ruϑ? for an arrival occurring at time u.

Many of the results in this paper can be extended to this setting.

2.3. Efficiency properties of importance sampling procedure. In this subsection we

analyze the performance of the procedure introduced in the previous section. The focus is on

a characterization of the number of runs needed to obtain an estimate with a given precision

(at a given confidence level).

In every run Yn(t) is sampled under Q, as pointed out above. As Q is an implementation of

an exponential twist (with twist ϑ?), the likelihood ratio is given by

L ≡ Ln(a) =
dP
dQ

= e−ϑ
?Yn(t)en logM(ϑ?),
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and I is the indicator function of the event {Yn(t) > na}. We keep performing this experiment

until the ratio of the half-width of the confidence interval (with critical value T ) and the

estimator drops below some predefined ε (say, 10%). Under P the number of runs needed is

effectively inversely proportional to pn(a), hence exponentially increasing in n. We now focus

on quantifying the reduction of the number of runs when using our importance sampling

procedure based on the measure Q.

Using a Normal approximation, it is a standard reasoning that when performing N runs the

ratio of the half-width of the confidence interval and the estimator is approximately

1

pn(a)
· T√

N

√
VarQ(L2I),

and hence the number of runs needed is roughly

Σn :=
T 2

ε2
VarQ(L2I)

(pn(a))2
.

We now analyze how Σn behaves as a function of the ‘rarity parameter’ n. Due to the

Bahadur-Rao result [3],

pn(a) = EQ(LI) ∼ 1√
n

1

ϑ?
√

2πτ
e−nI(a), τ :=

d2

dϑ2
logM(ϑ)

∣∣∣∣
ϑ=ϑ?

.

Using the same proof technique as in [3], it can be shown that

EQ(L2I) ∼ 1√
n

1

2ϑ?
√

2πτ
e−2nI(a).

We can use these asymptotics, to conclude that under Q the number of runs required grows

slowly in n. More specifically, Σn is essentially proportional to
√
n for n large. This leads to

the following result.

Proposition 1. As n→∞,

Σn ∼ α
√
n, α =

T 2

ε2
ϑ? · 1

2

√
2πτ. (5)

2.4. Simulation experiments. In this subsection we present numerical results for the

single-node model without Markov modulation. We focus on the case of exponential jobs,

as in Example 1. We simulate until the estimate has reached the precision ε = 0.1, with

confidence level 0.95 (such that the critical value is T = 1.96). The parameters chosen are:

t = 1, r = 1, λ = 1, and µ = 1. We set a = 1 (which is larger than m(t) = 1 − e−1). As it

turns out, ϑ? = 0.2918 and

τ =
λ

r

(
1

(µ− ϑ?)2
− 1

(µert − ϑ?)2

)
= 1.8240.

The top-left panel of Fig. 1 confirms the exponential decay of the probability of interest,

as a function of n. In the top-right panel we verify that the number of runs indeed grows

proportionally to
√
n; the value of α, as defined in (5), is 198.7, which is depicted by the

horizontal line. The bottom-left panel shows the density of the arrival epochs, which confirms

that the arrival epochs tend to be closer to 0 under Q than under P; recall that under P these

epochs are uniformly distributed on [0, t]. Recall that we reversed time in (1): for the actual

shot-noise system that we are considering, it means that in order to reach the desired level

at time t, the arrival epochs tend to be closer to t under Q than under P. The bottom-right

panel presents the rate of the exponential job sizes as a function of u. Using (4), the arrival

rate under Q turns out to be 1.2315.
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Figure 1. Numerical results for Section 2.4.

3. Multi-node systems, no modulation

In this section we consider multi-node linear networks, of the type analyzed in the work by

Kella and Whitt [12]. It is instructive to first consider the simplest multi-node system: a

tandem network without external input in the downstream node (and rates ri for node i,

i = 1, 2); later we extend the ideas developed to general linear networks.

3.1. Preliminaries. As mentioned above, we first consider the two-node tandem. The con-

tent of the first node is, as before,

X(1)(t) =

N∑
j=1

Bje
−r(t−Uj)

(with N having a Poisson distribution with mean λt), but it can be argued that the content

of the second node satisfies a similar representation. More specifically, using the machinery

developed in [12], it turns out that

X(2)(t) =
N∑
j=1

Bj
r1

r1 − r2

(
e−r2(t−Uj) − e−r1(t−Uj)

)
d
=

N∑
j=1

Bj
r1

r1 − r2
(
e−r2Uj − e−r1Uj

)
. (6)

As before, perform the scaling by n, meaning that the arrival rate λ is inflated by a factor n.

It leads to the random vectors (X
(1)
1 (t), . . . , X

(1)
n (t)) and (X

(2)
1 (t), . . . , X

(2)
n (t)). With these

vectors we can define Y
(1)
n (t) and Y

(2)
n (t), analogously to how this was done in the single-node

case; these two random quantities represent the contents of the upstream resource and the

downstream resource, respectively.

The state of this tandem system can be uniquely characterized in terms of its (bivariate)

moment generating function. The technique to derive an explicit expression is by relying on

the above distributional equality (6). Again, the key step is to condition on the number of

shots that have arrived in the interval [0, t]:

M(ϑ) := E eϑ1X
(1)(t)+ϑ2X(2)(t)
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=

∞∑
k=0

e−λt
(λt)k

k!

(
E exp

(
ϑ1Be−r1U + ϑ2B

r1
r1 − r2

(
e−r2U − e−r1U

)))k
=

∞∑
k=0

e−λt
(λt)k

k!

(∫ t

0

1

t
E exp

(
ϑ1Be−r1u + ϑ2B

r1
r1 − r2

(
e−r2u − e−r1u

))
du

)k

=
∞∑
k=0

e−λt
(λt)k

k!

(∫ t

0

1

t
β

(
e−r1uϑ1 +

r1
r1 − r2

(
e−r2u − e−r1u

)
ϑ2

)
du

)k
= exp

(
λ

∫ t

0

(
β

(
e−r1uϑ1 +

r1
r1 − r2

(
e−r2u − e−r1u

)
ϑ2

)
− 1

)
du

)
.

The above computation is for the two-node tandem system, but the underlying procedure

can be extended to the case of networks with more than 2 nodes, and external input in each

of the nodes. To this end, we consider the following network consisting of L nodes. Jobs are

generated according to a Poisson process. At an arrival epoch, an amount is added to the

content of resource ` ∈ {1, . . . , L}; this amount is distributed as the (non-negative) random

variable B(`); β(ϑ), for ϑ ∈ RL is the joint moment generating function of B(1) up to B(L)

(note that the components are not assumed independent). In addition, let the traffic level at

node i decay exponentially with rate ri. A fraction pii′ > 0 (i 6= i′) is then fed into node i′,

whereas a fraction pii > 0 leaves the network (with
∑L

i′=1 pii′ = 1). We denote rii′ := ripii′ .

As an aside we mention that this general model covers models in which some arrivals (of the

Poisson process with parameter λ) actually lead to arrivals at only a subset of the L queues

(since the job sizes B(1), . . . , B(L) are allowed to equal 0).

We now point out how the joint buffer content process can be analyzed. Again our objective

is to evaluate the moment generating function. Define the matrix R as follows: its (i, i)-th

entry is rii +
∑

i′ 6=i rii′ , whereas its (i, i′)-th entry (with i 6= i′) is −rii′ . We have, according

to Kella and Whitt [12], with N again Poisson with mean λt, the following distributional

equality: for any ` ∈ {1, . . . , L},

X(`)(t) =
L∑

`′=1

N∑
j=1

B
(`′)
j (e−R(t−Uj))`′`.

It means we can compute the joint moment generating function as follows, cf. [12, Thm. 5.1]:

M(ϑ) := E exp

(
L∑
`=1

ϑ`X
(`)(t)

)

=

∞∑
k=0

e−λt
(λt)k

k!

(
E exp

(
L∑
`=1

ϑ`

L∑
`′=1

B(`′)(e−R(t−U))`′`

))k

=

∞∑
k=0

e−λt
(λt)k

k!

(∫ t

0

1

t
E exp

(
L∑
`=1

ϑ`

L∑
`′=1

B(`′)(e−Ru)`′`

)
du

)k

=
∞∑
k=0

e−λt
(λt)k

k!

(∫ t

0

1

t
β

(
L∑
`=1

(e−Ru)1`ϑ`, . . . ,
L∑
`=1

(e−Ru)L`ϑ`

)
du

)k

= exp

(
−λt+ λ

∫ t

0
β

(
L∑
`=1

(e−Ru)1`ϑ`, . . . ,

L∑
`=1

(e−Ru)L`ϑ`

)
du

)

= exp

(
λ

∫ t

0

(
β
(
e−Ru ϑ

)
− 1
)

du

)
,
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which is the true matrix/vector-counterpart of the expression (2) that we found in the single-

node case.

3.2. Tail probabilities, change of measure. In this subsection we introduce the change

of measure that we use in our importance sampling approach. Many of the concepts are

analogous to concepts used for the single-node case in Section 2.

Define (in self-evident notation)

pn(a) := P
(
Y (1)
n (t) > na1, . . . , Y

(L)
n (t) > naL

)
.

Due to the multivariate version of Cramér’s theorem, with A := [a1,∞)× · · · × [aL,∞),

lim
n→∞

1

n
log pn(a) = − inf

b∈A
I(b), where I(b) := sup

ϑ
(〈ϑ, b〉 − logM(ϑ)) . (7)

It is remarked that more refined asymptotics than the logarithmic asymptotics of (7) are

available as well, but these are not yet relevant in the context of the present subsection; we

return to these ‘exact asymptotics’ in Section 3.3.

We assume that the set A is ‘rare’, in the sense that

m(t) 6∈ A, with mi(t) :=
∂M(ϑ)

∂ϑi

∣∣∣∣
ϑ=0

.

Let us first verify how the importance sampling measure can be constructed in the tandem

model, mimicking the reasoning we used in the single-node case; after that we extend this

to general linear networks. We let (ϑ?1, ϑ
?
2) be the optimizing (ϑ1, ϑ2) in the decay rate of

pn(a1, a2). As it turns out, in the first place the number of arrivals becomes Poisson with

mean

λ

∫ t

0
β

(
e−r1u ϑ?1 +

r1
r1 − r2

(
e−r2u − e−r1u

)
ϑ?2

)
du

(rather than λt). The density of U under Q becomes

fQU (u) =

β

(
e−r1uϑ?1 +

r1
r1 − r2

(
e−r2u − e−r1u

)
ϑ?2

)
∫ t

0
β

(
e−r1v ϑ?1 +

r1
r1 − r2

(
e−r2v − e−r1v

)
ϑ?2

)
dv

.

Given a sample from this distribution attains the value u, the distribution of B should be

twisted by

e−r1uϑ?1 +
r1

r1 − r2
(
e−r2u − e−r1u

)
ϑ?2.

Analogously to what we found above in the two-node tandem, we can identify Q for general

linear networks. We find that under Q the number of arrivals becomes Poisson with parameter

λ

∫ t

0
β
(
e−Ru ϑ?

)
du.

The arrival epochs should be drawn using the density

fQU (u) =
β
(
e−Ru ϑ?

)∫ t

0
β
(
e−Rv ϑ?

)
dv

.

Given an arrival at time u, (B(1), . . . , B(L)) should be exponentially twisted by(
(e−Ru ϑ?)1, . . . , (e

−Ru ϑ?)L
)
.
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3.3. Efficiency properties of importance sampling procedure. We now consider the

efficiency properties of the change of measure proposed in the previous subsection. To this

end, we first argue that the vector ϑ generally consists of a number of (at least one) strictly

positive entries, whereas the other entries equal 0; i.e., there are no negative entries. To this

end, we first denote by b? the ‘most likely point’ in A:

b? := arg inf
b∈A

I(b),

so that ϑ? = ϑ(b). It is a standard result from convex optimization that

∂I(b)

∂bi
= ϑi(b). (8)

Suppose now that ϑi(b
?) < 0. Increasing the i-th component of the b? (while leaving all

other components unchanged) would lead to a vector that is still in A, but that by virtue of

(8) corresponds to a lower value of the objective function I(·), thus yielding that b was not

the optimizer; we have thus found a contradiction. Similarly, when ϑi(b
?) = 0 we have that

b?i > ai (as otherwise a reduction of the objective function value would be possible, which

contradicts b? being minimizer).

Now define Θ as the subset of i ∈ {1, . . . , L} such that ϑi > 0, and let D ∈ {1, . . . , L} the

number of elements of Θ. We now argue that the number of runs needed to obtain an esti-

mate of predefined precision scales as nD/2. Relying on the results from [6] (in particular their

Thm. 3.4), it follows that pn(a) behaves (for n large) proportionally to n−D/2 exp(−nI(b));

using the same machinery, EQ(L2I) behaves proportionally to n−D/2 exp(−2nI(b)). Mim-

icking the line of reasoning of Section 2.3, we conclude that the number of runs needed is

essentially proportional to nD/2. The formal statement is as follows.

Proposition 2. As n→∞,

Σn ∼ αnD/2, α =
T 2

ε2

(∏
i∈D

ϑ?i

)
· 1

2D

(√
2π
)D√

τ , (9)

where τ is the determinant of the Hessian of logM(ϑ) in ϑ?.

We further illustrate the ideas and intuition behind the qualitative result described in the

above proposition by considering the case L = 2. It is noted that three cases may arise:

(i) Θ = {1, 2}, (ii) Θ = {1}, (iii) Θ = {2}; as case (iii) can be dealt with in the same way as

case (ii), we concentrate on the cases (i) and (ii) only. In case (i), where D = 2, the necessary

condition [6, Eqn. (3.4)] is fulfilled as ϑ > 0 componentwise. As in addition the conditions

A–C of [6] are in place, it is concluded that [6, Thm. 3.4] can be applied, leading to b? = a,

and

pn(a) ∼ 1

n

1

ϑ?1ϑ
?
2 · 2π

√
τ

e−nI(a),

where τ is the determinant of the Hessian of logM(ϑ) in ϑ?. Along the same lines, it can be

shown that

EQ(L2I) ∼ 1

n

1

4ϑ?1ϑ
?
2 · 2π

√
τ

e−2nI(a).

It now follows that Σn is roughly linear in n: with ε and T as introduced in Section 2.3,

Σn = αn, α :=
T 2

ε2
ϑ?1ϑ

?
2 ·
π
√
τ

2
. (10)

In case (ii), we do not have that ϑ > 0 componentwise, and hence [6, Thm. 3.4] does not apply;

in the above terminology, D = 1 < 2 = L. Observe that in this case the exponential decay

rate of the event {Y (1)
n (t) > na1, Y

(2)
n (t) < na2} strictly majorizes that of {Y (1)

n (t) > na1}
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(informally: the former event is substantially less likely than the latter). It thus follows that

b?1 = a1 and b?2 > a2, and

pn(a) = P
(
Y (1)
n (t) > na1

)
− P

(
Y (1)
n (t) > na1, Y

(2)
n (t) < na2

)
∼ P

(
Y (1)
n (t) > na1

)
∼ 1√

n

1

ϑ?1
√

2πτ
e−2nI(b

?), τ :=
d

dϑ2
logM(ϑ, 0)

∣∣∣∣
ϑ=ϑ?1

,

and in addition

EQ(L2I) ∼ 1√
n

1

2ϑ?1
√

2πτ
e−2nI(b

?).

As a consequence in this regime Σn grows essentially proportional to
√
n for n large:

Σn ∼ α
√
n, α :=

T 2

ε2
ϑ?1 ·

1

2

√
2πτ.

In case (iii) Σn behaves proportionally to
√
n as well.

3.4. Simulation experiments. We conclude this section by a few numerical illustrations.

In the first set we focus on the downstream queue only (i.e., we analyze pn(0, a2)), whereas

in the second set we consider the joint exceedance probability pn(a). The precision and

confidence have been chosen as in Example 1. Throughout we take t = 1, r1 = 2, r2 = 1,

λ = 1, and µ = 1.

In the first set of experiments we take a1 = 0 and a2 = 1. Elementary numerical analysis

yields that ϑ? = 0.8104 and τ = 1.4774, leading to α, as defined in (10), equalling 474.3.

The four panels of Fig. 2 can be interpreted as their counterparts in Fig. 1. Interestingly, the

bottom-left panel indicates that in the tandem system it does not pay off to let jobs arrive

right before t (as they first have to go through the first resource to end up in the second

resource), as reflected by the shape of the density of the arrival epochs under Q; to this end,

recall that we reversed time in (6), so that a low density at u = 0 in the graph corresponds

to a high density at u = t in the actual system. The arrival rate under Q is 1.5103.

In the second set of experiments we take a1 = 1.2 and a2 = 1.1; all other parameters are

the same as in the first set. As mentioned above, we now consider the joint exceedance

probability. As it turns out, ϑ?1 = 0.1367 and ϑ?2 = 0.2225. The top-right panel of Fig. 3

shows that for this specific parameter setting Σn/n converges to the limiting constant rather

slowly. Concerning the bottom-left panel, note that in Section 2 we saw that to make sure

the first queue gets large it helps to have arrivals at the end of the interval, whereas above

we observed that to make the second queue large arrivals should occur relatively early. We

now focus on the event that both queues are large, and consequently the arrival distribution

becomes relatively uniform again, as shown in the bottom-left panel. The arrival rate under

Q is 2.3478.

4. Multi-node systems under Markov modulation

In this section consider the networks analyzed in the previous section, but now in a random

environment. More specifically, the type of random environment we focus on here is known as

Markov modulation: the system dynamics are affected by the state of an external finite-state

irreducible Markov process J(·) with transition matrix Q = (qjj′)
d
j,j′=1. When this Markov

process (usually referred to as the background process) is in state j, arrivals occur according

to a Poisson process with rate λj , the mgf of the job size is βj(ϑ), and the routing matrix is

Rj . Analogously to the definitions used in the case without Markov modulation, this routing

matrix’ (i, i)-th entry is

(Rj)ii := r
(j)
ii +

∑
i′ 6=i

r
(j)
ii′ ,
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Figure 2. Numerical results for Section 3.4: downstream queue only.
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Figure 3. Numerical results for Section 3.4: both queues.

which can be interpreted as the rate at which fluid leaves server i when the background

process is in j. Likewise, for i 6= i′,

(Rj)ii′ := −r(j)ii′ ,

which is the rate at which fluid flows from server i to i′ when the background process is in j.

Below we assume that J(0) = j0 for a fixed state j0 ∈ {1, . . . , d}; it is seen that all results

generalize to an arbitrary initial distribution in a straightforward manner.
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The structure of the section is in line with that of the previous two sections: we subsequently

describe general results for the model under consideration (extending earlier results from [11]),

propose an importance sampling measure, establish efficiency properties of the corresponding

estimator, and present a number of numerical experiments.

4.1. Preliminaries. Multi-node systems under Markov modulation have been studied in

detail by Kella and Stadje [11]. We start this section by providing a compact derivation of

a pde characterizing the system’s transient behavior, which was not included in that paper.

To this end, we define, for j ∈ {1, . . . , d},

Ξj(ϑ, t) := E

(
exp

(
L∑
`=1

ϑ`X
(`)(t)

)
1j(t)

)
,

with 1j(t) the indicator function of the event that J(t) = j. Using the standard ‘Markov

machinery’, Ξj(ϑ, t+ ∆t) equals (up to o(∆t) terms) the sum of a contribution

λj ∆tΞj(ϑ, t)βj(ϑ)

due to the scenario that an arrival occurs between t and t+ ∆t, a contribution∑
j′ 6=j

qj′j ∆tΞj′(ϑ, t)

due to the scenario that the modulating Markov process jumps between t and t+ ∆t, and a

contribution

(1− λj ∆t− qj ∆t)E

(
exp

(
L∑
`=1

(
ϑ` −

L∑
`′=1

ϑ`′(Rj)``′ ∆t

)
X(`)(t)

)
1j(t)

)
,

with qj := −qjj ; regarding the last term, observe that when the background process is in

state j, and no new job arrives between t and t+ ∆t,

X(`)(t+ ∆t) = X(`)(t)− (Rj)`` ∆tX(`)(t)−
∑
`′ 6=`

(Rj)`′` ∆tX(`′)(t).

We thus find that

Ξj(ϑ, t+ ∆t) = λj ∆t βj(ϑ) Ξj(ϑ, t) +
∑
j′ 6=j

qj′j ∆tΞj′(ϑ, t) +

(1− λj ∆t− qj ∆t) Ξj (ϑ−Rjϑ∆t, t) + o(∆t).

This immediately leads to (by letting ∆t ↓ 0)

∂

∂t
Ξj(ϑ, t) = λj

(
βj(ϑ)− 1

)
Ξj(ϑ, t) +

d∑
j′=1

qj′j Ξj′(ϑ, t)−
L∑

`′=1

(
Rj ϑ

)
`′

∂

∂ϑ`′
Ξj(ϑ, t). (11)

Let us now compactly summarize the relation (11), in vector/matrix notation. This notation

will prove practical when computing higher moments; in other (but related) contexts, similar

procedures have been proposed in e.g. [9, 14]. Let M n1×n2 be the set of R-valued matrices

of dimension n1 × n2 (for generic n1, n2 ∈ N). In addition, In is the identity matrix of

dimension n ∈ N. We introduce the following three matrices in M d×d, M d×d, and M Ld×Ld,

respectively:

Λ :=

 λ1 . . . 0
...

. . .
...

0 . . . λd

 , B(ϑ) :=

 β1(ϑ) . . . 0
...

. . .
...

0 . . . βd(ϑ)

 , R :=

 R1 . . . 0
...

. . .
...

0 . . . Rd

 .

We use the conventional notation ⊗ for the Kronecker product. Recall that the Kronecker

product is bilinear, associative and distributive with respect to addition; these properties
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we will use in the sequel without mentioning. It also satisfies the mixed product property

(A⊗B)(C ⊗D) = (AC)⊗ (BD). Furthermore, note that In1 ⊗ In2 = In1n2 .

We now consider some differentiation rules for matrix-valued functions which will allow us

to iteratively evaluate moments. In the first place we define the operator ∇ϑ for ϑ ∈ RL; to

keep notation compact, we often suppress the subscript ϑ, and write just ∇. Let f ≡ f(ϑ)

be a mapping of RL to M n1×n2 . Then ∇f ≡ ∇f(ϑ) ∈M n1L×n2 is defined by

∇f =


∇f11 ∇f12 · · · ∇f1n2

∇f21 ∇f22 · · · ∇f2n2

...
...

. . .
...

∇fn11 ∇fn12 · · · ∇fn1n2

 , where ∇fij :=


∂1fij
∂2fij

...

∂Lfij

 .

In the above definition ∇fij ≡ ∇fij(ϑ) is to be understood as the usual gradient; the symbol

∂i is used to denote the partial derivative with respect to the i-th variable, in the sense of

∂ifij :=
∂

∂ϑi
fij(ϑ).

Furthermore, we define inductively ∇kf ≡ ∇kf(ϑ) := ∇(∇k−1f), k ∈ N, with ∇0f := f . It

is checked that ∇kf(ϑ) is a mapping of RL to M Lkn1×n2 .

In the sequel we use a couple of differentiation rules, that we have listed below. Let A(·) be

a matrix-valued function from RL to M n1×n2 , and B(·) a matrix-valued function from RL to

M n2×n3 , and let Iq be a q × q identity matrix (for some q ∈ N). Then,

– Product rule:

∇ϑ

(
A(ϑ)B(ϑ)

)
= (∇ϑA(ϑ))B(ϑ) + (A(ϑ)⊗ IL)∇ϑB(ϑ);

being an element of M Ln1×n3 .

– Differentiation of Kronecker product (1):

∇ϑ(Iq ⊗A(ϑ)) = Iq ⊗ (∇ϑA(ϑ)).

– Differentiation of Kronecker product (2):

∇ϑ(A(ϑ)⊗ Iq) = (Kn1,q ⊗ IL)(Iq ⊗ (∇ϑA(ϑ)))Kq,n2

= (Kn1,q ⊗ IL)Kq,n2(∇ϑA(ϑ)⊗ Iq),

where Km,n is the commutation matrix defined by

Km,n :=
m∑
i=1

n∑
j=1

(Hij ⊗HT
ij),

and Hij ∈ Mm×n denotes a matrix with a 1 at its (i, j)-th position and zeros else-

where, cf. [13].

The first rule can be checked componentwise and the second rule is trivial. The third rule

follows from the first and second rule in combination with the fact that the Kronecker product

commutes after a correction with the commutation matrices. Moreover, we use the property

K−1m,n = Kn,m. An overview of the properties of commutation matrices can be found in [13].

In the introduced terminology, it follows that (11) can be written as

∂

∂t
Ξ(ϑ, t) = Λ

(
B(ϑ)− Id

)
Ξ(ϑ, t) +QT Ξ(ϑ, t)−

(
Id ⊗ ϑT

)
RT∇ϑΞ(ϑ, t). (12)

We now point out how (transient and stationary) moments can be evaluated; note that [11]

focuses on the first two stationary moments at epochs that the background process jumps.

We throughout use the notation zi(t) for the i-th derivative of Ξ(ϑ, t) in (0, t), for t > 0:

zi(t) := ∇iϑΞ(ϑ, t)
∣∣
ϑ=0
∈M Lid×d,
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for i ∈ N. Note that, with πj(t) = (exp(Qt))j0,j ,

Ξ(ϑ, 0) = ej0 , Ξ(0, t) = π(t)T ≡ (π1(t), . . . , πd(t)).

◦ We start by characterizing the first moments. Applying the operator ∇ ≡ ∇ϑ to the

differential equation (12) yields

∇ϑ

(
∂

∂t
Ξ(ϑ, t)

)
= (Λ⊗ IL)(∇ϑB(ϑ)) Ξ(ϑ, t) +(

QT ⊗ IL + Λ(B(ϑ)− Id)⊗ IL −RT
)
∇ϑΞ(ϑ, t) −(

((Id ⊗ ϑT)RT)⊗ IL
)
∇2

ϑ Ξ(ϑ, t), (13)

using standard properties of the Kronecker product in combination with

∇ϑ(Id ⊗ ϑT) = Id ⊗ (∇ϑϑ
T) = Id ⊗ (e1, . . . , eL) = Id ⊗ IL = IdL,

where ei denotes the L-dimensional column vector in which component i equals 1 and all other

components are 0. Then, inserting ϑ = 0 into (13) yields the system of (non-homogeneous)

linear differential equations

z′1(t) = (Λ⊗ IL)∇B(0)π(t) +
(
(QT ⊗ IL)−RT

)
z1(t). (14)

In the stationary case, we obtain

z1(∞) =
(
RT − (QT ⊗ IL)

)−1
(Λ⊗ IL)∇B(0)π, (15)

with π := limt→∞ π(t) (being the unique non-negative solution of πTQ = 0T such that the

entries of π sum to 1).

◦ We now move to second moments. Applying the ∇ϑ-operator to (13),

∇2
ϑ

(
∂

∂t
Ξ(ϑ, t)

)
= (Λ⊗ IL2)(∇2

ϑB(ϑ))Ξ(ϑ, t) +(
((Λ⊗ IL)∇ϑB(ϑ))⊗ IL

)
∇ϑΞ(ϑ, t) +

∇ϑ(ΛB(ϑ)⊗ IL)∇ϑΞ(ϑ, t) +(
QT ⊗ IL2 + Λ(B(ϑ)− Id)⊗ IL2 −RT ⊗ IL

)
∇2

ϑΞ(ϑ, t)−
(((Id ⊗ ϑT)RT)⊗ IL2)∇3

ϑΞ(ϑ, t)−
∇ϑ(((Id ⊗ ϑT)RT)⊗ IL)∇2

ϑΞ(ϑ, t),

in which the factor ∇ϑ(ΛB(ϑ)⊗ IL) can be expressed more explicitly as

(Kd,L ⊗ IL)KL,dL(((Λ⊗ IL)∇ϑB(ϑ))⊗ IL),

and the factor ∇ϑ(((Id ⊗ ϑT)RT) ⊗ IL) simplifies to (Kd,L ⊗ IL)KL,dL(RT ⊗ IL). Inserting

ϑ = 0 yields the system of linear differential equations

z′2(t) = (Λ⊗ IL2) (∇2B(0))π(t) +

(QT ⊗ IL2 − ((Kd,L ⊗ IL)KL,dL + IdL2)(RT ⊗ IL)) z2(t) +(
((Λ⊗ IL)(∇B(0)))⊗ IL

)
z1(t) +

(Kd,L ⊗ IL)KL,dL(((Λ⊗ IL)∇B(0))⊗ IL)z1(t)

where z1(t) solves Eqn. (14). As before, the stationary quantities can be easily derived (by

equating z′2(t) to 0). One has to keep in mind, however, that some of the mixed partial

derivatives occur multiple times in zk, for k ∈ {2, 3, . . .}, and therefore the solution will only

be unique after removing the corresponding redundant rows. Alternatively, the system can be

completed by including equations which state that these mixed partial derivatives are equal.
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Figure 4. Transient expected values and variances of Example 2.

◦ It now follows that higher moments can be found recursively, using the three differentiation

rules that we stated above.

Remark 3. Various variants of our model can be dealt with similarly. In this remark we

consider the slightly adapted model in which shots only occur simultaneously with a jump

in the modulating Markov chain. Then (up to o(∆t) terms) Ξj(ϑ, t + ∆t) is the sum of a

contribution ∑
j′ 6=j

qj′j∆tΞj′(ϑ, t)βj(ϑ)

due to the scenario that there is a jump in the modulating chain in the interval [t, t + ∆t]

(which also induces a shot), and a contribution of

(1− qj∆t) E
(

exp
( L∑
`=1

(
ϑ` −

d∑
`′=1

ϑ`′(Rj)``′∆t
)
X(`)(t)

)
1j(t)

)
,

with qj := −qjj , in the scenario that there is no jump. Performing the same steps as above,

we obtain

∂

∂t
Ξj(ϑ, t) = qj(βj(ϑ)− 1)Ξj(ϑ, t) +

d∑
j′=1

qj′jΞj′(ϑ, t)βj(ϑ)−
L∑

j′=1

(Rjϑ)j′
∂

∂ϑj′
Ξj(ϑ, t),

which has a similar structure as (11). It follows that the moments can be found as before.

With Q̃ := diag{q1, . . . , qd}, it turns out that the transient means are given by

z′1(t) = ∇B(0)(QT + Q̃)π(t) +
(
(QT ⊗ IL)−RT

)
z1(t).

In particular, the stationary first moment equals

z1(∞) =
(
RT − (QT ⊗ IL)

)−1∇B(0)(QT + Q̃)π.

Consider the following numerical example for the computation of the expected values and

variances, in which the technique described above is illustrated.

Example 2. In this example, we choose the parameters in such a way that we see non-

monotonic behavior. Our example corresponds to a case in which the system does not start

empty, which is dealt with by imposing suitable starting conditions. We consider a two-

dimensional (L = 2) queueing system, with a two-dimensional state space of the Markov

modulating process (d = 2). We pick q12 = q21 = 1, λ1 = λ2 = 1, EB1 = EB2 = EB2
1 =

EB2
2 = 1, J(0) = 1, (X1(0), X2(0)) = (3, 3), and the rate matrices

R1 =

(
2 −1

−1 1

)
, R2 =

(
1 −1

−1 2

)
.

Due to the symmetry in the choice of the parameters, one can expect that for both states of

the background process expected value tends (as t grows large) to the same steady-state value;
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Figure 5. Transient correlation between X1(t), X2(t) of Example 2.

the same is anticipated for the stationary variance. This is confirmed by Fig. 4. For t small,

the two queues behave differently due to J(0) = 1, which implies that queue 1 drains faster.

Note that EX2(t) even increases for t small, due to the fact that the flow from node 1 to 2

equals the flow from 2 to 1, constituting a net flow of zero, so that the additional contribution

of external output to node 2 leads to a net increase of EX2(t). The transient correlation is

plotted in Fig. 5. At time t = 0 the queues are perfectly correlated, since the starting state is

deterministic. Then the correlation decreases due to the asymmetric flow rates until around

t = 1, which is when the Markov chain J is expected to switch, after which the correlation

monotonously tends to the steady state.

4.2. Tail probabilities, change of measure. We now characterize the decay rate of the

rare-event probability under study, and we propose a change of measure to efficiently estimate

it. In the notation we have been using so far, we again focus on

pn(a) := P
(
Y (1)
n (t) > na1, . . . , Y

(L)
n (t) > naL

)
= P (Yn(t) ∈ A) ,

where Yn(t) = (Y
(1)
n (t), . . . , Y

(L)
n (t)).

First we find an alternative characterization of the state of the system at time t. Let Ft

denote the set of all functions from [0, t] onto the states {1, . . . , d}. Consider a path f ∈ Ft.

Let f have K(f) jumps between 0 and t, whose epochs we denote by t1(f) up to tK(f)(f)

(and in addition t0(f) := 0 and tK(f)+1(f) := t). Let

ji(f) := lim
t↓ti(f)

f(t)

(i.e., the state of f immediately after the i-th jump). We also introduce

Di(u, f) := exp
(
−(ti+1(f)− u)Rji(f)

)
, Di(f) := exp

(
−(ti+1(f)− ti(f))Rji(f)

)
.

Suppose now that the Markov process J(·) follows the path f ∈ Ft. Then the contribution

to the mgf of X(t) due to shots that arrived between ti(f) and ti+1(f) is, mimicking the

arguments that we used in Section 3.2 for non-modulated networks,

ψi(f,ϑ) := exp

(
λji(f)

∫ ti+1(f)

ti(f)

(
βji(f)

(
Di(u, f)Di+1(f) · · ·DK(f)(f)ϑ

)
− 1
)
du

)
.

As a consequence, the mgf of X(t) given the path f is

Mf (ϑ) :=

K(f)∏
i=0

ψi(f,ϑ).

First conditioning on the path of J(·) ∈ Ft between 0 and t and then deconditioning, it then

immediately follows that the mgf of X(t) is given by

M(ϑ) = EMJ(ϑ).
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Then, precisely as is shown in [4] for a related stochastic system, the decay rate can be

characterized:

lim
n→∞

1

n
log pn(a) = − inf

f∈Ft

If (a), If (a) := inf
b∈A

sup
ϑ

(〈ϑ, b〉 − logMf (ϑ)) . (16)

Informally, the optimizing path f? has the interpretation of the most likely path of J(·)
given that the rare event under consideration happens. To make sure that the event under

consideration is rare, we assume that for all f ∈ Ft(
∂

∂ϑ1
Mf (ϑ)

∣∣∣∣
ϑ=0

, . . . ,
∂

∂ϑL
Mf (ϑ)

∣∣∣∣
ϑ=0

)
6∈ A.

The change of measure we propose is the following. First we sample the path J(s) for s ∈ [0, t]

under the original measure P (i.e., with J(0) = j0, and then using the transition rate matrix

Q). We call the resulting path f ∈ Ft. For this path, define ϑ?f > 0 as the optimizing ϑ in

the definition of I(f) in (16); b?f ∈ A is the optimizing b.

Conditional on the path f of the background process, under the new measure Q the number

of external arrivals between ti(f) and ti+1(f) is Poisson with parameter∫ ti+1(f)

ti(f)
λji(f)βji(f)

(
Pi(u, f)ϑ?f

)
du,

where Pi(u, f) := Di(u, f)Di+1(f) · · ·DK(f)(f). The arrival epochs between ti(f) and ti+1(f)

should be drawn using the density

fQU (u) =
βji(f)

(
Pi(u, f)ϑ?f

)∫ ti+1(f)

ti(f)
βji(f)

(
Pi(v, f)ϑ?f

)
dv

.

Given an arrival at time u between ti(f) and ti+1(f), the job sizes (B(1), . . . , B(L)) should be

sampled from a distribution with mgf βji(f)(ϑ), but then exponentially twisted by((
Pi(u, f)ϑ?f

)
1
, . . . ,

(
Pi(u, f)ϑ?f

)
L

)
.

4.3. Efficiency properties of importance sampling procedure. We now analyze the

speed up realized by the change of measure introduced in the previous subsection. Unlike

our results for the non-modulated systems, now we cannot find the precise rate of growth of

Σn. What is possible though, is proving asymptotic efficiency (also sometimes referred to as

logarithmic efficiency), in the sense that we can show that

lim
n→∞

1

n
logEQ(L2I) = lim

n→∞

2

n
log pn(a) = −2 inf

f∈Ft

inf
b∈A

sup
ϑ

(〈ϑ, b〉 − logMf (ϑ))

(where the second equality is a consequence of (16)). This equality is proven as follows. As by

Jensen’s inequality EQ(L2I) > (EQ(LI))2 = (pn(a))2, we are left to prove the upper bound:

lim
n→∞

1

n
logEQ(L2I) 6 lim

n→∞

2

n
log pn(a).

If the path of J(·) equals f ∈ Ft, it follows by an elementary computation that we have

constructed the measure Q such that

L ≡ Ln(a) =
dP
dQ

=
L∏
`=1

exp
(
−〈ϑ?f ,Yn(t)〉+ n logMf (ϑ?f )

)
.

The fact that ϑ?f is componentwise non-negative, in combination with the fact that Yn(t) > a
when I = 1, entails that

LI 6 exp
(
−n 〈ϑ?f ,a〉+ n logMf (ϑ?f )

)
= exp

(
−n 〈ϑ?f , b?f 〉+ n logMf (ϑ?f )

)
= e−n If (a),
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Figure 6. Numerical results for Section 4.4: first example.

noting that a and b?f may only differ if the corresponding entry of ϑ?f equals 0 (that is,

〈a − b?f ,ϑ?f 〉 = 0). The upper bound thus follows: with f? the minimizing path in (16),

recalling that J(·) is sampled under P,

EQ(L2I) 6 E e−2n IJ (a) 6 e−2n If? (a).

We have established the following result.

Proposition 3. As n → ∞, the proposed importance sampling procedure is asymptotically

efficient. This means that the number of runs needed grows subexponentially:

lim
n→∞

1

n
log Σn = 0.

4.4. Simulation experiments. We performed experiments featuring a single-node system

under Markov modulation. In our example the job sizes stem from an exponential distribu-

tion. When the background process is in state i, the arrival rate is λi, the job-size distribution

is exponential with parameter µi, and the rate at which the storage level decays is ri, for

i ∈ {1, . . . , d}.
The change of measure is then implemented as follows. As pointed out in Section 4.2, per

run a path f of the background process is sampled under the original measure P. Suppose

along this path there are K transitions (remarking that, for compactness, we leave out the

argument f here), say at times t1 up to tK ; with t0 = 0 and tK+1 = t, the state between

ti and ti+1 is denoted by ji, for i = 0, . . . ,K. Per run a specific change of measure is to be

computed, parametrized by the ti and ji, as follows.

We define

Pi(u) := P̄ie
rjiu, P̄i := e−rji ti+1

K∏
i′=i+1

e−rji′ (ti′+1−ti′ );



LINEAR NETWORKS: RARE-EVENT SIMULATION AND MARKOV MODULATION 21

0 2,000 4,000 6,000 8,000 10,000

10−5

10−3

10−1

scale n

p
n
(0
.8

)

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

6,000

8,000

scale n

n
u

m
b

er
o
f

ru
n

s
0 0.2 0.4 0.6 0.8 1

0

2

4

u

d
en

si
ty

IS
MC

0 0.2 0.4 0.6 0.8 1
0

0.5

1

u
ra

te

IS
MC

Figure 7. Numerical results for Section 4.4: second example.

the product in this expression should be interpreted as 1 if i + 1 > K. It is readily checked

that

M(ϑ) =
K∏
i=0

exp

(
λji

∫ ti+1

ti

Pi(u)ϑ

µji − Pi(u)ϑ
du

)
.

Let ϑ? be the maximizing argument of ϑa− logM(ϑ).

We can now provide the alternative measure Q for this path of the background process. The

number of arrivals between ti and ti+1 (for i = 0, . . . ,K) becomes Poisson with parameter∫ ti+1

ti

λji
µji

µji − Pi(u)ϑ?
du =

λji
rji

log

(
µji − P̄ierji tiϑ?

µjie
−rji (ti+1−ti) − P̄ierji tiϑ?

)

=
λji
rji

log

(
µji − P̄ierji tiϑ?

µji − P̄ierji ti+1ϑ?

)
+ λji(ti+1 − ti).

(where it is noted that this expression is larger than λji(ti+1 − ti), which was the parameter

under P). The density of each of the arrivals between ti and ti+1 becomes(
1

µji − Pi(u)ϑ?

)/∫ ti+1

ti

(
1

µji − Pi(v)ϑ?

)
dv

=

(
µji

µji − Pi(u)ϑ?

)/
1

rji
log

(
µji − P̄ierji tiϑ?

µjie
−rji (ti+1−ti) − P̄ierji tiϑ?

)
(rather than a uniform distribution, as was the case under P); sampling from this distribution

is easy, since the inverse distribution function can be determined in closed form. Given

an arrival that takes place at time u between ti and ti+1, the job size is exponential with

parameter µji − Pi(u)ϑ? (rather than exponential with parameter µji).

We now describe two examples in which the dimension of the background process is d = 2,

q12 = q21 = 2, and t = 1. In the first example we fix a = 3, λ = (2, 1), µ = (12 , 1), and

r = (5, 1), in the second example a = 0.8, λ = (0.9, 1), µ = (0.9−1, 1), and r = (0.3, 0.6).

As before, we simulate until the precision of the estimate has reached ε = 0.1. The top two

panels in Figs. 6–7 should be read as those in Figs. 1–3; the bottom two panels correspond
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to the density of the arrival epochs and the rate of the exponential job sizes, respectively,

for f the ‘empirical maximizer’ of If (a) (i.e., the maximizer of If (a) over all paths f of the

background process that were sampled in the simulation experiment).

In the first example the thus obtained ‘optimal path’ subsequently visits states 1, 2, and 1,

where the corresponding jump times are t?1 = 0.654 and t?2 = 0.739, and the decay rate is

0.573. The mean numbers of arrivals in the three parts of the optimal path are 1.392, 0.090

and 0.963 respectively, whereas for Monte Carlo sampling these are 1.308, 0.085 and 0.522

respectively.

In the second example the optimal path subsequently visits states 2 and 1, where the corre-

sponding jump time is t?1 = 0.790. In this case the decay rate has the value 0.000806. The

mean numbers of arrivals in the two parts of the optimal path are 0.812 and 0.195 respec-

tively, which are slightly higher than the corresponding values under Monte Carlo sampling

(0.790 and 0.189 respectively). Observe that in this example the difference between the two

measures is relative small, also reflected by the small value of the decay rate; the event under

consideration technically qualifies as ‘rare’ in that pn(0.8) → 0 as n → ∞, but has a rela-

tively high likelihood (e.g. as compared to the first example). As a consequence of the fact

that both measures almost coincide, the two densities in the bottom-left panel can hardly be

distinguished.

We observe that the top panels confirm that in both examples (i) pn(a) decays roughly

exponentially in n, (ii) the number of runs needed grows roughly linearly in n (in the first

example slightly sublinearly).

5. Discussion and concluding remarks

In this paper we have considered the probability of attaining a value in a rare set A at a fixed

point in time t. A relevant related quantity is the probability of having reached the set A

before t:

P
(
∃s 6 t : Y (1)

n (s) > na1, . . . , Y
(L)
n (s) > naL

)
; (17)

observe that this probability increases to 1 as t → ∞. Alternatively, one could study the

probability that all a` (for ` = 1, . . . , L) are exceeded before t, but not necessarily at the same

time:

P
(
∃s1 6 t : Y (1)

n (s1) > na1, . . . ,∃sL 6 t : Y (L)
n (sL) > naL

)
. (18)

Powerful novel sample-path large deviations results by Budhiraja and Nyquist [5], which deal

with a general class of multi-dimensional shot-noise processes, may facilitate the development

of efficient importance sampling algorithms for non-modulated linear networks. The results

in [5] do not cover Markov modulation, though.

In the current setup of Section 4 the speed of the background process is kept fixed, i.e.,

not scaled by n. For modulated diffusions a sample-path large deviation principle has been

recently established in [10] for the case that the background process is sped up by a factor n

(which amounts to multiplying the transition rate matrix Q by n); the rate function decouples

into (i) a part concerning the rare-event behavior of the background process and (ii) a part

concerning the rare-event behavior of the diffusion (conditional on the path of the background

process). With a similar result for the Markov-modulated linear networks that we have

studied in this paper, one could potentially set up an efficient importance sampling procedure

for the probabilities (17) and (18) under this scaling.
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