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Abstract

In this paper we study the number of customers in infinite-server queues with a self-exciting
(Hawkes) arrival process. Initially we assume that service requirements are exponentially dis-
tributed and that the Hawkes arrival process is of a Markovian nature. We obtain a system of
differential equations that characterizes the joint distribution of the arrival intensity and the num-
ber of customers. Moreover, we provide a recursive procedure that explicitly identifies (transient
and stationary) moments. Subsequently, we allow for non-Markovian Hawkes arrival processes
and non-exponential service times. By viewing the Hawkes process as a branching process, we
find that the probability generating function of the number of customers in the system can be ex-
pressed in terms of the solution of a fixed-point equation. We also include various asymptotic
results: we derive the tail of the distribution of the number of customers for the case that the in-
tensity jumps of the Hawkes process are heavy-tailed, and we consider a heavy-traffic regime. We
conclude the paper by discussing how our results can be used computationally and by verifying
the numerical results via simulations.

Keywords – Self-exciting processes – Hawkes processes – infinite-server queues – branching pro-

cesses – heavy-tailed distributions – heavy traffic

1 Introduction

A common assumption in queueing theory is that the customer arrival process is a Poisson
process with a deterministic rate. However, various empirical studies have revealed that
arrival processes may display overdispersion, i.e. the variance of the number of arrivals
in a given interval exceeds the corresponding expected value, cf. e.g. [15] for references.
Overdispersion therefore indicates that the standard Poisson assumption (under which
the above mentioned variance coincides with the expected value) is not valid. This has
led to the study of queueing systems with overdispersed arrival processes [15–17,20]. The
current paper aims to contribute to this line of research.

The object of study of this paper is the infinite-server queue with Hawkes input.

◦ An infinite-server queue is a service system in which each customer is taken into
service immediately upon arrival. Customers are served independently of each other
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and have i.i.d. service requirements. There is a large body of literature on infinite-
server queues, but typically some regularity properties are assumed, such as Poisson
(or renewal) arrivals.

◦ A Hawkes process is a point proces with an exogenous component and an endogenous
component. The exogenous component generates arrivals according to a homoge-
neous Poisson process. The endogenous component entails that arrival epochs coin-
cide with jumps in the arrival rate. The arrival intensity subsequently behaves deter-
ministically over time according to an excitation function. This type of point process
was originally studied by Alan Hawkes, cf. [12], who coined the name self-exciting
process; nowadays the name Hawkes process is frequently used as well.

Hawkes processes have been used to model various phenomena, including the firing
of neurons in the brain, earthquakes, criminality and riots; see e.g. [3] or [18] for refer-
ences. Very recently, Hawkes models have also been used to study trending social me-
dia [8, 22, 23]. Interestingly, Daw and Pender [8] add a queueing aspect: they model the
arrival process of visitors of a website as a Hawkes process, thus trying to capture the viral
behavior of such an arrival process, taking into account that customers leave after a time
which has a phase-type distribution. They study the number of visitors on the website
at any time t. Another queueing application with Hawkes processes is high-frequency
transaction processes in limit order books, cf. [3, 6, 24]. Limit order books are in essence
queueing systems on financial markets: the books keep track of buy and sell orders, that
are waiting until an order arrives that matches the desired execution price above or be-
low a certain limit. It is well known that trades tend to trigger other trades, which makes
self-exciting models a natural choice.
Our work also combines queueing with Hawkes arrival processes, an area that is still
largely unexplored. In e.g. [6, 9] scaling limits are derived for queueing systems that al-
low for Hawkes input. Scaling limits for infinite-server queues designed specifically for
Hawkes input are derived in [9]; it states that exact and numerical analysis of this model
is ‘challenging’. To the best of our knowledge, only [8] pays attention to exact (i.e., non-
asymptotic) analysis of queues driven by Hawkes processes. In [8], the focus is on exact
analysis of an infinite-server queue driven by an unmarked Markovian Hawkes process
(i.e., the jump sizes in the arrival intensity are deterministic). The model we consider is
a general version of the one studied in [8]: in our case the driving process is a marked
Hawkes process, i.e. the intensity jumps are stochastic. In addition, we use a branching
process representation to cover a non-Markovian setting, in which the Hawkes intensity
does not need to decay exponentially, and the job distributions are general. Furthermore,
we discuss various novel asymptotic results and we show how the obtained results can be
used computationally.
Our work is also related to [17]; the main difference with the model studied there, is that
in [17] the arrival rate to the infinite-server queue is a Cox process, and hence not self-
exciting.

The paper is organized as follows. After having introduced Hawkes processes in Sec-
tion 2, we assume in Section 3 that the service requirements are exponentially distributed,
and the excitation function is an exponentially decreasing function. As a consequence,
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the number of customers jointly with the Hawkes arrival rate is a Markov process; note
that (marginally) the evolution of the number of customers is not Markov. We derive a
partial differential equation (PDE) which characterizes the joint Laplace and z-transform
of the Hawkes intensity and number of customers. We show that transient moments (of
arbitrary order) satisfy a specific system of ordinary differential equations (ODEs), and we
provide explicit first and second transient moments. Furthermore, by using the character-
istic method, we simplify the PDE to a set of ODEs that characterizes the joint distribution,
which we later use for numerical analysis.
Subsequently, in Section 4, we lift the exponentiality assumptions on the excitation func-
tion and the service requirements. The price to be paid comes in the form of less explicit
results. Similar to the approach followed in [14], the main idea is that the Hawkes process
is represented in terms of a branching process, where in our model each node (repre-
senting a customer) in this branching process is served in an infinite-server queue. The
analysis yields a fixed-point equation for the z-transform of the number of customers in
the system (Section 4). By performing a finite number of iterations, we can find numerical
approximations of the probability mass function of the number of customers, akin to the
approach proposed in [2]; explicit bounds on the error are derived as well. A numerical
example is provided in Section 5, where the methods from Sections 3 and 4 are verified by
simulations as well. The fixed-point equation also leads to new asymptotic results (Sec-
tion 6): (i) in the situation that the intensity jumps of the Hawkes process are heavy-tailed,
we derive the tail of the distribution of the number of customers, and (ii) we find the
asymptotics of the number of customers in the heavy-traffic regime. Section 7 contains
suggestions for further research.

2 Preliminaries

In this section we first formally define the Hawkes process (cf. e.g. [3, 7, 18] for similar
descriptions). Below we consider two equivalent definitions of the Hawkes process, pre-
sented in the same generality as they are used in the remainder of this paper.

Definition 2.1 (Conditional intensity). Consider a counting process (M(t))t>0, with asso-
ciated filtration (F (t))t>0, that satisfies

P(M(t+ ∆t)−M(t) = m|F (t)) =


Λ(t)∆t+ o(∆t), m = 1

o(∆t), m > 1

1− Λ(t)∆t+ o(∆t), m = 0

,

as ∆t ↓ 0, where the conditional intensity has the form

Λ(t) = λ∞ +
∑
ti<t

Bih(t− ti), (1)

where t1, t2, . . . denote arrival epochs, for a set of i.i.d. random variablesBi with a nonneg-
ative support, for some reversion level λ∞ > 0 and some function h : [0,∞)→ [0,∞) which
are called the background intensity and excitation function, respectively. The summand in
Eqn. (1) is called a kernel. The process M(·), as defined above, is called a self-exciting or
Hawkes process.
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Note that an arrival increases the future arrival intensity, which in turn increases the prob-
ability of another arrival in the future, which explains the name ‘self-exciting process’.

Remark 2.2. There exist definitions of varying generality (cf. e.g. [3, 7, 18]). For example,
there are multidimensional definitions (also referred to as mutually-exciting Hawkes pro-
cesses), there is a distinction between marked and unmarked Hawkes processes, and the
initial intensity can be taken unequal to the reversion level. The version defined above is
considered to be a marked Hawkes process with a multiplicative kernel. It is ‘marked’ be-
cause the kernel depends on a random variableBi (which is called a mark) that is sampled
at each event. The kernel is multiplicative, since the size of the increase Bi and the time
effect h(t − ti) are multiplied. Furthermore, note that Λ(0) = λ∞ by Eqn. (1). In general,
one could consider the case Λ(0) = λ0 6= λ∞. However, this case is hardly more general
but introduces more cumbersome notation. Indeed, the additional contribution of the ini-
tial intensity can be handled independently and in the same way as the rate increase due
to other events.

Next, we consider an alternative definition of Hawkes processes, which is based on a
representation of Hawkes processes as branching processes with immigration. The ob-
servation that this is possible was already made in [14], and it is by now standard in the
literature.

Definition 2.3 (Cluster representation). Let {Bi} be a set of i.i.d. random variables with
nonnegative support. Consider a (possibly infinite) T > 0 and define a sequence of events
{tm 6 T} according to the following procedure:

◦ Consider a set of immigrant events {t(0)
m 6 T} that arrive according to a homogeneous

Poisson process with rate λ∞ in the interval [0, T ].

◦ Set n = 0. For each arrival labeled by t
(n)
m′ , generate a sequence of next generation

events {t(n+1)
m 6 T} in the interval [t

(n)
m′ , T ], by samplingBm′ and then sampling from

the resulting Poisson process with time-dependent rate Bm′h(t− tm′).

◦ Iterate the above rule for n = 1, 2, . . ., until no more events are generated in [0, T ], so
as to obtain the event sequence En(T ) := {t(n)

m 6 T}, for n = 0, 1, . . ..

Define M(t) := | ∪∞n=0 En(t)| as the number of events in [0, t], then (M(t))06t6T is called a
self-exciting or Hawkes process (on the interval [0, T ]).

In the remainder of this paper we will use both definitions to analyze infinite-server
queues driven by Hawkes arrival processes. Definition 2.1 plays a key role in Section 3, in
which we consider Markovian Hawkes queues. The approach in Section 3 does not apply
for non-Markovian queues; in that case we resort to the interpretation as in Definition 2.3,
which is discussed thoroughly in Section 4.

3 A Markovian Hawkes-fed infinite-server queue

In the previous section we introduced the Hawkes process, which serves as the input
process of our infinite-server queue. In this section we suppose that the arrival process is
a Markovian Hawkes process, i.e., the excitation function is exponential and the service
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requirements are exponentially distributed. In particular, we consider the situation that
h(t) = e−rt, r > 0, and the service requirements are J ∼ exp(µ). In addition, we assume
thatB (distributed as theBi featuring in the definition of the Hawkes process) is a random
variable such that P(B > 0) = 1. The Hawkes process acts as an input process to an
infinite-server system, i.e. we could call this model Hawkes/M/∞ in Kendall’s notation.
In Subsection 3.1 we characterize the joint transform of the Hawkes intensity Λ(t) and the
number of customers N(t) of the Hawkes/M/∞ queue at time t, in terms of the solution
of an ODE. In Subsection 3.2 we develop a recursive procedure that gives the transient
moments of (Λ(t), N(t)). Steady-state moments are briefly discussed in Subsection 3.3.

3.1 Characterization of the queueing process

In this section our main objective is to characterize the double transform

ζ(t, z, s) := E zN(t)e−sΛ(t),

which uniquely defines the joint transient distribution of (N(t),Λ(t)).

Theorem 3.1. Let the arrival process be a Markovian Hawkes process. Then, given Λ(0) = λ∞

and N(0) = 0,

ζ(t, z, s) = e−s(t)λ∞ exp

(
−λ∞r

∫ t

0
s(u) du

)
, (2)

where s(·) solves the ODE

s′(u) + rs(u) + (1 + (z − 1)e−µu)β(s(u))− 1 = 0, 0 6 u 6 t, (3)

with boundary condition s(0) = s.

Remark 3.2. Note that this result is closely related to results about Hawkes counting pro-
cesses. For example, a version of [7, Thm. 3.1] is retrieved when µ = 0 is substituted in
Eqn. (3) (note: set ρ = 0 in [7], as we do not consider a shot-noise background process
here). Note that µ = 0 corresponds to infinitely long service times, and hence the number-
of-customers process reduces to a counting process as studied in [7]. In the situation where
µ = 0, it was possible to derive an explicit equation for the probability generating func-
tion of the counting process by separation of variables. Unfortunately, in our situation the
variables s(u) and u in Eqn. (3) are not separable due to the additional factor e−µu, and
hence we cannot solve it analytically.

Proof of Theorem 3.1. We derive the joint distribution of (N(t),Λ(t)). Define

F (t, k, λ) = P(N(t) = k,Λ(t) 6 λ), f(t, k, λ) =
∂F (t, k, λ)

∂λ
.

Considering the evolution of the Markovian system between t and t+ ∆t yields

F (t+ ∆t, k, λ− r(λ− λ∞)∆t) =

∫ λ

0
y∆tP(B 6 λ− y)f(t, k − 1, y) dy

+ (k + 1)µ∆tF (t, k + 1, λ)

+ F (t, k, λ)(1− kµ∆t)−
∫ λ

0
y∆tf(t, k, y) dy.
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After elementary manipulations and letting ∆t ↓ 0, it follows that

∂F (t, k, λ)

∂t
− r(λ− λ∞)

∂F (t, k, λ)

∂λ
=

∫ λ

0
y P(B 6 λ− y)f(t, k − 1, y) dy

+ (k + 1)µF (t, k + 1, λ)

− kµF (t, k, λ)−
∫ λ

0
yf(t, k, y) dy.

Since we assumed that P(B 6 0) = 0, differentiating with respect to λ yields

∂f(t, k, λ)

∂t
− ∂

∂λ
[rλf(t, k, λ)] + λ∞

∂

∂λ
f(t, k, λ)

=

∫ λ

0
yfB(λ− y)f(t, k − 1, y) dy + (k + 1)µf(t, k + 1, λ)− (kµ+ λ)f(t, k, λ). (4)

The next step consists of transforming Eqn. (4) with respect to the Hawkes intensity λ, and
to that end we define the transforms

ξ(t, k, s) :=

∫ ∞
0

e−sλf(t, k, λ) dλ, β(s) :=

∫ ∞
0

e−sλ dP(B 6 λ).

After transformation we find

∂ξ(t, k, s)

∂t
+ rs

∂ξ(t, k, s)

∂s
+ rsλ∞ξ(t, k, s)

= −∂ξ(t, k − 1, s)

∂s
β(s) + (k + 1)µξ(t, k + 1, s)− kµξ(t, k, λ) +

∂ξ(t, k, s)

∂s
,

which we can rewrite as the partial differential equation

∂ξ(t, k, s)

∂t
+ (rs− 1)

∂ξ(t, k, s)

∂s
+
∂ξ(t, k − 1, s)

∂s
β(s) + rsλ∞ξ(t, k, s)

= (k + 1)µξ(t, k + 1, s)− kµξ(t, k, λ).

Next, we transform this equation in the number of customers variable k, for which we use
the transform

ζ(t, z, s) =
∞∑
k=0

zkξ(t, k, s) = E zN(t)e−sΛ(t).

This yields

∂ζ(t, z, s)

∂t
+ (rs+ zβ(s)− 1)

∂ζ(t, z, s)

∂s
+ µ(z − 1)

∂ζ(t, z, s)

∂z
= −rsλ∞ζ(t, z, s). (5)

Now let s and z be parametrized by u. Then the characteristic equations are

−s′(u) + rs(u) + z(u)β(s(u))− 1 = 0, (6)

−z′(u) + µ(z(u)− 1) = 0, (7)

with the boundary conditions s(t) = s and z(t) = z. The solution of Eqn. (7) is

z(u) = 1 + Ceµu,

with C determined by z(t) = z = Ceµt + 1, i.e., C = (z − 1)e−µt. We thus find that
z(u) = 1 + (z − 1)e−µ(t−u), which we can substitute in Eqn. (6), so as to obtain the ODE

−s′(u) + rs(u) + (1 + (z − 1)e−µ(t−u))β(s(u))− 1 = 0.
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By substituting t for t− u, we obtain the ODE

s′(t) + rs(t) + (1 + (z − 1)e−µt)β(s(t))− 1 = 0,

with the boundary condition s(0) = s. The result follows.

Numerically, one can obtain the probability mass function of N(t) by first solving the
differential equation, and then applying a Fourier inversion algorithm. Numerical results
are given in Sec. 5. Another powerful feature of Theorem 3.1 is that it allows us to find
moments, as is presented in Sections 3.2–3.3 below.

3.2 Transient moments

In this section we discuss the computation of any joint transient moment of the Hawkes
intensity Λ(t) and the number of customers N(t). The marginal moments of the Hawkes
process are known and can be found in e.g. [7, Lemma 3.1 & Thm. 3.6], but we include
them here for completeness. The key idea is to use the PDE (5) to derive ODEs for the joint
moments. To this end, rewrite the PDE (5) as

d

dt
E zN(t)e−sΛ(t) − (rs+ zβ(s)− 1)EΛ(t)zN(t)e−sΛ(t) + µ(z − 1)EN(t)zN(t)−1e−sΛ(t)

= −rsλ∞ E zN(t)e−sΛ(t). (8)

We begin by differentiating the above equation g ∈ N times with respect to s and then
inserting s = 0, which expresses the (g+ 1)th moment of Λ(t) in terms of the first up to gth

moment of Λ(t), through the following ODE (where we have assumed that EBg <∞):

d

dt
EΛg(t)zN(t) + g(r − z EB)EΛg(t)zN(t) + µ(z − 1)EΛg(t)N(t)zN(t)−1

= (z − 1)EΛg+1(t)zN(t) + 1{g>1} gλ∞rEΛg−1(t)zN(t)

+ z 1{g>2}

g−2∑
j=0

(
g

j

)
EBg−j EΛj+1(t)zN (t), g = 0, 1, . . . . (9)

So as to obtain a relation between the joint moments and the moments that correspond
to number of customers, we differentiate Eqn. (9) q + 1 times with respect to z and insert
z = 1. This gives us the key relation, for g = 0, 1, . . . , q = 0, 1, . . . :

d

dt
EΛg(t)N̄ q(t) + ((q + 1)µ+ g(r − EB))EΛg(t)N̄ q(t)

= (q + 1)EΛg+1(t)N̄ q−1(t) + 1{g>1} gλ∞r EΛg−1(t)N̄ q(t) + (q + 1)g EB EΛg(t)N̄ q−1(t)

+ 1{g>2}

g−2∑
j=0

(
g

j

)
EBg−j

[
(q + 1)EΛj+1(t)N̄ q−1(t) + EΛj+1(t)N̄ q(t)

]
, (10)

where N̄ q(t) := N(t)(N(t)− 1) · · · (N(t)− q) and N̄−1(t) := 1.
Now by (10) we can obtain a system of first order ODE s. To this end, we substitute in (10)
a combination of indices, g := k, q := q − k for values of k ∈ {0, . . . , q + 1}. Denoting

Z(q+2)(t) :=
[
E N̄ q(t),EΛ(t)N̄ q−1(t), . . . ,EΛq(t)N̄0(t),EΛq+1(t)

]T
,
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it follows that the vector Z(q+2)(t), q = 0, 1, 2, . . . , satisfies the ODE

d

dt
Z(q+2)(t) = A

(q+2)
1 Z(q+2)(t) +A

(q+2)
0 , (11)

with

A
(q+2)
1 =



−d(q+1)
0 q + 1 0 · · · 0 0

0 −d(q)
1 q · · · 0 0

0 0 −d(q−1)
2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −d(1)
q 1

0 0 0 · · · 0 −d(0)
q+1


, A

(q+2)
0 =



b
(q)
0

b
(q−1)
1

b
(q−2)
2

...
b
(0)
q

b
(−1)
q+1


, (12)

where, for k ∈ {0, . . . , q + 1},

d
(q+1−k)
k := (q + 1− k)µ+ k(r − EB),

b
(q−k)
k := 1{k>1} kλ∞r EΛk−1(t)N̄ q−k(t) + (q − k + 1)kEB EΛk(t)N̄ q−k−1(t)

+ 1{k>2}

k−2∑
j=0

(
k

j

)
EBk−j

[
(q − k + 1)EΛj+1(t)N̄ q−k−1(t) + EΛj+1(t)N̄ q−k(t)

]
.

Note that d(q+1)
0 , . . . , d

(0)
q+1 are the (distinct) eigenvalues of the matrix A(q+2)

1 .

Proposition 3.3. The solution of the ODE (11) is

Z(q+2)(t) = eA
(q+2)
1 t Z(q+2)(0) +

∫ t

0
eA

(q+2)
1 (t−s)A

(q+2)
0 ds, (13)

where, with I a (q + 2)× (q + 2) identity matrix,

eA
(q+2)
1 t =

q+2∑
i=1

ed
q+i
i−1t

q+2∏
j=1,
j 6=i

A
(q+2)
1 − d(q−j+2)

j−1 I

d
(q−i+2)
i−1 − d(q−j+2)

j−1

. (14)

Proof. Formula (13) follows from (11) in a straightforward way. The exponential of the
matrix is computed by using the interpolation-based formula given in [10, p. 101, Eqn.
(4.18)].

Corollary 3.4. If r 6= b1 := EB, and with r0 := r − b1, it holds that

EΛ(t) =
λ∞r

r0
− λ∞b1

r0
e−r0t,

EN(t) =
λ∞r

µr0
− λ∞b1
r0(µ− r0)

e−r0t − λ∞(r − µ)

µ(µ− r0)
e−µt,

with an obvious adaptation when µ = r0.

Proof. To get the first moments of the model we can use Proposition 3.3 for the case q = 0:

d

dt
Z(2)(t) = A

(2)
1 Z(2)(t) +A

(2)
0 , (15)

with

Z(2)(t) =

[
EN(t)

EΛ(t)

]
, A

(2)
1 =

[
−µ 1

0 −r0

]
, and A

(2)
0 =

[
0

λ∞r

]
.
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We know the solution of the general ODE (11) from Eqn. (13). Therefore, for the case q = 0

we get the solution to the ODE (15):[
EN(t)

EΛ(t)

]
= eA

(2)
1 t

[
EN(0)

EΛ(0)

]
+

∫ t

0
eA

(2)
1 (t−s)A

(2)
0 ds, (16)

where (EN(0),EΛ(0)) = (0, λ∞). Now it remains to evaluate eA
(2)
1 t. By virtue of (14), we

find

eA
(2)
1 t =

e
−µt e−µt − e−r0t

−µ+ r0

0 e−r0t

 .
Substituting this exponential matrix in (16) yields the desired results.

We now explicitly state the second transient moments. Define b2 := EB2.

Corollary 3.5. If r0 6= 0, then for all t > 0,

EΛ2(t) =
λ∞r(b2 + 2λ∞r)

2r2
0

− λ∞b1(b2 + 2λ∞r)

r2
0

e−r0t +D1e
−2r0t,

EΛ(t)N(t) =
λ∞r

r0(µ+ r0)

(
b2 + 2λ∞r

2r0
+
λ∞r + µb1

µ

)
− λ2

0 r (r − µ)

µr0(µ− r0)
e−µt

− λ∞b1
µr0

(
b1 +

b2 + 2λ∞r

r0
+

λ∞r

µ− r0

)
e−r0t

+
D1

µ− r0
e−2r0t +D2e

−(µ+r0)t,

EN2(t) =
λ∞r

µr0(µ+ r0)

(
b2 + 2λ∞r

2r0
+
µ(µ+ r) + λ∞r

µ

)
− λ∞(r − µ)(µr0 + 2λ∞r)

µ2r0(µ− r0)
e−µt

− 2λ∞b1
µr0(2µ− r0)

(
b1 +

b2 + 2λ∞r

r0
+

λ∞r

µ− r0
+
µ

2

2µ− r0

µ− r0

)
e−r0t

+
D1

(µ− r0)2
e−2r0t +

2D2

µ− r0
e−(µ+r0)t +D3e

−2µt,

where the constants D1, D2 and D3 follow from the initial conditions, i.e., the requirements that
EN2(0) = 0,EΛ(0)N(0) = 0, and EΛ2(0) = λ2

∞.

Proof. To obtain all second moments we again use Proposition 3.3, for q = 1 (with N̄0(t) =

N(t)). This yields
d

dt
Z(3)(t) = A

(3)
1 Z(3)(t) +A

(3)
0 (t), (17)

with

Z(3)(t) =

 E N̄1(t)

EΛ(t)N(t)

EΛ2(t)

 , A
(3)
1 =

−2µ 2 0

0 −µ− r0 1

0 0 −2r0

 ,

A
(3)
0 (t) =

 0

b1 EΛ(t) + λ∞rEN(t)

(b2 + 2λ∞r)EΛ(t)

 .
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Again using Eqn. (13) for the case q = 1 yields the solution to ODE (17): E N̄1(t)

EΛ(t)N(t)

EΛ2(t)

 = eA
(3)
1 t

 E N̄1(0)

EΛ(0)N(0)

EΛ2(0)

+

∫ t

0
eA

(3)
1 (t−s)A

(3)
0 (s)ds, (18)

where  E N̄1(0)

EΛ(0)N(0)

EΛ2(0)

 =

 0

0

λ2
0

 .
Now we only need to calculate matrix eA

(3)
1 t to get the complete solution of (17). Using

(14), we get

eA
(3)
1 t =



e−2µt 2e−µt(e−r0t − e−µt)
µ− r0

(e−r0t − e−µt)2

(µ− r0)2

0 e−(µ+r0)t e−r0t(e−r0t − e−µt)
µ− r0

0 0 e−2r0t


.

For µ = r0, this expression has to be adapted using the l’Hospital rule. Since we now know
the first factorial moment E N̄1(t) and the first moment EN(t), the relation EN2(t) =

E N̄1(t) + EN(t) provides the second transient moment. We do not write the constants
D1, D2 and D3 explicitly, because their expressions are rather lengthy.

Remark 3.6. Note that in Corollaries 3.4 and 3.5, the speed of convergence to the stationary
moments of N(∞), and of Cov(Λ(∞), N(∞)), is determined by the minimum of r0 and µ.

Remark 3.7. The results in Corollaries 3.4 and 3.5 are stated under the condition that r 6=
b1. The case in which r = b1 (i.e., r0 = 0) can be derived from those results, if one takes
the limit r → b1. From the expressions in Corollary 3.5, note that if r − b1 = r0 < 0, then
EN(t) tends to infinity as t → ∞. It turns out that the condition r − b1 = r0 > 0 leads
to finite moments, and can be interpreted as the model’s stability condition. This stability
condition could also have been derived a priori, by considering the Hawkes process as a
branching process (as in Definition 2.3). From branching process theory, it is known that a
‘population’ (or in our case, a cluster) exterminates with probability one if and only if the
average number of children per parent is less than unity [11]. In this case, this translates
to the condition

b1

∫ ∞
0

h(s) ds = b1

∫ ∞
0

e−rs ds =
b1
r
< 1.

If this does not hold, then in the long run there will be more and more clusters, which
implies that the intensity and hence the number of customers will grow indefinitely on
average. Observe that the value of the service rate µ does not affect stability as long as
µ > 0.
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3.3 Stationary moments

In this subsection we consider stationary moments. To this end, we assume that the queue-
ing process is stable, i.e. b1 < r; cf. Remark 3.7. Stationary moments can be easily derived
from the previous section by taking the limit t → ∞. Define by Λ and N the stationary
versions of Λ(t) and N(t), respectively.

Corollary 3.8. If EBg <∞, then the gth moment of the stationary Hawkes intensity is given by

EΛg =
1

gr0

1{g>1} gλ∞rEΛg−1 + 1{g>2}

g−2∑
j=0

(
g

j

)
EBg−j EΛj+1

 , g = 1, 2, 3, . . .

Proof. Considering Eqn. (9) in the steady-state case and then taking z = 1 yields the
desired result.

Corollary 3.9. Let b1 and, where needed, b2 be finite. The stationary means and (co-)variances of
Λ and N are given by:

EΛ =
λ∞r

r0
, EN =

λ∞r

µr0
, Var(Λ) =

λ∞rb2
2r2

0

,

Var(N) =
λ∞r

2r2
0

b2 + 2(µ+ r)r0

µ(µ+ r0)
, and Cov(N,Λ) =

λ∞r

2r2
0

b2 + 2r0b1
µ+ r0

.

In particular, the correlation coefficient of N and Λ is given by

ρ(N,Λ) =
b2 + 2r0b1√

b2(b2 + 2r0(µ+ r))

√
µ

µ+ r0
.

Proof. Follows directly from taking t→∞ in Corollaries 3.4 and 3.5.

4 A non-Markovian Hawkes-fed infinite-server queue

In this section we allow the excitation function h to be a general nonnegative function,
and we allow J to be any nonnegative random variable. We derive a fixed-point equation
for the z-transform of N(t) in Theorem 4.1, which can be iterated so as to obtain an (in-
creasingly accurate) approximation; Proposition 4.2 derives error bounds of the resulting
approximation scheme.
This section relies heavily on the representation of a Hawkes process as a branching pro-
cess (recall Definition 2.3). Immigrants arrive according to a Poisson process with rate
λ∞. Each of those immigrants increases the future arrival rates. The arrivals that occur
due to this increase, are called the children of the immigrant. In turn, those children are
potentially the parents of a next generation, and so forth. Since the customers enter an
infinite-server queue, each of them is served independently of the rest, with i.i.d. service
requirements (distributed as a nonnegative random variable J).
Note that, by definition, each parent produces children independently from all other par-
ents at a rate Bh(u) at time u after its own birth, conditional on its own arrival rate incre-
ment B. Let S(u) denote the number of children of a parent, u time units after its own
birth, including the parent itself if it is still being served. Let its probability generating
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function be denoted by η(u, z) := E zS(u), for 0 6 u 6 t. Then the number of jobs in the
system at time t, N(t) with N(0) = 0, satisfies

E zN(t) =
∞∑
n=0

(λ∞t)
n

n!
e−λ∞t

(
1

t

∫ t

0
η(u, z) du

)n
= exp

(
λ∞

∫ t

0
(η(u, z)− 1) du

)
, (19)

which follows by conditioning on the number of immigrants (i.e., the number of clusters).
The next step is to identify η(u, z), by studying each cluster separately. First consider the
distributional equality, for 0 6 u 6 t,

S(u)
d
= 1{J>u} +

K(u)∑
i=1

S(i)(u− ti), (20)

where S(u)
d
= S(i)(u) for all i, K(·) is an inhomogeneous Poisson counting process with

rate Bih(·) (conditional on Bi) that counts the number of children, and t1, t2, . . . are the
birth times of the corresponding children. Note that S(i)(u) can be interpreted as the num-
ber of children of child i (including itself if it is still in the system, u time units after its
birth). Denote by Pt(s) the probability that, conditional on the fact that a child was born
before time t, it was already born before time s. Then it holds that

Pt(s) =
P(N(s) = 1, N(t)−N(s) = 0)

P(N(t) = 1)
=
e−

∫ s
0 h(u) du

∫ s
0 h(u) due−

∫ t
s h(u) du

e−
∫ t
0 h(u) du

∫ t
0 h(u) du

=

∫ s
0 h(u) du∫ t
0 h(u) du

.

Defining H(t) :=
∫ t

0 h(u) du, the corresponding PDF is thus given by

pt(s) := P ′t(s) =
h(s)∫ t

0 h(u) du
=
h(s)

H(t)
.

Define J (u) := P(J > u) and J̄ (u) := 1−J (u). Then it follows that

η(u, z) = EB

 ∞∑
n=0

E[zS(u)|K(t) = n,B]P(K(t) = n|B)


= (J̄ (u) + J (u)z)EB

 ∞∑
n=0

E[zS
(1)(u)]ne−BH(t)B

nH(t)n

n!


= (J̄ (u) + J (u)z)EB

 ∞∑
n=0

(∫ u

0
pt(s)η(u− s, z) ds

)n
e−BH(t)B

nH(t)n

n!


= (J̄ (u) + J (u)z)EB exp

(
B

∫ u

0
h(s)(η(u− s, z)− 1) ds

)
.

Recognizing the Laplace-Stieltjes transform of B, we can write

η(u, z) = (J̄ (u) + J (u)z)β

(∫ u

0
h(s)(1− η(u− s, z)) ds

)
. (21)

Let G be the class of all time-dependent z-transforms f(u, z) := E zX(u), where X(u), for
u ∈ [0, t], is a nonnegative discrete random variable living on the integers, with a possibly
defective distribution (i.e., the probabilities may sum to strictly less than one). For f ∈ G ,
define the functional φ by

φ(f)(u, z) = (J̄ (u) + J (u)z)β

(∫ u

0
h(s)(1− f(u− s, z)) ds

)
. (22)

12



With this definition, Eqn. (21) can be summarized as η = φ(η), i.e., η can be seen as a
fixed point of φ. We stress that the following result involves complex z. This is important,
because for numerical analysis in Section 5 we need to iterate φ a finite number of times
for a particular set of complex-valued arguments. Furthermore, we will use the following
notation. For a generic f0 ∈ G we define fn+1 := φ(fn), for n = 0, 1, . . ..

Theorem 4.1. Suppose that EB
∫∞

0 h(s) ds < ∞. Let z ∈ C, such that |z| < 1, be fixed. Then
the following holds:

(i) the z-transform of N(t) is given by Eqn. (19);

(ii) the function η, defined by η(u, z) = E zS(u) for u ∈ [0, t] is the unique fixed point of φ, i.e.
φ(η) = η, with φ defined in Eqn. (22);

(iii) the sequence (fn)n has the property that fn ∈ G for every n if f0 ∈ G ;

(iv) fn converges pointwise to η ∈ G , regardless of the initial approximation f0 ∈ G .

Proof. First fix −1 < z < 1, where z is a real number. Note that (i) and φ(η) = η (cf. Eqn.
(21)) have already been proven. To prove (ii), it remains to show uniqueness, which will
be shown after the proof of (iii) and (iv). It holds that f0 ∈ G implies f1 = φ(f0) ∈ G ,
following a similar probabilistic reasoning as in e.g. [2, Thm. 1]. Indeed, consider the
related operator φ̃, which maps a possibly defective CDF F to

φ̃(F )(u, k) = P

1{J>u} +

K(u)∑
i=1

S(i)(u− ti) 6 k

 , 0 6 u 6 t, (23)

cf. also Eqn. (20), where the S(i) are i.i.d. with CDF F . Let f0 ∈ G be the z-transform of
a possibly defective CDF F . Note that then φ(f0) is the z-transform of the CDF φ̃(F ), by
construction of φ and φ̃. Statement (iii) now follows by induction.

Now we show that, for arbitrary f0, g0 ∈ G , fn and gn have a limit, which is in fact the
same for both sequences. To do this, we show by induction that for every n ∈ N,

|fn(u, z)− gn(u, z)|6 1

n!
(Cu)n, 06u6t. (24)

We first prove the base case n = 1, i.e. for every 06u6t,

|f1(u, z)− g1(u, z)|
(1)

6 E
∣∣∣e−B ∫ u

0 h(s)(1−f0(u−s,z)) ds − e−B
∫ u
0 h(s)(1−g0(u−s,z)) ds

∣∣∣
(2)

6 EB
∫ u

0
h(u− s)|f0(s, z)− g0(s, z)|ds (25)

(3)

6 EB
∫ u

0
h(s) ds

∫ u

0
|f0(s, z)− g0(s, z)| ds

(4)

6 Cu,

with C = 2EB
∫∞

0 h(s) ds, which is finite by assumption. Inequality (1) follows from
Eqn. (22) and |J̄ (u) + J (u)z| 6 1 for |z| < 1. Inequality (2) follows by the mean-value
theorem, which implies that for x, y ∈ R, ex − ey = (x − y)ez(x,y), where z(x, y) takes
a value between x and y. In our application, the exponent on the right-hand side can
be bounded from above by 1, since f0, g0 ∈ G implies that f0, g0 6 1, and hence the
exponential is bounded by e0 = 1. Finally, inequality (3) follows from Young’s inequality
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for convolutions [5, Thm. 3.9.4], and (4) from |f0 − g0| 6 2, for f0, g0 ∈ G , and 0 6∫ u
0 h(s) ds 6

∫∞
0 h(s) ds since h > 0. Now consider the inductive step: if Eqn. (24) holds

for some n ∈ N, then by the same reasoning as in Eqn. (25), for 0 6 u 6 t,

|fn+1(u, z)− gn+1(u, z)|6EB
∫ u

0
h(s) ds

∫ u

0
|fn(s, z)− gn(s, z)| ds

6C
1

n!

∫ u

0
(Cs)n ds =

1

(n+ 1)!
(Cu)n+1.

It follows that Eqn. (24) holds for every n ∈ N. As n tends to infinity, we can conclude that
fn and gn have the same limit f , regardless of the initial approximations f0, g0. Moreover,
it turns out that the limit f is an element of G , which follows from fn ∈ G for every n in
combination with Lévy’s convergence theorem [27, Ch. XVIII]. From the definition of φ, it
is easy to see that φ is a continuous operator, and hence

f = lim
n→∞

fn+1 = lim
n→∞

φ(fn) = φ
(

lim
n→∞

fn

)
= φ(f),

thus the limit f ∈ G is a fixed point of φ, and hence (iv) is proved. The above now also
immediately yields uniqueness of the fixed point of φ, which finishes the proof of (ii).
Indeed, suppose that η0, η̃0 ∈ G are both fixed points of φ, then

η0 = lim
n→∞

ηn = lim
n→∞

η̃n = η̃0.

Finally, we need that the above not only holds for real z, but also complex z such that
|z| < 1. The conditions in [2, Thm. 5] hold1, so that we can conclude that fn → η, for all
complex z with |z| < 1, regardless of the initial approximation f0 ∈ G .

The iterates of z-transforms can be used to construct lower and upper bounds on the CDF
of S(u). We write [n] in the superscript of a mapping to denote an n-fold application of
the mapping. Define F ∗ ≡ 1, F∗ ≡ 0, Fn∗ = φ̃[n](F ∗) and Fn∗ = φ̃[n](F∗).

Proposition 4.2. For every 0 6 u 6 t and for all n, k ∈ N,

1 = F ∗(u, k) > Fn∗(u, k) > F (n+1)∗(u, k) > F (u, k) > F(n+1)∗(u, k) > Fn∗(u, k) > F∗(u, k) = 0,

where Fn∗ and Fn∗ are the (defective) CDF s associated with φ[n](z 7→ 1) and φ[n](z 7→ 0),
respectively.

Proof. Due to [2, Thm. 8], it is sufficient to show that φ̃ as defined in Eqn. (23), regarded as
an operator mapping possible defective CDF s into possibly defective CDF s is monotone
in the stochastic ordering. In other words, if we define F1 6st F2 to mean F1(k) > F2(k)

for all k ∈ N, then we need to show that F1 6st F2 implies φ̃(F1) 6st φ̃(F2). If F1 6st F2,
then we can construct i.i.d. random variables {S(i)

j : i > 1}, for j = 1, 2, such that S(1)
j has

CDF Fj , for j = 1, 2, and S(i)
1 6 S

(i)
2 for each i. Hence, for every 0 6 u 6 t,

1{J>u} +

K(u)∑
i=1

S
(i)
1 (u− ti) 6 1{J>u} +

K(u)∑
i=1

S
(i)
2 (u− ti)

1Technically these theorems are about Laplace-Stieltjes transforms, but they can be adapted to a result for
z-transforms by applying a variable transform.
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with probability one, which implies that, for every 0 6 u 6 t,

φ̃(F1)(u, k) = P

1{J>u} +

K(u)∑
i=1

S
(i)
1 (u− ti) 6 k


> P

1{J>u} +

K(u)∑
i=1

S
(i)
2 (u− ti) 6 k

 = φ̃(F2)(u, k),

for all k. The result follows.

Remark 4.3. We start in the extremal functions 0 and 1 in G, to ensure that the associated
(defective) CDFs provide an upper and lower bound to the CDF of the solution. However,
this gives the worst possible bounds and leaves some room for improvement. To save
computation time, another practical issue is to find a good initial approximation f0 ∈ G .
One may for instance use the approximation ex ≈ 1 + x in Eqn. (22). For example, in
the case of exponential jobs, the resulting functional equation is solvable using techniques
from [25, Chapter I]. The solution will provide a better initial approximation than simply
the function identical to 1 or 0. In this paper, however, we decide not to pursue these
issues any further.

5 Numerics and simulations

The purpose of this section is to show the practical applicability of the tools developed
in the preceding sections. At the same time, this exercise verifies the main distributional
results of this paper. To be more precise, we apply the Markovian method (as developed in
Section 3) and the cluster-based approach (as developed in Section 4). In order to be able
to compare the results of both methods, we work with the more restrictive assumptions
mentioned in the beginning of Section 3.

Some comments about both approaches are in order. Firstly, to use Theorem 3.1 for numer-
ical results, we need to numerically invert the transform in Eqn. (2). We do this by using a
fast Fourier inversion algorithm, called POISSON, which was published in [1]. This algo-
rithm requires the evaluation of Eqn. (2) for complex values. In each instance, this leads to
solving an ODE with a complex boundary, which can be accomplished by standard ODE
solvers. Secondly, with regards to the functional equation (22), in case that J = ∞ (i.e.,
for the usual Hawkes process without departures), [14] commented that such relations are
‘rather intractable’. Also in [9], it is mentioned that the problem of finding the probability
mass function of the number of customers is generally ‘numerically challenging’. We will
now show, however, that Eqn. (22) is in fact tractable. Indeed, we again use the POISSON

algorithm for the branching process approach, for which we need to evaluate Eqn. (19) for
complex values. Since η is only implicitly known, the idea is now that for each complex
argument required by POISSON, we iterate Eqn. (22) a number of times, until it is ‘close
enough’ to its fixed point. We have verified that convergence occurs for complex z in Sec-
tion 4, cf. Theorem 4.1. Furthermore, we draw upon Proposition 4.2 to derive numerical
upper and lower bounds. The upper and lower bounds provide a maximum error that is
made by using a finite number of iterations of the functional equation in Theorem 4.1.
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Proposition 4.2 provides upper and lower bounds on the CDF, while we are actually inter-
ested in the probability mass functions. Clearly, upper and lower bounds on the CDF can
be used to derive upper and lower bounds on the PMF. For example, for k > 1,

a0 6 P(X 6 k) 6 b1

a1 6 P(X 6 k + 1) 6 b2

}
=⇒ a1 − b1 6 P(X = k + 1) 6 b2 − a0.

As a third way to validate the results we perform simulations. The simulation algorithm
is directly based on Definition 2.3, in combination with the thinning procedure of [19]
for inhomogeneous Poisson processes. For closely related simulation algorithms, cf. [21].
After simulating the Hawkes arrival proces, we simply flip a coin with success probability
P(J > t − ti), for arrivals entering at time ti, to determine if they are still in the system at
time t.

Example 5.1. In the fast Fourier inversion algorithm, in this example, we used an accuracy
of γ = 4, with γ defined in [1]. Suppose that we have an exponential excitation function,
with rate r, and exponential job sizes with mean 1/µ. Then we are in the Markovian set-
ting and we can use the PDE method from Section 3, as well as the cluster approach from
Section 4. In this example, we take the shot sizes B to be deterministic. We choose the pa-
rameters as given in Table 1. The parameters are arbitrarily chosen, however, one should
realize that increasing t leads to a higher computation time for both methods. IncreasingB
or decreasing r leads to a higher computation time only for the method of Section 4, given
a fixed accuracy. The results are given in Table 2. The accuracy of the results is determined
by the discretization step in solving the ODE, which is set at 10−4, and by the number of
iterations in the functional approach, which is taken to be 10, and the discretization size
of the numerical integrals, which we took to be 2−12. Those parameters are chosen in such
a way that the computation time is reasonable (in the order of a couple of minutes), and
such that finer discretization does not improve the results substantially.
We performed 100 batches of 100 000 simulations (totalling 10 million runs), and calculated
the standard deviations over those 100 batches (runtime approximately 1 hour). Note that
the estimated values of all methods agree quite well for small values of N(10) in Table 2.
For larger values ofN(10), the simulation estimates become more uncertain, as well as the
spread between the upper and lower bound of the cluster method. Higher accuracy in the
tail can be achieved by performing more than the current number of iterations.

t λ∞ r µ B

10 1.45 2.15 1.25 0.98

Table 1: Parameter choice, where B is deterministic.

6 Asymptotic results

In this section we use the findings from the previous section to derive asymptotic results.
In Subsection 6.1 we assume thatB is regularly varying of index−α. We show thatN(t) is
then also regularly varying, of the same index. In Subsection 6.2 we study the heavy-traffic
behavior of N(∞). In both cases we strongly rely on the representation (19).
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P(N(10) = · · · ) 0 1 2 3 4 5 6
Cluster upper 1.83e-1 2.54e-1 2.19e-1 1.51e-1 9.22e-2 5.24e-2 2.87e-2
Cluster lower 1.83e-1 2.53e-1 2.17e-1 1.48e-1 8.91e-2 4.89e-2 2.49e-2

Cluster 1.83e-1 2.54e-1 2.18e-1 1.50e-1 9.08e-2 5.07e-2 2.68e-2
Diff. Eqn. 1.83e-1 2.54e-1 2.18e-1 1.50e-1 9.09e-2 5.09e-2 2.70e-2

Simulations 1.83e-1 2.54e-1 2.18e-1 1.50e-1 9.10e-2 5.09e-2 2.70e-2
Sim st. dev. 0.01e-1 0.01e-1 0.01e-1 0.01e-1 0.09e-2 0.07e-2 0.05e-2

P(N(10) = · · · ) 7 8 9 10 11 12 13
Cluster upper 1.56e-2 8.69e-3 5.23e-3 3.53e-3 2.73e-3 2.34e-3 2.16e-3
Cluster lower 1.17e-2 4.74e-3 1.23e-3 0 0 0 0

Cluster 1.36e-2 6.73e-3 3.24e-3 1.53e-3 7.12e-4 3.27e-4 1.48e-4
Diff. Eqn. 1.38e-2 6.81e-3 3.29e-3 1.56e-3 7.20e-4 3.34e-4 1.53e-4

Simulations 1.37e-2 6.8e-3 3.3e-3 1.6e-3 7.4e-4 3.4e-4 1.6e-4
Sim st. dev. 0.04e-2 0.3e-3 0.2e-3 0.1e-3 0.8e-4 0.6e-4 0.4e-4

Table 2: This table lists the probabilities that there are 0, 1, . . . , 13 customers in the system. The
standard deviation of the simulations is listed in the row ‘Sim st. dev’. The rows cluster upper,
lower, respectively refer to the upper and lower bound obtained by using Proposition 4.2. The row
‘Cluster’ uses the initial approximation f0 ≡ 1. The row ‘Diff. Eqn.’ is the solution that relies on
Theorem 3.1.

6.1 Heavy-tailed asymptotics

In this subsection we consider the case that the random variables Bi are heavy-tailed. We
use the following definition of a regularly varying random variable.

Definition 6.1. A random variable X on [0,∞) is called regularly varying of index −α,
denoted by R(−α), with α > 0, if

P(X > x) = `(x)x−α, x > 0, (26)

with `(x) a slowly varying function at infinity, i.e., `(γx)/`(x)→ 1 as x→∞ for all γ > 1.

We now prove that, if the Bi are R(−α), with 1 < α < 2, then so is the number of cus-
tomers N(t) at time t in the Hawkes/G/∞ queue. Notice that this contrasts with the fact
that the number of customers in the M/G/∞ queue (starting empty at time 0) is Poisson
distributed at any time t.
Let ‘?’ denote convolution:

(f ? g)(u) :=

∫ u

0
f(s)g(u− s)ds.

Also, with 1 < α < 2,

R1(u) :=

∞∑
n=0

(b1)n (hn? ?J )(u), u > 0, (27)

Rα(u) := Γ(1− α) `(∞)
∞∑
n=0

(b1)n
(
hn? ? (h ? R1)α

)
(u), u > 0. (28)

We throughout impose the stability condition, which now reads (cf. Remark 3.7): ρ :=

b1
∫∞

0 h(s)ds < 1.
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Theorem 6.2. If B is R(−α) with α ∈ (1, 2), then so is N(t): as z ↑ 1,

E zN(t) − 1 + λ∞(1− z)
∫ t

0
R1(u)du ∼ −λ∞(1− z)α

∫ t

0
Rα(u)du. (29)

Proof. We use Theorem 4.1 to characterize the z-transform of the distribution of N(t). It
follows from [4, Thm. 8.1.6], which relates the behavior of a regularly varying function at
infinity and the behavior of its LST near 0, that β(s) − 1 + s b1 ∼ −Γ(1 − α) sα `(s−1), as
s ↓ 0, for α ∈ (1, 2). Thus, as z ↑ 1,

β

(∫ u

0
h(s)

(
1− η(u− s, z)

)
ds

)
− 1 +

(∫ u

0
h(s)

(
1− η(u− s, z)

)
ds

)
b1

∼ −Γ(1− α)

(∫ u

0
h(s)

(
1− η(u− s, z)

)
ds

)α
`

(
1∫ u

0 h(s)
(
1− η(u− s, z)

)
ds

)
. (30)

Substituting this into Eqn. (21), we obtain, as z ↑ 1,

1− η(u, z) ∼ 1−
(
J̄ (u) + zJ (u)

) [
1−

(∫ u

0
h(s)

(
1− η(u− s, z)

)
ds

)
b1

− Γ(1− α)

(∫ u

0
h(s)

(
1− η(u− s, z)

)
ds

)α
`

(
1∫ u

0 h(s)
(
1− η(u− s, z)

)
ds

)]
. (31)

Rearranging the terms of (31) and simplifying yields, as z ↑ 1, up to O((z − 1)2) terms,

1− η(u, z)

= 1− (1−J (u)(1− z))

[
1−

(∫ u

0
h(s)

(
1− η(u− s, z)

)
ds

)
b1

− Γ(1− α)

(∫ u

0
h(s)

(
1− η(u− s, z)

)
ds

)α
`

(
1∫ u

0 h(s)
(
1− η(u− s, z)

)
ds

)]

= J (u) (1− z) +

(∫ u

0
h(s)

(
1− η(u− s, z)

)
ds

)
b1

+ Γ(1− α)

(∫ u

0
h(s)

(
1− η(u− s, z)

)
ds

)α
`

(
1∫ u

0 h(s)
(
1− η(u− s, z)

)
ds

)
. (32)

Observe that 1 − η(u, 1) = 0, and if ES(u) is finite, then 1 − η(u, z) = 1 − E zS(u) =

ES(u)(1− z) + o(1− z). Now we claim that the leading term in 1− η(u, z) in (32) should
be ES(u)(1 − z) with ES(u) = R1(u), as given in (27), for z ↑ 1. To this end, observe that
it cannot be R1(u)(1 − z)1+ε for some ε > 0 because of the term J (u)(1 − z) in the right
hand side of Eqn. (32) — realize that if that would be the case then dividing by (1 − z)
and letting z ↑ 1 yields a contradiction. So the dominant term of 1 − η(u, z) for z ↑ 1, is
R1(u)(1− z), where

R1(u) = J (u) + b1

∫ u

0
h(s)R1(u− s)ds. (33)

The above equation can be recognized as a Volterra integral equation of the second kind
(see [25, Ch. I]). By using Picard iteration, we obtain, for u > 0,

R1(u) = J (u) + b1

∫ u

0
h(s)J (u− s)ds

18



+ b1

∫ u

0
h(s)

[
b1

∫ u−s

0
h(v)J (u− s− v)dv

]
ds+ · · ·

= J (u) + b1 (h ?J )(u) + (b1)2 (h2? ?J )(u) + · · ·

=
∞∑
n=0

(b1)n (hn? ?J )(u), u > 0. (34)

Now we claim when z ↑ 1 (using the same reasoning as for the first term) that the next
term of 1− η(u, z) is Rα(u)(1− z)α, with Rα(u) given in (28). Substituting this in (32) and
calculating the coefficient of (1− z)α, we find in the limit z ↑ 1:

Rα(u) = b1

∫ u

0
h(s)Rα(u− s)ds+ Γ(1− α) `(∞)

(∫ u

0
h(s)R1(u− s)ds

)α
. (35)

This equation is also a Volterra integral equation of the second kind (see [25, Ch. I]) and
using Picard iteration, we get

Rα(u) = Γ(1− α) `(∞)

∞∑
n=0

(b1)n
(
hn? ? (h ? R1)α

)
(u), u > 0.

Now we use Theorem 4.1, in combination with the asymptotics that we just established
for the first and second term. As z ↑ 1,

E zN(t) ∼ exp

(
−λ∞

∫ t

0
(R1(u)(1− z) +Rα(u)(1− z)α)du

)

= exp

(
−λ∞(1− z)

∫ t

0
R1(u)du

)
exp

(
−λ∞(1− z)α

∫ t

0
Rα(u)du

)
. (36)

Using the exponential function expansion in the above equation, we get

E zN(t)

∼

(
1− λ∞(1− z)

∫ t

0
R1(u)du+O((1− z)2)

)
(37)

·

(
1− λ∞(1− z)α

∫ t

0
Rα(u)du+O((1− z)2α)

)

= 1− λ∞(1− z)
∫ t

0

(
R1(u) + (1− z)α−1Rα(u)

)
du+O((1− z)2).

Using [4, Thm. 8.1.6] in the reverse way, we conclude that, indeed, N(t) ∈ R(−α), with
α ∈ (1, 2).

Remark 6.3. For special choices of h(·) and J (u), one can obtain explicit expressions for∫ t
0 R1(u)du and

∫ t
0 Rα(u)du. Below we consider the case h(u) = e−ru and J (u) = e−µu.

Substituting these in Eqn. (33), we get

R1(u) = e−µu + b1

∫ u

0
e−r(u−s)R1(s)ds. (38)

The above equation is a Volterra integral equation of the second kind with kernel k(u, s) =

e−r(u−s). Solving it using the resolvent kernel method given in [25, Chapter I], we get

R1(u) =
1

r0 − µ

[
(r − µ)e−µu − b1 e−r0u

]
.
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From this, or directly from (38) after integrating both sides from 0 to∞, we obtain∫ ∞
0

R1(u)du =
1/µ

1− ρ
.

We next turn to Rα(u). We substitute h(·) and R1(·) in Eqn. (35), which leads to a Volterra
integral equation of the second kind, i.e.,

Rα(u) = b1

∫ u

0
e−r(u−s)Rα(s)ds+ Γ(1− α) `(∞)

(
e−µu − e−r0u

r0 − µ

)α
.

Substituting r0 = r(1− ρ) and then integrating both sides from 0 to∞ yields∫ ∞
0

Rα(u)du =
b1
r

∫ ∞
0

Rα(s)ds+ Γ(1− α) `(∞)

∫ ∞
0

(
e−r(1−ρ)s − e−µs

µ− r(1− ρ)

)α
du,

and hence∫ ∞
0

Rα(u)du =
Γ(1− α) `(∞)

1− ρ

∫ ∞
0

e−αr(1−ρ)s

(
1− er(1−ρ)s−µs

µ− r(1− ρ)

)α
ds.

Substituting er(1−ρ)s−µs := v in the above equation, yields∫ ∞
0

Rα(u)du =
Γ(1− α) `(∞)

(1− ρ)(µ− r(1− ρ))α+1

∫ 1

0
v
αr(1−ρ)
µ−r(1−ρ)−1

(1− v)α dv

=
Γ(1− α) `(∞)

(1− ρ)(µ− r(1− ρ))α+1
B
(

αr(1− ρ)

µ− r(1− ρ)
, α+ 1

)
,

where B(·, ·) is the Beta function. Using a well-known property of the Beta function, viz.,
pB(p, q) = (p+ q)B(p+ 1, q), we obtain∫ ∞

0
Rα(u)du =

Γ(1− α) `(∞)

(1− ρ)(µ− r(1− ρ))α+1

µ(α+ 1)− r(1− ρ)

αr(1− ρ)
B
(

αr(1− ρ)

µ− r(1− ρ)
+ 1, α+ 1

)
.

6.2 Heavy-traffic asymptotics

In this subsection we discuss the heavy-traffic behavior of Λ ≡ Λ(∞) and N ≡ N(∞), i.e.,
we consider the stationary Hawkes intensity process and the number of customers, in the
regime where we let the load generated by the Hawkes process approach its instability
boundary. In other words, we study the system’s behavior when ρ = b1

∫∞
0 h(u)du ↑ 1.

Let Γ(α1, α2) denotes a Gamma distribution with shape parameter α1 and rate parameter
α2. We assume in this subsection that h(u) = e−ru, so that ρ = b1/r.

Theorem 6.4. Consider a Hawkes process for which the first two moments of B are finite, and
where h(u) = e−ru, u > 0. As ρ ↑ 1,

(1− ρ)Λ
d→ Γ

(
2rλ∞
b2

,
2r

b2

)
. (39)

Proof. Start with the steady-state version of (8). Take z =1, so that we focus on Λ, as E e−sΛ

is the LST of Λ. Then one gets the ODE:

d

ds
E e−sΛ = − rsλ∞

rs+ β(s)− 1
E e−sΛ.
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Its solution is
E e−sΛ = exp

[
−λ∞r

∫ s

0

u

ru+ β(u)− 1
du

]
. (40)

Since we assume that the first two moments of B are finite, we can write β(s) = 1− s b1 +
s2

2 b2 + o(s2), as s ↓ 0. Now consider E e−s(1−ρ)Λ with ρ = b1/r. Substituting u = v(1 − ρ)

and the above β(s) expansion in (40), we get for ρ ↑ 1:

E e−s(1−ρ)Λ = exp

[
−λ∞

∫ s

0

1

1 + vb2/(2r) + o(1− ρ)
dv

]
. (41)

For ρ ↑ 1, one gets from the above equation that, with κ = 2r/b2,

lim
ρ↑1

E e−s(1−ρ)Λ =

(
κ

κ+ s

)κλ∞
. (42)

By virtue of Lévy’s convergence theorem [27, Ch. XVIII], the result follows.

We now prove that a very similar result holds for the steady-state number of customers
N in the Hawkes/M/∞ queue. We accomplish this by first observing that the first two
moments of (1 − ρ)Λ and (1 − ρ)µN have the same limit for ρ ↑ 1 (in fact, this holds for
the first g moments, if EBg <∞, as can easily be verified from the steady-state version of
(10)). We subsequently apply the following lemma. Denote σ2

Xn
:= VarXn, σ2

Yn
:= VarYn,

and Cn := Cov(Xn, Yn)/
√
VarXn · VarYn.

Lemma 6.5. Suppose that the following conditions hold: (i) EYn/EXn → β and σYn/σXn → β

as n→∞, (ii) Cn → 1 as n→∞, (iii) Xn
d→ X , and (iv) there is a finite M such that, for all n,

0 6 EYn < M and 0 6 σ2
Yn
< M . Then Yn

d→ βX .

Proof. Define αn := Cn σYn/σXn . Then by using (i) and (ii), αn → β. In addition,

Var(αnXn − Yn) = α2
nσ

2
Xn − 2αnσXnσYn + σ2

Yn

= C2
nσ

2
Yn − 2Cnσ

2
Yn + σ2

Yn = (Cn − 1)2σ2
Yn → 0, (43)

using (ii) and (iv). Then note that

E(αnXn − Yn)2 = Var(αnXn − Yn) + (αn EXn − EYn)2 → 0;

the first term goes to 0 due to (43), and the second term due to (i), (iv), and αn → β

as n → ∞. Hence αnXn − Yn → 0 in L2; using Chebyshev’s inequality, it immediately
follows that εn := αnXn − Yn

P→ 0.
Now consider Yn = αnXn−εn.Using (a) αn → β as n→∞, (b)Xn

d→ X because of (iii), (c)
εn

P→ 0, (d) Slutsky’s Lemma [26, Lemma 2.8]: An
d→ A,Bn

P→ 0 implies that An +Bn
d→ A

(irrespective of An and Bn being dependent), the claim Yn
d→ βX follows.

This lemma, in combination with Theorem 6.4, now yields the following heavy-traffic
result for N , the number of customers in the Hawkes/M/∞ queue. For this purpose, we
take Xn = (1 − ρn)Λn and Yn = (1 − ρn)Nn, where ρn, n = 1, 2, . . . is a sequence of
parameters converging to 1, and where Λn and Nn correspond to the quantities Λ and N

in our Hawkes/M/∞ queue when ρ = ρn.

Theorem 6.6. Consider the Hawkes/M/∞ queue, with J (u) = e−µu. Assume that the first two
moments of B are finite, and that h(u) = e−ru, u > 0. As ρ ↑ 1,

(1− ρ)N
d→ Γ

(
2rλ∞
b2

,
2rµ

b2

)
. (44)
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7 Discussion and concluding remarks

In this paper we have analyzed an infinite-server queue fed by a Hawkes arrival process.
Under Markovian assumptions, a fairly explicit analysis is possible, leading to e.g. explicit
expressions for the (transient and stationary) moments of the number of customers in the
system. Lifting the Markovian assumptions, the analysis becomes less explicit: results are
derived in terms of a fixed-point equation describing the z-transform of the number of
customers. We have used this fixed-point equation to derive asymptotic results.
Several branches of follow-up research offer themselves.

◦ In the first place one could consider single-server queues with Hawkes input. In our
analysis in the infinite-server setting we repeatedly use that the customers are served
independently of each other, a property that we do not have in a single-server con-
text. This may entail that exact analysis is prohibitively difficult, but analysis in a
heavy-traffic setting might be possible.

◦ In [17] we considered networks of infinite-server queues with shot-noise-driven in-
put. There it turned out that the network setting could be analyzed by essentially the
same techniques as the single-queue setting. This raises the question whether the re-
sults of the present paper also naturally extend to that of a network of infinite-server
queues with Hawkes input. We would have to appeal to the multivariate counterpart
of self-exciting processes, which are called mutually-exciting arrival processes [13]. As
the name suggests, in this case arrivals to a particular queue would also be able to
excite arrivals in other queues.

◦ Furthermore, one could pursue improving the bounds of Prop. 4.2, to make them
more useful for larger values of n. Also better initial approximations can be deter-
mined (see Remark 4.3).

◦ In the heavy-traffic setting, there are several interesting directions still to be explored.
One could try to generalize Theorem 6.6 to the case of generally distributed J ; it
would also be interesting to study the heavy-traffic behavior of Λ andN in the heavy-
tailed setting of Section 6.1.
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