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Abstract This paper considers a batch arrival Mx/G/1 queue with impa-
tient customers. We consider two different model variants. In the first variant,
customers in the same batch are assumed to have the same impatience time,
and impatience times associated with batches are i.i.d. according to a general
distribution. In the second variant, impatience times of customers in the same
batch are independent, and they follow a general distribution. Both variants
are related to an M/G/1 queue in which the service time of a customer de-
pends on its waiting time. Our main focus is on the virtual and actual waiting
times, and on the loss probability of customers.
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1 Introduction

The performance analysis of queueing systems with impatience has recently
experienced a surge of interest (cf., e.g., the special issue [15]). On the one
hand, this is motivated by advances in approximating large queueing systems
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with abandonments via many-server asymptotics and related diffusion approx-
imations. On the other hand, it is triggered by the strong connection between
queueing systems with impatience and various application areas, ranging from
call centers and health care to perishable inventories and organ transplantation
systems.

We consider batch-arrival M/G/1 queues with impatient customers. Batches
of customers arrive according to a Poisson process with rate λ, and the number
of customers in each batch follows a general discrete probability distribution
with probability function pn (n = 1, 2, . . .) and mean E[B]. Service times of
customers are independent and identically distributed (i.i.d.) with probability
distribution function (PDF) G(x) (x ≥ 0) and mean E[G]. We assume that
the service time distribution has a probability density function (p.d.f.) g(x)
(x ≥ 0). Customers are served under the first-come first-served (FCFS) service
discipline, unless otherwise mentioned.

Each customer has her own maximum allowable waiting time, referred to
as the impatience time. If the elapsed waiting time of a customer reaches
her impatience time, she leaves the system immediately without receiving her
service. We assume that once a customer starts to receive her service, she
remains in the system until the end of her service, even if her impatience
time is expired. We consider two different models of batch-arrival impatient
customers. In the first model, customers in the same batch are assumed to
have the same impatience time, and impatience times associated with batches
are i.i.d. according to a general distribution. In the second model, on the other
hand, impatience times of customers in the same batch are independent, and
they follow a general distribution. Throughout this paper, we denote the first
model by Mx/G/1+Gsame, and the second model by Mx/G/1+Gdiff . For both
models, we denote the PDF of the impatience time by the same notation H(x)
(x ≥ 0). We assume that customers may have infinite impatience time (i.e.,
such customers are patient), so that H(x) may be defective:

lim
x→∞

H(x) = 1− h∞. (1)

In the Mx/G/1+Gsame queue, h∞ ∈ [0, 1) represents the probability that a ran-
domly chosen batch consists of patient customers, while in the Mx/G/1+Gdiff

queue, it represents the probability that a randomly chosen customer is patient.

Related literature. The case of batch arrivals in a queueing system with im-
patience has not yet received much attention. A key reference is [20], which
considers the Mx/M/c+D queue, and which focuses on the loss probability,
providing an exact expression for it in terms of the waiting time distribution
of the ordinary Mx/M/c queue. We refer to p. 364 of [16] for an overview of
the literature of the single server queue with impatience. See [1, 2, 14, 26] for
GI/G/1+G, [12] for GI/G/1+D, [23] for M/G/1+M, [8, 17] for M/G/1+PH,
[3, 12, 14] for M/G/1+D, [1, 2, 5] for M/G/1+G. All these references concern
impatience w.r.t. waiting time. Impatience w.r.t. sojourn time is being con-
sidered in [8], and also in [5]; to distinguish between the two, one might use
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the notations +Gw and +Gs for impatience w.r.t. waiting and sojourn time,
respectively. An exact analysis of queueing systems with impatience and multi-
ple servers is not only given in [20], but also, e.g., in [4,7]. See, furthermore, [6]
for bounds and approximations for the loss probability, [19] for waiting time
approximations and, e.g., [30] for asymptotics and [28] for a diffusion control
problem for a multiserver queue for which the tradeoff between blocking and
abandonment is studied.

Main results. A key observation of the paper is, that the virtual waiting time
(workload) in both the Mx/G/1+Gsame and Mx/G/1+Gdiff queue can be
viewed as the workload in an M/G/1 queue in which the service time of a
customer depends on its waiting time y in a particular way (PDF G(w | y)).
We derive an expression for the workload density in that M/G/1 queue. We
also express the loss probability in the Mx/G/1+Gsame and Mx/G/1+Gdiff

queue into that workload density. In subsequent sections G(w | y) is worked
out in detail for the Mx/G/1+Gsame and Mx/G/1+Gdiff queue. We thus de-
rive the distribution of the steady-state workload and waiting time, and also
the loss probability, in those batch arrival models with impatience.

Notation. For convenience of the notation, we define pn (n = 1, 2, . . .), G(x)
(x ≥ 0), and H(x) (x ≥ 0) as the complementary PDFs given by

pn =

∞∑
k=n

pk, (2)

G(x) = 1−G(x), H(x) = 1−H(x),

respectively. Note here that

p1 = 1. (3)

We define g(n)(x) (x ≥ 0, n = 1, 2, . . .) as the n-fold convolution of g(x), and
G(n)(x) (x ≥ 0, n = 1, 2, . . .) as the corresponding PDF.

g(1)(x) = g(x), g(n)(x) = g(n−1) ∗ g(x), n = 2, 3, . . . ,

G(n)(x) =

∫ x

0

g(n)(y)dy.

We also define ρ as the traffic intensity.

ρ = λE[B]E[G].

To avoid inessential complications, we assume G(0) = 0 and H(0) = 0, i.e.,
there are no customers with zero service times or impatience times. Empty
sum and empty product terms are defined as zero and one, respectively.

Organization of the paper. In Section 2, we discuss properties of the vir-
tual waiting time and the loss probability which the Mx/G/1+Gsame and
Mx/G/1+Gdiff queues have in common. In Section 3, we focus on the Mx/G/1+Gsame
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queue. We consider the stability condition, the number of losses, and the ac-
tual waiting time distribution. The obtained expressions simplify considerably
for the special cases (geometric batch size, exponential service times, expo-
nential patience) which are treated in Subsection 3.2. The Mx/G/1+Gdiff

queue, which is considered in Section 4, is considerably more complicated
than the Mx/G/1+Gsame queue; we have to be satisfied with results for the
Mgeo/G/1+Gdiff queue (virtual waiting time, number of losses) and for the
Mx/M/1+Mdiff queue. In the latter case, we can determine the queue length
and virtual waiting time distribution, as well as the number of losses.

Section 5 is devoted to the Mx/G/1+D queue, i.e., a queue with con-
stant impatience, which is a special case of both the Mx/G/1+Gsame and the
Mx/G/1+Gdiff queue. We obtain the distributions of virtual and actual wait-
ing time. In addition, we conduct an analysis of the busy period. Finally, we
conclude this paper in Section 6.

2 Unified observation for virtual waiting time and loss probability

In this section, we briefly discuss some properties of the virtual waiting time
(workload) and the loss probability which the Mx/G/1+Gsame and Mx/G/1+Gdiff

queues have in common. Regarding each batch as a single customer, we obtain
single-arrival queueing models whose virtual waiting time processes are iden-
tical to those of the original Mx/G/1+Gsame and Mx/G/1+Gdiff queues. It is
readily verified that each of these single-arrival queueing models can be formu-
lated as an M/G/1 queue with service times dependent on waiting times [22],
which have the following features.

(i) Customers arrive according to a Poisson process with rate λ,
(ii) All customers are patient, i.e., they do not leave the system before their

service completion, and
(iii) The service time of an arriving customer who finds y (y ≥ 0) amount of

work in system is distributed according to a PDF G(w | y) (w ≥ 0).

We define the mean service time of a customer who finds y amount of work in
the system, β(y), (y ≥ 0) as

β(y) =

∫ ∞

w=0

wdG(w | y). (4)

In the M/G/1 queue with service times dependent on waiting times, the system
is stable if the following conditions are satisfied.

λβ(y) <∞ for all y ≥ 0, lim sup
y→∞

λβ(y) < 1. (5)

Remark 1 [22] states that this stability condition is proved in [11]. Intuitively,
(5) implies that the mean amount of work brought into the system per time
unit is less than one if the workload in system is sufficiently large. Note that
a similar stability condition is derived in Theorem 10.2 of [21] for an M/G/1
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queue where both the arrival rate and the service time distribution are depen-
dent on the workload.

Once the two-variable function G(w | y) (w ≥ 0, y ≥ 0) is given, and
if it satisfies (5), we can characterize the stationary virtual waiting time of
this single-arrival model as follows. To make the notation simpler, we define
G(w | y) (w ≥ 0, y ≥ 0) as

G(w | y) = 1−G(w | y).

Let v(x) (x > 0) denote the PDF of the stationary virtual waiting time, and
let π0 denote the stationary probability that the system is empty. Note that

π0 +

∫ ∞

0+

v(x)dx = 1. (6)

Using the level-crossing argument [9, 13], we have

v(x) = λπ0G(x | 0) + λ

∫ x

0+

v(y)G(x− y | y)dy, x > 0. (7)

This is a Volterra integral equation of the second kind, whose solution is
uniquely given by

v(x) = π0

∞∑
n=1

ϕn(x), x > 0, (8)

where {ϕn(x), x > 0}n=1,2,... is a sequence of functions defined as

ϕ1(x) = λG(x | 0), x > 0, (9)

ϕn(x) = λ

∫ x

0+

ϕn−1(y)G(x− y | y)dy, x > 0, n = 2, 3, . . . . (10)

Furthermore, π0 is obtained from (6):

π0 =

[
1 +

∞∑
n=1

cn

]−1

, (11)

where

cn =

∫ ∞

0+

ϕn(x)dx, n = 1, 2, . . . .

Therefore, once G(w | y) (w ≥ 0, y ≥ 0) of the Mx/G/1+Gsame and
Mx/G/1+Gdiff queues are derived, π0 and v(x) (x ≥ 0) in these models are
immediately obtained. In addition, we can also obtain the loss probability
based on this. For each of the Mx/G/1+Gsame and Mx/G/1+Gdiff queues,
let Ploss denote the stationary loss probability, i.e., the probability that a
randomly chosen customer leaves the system without receiving service. The
following theorem shows that Ploss is given in terms of π0, as is the case for
the single-arrival M/G/1+G queue [14].
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Theorem 1 In each of the Mx/G/1+Gsame and Mx/G/1+Gdiff queues, Ploss

is given by

Ploss = 1− 1− π0
ρ

. (12)

Proof Applying Little’s law to the server, we obtain

1− π0 = λE[B] · (1− Ploss) · E[G],

which implies (12). ⊓⊔

Theorem 1 can be intuitively understood by rewriting (12) into

1− Ploss =
1− π0
ρ

.

The right-hand side of this equation represents the ratio of the amount per
time unit of processed workload 1− π0 and that of offered workload ρ. When
customers arrive one by one, i.e., in the M/G/1+G queue, 1 − Ploss is also
equal to

π0 +

∫ ∞

0+

v(y)H(y)dy. (13)

The following corollary is an extension of this relation to the Mx/G/1+Gsame

and Mx/G/1+Gdiff queues.

Corollary 1 Ploss satisfies

1− Ploss =

λπ0β(0) + λ

∫ ∞

y=0+

v(y)β(y)dy

ρ
, (14)

where β(y) (y ≥ 0) is defined as (4).

Proof Note that (4) implies

β(y) =

∫ ∞

w=0

dG(w | y)
∫ w

t=0

dt

=

∫ ∞

t=0

dt

∫ ∞

w=t

dG(w | y)

=

∫ ∞

t=0

G(t | y)dt, y ≥ 0. (15)

Taking the integral of both sides of (7) over x ∈ (0,∞), we obtain

1− π0 = λπ0β(0) + λ

∫ ∞

x=0+

dx

∫ x

y=0+

G(x− y | y)v(y)dy

= λπ0β(0) + λ

∫ ∞

y=0+

v(y)dy

∫ ∞

x=y

G(x− y | y)dx
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= λ

(
π0β(0) +

∫ ∞

y=0+

v(y)β(y)dy

)
.

It then follows from Theorem 1 that

λπ0β(0) + λ

∫ ∞

y=0+

v(y)β(y)dy = ρ(1− Ploss),

which implies (14). ⊓⊔

In the M/G/1+G queue, λβ(y) = ρH(y) holds for y ≥ 0, so that the right-
hand side of (14) reduces to (13). Also, it is easy to see that the numerator
of the right-hand side of (14) can be interpreted as the amount of processed
workload per time unit, which is also equal to 1− π0 as mentioned above.

We deriveG(w | y) (w ≥ 0, y ≥ 0) for the Mx/G/1+Gsame and Mx/G/1+Gdiff

queues in Sections 3 and 4, respectively. Using the above results, we then derive
stability conditions of the original models, and obtain v(x) (x > 0), π0, Ploss,
and other performance measures. We also discuss the Mx/G/1+D queue in
Section 5, which is a special case of both Mx/G/1+Gsame and Mx/G/1+Gdiff

queues.

3 The Mx/G/1+Gsame queue

In this section, we consider the Mx/G/1+Gsame queue. We assume that cus-
tomers of the same batch have the same impatience time, which is distributed
according to a general distribution with the PDF H(x) (x ≥ 0).

3.1 General case

We first derive G(w | y) (w ≥ 0, y ≥ 0) defined in Section 2. Suppose an
arriving batch sees A amount of work in the system. Let Nloss (resp. Nadmit)
denote the number of lost (resp. admitted) customers in this batch. Further let
Wi (i = 1, 2, . . . , Nadmit) denote the service time of the ith admitted customer.
We define the joint conditional probability F (n, k;w1, w2, . . . , wk | y) (y ≥ 0,
w1 > 0, w2 > 0, . . . , wk > 0, n = 0, 1, . . ., k = 1, 2, . . .) as

F (n, k;w1, w2, . . . , wk | y)
= Pr(Nloss = n,Nadmit = k,W1 ≤ w1,W2 ≤ w2, . . . ,Wk ≤ wk | A = y).

We further define f(n, k;w1, w2, . . . , wk | y) (y ≥ 0, w1 > 0, w2 > 0, . . . , wk >
0, n = 0, 1, . . ., k = 1, 2, . . .) as

f(n, k;w1, w2, . . . , wk | y) = ∂kF (n, k;w1, w2, . . . , wk | y)
∂w1∂w2 · · · ∂wk

. (16)
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Lemma 1 f(n, k;w1, w2, . . . , wk | y) (y ≥ 0, w1 > 0, w2 > 0, . . . , wk > 0,
n = 0, 1, . . ., k = 1, 2, . . .) is given by

f(0, k;w1, w2, . . . , wk | y)

= pkH
(
y +

k−1∑
m=1

wm

) k∏
i=1

g(wi),

f(n, k;w1, w2, . . . , wk | y)

= pn+k

[
H
(
y +

k−1∑
m=1

wm

)
−H

(
y +

k∑
m=1

wm

)] k∏
i=1

g(wi), n = 1, 2, . . . .

Proof Lemma 1 follows from the definition of f(n, k;w1, w2, . . . , wk | y). ⊓⊔

Lemma 2 In the Mx/G/1+Gsame queue, G(w | y) (w ≥ 0, y ≥ 0) and β(y)
(y ≥ 0) are given by

G(w | y) = H(y)G(w) +

∫ w

0

H(y + u)

∞∑
k=2

pkg
(k−1)(u)G(w − u)du, (17)

β(y) = E[G]

∞∑
k=1

pkE

[
H
(
y +

k−1∑
m=1

Gm

)]
, (18)

where {Gn}n=1,2,... denotes a sequence of i.i.d. random variables distributed
according to the service time distribution G(x).

The proof of Lemma 2 is provided in Appendix A.

Theorem 2 The Mx/G/1+Gsame queue is stable if

ρ <∞, ρh∞ < 1. (19)

Proof The mean batch size E[B] is given in terms of pn (n = 1, 2, . . .) by

E[B] =

∞∑
n=1

npn =

∞∑
n=1

pn

n∑
i=1

1 =

∞∑
i=1

pi.

It then follows from (18) that

E[G]E[B]h∞ ≤ β(y) ≤ E[G]E[B]H(y), y ≥ 0,

which implies

ρh∞ ≤ λβ(y) ≤ ρH(y), y ≥ 0,

and, cf. (1),

lim
y→∞

λβ(y) = ρh∞.

Therefore, if (19) holds, the stability condition (5) is satisfied. ⊓⊔
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In the rest of this section, we assume that (19) holds, so that the system is
stable. Recall that under this assumption, the stationary virtual waiting time
distribution is immediately obtained from (8) and (11).

We next consider the number of losses. Let Ploss(n) (n = 0, 1, . . .) denote
the probability that the number of lost customers in a randomly chosen batch
is equal to n. Also, let Ploss(n | x) (x ≥ 0, n = 0, 1, . . .) denote the conditional
probability that the number of lost customers in a randomly chosen batch is
equal to n, given that this batch finds x amount of work on arrival. Owing to
PASTA, Ploss(n) is given in terms of Ploss(n | x) by

Ploss(n) = π0Ploss(n | 0) +
∫ ∞

0+

Ploss(n | x)v(x)dx, n = 0, 1, . . . . (20)

Theorem 3 Ploss(n | x) (n = 0, 1, . . ., x ≥ 0) is given by

Ploss(0 | x) =
∞∑
k=1

pkE

[
H
(
x+

k−1∑
m=1

Gm

)]
, (21)

Ploss(n | x) = pnH(x) +

∞∑
k=1

pn+kE

[
H
(
x+

k−1∑
m=1

Gm

)
−H

(
x+

k∑
m=1

Gm

)]
,

n = 1, 2, . . . . (22)

Proof Theorem 3 immediately follows from Lemma 1 and the following rela-
tions.

Ploss(0 | x) =
∞∑
k=1

∫ ∞

w1=0

∫ ∞

w2=0

· · ·
∫ ∞

wk=0

f(0, k;w1, w2, . . . , wk | x)

· dwkdwk−1 · · · dw1,

Ploss(n | x) = pnH(x) +

∞∑
k=1

∫ ∞

w1=0

∫ ∞

w2=0

· · ·
∫ ∞

wk=0

f(n, k;w1, w2, . . . , wk | x)

dwkdwk−1 · · · dw1.

⊓⊔

Finally, we consider the actual waiting time of each customer. For a ran-
domly chosen customer, let H denote her impatience time, and let Nfront

denote the number of customers of the same batch who are in front of her.
Let Â denote the workload in system seen by the batch which contains the
randomly chosen customer, and let Ŵi (i = 1, 2, . . . , Nfront) denote the service
time of the i-th customer of the batch. We then define Q(0 | y) (y ≥ 0) and
Q(n;w1, w2, . . . , wn | y) (y ≥ 0, w1 > 0, w2 > 0, . . ., wn > 0, n = 1, 2, . . .) as

Q(0 | y) = Pr(Nfront = 0,H > y | Â = y), (23)

and

Q(n;w1, w2, . . . , wn | y) = Pr
(
Nfront = n,H > y +

n∑
i=1

Wi,



10 Yoshiaki Inoue et al.

Ŵ1 ≤ w1, Ŵ2 ≤ w2, . . . , Ŵn ≤ wn | Â = y
)
.

(24)

We define q(n;w1, w2, . . . , wn | y) (y ≥ 0, w1 > 0, w2 > 0, . . ., wn > 0,
n = 1, 2, . . .) as

q(n;w1, w2, . . . , wn | y) = ∂nQ(n;w1, w2, . . . , wn | y)
∂w1∂w2 · · · ∂wn

.

We further define qtotal(w | y) (w > 0, y ≥ 0, n = 1, 2, . . .) as

qtotal(w | y) = q(1;w | y) (25)

+

∞∑
n=2

∫ w

w1=0+

∫ w−w1

w2=0+

· · ·
∫ w−w1−w2−···−wn−2

wn−1=0+

· q
(
n;w1, w2, . . . , wn−1, w −

n−1∑
i=1

wi | y
)
dwn−1dwn−2 · · · dw1.

(26)

Lemma 3 Q(0 | y) (y ≥ 0) and q(n;w1, w2, . . . , wn | y) (y ≥ 0, w1 > 0,
w2 > 0, . . ., wn > 0, n = 1, 2, . . .) are given by

Q(0 | y) = 1

E[B]
·H(y), (27)

q(n;w1, w2, . . . , wn | y) =
pn+1

E[B]
·H
(
y +

n∑
m=1

wm

) n∏
i=1

g(wi). (28)

Proof Because Â and Nfront are independent, (23) and (24) are rewritten to
be

Q(0 | y) = Pr(Nfront = 0)Pr(H > y),

and

Q(n;w1, w2, . . . , wn | y)

= Pr(Nfront = n) Pr
(
H > y +

n∑
m=1

wm, Ŵ1 ≤ w1, Ŵ2 ≤ w2, . . . , Ŵn ≤ wn

)
.

We then obtain (27) and (28), using (3) and

Pr(Nfront = n) =

∞∑
k=n+1

kpk
E[B]

· 1
k
=
pn+1

E[B]
, n = 0, 1, . . . .

⊓⊔

Corollary 2 qtotal(w | y) (w > 0, y ≥ 0) is given by

qtotal(w | y) = H(y + w)

E[B]

∞∑
n=1

pn+1g
(n)(w). (29)
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Proof It follows from (26) and Lemma 3 that

qtotal(w | y) = p2
E[B]

·H(y + w)g(w)

+

∞∑
n=2

pn+1

E[B]
·H(y + w)

∫ w

w1=0+

∫ w−w1

w2=0+

· · ·
∫ w−w1−w2−···−wn−2

wn−1=0+

·

{
n−1∏
i=1

g(wi)

}
g
(
w −

n−1∑
i=1

wi

)
dwn−1dwn−2 · · · dw1,

which implies (29). ⊓⊔

Remark 2 It follows from (15), (17), (27), and (29) that

G(w | y) = E[B]

(
Q(0 | y)G(w) +

∫ w

0+

qtotal(u | y)G(w − u)du

)
,

w ≥ 0, y ≥ 0, (30)

and,

β(y) = E[B]E[G]Q(0 | y) + E[B]

∫ ∞

w=0

dw

∫ w

u=0+

qtotal(u | y)G(w − u)du

=
ρ

λ
·Q(0 | y) + E[B]

∫ ∞

u=0+

qtotal(u | y)du
∫ ∞

w=u

G(w − u)dw

=
ρ

λ

(
Q(0 | y) +

∫ ∞

0+

qtotal(u | y)du
)
, y ≥ 0. (31)

Let D denote the actual waiting time of a randomly chosen customer who
is not lost. Let D(x) (x ≥ 0) and d(x) (x > 0) denote the PDF and the p.d.f.
of D, respectively. Note that

D(0) +

∫ ∞

0+

d(x)dx = 1. (32)

The following theorem follows immediately from the definitions of Q(0 | x)
and qtotal(t | y).

Theorem 4 D(0) and d(x) (x > 0) are given by

D(0) =
1

1− Ploss
· π0Q(0 | 0) = π0

(1− Ploss)E[B]
, (33)

d(x) =
1

1− Ploss

[
π0qtotal(x | 0) + v(x)Q(0 | x) +

∫ x

0+

v(t)qtotal(x− t | t)dt
]
.

(34)
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Remark 3 Using (14) and (31), we can verify that

1− Ploss = π0Q(0 | 0) +
∫ ∞

0+

[
π0qtotal(x | 0) + v(x)Q(0 | x)

+

∫ x

0+

v(t)qtotal(x− t | t)dt

]
dx,

so that (33) and (34) satisfy the normalization condition (32).

The actual waiting time distribution is thus given in terms of the virtual
waiting time distribution. In addition, it is directly given by the solution of a
Volterra integral equation of the second kind as follows.

Lemma 4 d(x) (x ≥ 0) satisfies the following integral equation.

d(x) = D(0)H(x)

(
λGbatch(x) +

∞∑
n=1

pn+1g
(n)(x)

)

+ λH(x)

∫ x

0+

d(y)Gbatch(x− y)dy, x > 0, (35)

where Gbatch(x) (x ≥ 0) is defined as

Gbatch(x) = 1−
∞∑

n=1

pnG
(n)(x). (36)

The proof of Lemma 4 is provided in Appendix B.

Remark 4 If p1 = 1 and pn = 0 (n = 2, 3, . . .), i.e., in the M/G/1+G queue,
we have

D(0) =
π0

1− Ploss
, d(x) =

v(x)H(x)

1− Ploss
,

and (7) is rewritten to be

v(x) = λπ0G(x) + λ

∫ x

0+

v(y)H(y)G(x− y)dy.

It then follows that

d(x) =
H(x)

1− Ploss

[
λπ0G(x) + λ(1− Ploss)

∫ x

0+

d(y)G(x− y)dy

]
= λD(0)H(x)G(x) + λH(x)

∫ x

0+

d(y)G(x− y)dy,

which is consistent with (35), because pn = 0 (n = 2, 3, . . .) and Gbatch(x) =
G(x) (x ≥ 0) in this case.
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Theorem 5 d(x) (x ≥ 0) and D(0) are given by

d(x) = D(0)

∞∑
n=1

ϕD,n(x), x > 0, (37)

D(0) =

[
1 +

∞∑
n=1

cD,n

]−1

, (38)

where {ϕD,n(x); x > 0}n=1,2,... is a sequence of functions given by

ϕD,1(x) = H(x)

(
λGbatch(x) +

∞∑
m=1

pm+1g
(m)(x)

)
, (39)

ϕD,n(x) = λH(x)

∫ x

0+

ϕD,n−1(y)Gbatch(x− y)dy, n = 2, 3, . . . , (40)

and cD,n (n = 1, 2, . . .) is given by

cD,n =

∫ ∞

0+

ϕD,n(x)dx.

Proof (37) and (38) is proved in the exactly same way as (8) and (11), using
Lemma 4 and (32). ⊓⊔

Remark 5 Using (12) and (33), we can verify that

D(0) =
π0

(1− Ploss)E[B]
=

π0ρ

(1− π0)E[B]
,

which implies

π0 =
E[B]D(0)

ρ+ E[B]D(0)
. (41)

Therefore, π0 is given in terms of D(0). Furthermore, using (12) and (41), it
is verified that Ploss is also given in terms of D(0) by

Ploss = 1− 1

ρ+ E[B]D(0)
. (42)

3.2 Special cases

In this subsection, we consider several special cases of the Mx/G/1+Gsame

queue. In Section 3.2.1, we show that the expression for the number of losses
given in Theorem 3 is much simplified in the Mgeo/G/1+Gsame queue. Next,
we derive a specialized formula for the actual waiting time distribution in the
Mgeo/M/1+Gsame queue in Section 3.2.2. We consider the Mx/M/1+Msame

queue with general batch sizes in Section 3.2.3, and obtain the Laplace-Stieltjes
transform (LST) of the virtual waiting time. Finally in Section 3.2.4, we con-
sider the Mgeo/M/1+Msame queue, which is the intersection of the Mgeo/M/1+Gsame

and Mx/M/1+Msame queues.
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3.2.1 Mgeo/G/1+Gsame queue

We assume that sizes of batches follow a geometric distribution, i.e.,

pn = (1− α)αn−1, n = 1, 2, . . . , (43)

where α ∈ [0, 1). In this case, the traffic intensity ρ is given by

ρ =
λE[G]

1− α
. (44)

Note that (2) is reduced to be

pn = αn−1, n = 1, 2, . . . , (45)

so that we have from (17) and (18),

G(w | y) = H(y)G(w) +

∫ w

0

H(y + u)

∞∑
k=1

αkg(k)(u)G(w − u)du,

β(x) = E[G]

∞∑
k=1

αk−1E

[
H
(
x+

k−1∑
m=1

Gm

)]
. (46)

Theorem 6 In the Mgeo/G/1+Gsame queue,

(i) Ploss(n | x) (n = 0, 1, . . .) is given by

Ploss(0 | x) = λβ(x)

ρ
, x ≥ 0, (47)

Ploss(n | x) = [1− Ploss(0 | x)](1− α)αn−1, x ≥ 0, n = 1, 2, . . . , (48)

and
(ii) Ploss(n) (n = 0, 1, . . .) is given in terms of the loss probability Ploss by

Ploss(0) = 1− Ploss, (49)

Ploss(n) = Ploss(1− α)αn−1, n = 1, 2, . . . . (50)

Remark 6 (48) implies that the conditional number of lost customers in a
batch [Nloss | Nloss > 0] is distributed according to the geometric distribution
with parameter 1 − α. This is almost obvious from the memoryless property
of geometric distributions.

Remark 7 (49) can be understood intuitively as follows. Let M denote a
generic random variable for sizes of batches. For a randomly chosen customer,
let M̃ denote the number of customers in the same batch who are in front of
her. 1 − Ploss is then given by the probability that A+

∑M̃
n=1Gn is less than

H, where H denotes a generic random variable for impatience times. On the
other hand, Ploss(0) is given by the probability that A+

∑M−1
n=1 Gn is less than

H. IfM is geometrically distributed, M̃ andM−1 have the same distribution,
so that (49) holds.
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Proof We first consider (i). (47) immediately follows from (21), (44), and (46).
Similarly, (48) is obtained from (22) as follows.

Ploss(n | x) = (1− α)αn−1H(x)

+ (1− α)αn−1

{ ∞∑
k=1

αkE

[
H
(
x+

k−1∑
m=1

Gm

)]

−
∞∑
k=1

αkE

[
H
(
x+

k∑
m=1

Gm

)]}

= (1− α)αn−1

{
H(x) + αH(x)

− (1− α)

∞∑
k=2

αk−1E

[
H
(
x+

k−1∑
m=1

Gm

)]}

= (1− α)αn−1

{
H(x) + αH(x) + (1− α)H(x)

− (1− α)
∞∑
k=1

αk−1E

[
H
(
x+

k−1∑
m=1

Gm

)]}
= (1− α)αn−1

{
H(x) + αH(x) + (1− α)H(x)− Ploss(0 | x)

}
= (1− α)αn−1[1− Ploss(0 | x)].

Next, we consider (ii). Using (20) and (47), we have

Ploss(0) =
λπ0β(0)

ρ
+

∫ ∞

0

λβ(x)

ρ
· v(x)dx.

(49) thus follows from (14). Similarly, for n = 1, 2, . . ., (20) and (48) imply

Ploss(n) = (1− α)αn−1

[
π0[1− Ploss(0 | 0)] +

∫ ∞

0+

[1− Ploss(0 | x)]v(x)dx
]

= (1− α)αn−1(1− Ploss(0)).

We then obtain (50) from this equation and (49). ⊓⊔

3.2.2 Mgeo/M/1+Gsame queue

In this subsection, we assume (43) and

g(x) = µ exp[−µx], x ≥ 0, (51)

where µ > 0. It follows from (44) that

ρ =
λ

µ(1− α)
. (52)



16 Yoshiaki Inoue et al.

In this case, we have

∞∑
k=2

pkg
(k−1)(x) =

∞∑
k=2

αk−1 · µ exp[−µx](µx)
k−2

(k − 2)!

= αµ exp[−µx] exp[αµx]
= αµ exp[−(1− α)µx]. (53)

(17) is then reduced to be

G(w | y) = H(y) exp[−µw]

+ αµ

∫ w

0

H(y + u) exp[−(1− α)µu] exp[−µ(w − u)]du

= exp[−µw]
[
H(y) + αµ

∫ w

0

H(y + u) exp[αµu]du

]
. (54)

Although G(w | y) in (54) takes a simpler form than the general case (17), it
does not seem to substantially simplify the formulas (7) and (8) for the virtual
waiting time.

On the other hand, Gbatch(x) (x ≥ 0) given by (36) is reduced to be

Gbatch(x) = 1−
∞∑

n=1

(1− α)αn−1

(
1−

n−1∑
m=0

exp[−µx](µx)m

m!

)

=

∞∑
n=1

(1− α)αn−1
n−1∑
m=0

exp[−µx](µx)m

m!

=

∞∑
m=0

exp[−µx](µx)m

m!

∞∑
n=m+1

(1− α)αn−1

=

∞∑
m=0

exp[−µx](αµx)m

m!

= exp[−(1− α)µx]. (55)

This leads to a specialized formula for the actual waiting time distribution,
which is given in the following theorem.

Theorem 7 In the Mgeo/M/1+Gsame queue, D(0) and d(x) are given by

d(x) = (λ+ αµ)D(0)H(x) exp[λJ(x)− (1− α)µx], x > 0, (56)

D(0) =

[
1 +

∫ ∞

0+

(λ+ αµ)H(x) exp[λJ(x)− (1− α)µx]dx

]−1

, (57)

where

J(x) =

∫ x

0

H(y)dy, x ≥ 0.
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Proof Because (57) immediately follows from (56) and the normalization con-
dition (32), we consider (56) below. Recall that d(x) (x > 0) is given in terms
of ϕD,n(x) (x > 0, n = 1, 2, . . .) by (37). Using (53) and (55), we rewrite (39)
and (40) as

ϕD,1(x) = H(x) (λ exp[−(1− α)µx] + αµ exp[−(1− α)µx]) ,

ϕD,n(x) = λH(x)

∫ x

0+

ϕD,n−1(y) exp[−(1− α)µ(x− y)]dy, n = 2, 3, . . . .

We then define ψD,n(x) (x > 0, n = 1, 2, . . .) as

ψD,n(x) =
ϕD,n(x) exp[(1− α)µx]

λ+ αµ
. (58)

It is easy to verify that ψD,n(x) satisfies

ψD,1(x) = H(x), (59)

ψD,n(x) = λH(x)

∫ x

0+

ψD,n−1(y)dy, n = 2, 3, . . . . (60)

By induction, we prove

ψD,n(x) = H(x) ·
(
λJ(x)

)n−1

(n− 1)!
, x > 0, n = 1, 2, . . . . (61)

For n = 1, (61) immediately follows from (59). We then assume that (61) holds
for some n = m (m = 1, 2, . . .). Under this assumption, it follows from (60)
that

ψD,m+1(x) = λH(x)

∫ x

0+

(
λJ(y)

)m−1
H(y)

(m− 1)!
dy

= H(x)

∫ x

0+

d

dy

[(
λJ(y)

)m
m!

]
dy

= H(x) ·
(
λJ(x)

)m
m!

,

so that (61) also holds for n = m+1. Therefore, we have (61) for n = 1, 2, . . ..
It then follows from (58) and (61) that

∞∑
n=1

ϕD,n(x) = (λ+ αµ)

∞∑
n=1

ψD,n(x) exp[−(1− α)µx]

= (λ+ αµ)H(x) exp[λJ(x)] exp[−(1− α)µx].

(56) now follows from this equation and (37). ⊓⊔
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As mentioned in Remark 5, π0 and Ploss are given in terms of D(0). There-
fore, the number of losses Ploss(n) (n = 0, 1, . . .) in the Mgeo/M/1+Gsame

queue can be obtained from Theorems 6 and 7. Based on these results, we
derive ordering relations of Ploss and Ploss(n) (n = 0, 1, . . .) with respect to the
variability of impatience times. Let H denote a generic random variable for im-
patience times. Further let L denote a generic random variable for the number
of losses in a randomly chosen batch, i.e., Pr(L = n) = Ploss(n) (n = 0, 1, . . .).

Definition 1 ( [24, Theorem 3.A.1])
Let X and Y denote two non-negative random variables with the same

finite mean E[X] = E[Y ] < ∞. X is said to be smaller than or equal to Y in
the convex order (denoted by X ≤cx Y ) if and only if∫ ∞

x

Pr(X > u)du ≤
∫ ∞

x

Pr(Y > u)du, for all x ≥ 0.

Remark 8 The convex order compares the variability of random variables.
Note that X ≤cx Y ⇒ E[X] = E[Y ] and Cv[X] ≤ Cv[Y ], where Cv[·] de-
notes the coefficient of variation [24, Eq. (3.A.4)].

Theorem 8 Consider two stationary Mgeo/M/1+Gsame queues with the same
arrival rate λ, the same batch size distribution pn = (1−α)αn−1 (n = 1, 2, . . .),
the same service time distribution G(x) (x ≥ 0), and the same finite mean
impatience time E[H] <∞. We denote quantities in the k-th (k = 1, 2) queue
with a superscript ⟨k⟩. It then follows that

H⟨1⟩ ≤cx H
⟨2⟩ ⇒ P

⟨1⟩
loss ≤ P

⟨2⟩
loss, (62)

and

H⟨1⟩ ≤cx H
⟨2⟩ ⇒ L⟨1⟩ ≤st L

⟨2⟩, (63)

where ≤st denotes the usual stochastic order, which is defined as [24, Page 4]

L⟨1⟩ ≤st L
⟨2⟩ ⇔

∞∑
n=i

P
⟨1⟩
loss(i) ≤

∞∑
n=i

P
⟨2⟩
loss(i), for all i = 1, 2, . . ..

Remark 9 (62) is an extension of the ordering property of Ploss in the single-
arrival M/M/1+G queue mentioned in [27]. Also, a related result in the single-
arrival M/G/1+G queue can be found in [18].

Proof We first consider (62). Because of (42), Ploss increases with D(0) when
ρ and E[B] are fixed. Therefore, it is sufficient to show

H⟨1⟩ ≤cx H
⟨2⟩ ⇒ D⟨1⟩(0) ≤ D⟨2⟩(0). (64)

We rewrite the integral in (57) by partial integration.∫ ∞

0+

(λ+ αµ)H(x) exp[λJ(x)− (1− α)µx]dx
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=
λ+ αµ

λ

∫ ∞

0+

exp[−(1− α)µx] · d
dx

[
exp[λJ(x)]

]
dx

=
λ+ αµ

λ

[
exp[−(1− α)µx] · exp[λJ(x)]

]∞
0

(65)

+
(λ+ αµ)(1− α)µ

λ

∫ ∞

0+

exp[−(1− α)µx] · exp[λJ(x)]dx

= −λ+ αµ

λ
+
λ+ αµ

ρ

∫ ∞

0+

exp[−(1− α)µx] · exp[λJ(x)]dx. (66)

Note here that limx→∞ exp[−(1−α)µx+λJ(x)] = 0 follows from the stability
condition

ρh∞ =
λh∞

(1− α)µ
< 1.

Because the two queues have the same mean impatience time E[H] < ∞, we
have

J⟨k⟩(x) = E[H]−
∫ ∞

x

H
⟨k⟩

(y)dy, k = 1, 2,

and therefore,

H⟨1⟩ ≤cx H
⟨2⟩ ⇒ J⟨1⟩(x) ≥ J⟨2⟩(x), for all x ≥ 0.

(64) now follows from (57) and (66). We thus proved (62).
Furthermore, (63) immediately follows from (62) because (50) implies

∞∑
n=i

P
⟨k⟩
loss(i) = P

⟨k⟩
loss

∞∑
n=i

(1− α)αn−1, k = 1, 2, i = 1, 2, . . . .

⊓⊔

3.2.3 Mx/M/1+Msame queue

Here, we assume that batch sizes are generally distributed. We assume (51)
and

H(x) = exp[−ηx], x ≥ 0, (67)

where η > 0. In this case, (17) is reduced to be

G(w | y) = exp[−ηy] exp[−µw] +
∫ w

0

exp[−η(y + u)]

·
∞∑
k=2

pk · µ exp[−µu](µu)
k−2

(k − 2)!
exp[−µ(w − u)]du

= exp[−ηy − µw]

[
1 +

∞∑
k=2

pk(µ/η)
k−1

∫ w

0

η exp[−ηu](ηu)k−2

(k − 2)!
du

]

= exp[−ηy − µw]

1 + ∞∑
k=2

pk(µ/η)
k−1

∞∑
j=k−1

exp[−ηw](ηw)j

j!


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= exp[−ηy]R(w), (68)

where

R(x) = exp[−µx]
∞∑
k=1

pk(µ/η)
k−1

∞∑
j=k−1

exp[−ηx](ηx)j

j!
.

We define R
∗
(s) (Re(s) > 0) as

R
∗
(s) =

∫ ∞

0

exp[−sx]R(x)dx.

Also, we define v∗(s) (Re(s) > 0) as the LST of the stationary virtual waiting
time.

v∗(s) = π0 +

∫ ∞

0+

exp[−sx]v(x)dx. (69)

Lemma 5 R
∗
(s) (Re(s) > 0) is given by

R
∗
(s) =

1

µ+ s

∞∑
k=1

pk

(
µ

µ+ η + s

)k−1

. (70)

Proof By definitions of R(x) and R
∗
(s), we have

R
∗
(s) =

∞∑
k=1

pk(µ/η)
k−1 1

s+ µ

∫ ∞

0

(s+ µ) exp[−(s+ µ)x]

·
∞∑

j=k−1

exp[−ηx](ηx)j

j!
dx

=

∞∑
k=1

pk(µ/η)
k−1 1

s+ µ

(
η

s+ µ+ η

)k−1

,

which implies (70). ⊓⊔

Remark 10 Let p∗(z) (|z| ≤ 1) denote the probability generating function
(PGF) of the batch size distribution.

p∗(z) =

∞∑
n=1

znpn.

We can rewrite (70) as

R
∗
(s) =

1

µ+ s
·
1− p∗

(
µ

µ+ η + s

)
1− µ

µ+ η + s

.
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Theorem 9 In the Mx/M/1+Msame queue, the LST v∗(s) (Re(s) > 0) of the
stationary virtual waiting time is given by

v∗(s) = π0 + π0

∞∑
n=0

n∏
k=0

λR
∗
(s+ kη). (71)

Furthermore, π0 is given by

π0 =

[
1 +

∞∑
n=0

n∏
k=0

λR
∗
(kη)

]−1

. (72)

Proof It follows from (7), (68), and (69) that

v∗(s) = π0 + λπ0R
∗
(s) + λ

∫ ∞

x=0+

exp[−sx]dx
∫ x

y=0+

R(x− y) exp[−ηy]v(y)dy

= π0 + λπ0R
∗
(s)

+ λ

∫ ∞

y=0+

exp[−sy] exp[−ηy]v(y)dy
∫ ∞

x=y

R(x− y) exp[−s(x− y)]dx

= π0 + λπ0R
∗
(s) + λ[v∗(s+ η)− π0]R

∗
(s)

= π0 + λR
∗
(s)v∗(s+ η). (73)

(71) is then obtained from the iteration based on (73). Note that (72) immedi-
ately follows from (71) and lims→0+ v

∗(s) = 1. Finally, it should be observed
that the infinite sums in (71) and (72) converge; this follows using d’Alembert

ratio principle, since |λR∗
(s+ kη)| < 1 for k sufficiently large. ⊓⊔

3.2.4 Mgeo/M/1+Msame queue

We consider the Mgeo/M/1+Msame queue, i.e., we assume that (43), (51), and
(67) hold. Note that this model is a special case of both of the models discussed
in Sections 3.2.2 and 3.2.3.

Corollary 3 In the Mgeo/M/1+M queue, π0 and v∗(s) (Re(s) > 0) are given
by

π0 =

[
1 +

λ

µ
+
λ+ αµ

µ

∞∑
n=0

n+1∏
k=1

λ

kη + (1− α)µ

]−1

, (74)

v∗(s) = π0 +
π0λ

s+ µ
+
π0(λ+ αµ)

s+ µ

∞∑
n=0

n+1∏
k=1

λ

s+ kη + (1− α)µ
. (75)

Proof Using (45), we rewrite (70) as

R
∗
(s) =

1

µ+ s

∞∑
k=1

αk−1

(
µ

µ+ η + s

)k−1
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=
1

µ+ s
· 1

1− αµ

µ+ η + s

=
s+ η + µ

(µ+ s){s+ η + (1− α)µ}
.

(71) is then reduced to be

v∗(s) = π0 + π0

∞∑
n=0

n∏
k=0

λ · s+ (k + 1)η + µ

(s+ kη + µ){s+ (k + 1)η + (1− α)µ}

= π0 + π0

∞∑
n=0

s+ (n+ 1)η + µ

s+ µ

n∏
k=0

λ

s+ (k + 1)η + (1− α)µ

= π0 + π0

∞∑
n=0

s+ (n+ 1)η + (1− α)µ+ αµ

s+ µ

n+1∏
k=1

λ

s+ kη + (1− α)µ

= π0 + π0

∞∑
n=0

s+ (n+ 1)η + (1− α)µ

s+ µ

n+1∏
k=1

λ

s+ kη + (1− α)µ

+ π0

∞∑
n=0

αµ

s+ µ

n+1∏
k=1

λ

s+ kη + (1− α)µ

= π0 +
π0λ

s+ µ
+ π0

∞∑
n=1

λ

s+ µ

n∏
k=1

λ

s+ kη + (1− α)µ

+ π0

∞∑
n=0

αµ

s+ µ

n+1∏
k=1

λ

s+ kη + (1− α)µ

= π0 +
π0λ

s+ µ
+ π0

∞∑
n=0

λ+ αµ

s+ µ

n+1∏
k=1

λ

s+ kη + (1− α)µ
.

From this equation, (75) follows. (74) then follows from (75) and the normal-
ization condition lims→0+ v

∗(s) = 1. ⊓⊔

Let d∗(s) (Re(s) > 0) denote the LST of the actual waiting time.

d∗(s) = D(0) +

∫ ∞

0+

exp[−sx]d(x)dx.

Corollary 4 In the Mgeo/M/1+M queue, D(0) and d∗(s) (Re(s) > 0) are
given by

D(0) =

[
1 +

λ+ αµ

λ

∞∑
n=0

n+1∏
k=1

λ

kη + (1− α)µ

]−1

, (76)

d∗(s) = D(0) +D(0) · λ+ αµ

λ

∞∑
n=0

n+1∏
k=1

λ

s+ kη + (1− α)µ
. (77)
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Proof Using (67), we rewrite (56) as

d(x) = (λ+ αµ)D(0) exp[−ηx] exp
[
(λ/η)(1− exp[−ηx])− (1− α)µx

]
= (λ+ αµ)D(0) · exp[−{η + (1− α)µ}x] · exp

[
(λ/η)(1− exp[−ηx])

]
= (λ+ αµ)D(0) · exp[−{η + (1− α)µ}x]

∞∑
n=0

(λ/η)n(1− exp[−ηx])n

n!
.

We then have

d∗(s) = D(0) + (λ+ αµ)D(0)

∞∑
n=0

(λ/η)n

n!
· 1

s+ η + (1− α)µ

·
∫ ∞

0+

{s+ η + (1− α)µ} exp[−{s+ η + (1− α)µ}x]

· (1− exp[−ηx])ndx

= D(0) +D(0)

∞∑
n=0

(λ/η)n

n!
· λ+ αµ

s+ η + (1− α)µ

·
n∏

k=1

kη

s+ (k + 1)η + (1− α)µ

= D(0) +D(0) · λ+ αµ

λ

∞∑
n=0

n∏
k=0

λ

s+ (k + 1)η + (1− α)µ
,

which implies (77). (76) now follows from (77) and lims→0+ d
∗(s) = 1. ⊓⊔

Remark 11 It is readily verified that (74) and (76) satisfy (41).

4 Mx/G/1+Gdiff queue

In this section, we consider the case that all individual customers of a batch
have i.i.d. impatience times. We assume that impatience times of customers are
distributed according to the PDF H(x) (x ≥ 0). This case is mathematically
more complicated than the Mx/G/1+Gsame case, and we have to restrict atten-
tion to some special cases: the Mgeo/G/1+Gdiff and Mx/M/1+Mdiff queues.
For the Mgeo/G/1+Gdiff queue, we perform an analysis of the virtual waiting
time and the number of losses, in a similar way to that for the Mx/G/1+Gsame

queue in the previous section. As we will see, results for the Mgeo/G/1+Gdiff

queue are more complicated than those of the Mx/G/1+Gsame queue, even
with the assumption of geometric batch sizes. For the Mx/M/1+Mdiff queue,
we take another approach based on the queue length process, which is formu-
lated as a continuous-time Markov chain with the skip-free to the left property.
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4.1 Mgeo/G/1+Gdiff queue

We assume that the batch size distribution is given by (43). Recall that once
we derive the two-variable function G(w | y) (w ≥ 0, y ≥ 0), we can obtain
the virtual waiting time distribution and the loss probability based on the
results in Section 2. Let f(n, k;w1, w2, . . . , wk | y) (x ≥ 0, w1 > 0, w2 >
0, . . . , wk > 0, n = 0, 1, . . ., k = 1, 2, . . .) denote the joint conditional PDF
defined in the same way as in (16) for the Mx/G/1+Gsame queue. We further
define f∗(z, k;w1, w2, . . . , wk | y) (x ≥ 0, w1 > 0, w2 > 0, . . . , wk > 0, |z| ≤ 1,
k = 1, 2, . . .) as the PGF of f(n, k;w1, w2, . . . , wk | y) with respect to the
number of losses n:

f∗(z, k;w1, w2, . . . , wk | y) =
∞∑

n=0

znf(n, k;w1, w2, . . . , wk | y).

To obtain f(n, k;w1, w2, . . . , wk | y), we introduce the following quantities.

Let N
(k)
loss (N

(k)
loss = 0, 1, . . . , Nloss) denote the number of lost customers in a

batch who are in front of the k-th (k = 1, 2, . . . , Nadmit) admitted customer. We
define F̂ ∗(z, k;w1, w2, . . . , wk | y) (y ≥ 0, |z| < 1, w1 > 0, w2 > 0, . . . , wk > 0,
k = 1, 2, . . .) as

F̂ ∗(z, k;w1, w2, . . . , wk | y) =
∞∑

n=0

zn Pr(Nadmit ≥ k,N
(k)
loss = n,

W1 ≤ w1,W2 ≤ w2, . . . ,Wk ≤ wk | A = y).

We further define f̂∗(z, k;w1, w2, . . . , wk | y) (y ≥ 0, |z| < 1, w1 > 0, w2 > 0,
. . ., wk > 0, k = 1, 2, . . .) as

f̂∗(z, k;w1, w2, . . . , wk | y) = ∂kF̂ ∗(z, k;w1, w2, . . . , wk | y)
∂w1∂w2 · · · ∂wk

.

Let H∗
α(z, y) (|z| ≤ 1, y ≥ 0) denote a defective PGF of the number of lost

customers when no customers are admitted in a batch, given that y amount
of work is seen by the batch.

H∗
α(z, y) =

∞∑
n=1

zn Pr(Nloss = n,Nadmit = 0 | A = y)

=

∞∑
n=1

zn(1− α)αn−1{H(y)}n

= zH(y) · 1− α

1− zαH(y)
. (78)

Also let H
∗
α(z, y) (|z| ≤ 1, y ≥ 0) denote a defective PGF of the number of

(lost) customers in front of the first admitted customer in a batch when at
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least one customer is admitted, given that y amount of work is seen by the
batch.

H
∗
α(z, y) =

∞∑
n=0

zn Pr(Nadmit ≥ 1, N
(1)
loss = n | A = y) (79)

=

∞∑
m=1

(1− α)αm−1
m−1∑
n=0

zn{H(y)}nH(y) =
H(y)

1− zαH(y)
. (80)

Note that we have
H

∗
α(1, y) = 1−H∗

α(1, y).

Remark 12 It is readily verified that H∗
α(1, w) (resp. H

∗
α(1, w)) denote the

PDF (resp. complementary PDF) of the greatest impatience time among cus-
tomers in the same batch.

Remark 13 Because sizes of batches follow the geometric distribution with
parameter 1 − α and they are independent of the amount of work seen on
arrival, it follows for any y ≥ 0,

z(1− α)

1− zα
= H∗

α(z, y) + zH
∗
α(z, y) ·

1− α

1− zα
.

Lemma 6 f̂∗(z, k;w1, w2, . . . , wk | y) (y ≥ 0, |z| ≤ 1, w1 > 0, w2 > 0, . . . , wk >
0, k = 1, 2, . . .) is given by

f̂∗(z, 1;w1 | y) = H
∗
α(z, y)g(w1), (81)

f̂∗(z, k;w1, w2, . . . , wk | y) = H
∗
α(z, y)g(w1)

k∏
i=2

αH
∗
α

(
z, y +

i−1∑
j=1

wj

)
g(wi),

k = 2, 3, . . . . (82)

In addition, f∗(z, k;w1, w2, . . . , wk | y) is given in terms of the joint density

f̂∗(z, k;w1, w2, . . . , wk | y) by

f∗(z, k;w1, w2, . . . , wk | y) = f̂∗(z, k;w1, w2, . . . , wk | y)

·
[
1− α+ αH∗

α

(
z, y +

k∑
m=1

wm

)]
. (83)

Proof For k = 1, (81) immediately follows from the definition (80) of H
∗
α(z, y).

We thus consider k = 2, 3, . . .. Let N
(k)
rest (k = 1, 2, . . .) denote the number of

customers in a batch behind the k-th admitted customer, given that Nadmit ≥
k. Owing to the memoryless property of the geometric distribution, we have

Pr(N
(k)
rest = n) = (1− α)αn, n = 0, 1, . . . . (84)

Therefore, we obtain

f̂∗(z, k;w1, w2, . . . , wk | y)
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= f̂∗(z, k − 1;w1, w2, . . . , wk−1 | y) ·
∞∑

n=1

Pr(N
(k−1)
rest = n)

·
n−1∑
i=0

zi
{
H
(
y +

k−1∑
m=1

wm

)}i

H
(
y +

k−1∑
m=1

wm

)
g(wk)

= f̂∗(z, k − 1;w1, w2, . . . , wk−1 | y) · αH∗
α

(
z, y +

k−1∑
m=1

wm

)
g(wk),

k = 2, 3, . . . . (85)

(82) now follows from (81) and (85).
Furthermore, it is easy to see that

f∗(z, k;w1, w2, . . . , wk | y)
= f̂∗(z, k;w1, w2, . . . , wk | y)

·

(
Pr(N

(k)
rest = 0) +

∞∑
n=1

Pr(N
(k)
rest = n)zn{H(y)}n

)
.

(83) thus immediately follows from (78) and (84). ⊓⊔

To determine G(w | y), we consider the total amount of work brought into

the system. We define f̂∗total(z, k;w | y) (|z| < 1, y ≥ 0, w > 0, k = 1, 2, . . .) as

f̂∗total(z, 1;w | y) = f̂∗(z, 1;w | y),

and for k = 2, 3, . . .,

f̂∗total(z, k;w | y)

=

∫ w

w1=0

∫ w−w1

w2=0

· · ·
∫ w−w1−w2−···−wk−2

wk−1=0

· f̂∗
(
z, k;w1, w2, . . . , wk−1, w −

k−1∑
m=1

wm | y
)
dwk−1dwk−2 · · · dw1.

We further define f̂∗total(z;w | y) as

f̂∗total(z;w | y) =
∞∑
k=1

f̂∗total(z, k;w | y).

Lemma 7 For fixed z (|z| ≤ 1) and y (y ≥ 0), f̂∗total(z;w | y) is given by the
solution of the following Volterra integral equation of the second kind.

f̂∗total(z;w | y)

= H
∗
α(z, y)g(w) +

∫ w

0+

f̂∗total(z;u | y) · αH∗
α(z, y + u)g(w − u)du, w > 0.
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Proof With (81) and (85), it is verified that f̂∗total(z, k;w | y) is given by the
following recursion.

f̂∗total(z, 1;w | y) = H
∗
α(z, y)g(w), w > 0, (86)

f̂∗total(z, k;w | y) =
∫ w

0+

f̂∗total(z, k − 1;u | y) · αH∗
α(z, y + u)g(w − u)du,

w > 0, k = 2, 3, . . . . (87)

f̂∗total(z;w | y) thus satisfies

f̂∗total(z;w | y)

= f̂∗total(z, 1;w | y) +
∞∑
k=2

f̂∗total(z, k;w | y)

= H
∗
α(z, y)g(w) +

∞∑
k=2

∫ w

0+

f̂∗total(z, k − 1;u | y) · αH∗
α(z, y + u)g(w − u)du

= H
∗
α(z, y)g(w) +

∫ w

0+

f̂∗total(z;u | y) · αH∗
α(z, y + u)g(w − u)du.

⊓⊔

Theorem 10 In the Mgeo/G/1+Gdiff queue, G(w | y) (w ≥ 0, y ≥ 0) is given
by

G(w | y) =
∫ ∞

w

1− α

1− αH(y + t)
· f̂total(t | y)dt, (88)

where for fixed y (y ≥ 0), f̂total(w | y) is given by the solution of the following
Volterra integral equation of the second kind.

f̂total(w | y) = H(y)g(w)

1− αH(y)
+

∫ w

0+

αH(y + u)

1− αH(y + u)
· f̂total(u | y)g(w − u)du,

w > 0. (89)

The proof of Theorem 10 is provided in Appendix C.

Theorem 11 The Mgeo/G/1+Gdiff queue is stable if

ρ <∞, ρh∞ < 1. (90)

The proof of Theorem 11 is provided in Appendix D.

Remark 14 Owing to Theorems 2 and 11, the Mx/G/1+Gsame and Mgeo/G/1+Gdiff

queues have the same stability condition.

In the rest of this section, we assume (90). The stationary virtual waiting
time distribution is thus immediately obtained from (8) and (11).

Next, we consider the number of losses. We define P ∗
loss(z, k | y) (|z| ≤ 1,

y ≥ 0, k = 1, 2, . . .) as

P ∗
loss(z, k | y) =

∞∑
n=0

zn Pr(Nloss = n,Nadmit = k | A = y).
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Lemma 8 P ∗
loss(z, k | y) (|z| ≤ 1, y ≥ 0, k = 1, 2, . . .) is given by

P ∗
loss(z, 0 | y) = H∗

α(z, y), (91)

P ∗
loss(z, k | y) = H

∗
α(z, y)E


k∏

i=2

αH
∗
α

(
z, y +

i−1∑
j=1

Gj

)
·
[
1− α+ αH∗

α

(
z, y +

k∑
m=1

Gm

)]]
, (92)

where {Gn}n=1,2,... denotes a sequence of i.i.d. random variables distributed
according to the service time distribution G(x).

Proof (91) is obvious by definition (78) of H∗
α(z, y). On the other hand, using

Lemma 6, we have for k = 1, 2, . . .,

P ∗
loss(z, k | y)

=

∫ ∞

w1=0+

∫ ∞

w2=0+

· · ·
∫ ∞

wk=0+

f∗(z, k;w1, w2, . . . , wk | y)dwkdwk−1 · · · dw1

=

∫ ∞

w1=0+

∫ ∞

w2=0+

· · ·
∫ ∞

wk=0+

H
∗
α(z, y)g(w1)

·


k∏

i=2

αH
∗
α

(
z, y +

i−1∑
j=1

wj

)
g(wi)

[1− α+ αH∗
α

(
z, y +

k∑
m=1

wm

)]
·dwkdwk−1 · · · dw1,

which yields (92). ⊓⊔

Let P ∗
loss(z | y) (|z| ≤ 1, y ≥ 0) denote the PGF of the number of losses in

a batch which finds y amount of work in the system on arrival (cf. Theorem
3).

P ∗
loss(z | y) =

∞∑
n=0

Ploss(n | y)zn.

Furthermore, let P ∗
loss(z) (|z| ≤ 1) denote the PGF of the number of losses.

P ∗
loss(z) =

∞∑
n=0

znPloss(n).

Note that P ∗
loss(z) is given in terms of P ∗

loss(z | y) by (cf. (20))

P ∗
loss(z) = π0P

∗
loss(z | 0) +

∫ ∞

0+

v(y)P ∗
loss(z | y)dy.
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Theorem 12 P ∗
loss(z | y) (|z| ≤ 1, y ≥ 0) is given by

P ∗
loss(z | y) = H∗

α(z, y) +H
∗
α(z, y)

∞∑
k=1

E


k∏

i=2

αH
∗
α

(
z, y +

i−1∑
j=1

Gj

)
·
[
1− α+ αH∗

α

(
z, y +

k∑
m=1

Gm

)]]
.

Proof Theorem 12 immediately follows from Lemma 8 and

P ∗
loss(z | y) = P ∗

loss(z, 0 | y) +
∞∑
k=1

P ∗
loss(z, k | y).

4.2 Mx/M/1+Mdiff queue

In this subsection, we assume that service times and impatience times are ex-
ponentially distributed, i.e., (51) and (67) follow, while the batch size distribu-
tion pn (n = 1, 2, . . .) is a general discrete distribution. Let L(t) (t ≥ 0) denote
the total number of customers in the system at time t. In the Mx/M/1+Mdiff

queue, it is readily verified that L(t) is formulated as a continuous time Markov
chain M = {L(t) ∈ {0, 1, . . .}; t ≥ 0} with infinitesimal generator

Γ =


−λ p1λ p2λ p3λ · · ·
µ −λ− µ p1λ p2λ · · ·
0 µ+ η −λ− µ− η p1λ · · ·
0 0 µ+ 2η −λ− µ− 2η · · ·
...

...
...

...
. . .

 . (93)

Note that there always exists a non-negative integer K such that

∞∑
n=1

n · pnλ < µ+ kη for all k ≥ K,

and therefore M is irreducible and positive recurrent. Let π = (π0, π1, . . .)
denote the stationary probability vector of M.

πΓ = 0, πe = 1,

where e denotes a column vector whose elements are all equal to one.

Lemma 9 πn (n = 1, 2, . . .) satisfies

πn =
λ

µ+ (n− 1)η

n−1∑
k=0

πkpn−k, n = 1, 2, . . . . (94)
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Proof We consider a censored Markov chain M(n) (n = 0, 1, . . .) obtained
by observing M only when L(t) ∈ {0, 1, . . . , n}. It is easy to see that the

infinitesimal generator Γ (n) of M(n) is given by

Γ (n) =



−λ p1λ p2λ · · · pn−1λ pnλ
µ −λ− µ p1λ · · · pn−2λ pn−1λ
0 µ+ η −λ− µ− η · · · pn−3λ pn−2λ
...

...
...

. . .
...

...
0 0 0 · · · −λ− µ− (n− 2)η p1λ
0 0 0 · · · µ+ (n− 1)η −µ− (n− 1)η


,

(95)
where pn (n = 1, 2, . . .) is defined as in (2). Note that p1 = 1. Let π(n) =

(π
(n)
0 , π

(n)
1 , . . . , π

(n)
n ) denote the stationary probability vector of M(n).

π(n)Γ (n) = 0, π(n)e = 1.

It is readily verified that π(n) and the stationary probability vector of the
original Markov chain M satisfy

ζnπ
(n) = (π0, π1, . . . , πn),

where ζn =
∑n

i=0 πi. Therefore, we have

(π0, π1, . . . , πn)Γ
(n) = 0,

and in particular,

n−1∑
k=0

πkpn−kλ− πn{µ+ (n− 1)η} = 0.

We thus obtain (94). ⊓⊔

Remark 15 π1, π2, . . . is recursively given in terms of π0 with (94). Therefore,
an approximation to πn (n = 0, 1, . . .) can be computed using (94) and the
normalization condition

∞∑
n=0

πn = 1.

Let π∗(z) (|z| ≤ 1) denote the PGF of the queue length distribution.

π∗(z) =

∞∑
n=0

πnz
n.

It follows from (94) that

∞∑
n=1

πn{µ+ (n− 1)η}zn = λ

∞∑
n=1

zn
n−1∑
k=0

πkpn−k
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= λ

∞∑
k=0

πkz
k

∞∑
n=k+1

zn−kpn−k

= zλE[B] · π∗(z)p̃∗(z),

where p̃∗(z) denotes the PGF of the equilibrium distribution for batch sizes.

p̃∗(z) =

1−
∞∑

n=1

pnz
n

E[B](1− z)
=

∞∑
n=1

pn
E[B]

· zn−1.

On the other hand, we have

∞∑
n=1

πn{µ+ (n− 1)η}zn = (µ− η)(π∗(z)− π0) + zη · dπ
∗(z)

dz
.

Therefore, we obtain

dπ∗(z)

dz
= π∗(z) · λE[B]p̃∗(z)

η
− µ− η

ηz
· (π∗(z)− π0)

=
π0(µ− η)

ηz
+ π∗(z) · 1

η

(
λE[B]p̃∗(z)− µ− η

z

)
.

Below, we consider a real-variable function ϕL : (0, 1] → R given by

ϕL(x) =

∞∑
n=0

πnx
n.

Note that ϕL(x) (0 < x ≤ 1) satisfies

dϕL(x)

dx
=

(µ− η)π0
ηx

+ϕL(x)·
1

η

(
λE[B]p̃∗(x)− µ− η

x

)
, 0 < x ≤ 1, (96)

and

lim
x→0+

ϕL(x) = π0, ϕL(1) = 1.

Theorem 13 π0 and ϕL(x) (0 < x ≤ 1) are given by

π0 =

{
1 +

λE[B]

η

∫ 1

0

t(µ−η)/ηp̃∗(t) exp

[
λE[B]

η

∫ 1

t

p̃∗(u)du

]
dt

}−1

, (97)

ϕL(x) = π0

{
1 +

λE[B]x

η

∫ 1

0

t(µ−η)/ηp̃∗(tx) · exp
[
λE[B]

η

∫ x

tx

p̃∗(u)du

]
dt

}
.

(98)

The proof of Theorem 13 is provided in Appendix E.



32 Yoshiaki Inoue et al.

Remark 16 If µ < η, t(µ−η)/η on the right-hand side of (98) is singular at
t = 0. However, we can verify that∫ 1

0

t(µ−η)/ηp̃∗(tx) exp

[
λE[B]

η

∫ x

tx

p̃∗(u)du

]
dt

= lim
a→0+

∫ 1

a

t(µ−η)/ηp̃∗(tx) exp

[
λE[B]

η

∫ x

tx

p̃∗(u)du

]
dt

≤ 1 · exp
[
λE[B]

η

∫ x

0

p̃∗(u)du

]
lim

a→0+

∫ 1

a

t(µ−η)/ηdt

= exp

[
λE[B]

η

∫ x

0

p̃∗(u)du

]
lim

a→0+

1− a(µ−η)/η+1

(µ− η)/η + 1

= exp

[
λE[B]

η

∫ x

0

p̃∗(u)du

]
· 1

µ/η
<∞.

Remark 17 If the batch sizes are geometrically distributed, i.e., (43) holds, we
have

λE[B]p̃∗(z) =
λ

1− αz
.

In this case, ϕL(x) reduces to

ϕL(x) = π0

{
1 +

x

η

∫ 1

0

t(µ−η)/η λ

1− αtx
exp

[
λ

η

∫ x

tx

1

1− αu
du

]
dt

}
= π0

{
1 +

x

η

∫ 1

0

t(µ−η)/η λ

1− αtx
·
(
1− αtx

1− αx

)λ/(ηα)

dt

}

= π0

{
1 +

λx

η

(
1

1− αx

)λ/(ηα) ∫ 1

0

t(µ−η)/η(1− αtx)λ/(ηα)−1dt

}

= π0

{
1 +

λx

η

(
1

1− αx

)λ/(ηα)

· (αx)−(µ−η)/η−1(αx)(µ−η)/η+1

·
∫ 1

0

t(µ−η)/η(1− αtx)λ/(ηα)−1dt

}
= π0

{
1 +

λ(αx)−(µ−η)/η

αη

(
1

1− αx

)λ/(ηα)

B

(
αx,

µ

η
,
λ

ηα

)}
,

where B(x;β1, β2) (x > 0, β1 > 0, β2 > 0) denotes the incomplete Beta
function.

B(x;β1, β2) =

∫ x

0

tβ1−1(1− t)β2−1dt = xβ1

∫ 1

0

tβ1−1(1− tx)β2−1dt,

β1 > 0, β2 > 0.

Therefore, with ϕL(1) = 1, π0 is given by

π0 =

{
1 +

λα−µ/η

η

(
1

1− α

)λ/(ηα)

B

(
α,
µ

η
,
λ

ηα

)}−1

.
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4.2.1 Virtual waiting time and number of losses

We first consider the stationary virtual waiting time in the Mx/M/1+Mdiff

queue. Obviously, if the number of customers in the system is equal to n
(n = 1, 2, . . .), then the virtual waiting time is given by the absorption time
of an absorbing-state Markov chain with finite state-space {0, 1, . . . , n}, the
initial state equal to n, and infinitesimal generator given by

0 0 0 · · · 0 0
µ −µ 0 · · · 0 0
0 µ+ η −µ− η · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −µ− (n− 2)η 0
0 0 0 · · · µ+ (n− 1)η −µ− (n− 1)η


.

The LST v∗(s) (Re(s) > 0) of the stationary virtual waiting time is then given
in terms of the stationary queue length distribution πn (n = 0, 1, . . .).

f∗(s) = π0 +

∞∑
n=1

πn

n∏
i=1

µ+ (i− 1)η

s+ µ+ (i− 1)η
.

Next, we consider the number of losses in each batch. Let P (n, k) (k =
0, 1, . . . , n, n = 1, 2, . . .) denote the conditional probability that the number of
lost customers in a randomly chosen batch is equal to k, given that this batch
contains n customers on arrival.

P (n, k) = Pr(Nloss = k | B = n),

where B denotes the number of customers in a batch, and Nloss denotes the
number of lost customers out of B. Further let LA denote the number of
customers in the system this batch finds on arrival. We define Pm(n, k) (k =
0, 1, . . . , n, n = 1, 2, . . ., m = 0, 1, . . .) as

Pm(n, k) = Pr(Nloss = k | LA = m,B = n).

Because the size of an arriving batch is independent of the number of customers
in the system seen on arrival, it follows from PASTA that

P (n, k) =

∞∑
m=0

πmPm(n, k), k = 0, 1, . . . , n, n = 1, 2, . . . . (99)

Owing to the memoryless property of the exponential distribution, Pm(n, k)
(k = 0, 1, . . . , n, n = 1, 2, . . ., m = 0, 1, . . .) can be recursively computed as
follows. For m = 0, P0(1, 0) and P0(1, 1) are given by

P0(1, 0) = 1, P0(1, 1) = 0.
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P0(n, k) for n = 2, 3, . . . is then given recursively by

P0(n, 0) =
µ

µ+ (n− 1)η
· P0(n− 1, 0),

P0(n, k) =
µ

µ+ (n− 1)η
· P0(n− 1, k) +

(n− 1)η

µ+ (n− 1)η
· P0(n− 1, k − 1),

k = 1, 2, . . . , n− 1,

P0(n, n) =
(n− 1)η

µ+ (n− 1)η
· P0(n− 1, n− 1).

Similarly, for m = 1, 2, . . ., we have

Pm(1, 0) =
µ+ (m− 1)η

µ+mη
· Pm−1(1, 0),

Pm(1, 1) =
µ+ (m− 1)η

µ+mη
· Pm−1(1, 1) +

η

µ+mη
,

and

Pm(n, 0) =
µ+ (m− 1)η

µ+ (m+ n− 1)η
· Pm−1(n, 0),

Pm(n, k) =
µ+ (m− 1)η

µ+ (m+ n− 1)η
· Pm−1(n, k)

+
(n− 1)η

µ+ (m+ n− 1)η
· Pm(n− 1, k − 1), k = 1, 2, . . . , n,

which determines Pm(n, k) (k = 0, 1, . . . , n, n = 1, 2, . . ., m = 1, 2, . . .).

Therefore, using (99), we can compute P (n, k) (k = 0, 1, . . . , n) for any
n via an algorithmic approach. In addition, the probability function Ploss(k)
(k = 0, 1, . . .) of the number of losses in a randomly chosen batch is given by

P (k) =

∞∑
n=k

pnP (n, k).

5 Mx/G/1+D queue

In this section, we consider a special case of both Mx/G/1+Gsame and Mx/G/1+Gdiff

queues, viz., the Mx/G/1+D queue. This is the case that impatience times of
customers are constant and equal to τ (τ > 0):

H(x) =

{
1, x < τ,

0, x ≥ τ.
(100)
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Lemma 10 In the Mx/G/1+D queue, G(w | y) (w ≥ 0, y ≥ 0) is given by

G(w | y) =


Gbatch(w), y < τ,w < τ − y,

G(w) +

∞∑
k=2

pk

∫ τ−y

0

g(k−1)(u)G(w − u)du, y < τ,w ≥ τ − y,

0, y ≥ τ,
(101)

where Gbatch(x) (x ≥ 0) is defined in (36).

The proof of Lemma 10 is provided in Appendix F.
In the Mx/G/1+D queue, it is clear that the system is always stable.

Therefore, we can determine v(x) and π0, using Lemma 10, (8), (11), and
(101). Let ϕ(x) (x > 0) denote a function defined as

ϕ(x) =



∞∑
n=1

ρng̃
(n)
batch(x), 0 < x < τ,

ρGbatch(x | 0) + λ

∫ τ

0+

ϕ(y)G(x− y | y)dy, x ≥ τ,

where g̃
(n)
batch(x) (x ≥ 0, n = 1, 2, . . .) denotes a p.d.f. which is given by

g̃
(1)
batch(x) =

Gbatch(x)

E[B]E[G]
, x ≥ 0,

g̃
(n)
batch(x) = g̃

(n−1)
batch ∗ g̃(1)batch(x), x ≥ 0, n = 2, 3, . . . .

Theorem 14 π0 and v(x) in the Mx/G/1+D queue are given by

π0 =

[
1 +

∫ ∞

0+

ϕ(x)dx

]−1

, (102)

v(x) = π0ϕ(x), x > 0. (103)

Proof Using (101), it is easy to see that for 0 < x < τ , (9) and (10) are reduced
to be

ϕn(x) = ρng̃
(n)
batch(x), 0 < x < τ.

Therefore, (8) implies

v(x) = π0

∞∑
n=1

ρng̃
(n)
batch(x), 0 < x < τ, n = 1, 2, . . . .

On the other hand, for x ≥ τ , it follows from (7) and (101) that

v(x) = π0ρGbatch(x | 0) + λ

∫ τ

0+

v(y)G(x− y | y)dy, x ≥ τ.

From these equations, (103) immediately follows. Furthermore, (102) is ob-
tained from the normalization condition (6). ⊓⊔
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Using Theorem 14, we can verify that if the traffic intensity ρ is less than
one,

v(x) =
π0

1− ρ
· vMx/G/1(x), x < τ, (104)

where vMx/G/1(x) denotes the PDF of the stationary virtual waiting time
VMx/G/1 in the corresponding Mx/G/1 queue without impatience, which is
identical to that in the ordinary M/G/1 queue with the arrival rate λ and
the complementary PDF of the service time distribution Gbatch(x). Note that
(104) is valid only for ρ < 1 (otherwise the corresponding M/G/1 queue is not
stable), whereas Theorem 14 still holds for ρ ≥ 1.

Next, we consider the actual waiting time.

Theorem 15 In the Mx/G/1+D queue, D(0) and d(x) (x ≥ 0) are given by

D(0) =

[
1 +

∫ τ

0+

{ ∞∑
m=1

pm+1g
(m)(x)

+

∞∑
n=1

ρn

(
g̃
(n)
batch(x) +

∞∑
m=1

pm+1g
(m) ∗ g̃(n)batch(x)

)}
dx

]−1

, (105)

d(x) =



D(0)

[ ∞∑
m=1

pm+1g
(m)(x)

+

∞∑
n=1

ρn

(
g̃
(n)
batch(x) +

∞∑
m=1

pm+1g
(m) ∗ g̃(n)batch(x)

)]
,

0 < x < τ,

0, x ≥ τ.

(106)

Proof For x ≥ τ , d(x) = 0 immediately follows from (35) and (100). On the
other hand, for 0 < x < τ , it is verified that (39) and (40) reduce to

ϕD,1(x) = ρg̃
(1)
batch(x) +

∞∑
m=1

pm+1g
(m)(x), 0 < x < τ,

ϕD,n(x) = ρng̃
(n)
batch(x) + ρn−1

∞∑
m=1

pm+1g
(m) ∗ g̃(n−1)

batch (x),

0 < x < τ, n = 2, 3, . . . .

Therefore, using (37), we obtain

d(x) = D(0)

[
ρg̃

(1)
batch(x) +

∞∑
m=1

pm+1g
(m)(x) +

∞∑
n=2

ρng̃
(n)
batch(x)

+

∞∑
n=2

ρn−1
∞∑

m=1

pm+1g
(m) ∗ g̃(n−1)

batch (x)

]
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= D(0)

[ ∞∑
m=1

pm+1g
(m)(x) +

∞∑
n=1

ρng̃
(n)
batch(x)

+

∞∑
n=1

ρn
∞∑

m=1

pm+1g
(m) ∗ g̃(n)batch(x)

]
.

(106) then follows from this equation, and (105) follows from the normalization
condition (32). ⊓⊔

For 0 < x < τ , we can rewrite (106) as

d(x) =
D(0)E[B]

1− ρ

[
(1− ρ)

∞∑
m=1

pm+1

E[B]
· g(m)(x)

+

∞∑
n=1

(1− ρ)ρn

(
p1

E[B]
· g̃(n)batch(x) +

∞∑
m=1

pm+1

E[B]
· g(m) ∗ g̃(n)batch(x)

)]
.

Therefore, if ρ < 1 (cf. (104)),

d(x) =
D(0)E[B]

1− ρ

[
Pr(VMx/G/1 = 0)

∞∑
m=1

pm+1

E[B]
· g(m)(x) +

p1
E[B]

· vMx/G/1(x)

+

∞∑
m=1

pm+1

E[B]
· g(m) ∗ vMx/G/1(x)

]

=
D(0)E[B]

1− ρ
· dMx/G/1(x), x < τ, (107)

where dMx/G/1(x) denotes the PDF of the stationary actual waiting time
DMx/G/1 in the corresponding Mx/G/1 queue. Note that the normalization
constant is determined from the relation

1−D(0) =

∫ τ

0+

d(x)dx

=
D(0)E[B]

1− ρ

∫ τ

0+

dMx/G/1(x)dx

=
D(0)E[B]

1− ρ

(
Pr(DMx/G/1 ≤ τ)− Pr(DMx/G/1 = 0)

)
=
D(0)E[B]

1− ρ

(
Pr(DMx/G/1 ≤ τ)− 1− ρ

E[B]

)
,

which implies

D(0) =
1− ρ

E[B] Pr(DMx/G/1 ≤ τ)
. (108)

This leads to an alternative formula for the loss probability Ploss in the
case of ρ < 1.
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Corollary 5 If ρ < 1, the stationary loss probability Ploss in the Mx/G/1+D
queue is given by

Ploss =
(1− ρ) Pr(DMx/G/1 > τ)

1− ρPr(DMx/G/1 > τ)
, (109)

where DMx/G/1 denotes a generic random variable for the actual waiting time
in the ordinary Mx/G/1 queue.

Proof We obtain (109) with a straightforward calculations using (42) and
(108). ⊓⊔

Remark 18 The formula (109) is stated in [10] without a proof. Kim and Kim
[20] shows a similar result for the Mx/M/c+D queue, where they state that
the same approach does not seem to be applicable to the Mx/G/1+D queue.

Remark 19 When the batch size distribution is geometric, i.e., in the Mgeo/G/1+D
queue, the distribution of the number of losses in Ploss(n) (n = 0, 1, . . .) is given
by (49), (50), and (109) if ρ < 1.

5.1 Busy period

In this subsection, we derive the LST of the busy period in the M[x]/G/1+D
queue. We define gbatch(x) (x ≥ 0) as the p.d.f. of the total amount of work
required by a batch (cf. (36)).

gbatch(x) =

∞∑
n=1

png
(n)(x).

We further define g
(n)
batch(x) (x ≥ 0) as

g
(1)
batch(x) = gbatch(x), g

(n)
batch(x) = g

(n−1)
batch ∗ gbatch(x), n = 2, 3, . . . .

Let {N(t); t ≥ 0} denote a Poisson counting process with rate λ. By definition,

Pr(N(t) = k) =
exp[−λt](λt)k

k!
, t ≥ 0, k = 0, 1, . . . .

Also, let {Y (t); t ≥ 0} denote a compound Poisson process defined as

Y (t) =

N(t)∑
n=1

Gbatch,n, t ≥ 0,

where {Gbatch,n}n=1,2,... denotes a sequence of i.i.d. random variables that
follow the p.d.f. gbatch(x), which represents the total required service time of
arriving batches. We define h(x, t) (x > 0, t ≥ 0) as the p.d.f. of Y (t).

h(x, t) =
dPr(Y (t) ≤ x)

dx
=

∞∑
k=1

exp[−λt](λt)k

k!
· g(k)batch(x).
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0

τ

TR|y

y

TL|y TU|y TU|τ
Time

Workload

TR|τ

Fig. 1 Examples of busy periods with initial workload y < τ .

Note that

Pr(Y (t) = 0) +

∫ ∞

0+

h(x, t)dx = exp[−λt] +
∫ ∞

0+

h(x, t)dx = 1.

Let V[t] (t ≥ 0) denote the virtual waiting time at time t. For 0 < y ≤ τ ,
we define TL|y and TU|y as stopping times given by

TL|y = inf{t > 0; Y (t) = −y + t}, TU|y = inf{t > 0; Y (t) ≥ τ − y + t}.

Note that TL|y and TU|y are related to the lengths of first passage times to
V[t] = 0 and V[t] = τ , respectively, given that V[0] = y (see Figure 1). If
TL|y < TU|y then V[TL|y ] = 0, and the busy period terminates. On the other
hand, if TU|y < TL|y then V[TU|y ] = τ +TR|y, where TR|y denotes the overshoot
above level τ . The system then does not admit new batches during the next
TR|y time units. Subsequently a new cycle starts with y = τ , until one of the
boundaries is crossed. If the lower boundary is crossed then the busy period
terminates, otherwise a new cycle starts with y = τ . In all cycles, the random
variables TU|y and TR|y are dependent (unless the service time distribution is
exponential).

We then define LSTs Ψ∗
L|y(s) and Ψ

∗∗
U|y(s, ω) (Re(s) > 0) as

Ψ∗
L|y(s) = E

[
1{TL|y < TU|y} exp

[
−sTL|y

]]
,

Ψ∗∗
U|y(s, ω) = E

[
1{TU|y < TL|y} exp

[
−sTU|y

]
exp

[
−ωTR|y

]]
,

where 1{·} denotes an indicator function. We also define ψL|y(t) (t > y) and
ζU|y(t, x) (t > 0, x > 0) as the p.d.f. and the joint p.d.f. corresponding to
Ψ∗
L|y(s) and Ψ

∗∗
U|y(s, ω), respectively. Note that

Ψ∗
L|y(s) = exp[−λy] exp[−sy] +

∫ ∞

y+

ψL|y(t) exp[−st]dt,

Ψ∗∗
U|y(s, ω) =

∫ ∞

x=0+

∫ ∞

t=0+

ζU|y(t, x) exp[−st] exp[−ωx]dtdx.
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We first consider TL|y. For 0 < y ≤ τ and t ≥ 0, we define gτ−y(x, t) as a
p.d.f. given by

gτ−y(x, t) =
d

dx
Pr(Y (t) ≤ x, TU|y > t)

=
d

dx
Pr(Y (t) ≤ x, Y (w) < τ − y + w,w ≤ t), x < τ − y + t.

Lemma 11 gτ−y(x, t) (x < τ − y + t) is given by

g0(x, t) =
t− x

t
· h(x, t), y = τ,

and

gτ−y(x, t)

= h(x, t)− 1{x > τ − y}

[
h(x, x− τ + y) exp[−λ(t− x+ τ − y)]

+ (t− x+ τ − y)

∫ x−τ+y

0

1

t− u
· h(u+ τ − y, u)

· h(x− τ + y − u, t− u)du

]
, y < τ.

Proof Lemma 11 immediately follows from the results in [25]. ⊓⊔

Lemma 12 ΨL|y(t) (t > y) is given by

ΨL|y(t) =

∞∑
n=1

(−1)nΨL|y(n; t),

where ΨL|y(n; t) (n = 1, 2, . . .) is defined as

ΨL|y(1; t) = gτ−y(t− y, t)− exp[−λy]gτ (t− y, t− y),

ΨL|y(n; t) =

∫ t

y

ΨL|y(n− 1;w)gτ (t− w, t− w)dw, n = 2, 3, . . . .

Proof It is readily to see that ΨL|y(t) (t > y) satisfies a Volterra integral
equation of the second kind:

ΨL|y(t) = gτ−y(t− y, t)− exp[−λy]gτ (t− y, t− y)

−
∫ t

y

ΨL|y(w)gτ (t− w, t− w)dw.

This concludes the proof. ⊓⊔



Analysis of Mx/G/1 queues with impatient customers 41

We next consider TU|y and TR|y. For 0 < y ≤ τ , we define a p.d.f.
gy,τ−y(x, t) (0 < x < τ , t ≥ 0) as

gy,τ−y(x, t) =
d

dx
Pr
(
Y (t) ≤ x,min(TL|y, TU|y) > t

)
.

By definition, we have

gy,τ−y(x, t) = gτ−y(x, t)− 1{t > y}
[
exp[−λy]h(x, t− y)

+

∫ t

y

ψL|y(w)h(x− w + y, t− w)dw
]
. (110)

Furthermore, we define g(w | y) (w > 0, 0 ≤ y < τ) as the p.d.f. corresponding
to the complementary PDF G(w | y). From (101), we have

g(w | y) =


gbatch(w), w < τ − y,

g(w) +

∞∑
k=2

pk

∫ τ−y

0

g(k−1)(u)g(w − u)du, w ≥ τ − y.
(111)

Lemma 13 The joint density ζU|y(t, x) of TU|y and TR|y is given by

ζU|y(t, x) =

∫ t+τ−y

min(0,t−y)

gy,τ−y(u, t) · λg(t+ τ − y − u+ x | u)du

=


∫ t+τ−y

0

gτ−y(u, t) · λg(t+ τ − y − u+ x | u)du, t ≤ y,∫ t+τ−y

t−y

gy,τ−y(u, t) · λg(t+ τ − y − u+ x | u)du, t > y.

Proof Lemma 13 immediately follows from (110) and the definitions of the
p.d.f.s ζ(TUy ,Ry)(t, r) and gy,τ−y(u, t). ⊓⊔

We thus obtain the LSTs Ψ∗
L|y(s) and Ψ

∗∗
U|y(s, ω) from Lemmas 12 and 13.

Finally, we consider the length TBP of a busy period. We define Ψ∗
BP(s)

(Re(s) > 0) as the LST of TBP.

Theorem 16 Ψ∗
BP(s) (Re(s) > 0) is given by

Ψ∗
BP(s) =

∫ τ

0

(
Ψ∗
L|w(s) + Ψ∗∗

U|w(s, s) ·
Ψ∗
L|τ (s)

1− Ψ∗∗
U|τ (s, s)

)
g(w | 0)dw

+

∫ ∞

0

exp[−sw] ·
Ψ∗
L|τ (s)

1− Ψ∗∗
U|τ (s, s)

· g(τ + w | 0)dw. (112)
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τ

TR|τ

y

w TU|τ
Time

Workload

0

Fig. 2 An example of a busy period with initial workload y > τ .

Proof We distinguish between two cases: (I) the total required service time of
the first batch in the busy period process equals some value y < τ , and (II)
this service requirement exceeds τ . See Figures 1 and 2.

For case (I) we further distinguish two possibilities: (I-i) the workload will
not exceed level τ before the end of the busy period, and (I-ii) the workload
does exceed that level before the end of the busy period. By definition, the
busy period LST in case (I-i) is given by Ψ∗

Ly
(s).

In case (I-ii), on the other hand, TU|y+TR|y forms the first part of the busy
period. The remaining part of the busy period is independent of the previous
part. It consists of two components. The first component is a geometrically
distributed number of intervals that start when the workload process down-
crosses level τ and end when, after the next upcrossing of level τ , that level is
downcrossed once more. The second component is an interval that also starts
when the workload downcrosses level τ , but ends when the busy period ends –
this is an interval in which level τ is not reached anymore. It has LST Ψ∗

Lτ
(s).

The lengths of those intervals that occur geometrically often are all i.i.d., and
distributed as TU|τ + TR|τ . Therefore, the LST of the total length of the busy
period in case (I) is given by the first term on the right-hand side of (112).

Similarly, we can readily verify that the LST of the busy period in case
(II) is given by the second term on the right-hand side of (112). ⊓⊔

6 Conclusion

In this paper we have considered a batch arrival Mx/G/1 queue with impa-
tient customers. We have considered both the case in which customers in the
same batch have the same impatience time, and the case in which these im-
patience times may differ. Observing that the workload in both variants can
be viewed as the workload in an M/G/1 queue in which the service time of a
customer depends on its waiting time y in a particular way (PDF G(w | y)),
we have first focussed on deriving an expresssion for that workload density.
We have subsequently expressed the actual waiting time distribution (for the
first variant) and the loss probability (for both model variants) into that work-
load density. We have also considered several special cases. One of those is the
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M[X]/G/1+D queue, for which both model variants coincide. Our results for
the latter model include the busy period distribution.
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Appendices

A Proof of Lemma 2

By definition, G(w | y) (w ≥ 0, y ≥ 0) is given by

G(w | y) =
∫ ∞

w

∞∑
n=0

∞∑
k=1

ftotal(n, k; t | y)dt, (113)

where ftotal(n, k;w | y) (w > 0, y ≥ 0, n = 0, 1, . . ., k = 1, 2, . . .) is defined as

ftotal(n, 1;w | y) = f(n, 1;w | y),

and

ftotal(n, k;w | y)

=

∫ w

w1=0

∫ w−w1

w2=0
· · ·
∫ w−w1−w2−···−wk−2

wk−1=0
f
(
n, k;w1, w2, . . . , wk−1, w −

k−1∑
m=1

wm | y
)

· dwk−1dwk−2 · · · dw1, k = 2, 3, . . . .

Using Lemma 1, we have

ftotal(0, 1;w | y) = p1H(y)g(w),

ftotal(n, 1;w | y) = pn+1

[
H(y)−H(y + w)

]
g(w), n = 1, 2, . . . ,

and for k = 2, 3, . . .,

ftotal(0, k;w | y)

= pk

∫ w

w1=0

∫ w−w1

w2=0
· · ·
∫ w−w1−w2−···−wk−2

wk−1=0
H
(
y +

k−1∑
m=1

wm

)

·
{

k−1∏
i=1

g(wi)

}
g

(
w −

k−1∑
m=1

wm

)
dwk−1dwk−2 · · · dw1,

ftotal(n, k;w | y)

= pn+k

∫ w

w1=0

∫ w−w1

w2=0
· · ·
∫ w−w1−w2−···−wk−2

wk−1=0

[
H
(
y +

k−1∑
m=1

wm

)
−H(y + w)

]
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·
{

k−1∏
i=1

g(wi)

}
g

(
w −

k−1∑
m=1

wm

)
dwk−1dwk−2 · · · dw1, n = 1, 2, . . . .

With a straightforward calculation, we can verify that for k = 2, 3, . . .,

ftotal(0, k;w | y) = pk

∫ w

0
H(y + u)g(k−1)(u)g(w − u)du,

ftotal(n, k;w | y) = pn+k

∫ w

0

[
H(y + u)−H(y + w)

]
g(k−1)(u)g(w − u)du, n = 1, 2, . . . .

We then define ftotal(w | y) (y ≥ 0, w > 0, n = 0, 1, . . .) as

ftotal(w | y) =
∞∑

n=0

∞∑
k=1

ftotal(n, k;w | y).

It follows that

ftotal(w | y) = p1H(y)g(w) +

∞∑
n=1

pn+1

[
H(y)−H(y + w)

]
g(w)

+

∞∑
k=2

pk

∫ w

0
H(y + u)g(k−1)(u)g(w − u)du

+
∞∑

n=1

∞∑
k=2

pn+k

∫ w

0

[
H(y + u)−H(y + w)

]
g(k−1)(u)g(w − u)du

= p1H(y)g(w) + p2
[
H(y)−H(y + w)

]
g(w)

+

∞∑
k=2

pk

∫ w

0
H(y + u)g(k−1)(u)g(w − u)du

+

∞∑
k=2

pk+1

∫ w

0

[
H(y + u)−H(y + w)

]
g(k−1)(u)g(w − u)du

= p1H(y)g(w) + p2
[
H(y)−H(y + w)

]
g(w)

+

∞∑
k=2

pk

∫ w

0
H(y + u)g(k−1)(u)g(w − u)du

−
∞∑

k=2

pk+1H(y + w)g(k)(w)

= H(y)g(w)−
∞∑

k=1

pk+1H(y + w)g(k)(w)

+

∞∑
k=2

pk

∫ w

0
H(y + u)g(k−1)(u)g(w − u)du

Using (113), we have

G(w | y) =

∫ ∞

w
ftotal(t | y)dt

= H(y)G(w)−
∞∑

k=1

pk+1

∫ ∞

w
H(y + t)g(k)(t)dt

+

∞∑
k=2

pk

∫ ∞

t=w
dt

∫ t

u=0
H(y + u)g(k−1)(u)g(t− u)du.
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Therefore, we obtain (17) noting that

∞∑
k=2

pk

∫ ∞

t=w
dt

∫ t

u=0
H(y + u)g(k−1)(u)g(t− u)du

=

∞∑
k=2

pk

∫ ∞

u=w
H(y + u)g(k−1)(u)du

∫ ∞

t=u
g(t− u)dt

+

∞∑
k=2

pk

∫ w

u=0
H(y + u)g(k−1)(u)du

∫ ∞

t=w
g(t− u)dt

=

∞∑
k=1

pk+1

∫ ∞

w
H(y + u)g(k)(u)du+

∞∑
k=2

pk

∫ w

u=0
H(y + u)g(k−1)(u)G(w − u)du.

Next we consider (18). Using (15) and (17), we have

β(y) = E[G]H(y) +

∫ ∞

w=0
dw

∫ w

u=0
H(y + u)

∞∑
k=2

pkg
(k−1)(u)G(w − u)du

= E[G]H(y) +

∞∑
k=2

pk

∫ ∞

u=0
H(y + u)g(k−1)(u)du

∫ ∞

w=u
G(w − u)dw

= E[G]

[
H(y) +

∞∑
k=2

pk

∫ ∞

u=0
H(y + u)g(k−1)(u)du

]
.

(18) then follows from this equation. ⊓⊔

B Proof of Lemma 4

It follows from (30), (33), and (34) that

(1− Ploss)

[
D(0)G(w) +

∫ w

0+
d(u)G(w − u)du

]
= π0Q(0 | 0)G(w)

+

∫ w

0+

[
π0qtotal(u | 0) + v(u)Q(0 | u) +

∫ u

0+
v(t)qtotal(u− t | t)dt

]
G(w − u)du

= π0

[
Q(0 | 0)G(w) +

∫ w

0+
qtotal(u | 0)G(w − u)du

]
+

∫ w

0+
v(u)Q(0 | u)G(w − u)du+

∫ w

t=0+
v(t)dt

∫ w

u=t
qtotal(u− t | t)G(w − u)du

=
π0

E[B]
·G(w | 0) +

∫ w

0+
v(t)Q(0 | t)G(w − t)dt

+

∫ w

t=0+
v(t)dt

∫ w−t

u=0
qtotal(u | t)G(w − t− u)du

=
1

E[B]

[
π0G(w | 0) +

∫ w

0+
v(t)G(w − t | t)dt

]
.

From this formula and (7), we obtain

v(x) = (1− Ploss)λE[B]

[
D(0)G(x) +

∫ x

0+
d(u)G(x− u)du

]
.
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Using (27), (29), (33), (34), and this equation, we have

d(x) =
π0H(x)

E[B](1− Ploss)

∞∑
n=1

pn+1g
(n)(x) +

H(x)

E[B]
·

v(x)

1− Ploss

+
H(x)

E[B]

∫ x

0+

v(t)

1− Ploss

∞∑
n=1

pn+1g
(n)(x− t)dt

= D(0)H(x)
∞∑

n=1

pn+1g
(n)(x) + λH(x)

[
D(0)G(x) +

∫ x

0+
d(u)G(x− u)du

]

+ λH(x)

∫ x

0+

[
D(0)G(t) +

∫ t

0+
d(u)G(t− u)du

] ∞∑
n=1

pn+1g
(n)(x− t)dt

= D(0)H(x)

∞∑
n=1

pn+1g
(n)(x) + λH(x)

∫ x

0+
d(u)G(x− u)du

+ λD(0)H(x)

[
G(x) +

∫ x

0+
G(t)

∞∑
n=1

pn+1g
(n)(x− t)dt

]

+ λH(x)

∫ x

u=0+
d(u)du

∫ x

t=u
G(t− u)

∞∑
n=1

pn+1g
(n)(x− t)dt

= D(0)H(x)

∞∑
n=1

pn+1g
(n)(x) + λH(x)

∫ x

0+
d(u)G(x− u)du

+ λD(0)H(x)

[
G(x) +

∫ x

0+
G(t)

∞∑
n=1

pn+1g
(n)(x− t)dt

]

+ λH(x)

∫ x

u=0+
d(u)du

∫ x−u

t=0
G(t)

∞∑
n=1

pn+1g
(n)(x− u− t)dt

= D(0)H(x)

∞∑
n=1

pn+1g
(n)(x)

+ λD(0)H(x)

[
G(x) +

∫ x

0+
G(t)

∞∑
n=1

pn+1g
(n)(x− t)dt

]

+ λH(x)

∫ x

u=0+
d(u)

[
G(x− u) +

∫ x−u

t=0
G(t)

∞∑
n=1

pn+1g
(n)(x− u− t)dt

]
du.

We then obtain (35) noting that

G(w) +

∫ w

0
G(t)

∞∑
n=1

pn+1g
(n)(w − t)dt

= G(w) +
∞∑

n=1

pn+1

∫ w

0
(1−G(t))g(n)(w − t)dt

= 1−G(1)(w) +

∞∑
n=1

pn+1

(
G(n)(w)−G(n+1)(w)

)
= 1 +

∞∑
n=0

pn+2G
(n+1)(w)−

∞∑
n=0

pn+1G
(n+1)(w)

= 1−
∞∑

n=0

pn+1G
(n+1)(w)

= Gbatch(w). (114)
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⊓⊔

C Proof of Theorem 10

We define f∗total(z, k;w | y) (|z| ≤ 1, y ≥ 0, w > 0, k = 1, 2, . . .) as

f∗total(z, 1;w | y) = f∗(z, 1;w | y),

and for k = 2, 3, . . .,

f∗total(z, k;w | y)

=

∫ w

w1=0

∫ w−w1

w2=0
· · ·
∫ w−w1−w2−···−wk−2

wk−1=0
f∗
(
z, k;w1, w2, . . . , wk−1, w −

k−1∑
m=1

wm

)
· dwk−1dwk−2 · · · dw1.

Also, we define f∗total(z;w | y) as

f∗total(z;w | y) =
∞∑

k=1

f∗total(z, k;w | y).

Note that (83) implies

f∗total(z, k;w | y) = f̂∗total(z, k;w | y) ·
(
1− α+ αH∗

α(z, y + w)
)
,

and therefore

f∗total(z;w | y) = f̂∗total(z;w | y) ·
(
1− α+ αH∗

α(z, y + w)
)
.

By definition, G(w | y) is given by

G(w | y) =
∫ ∞

w
f∗total(1; t | y)dt =

∫ ∞

w
f̂∗total(1; t | y) ·

(
1− α+ αH∗

α(1, y + t)
)
dt.

Owing to Lemma 7, we can then verify that Theorem 10 follows noting (78), (80), and

f̂total(w | y) = f̂∗total(1;w | y).

⊓⊔

D Proof of Corollary 11

We show that (5) holds under the assumption (90). We define Z(y) (y ≥ 0) as

Z(y) =
αH(y)

1− αH(y)
= 1−

1− α

1− αH(y)
.

Because of the assumption H(0) = 0, it follows that

Z(y) ≤ Z(0) = α < 1, y ≥ 0. (115)

In addition, it is readily verified that Z(y) is non-increasing, and

lim
y→∞

Z(y) =
αh∞

1− α+ αh∞
. (116)
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With Z(y), (89) is rewritten to be

f̂total(w | y) =
Z(y)g(w)

α
+

∫ w

0+
Z(y + u)g(w − u)f̂total(u | y)du,

and its solution is represented as

f̂total(w | y) =
∞∑

n=1

Kn(w, y),

where

K1(w, y) =
Z(y)g(w)

α
, (117)

Kn(w, y) =

∫ w

0+
Z(y + u)g(w − u)Kn−1(u, y)du. (118)

Because of (115), Kn(w, y) (n = 1, 2, . . .) is bounded above by

Kn(w, y) ≤ αn−1g(n)(w), w ≥ 0, y ≥ 0, n = 1, 2, . . . ,

so that

f̂total(w | y) ≤
∞∑

n=1

αn−1g(n)(w).

It then follows from (4), (88), and this inequality that

λβ(y) = λ

∫ ∞

w=0
w ·

1− α

1− αH(y + w)
· f̂total(w | y)dw

≤ λ

∫ ∞

w=0
w ·

1− α

1− α+ αh∞

∞∑
n=1

αn−1g(n)(w)dw

= λ

∞∑
n=1

1− α

1− α+ αh∞
· αn−1nE[G]

=
λE[G]

1− α+ αh∞
·

1

1− α
(119)

= ρ ·
1

1− α+ αh∞
<∞. (120)

Furthermore, owing to the dominated convergence theorem,

lim
y→∞

λβ(y) = λ

∫ ∞

w=0
w lim

y→∞

1− α

1− αH(y + w)
· f̂total(w | y)dw

= λ

∫ ∞

w=0
w ·

1− α

1− α+ αh∞

( ∞∑
n=1

lim
y→∞

Kn(w, y)

)
dw.

Note here that (116), (117), and (118) imply

lim
y→∞

Kn(w, y) =
1

α

(
αh∞

1− α+ αh∞

)n

g(n)(w), n = 1, 2, . . . .

We thus obtain

lim
y→∞

λβ(y) =
λ

α

∞∑
n=1

1− α

1− α+ αh∞

(
αh∞

1− α+ αh∞

)n ∫ ∞

w=0
wg(n)(w)dw
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=
λ

α

∞∑
n=1

1− α

1− α+ αh∞

(
αh∞

1− α+ αh∞

)n

nE[G]

=
λh∞E[G]

1− α

= ρh∞ < 1,

which completes the proof. ⊓⊔

E Proof of Theorem 13

We define ψL(x) (0 < x ≤ 1) as

ψL(x) = ϕL(x) exp

[
1

η

∫ 1

x

(
λE[B]p̃∗(u)−

µ− η

u

)
du

]
.

It follows from (96) that

dψL(x)

dx
=
dϕL(x)

dx
· exp

[
1

η

∫ 1

x

(
λE[B]p̃∗(u)−

µ− η

u

)
du

]
− ϕL(x) ·

1

η

(
λE[B]p̃∗(x)−

µ− η

x

)
exp

[
1

η

∫ 1

x

(
λE[B]p̃∗(u)−

µ− η

u

)
du

]
=

(µ− η)π0

ηx
exp

[
1

η

∫ 1

x

(
λE[B]p̃∗(u)−

µ− η

u

)
du

]
, 0 < x ≤ 1.

We thus have

ψL(x) = ψL(a) +

∫ x

a

(µ− η)π0

ηy
exp

[
1

η

∫ 1

y

(
λE[B]p̃∗(u)−

µ− η

u

)
du

]
dy,

where a > 0 denotes a positive real number. Therefore, ϕL(x) is given by

ϕL(x) = ψL(x) exp

[
−
1

η

∫ 1

x

(
λE[B]p̃∗(u)−

µ− η

u

)
du

]
= ϕL(a) exp

[
1

η

∫ x

a

(
λE[B]p̃∗(u)−

µ− η

u

)
du

]
+

∫ x

a

(µ− η)π0

ηy
exp

[
1

η

∫ x

y

(
λE[B]p̃∗(u)−

µ− η

u

)
du

]
dy

= ϕL(a) exp

[
λE[B]

η

∫ x

a
p̃∗(u)du+

µ− η

η
(log a− log x)

]
+

∫ x

a

(µ− η)π0

ηy
exp

[
λE[B]

η

∫ x

y
p̃∗(u)du+

µ− η

η
(log y − log x)

]
dy

= ϕL(a)x
−(µ−η)/ηa(µ−η)/η exp

[
λE[B]

η

∫ x

a
p̃∗(u)du

]
+ π0x

−(µ−η)/η exp

[
λE[B]

η

∫ x

a
p̃∗(u)du

]
(121)

·
µ− η

η

∫ x

a
y(µ−η)/η−1 exp

[
−
λE[B]

η

∫ y

a
p̃∗(u)du

]
dy

= x−(µ−η)/η exp

[
λE[B]

η

∫ x

a
p̃∗(u)du

]
·
{
ϕL(a)a

(µ−η)/η + π0
µ− η

η

∫ x

a
y(µ−η)/η−1 exp

[
−
λE[B]

η

∫ y

a
p̃∗(u)du

]
dy

}
,
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0 < x ≤ 1. (122)

Next, we consider the limit a → 0+. Note that if µ < η, the right-hand side of (122)
takes the indeterminate form ∞−∞ when a→ 0+. To remove this singularity, we perform
a partial integration.

π0
µ− η

η

∫ x

a
y(µ−η)/η−1 exp

[
−
λE[B]

η

∫ y

a
p̃∗(u)du

]
dy

= π0

∫ x

a

d

dy

[
y(µ−η)/η

]
· exp

[
−
λE[B]

η

∫ y

a
p̃∗(u)du

]
dy

= π0x
(µ−η)/η exp

[
−
λE[B]

η

∫ x

a
p̃∗(u)du

]
− π0a

(µ−η)/η

+ π0
λE[B]

η

∫ x

a
y(µ−η)/η p̃∗(y) exp

[
−
λE[B]

η

∫ y

a
p̃∗(u)du

]
dy.

From this equation, we obtain

ϕL(x) = x−(µ−η)/η exp

[
λE[B]

η

∫ x

a
p̃∗(u)du

]
· (ϕL(a)− π0)a

(µ−η)/η

+ π0

{
1 +

λE[B]

η

∫ x

a

( y
x

)(µ−η)/η
p̃∗(y) exp

[
λE[B]

η

∫ x

y
p̃∗(u)du

]
dy

}
= x−(µ−η)/η exp

[
λE[B]

η

∫ x

a
p̃∗(u)du

]
· (ϕL(a)− π0)a

(µ−η)/η

+ π0

{
1 +

λE[B]x

η

∫ 1

a/x
t(µ−η)/η p̃∗(tx) exp

[
λE[B]

η

∫ x

tx
p̃∗(u)du

]
dt

}
, (123)

where t = y/x. Note that

lim
a→0+

(ϕL(a)− π0)a
(µ−η)/η = lim

a→0+
a(µ−η)/η+1

∞∑
n=1

πna
n−1

= lim
a→0+

aµ/η
∞∑

n=1

πna
n−1

= 0.

Therefore, taking the limit a→ 0+ on the right-hand side of (123), we obtain (98). Finally,
(97) follows from (98) and ϕL(1) = 1. ⊓⊔

F Proof of Lemma 10

It is readily verified that using (100), we can rewrite (17) to be

G(w | y) =


G(w) +

∫ w

0

∞∑
k=2

pkg
(k−1)(u)G(w − u)du, y < τ,w < τ − y,

G(w) +
∞∑

k=2

pk

∫ τ−y

0
g(k−1)(u)G(w − u)du, y < τ,w ≥ τ − y,

0, y ≥ τ.

In addition, it follows from (114) that

Gbatch(w) = G(w) +

∫ w

0

∞∑
k=2

pkg
(k−1)(u)G(w − u)du.

We thus obtain (101). ⊓⊔
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