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Abstract

We consider the dual risk model with special dividend or tax payments: If an arriving gain
finds the surplus above a barrier b or if it would bring the surplus above that level, a certain part
of the gain is paid as dividends or taxes. We obtain expressions for the joint Laplace-Stieltjes
transform of the time to ruin and the amount of dividends paid until ruin, and for the expected
discounted dividend paid until ruin. We consider the case where the dividend paid from each
gain is a general function of the gain. More explicit results are obtained when the dividend is a
given percentage of the gain amount.
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1 Introduction

This paper is devoted to the analysis of dividend policies in the compound Poisson dual risk model.
Since the pioneering work of De Finetti, many types of dividend policies have been studied for the
classical Cramér-Lundberg model, i.e., for risk processes modeled as a Lévy process without positive
jumps. In the barrier dividend strategy all the premium inflow received while the process is above
the barrier is paid as dividends. Under some conditions, this policy was proven to be optimal for
the classical risk model. Another dividend policy is the threshold strategy, where dividends are
paid at a fixed rate smaller than the premium rate, when the surplus is above a given horizontal
threshold. This policy was proven to be optimal under some conditions when the dividend rate is
bounded from above. For a comprehensive review on the dividends strategies, see [4].

Another process that has been studied in the actuarial literature is the dual risk model. This is
a Lévy process without negative jumps. It describes the surplus of a company with fixed expense
rate and occasional gains. Examples are pharmaceutical, petroleum, or R& D companies. Since
Avanzi et al. [2] various performance measures of the dual risk model have been studied. Avanzi et
al. [2, 4] considered the optimal dividend policy for the compound Poisson dual risk model with and
without perturbation of Brownian motion and proved that the policy that maximizes the expected
present value of the dividends is the barrier strategy, i.e., all the overflow above a barrier is paid
as dividends. The barrier strategy is proven to be optimal for the more general spectrally positive
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Lévy process in [6] as well as for the dual risk process with terminal cost [12]. Under the threshold
policy no dividends are paid when the surplus is below a given horizontal threshold and dividends
are paid continuously at a constant rate when the surplus is above that barrier. [9] studied the
threshold dividend strategy for the dual risk model. [13]| proved that the threshold policy is optimal
under the restriction that the dividends are absolutely continuous and the dividend rate is bounded
from above. When dividends can be either absolutely continuous with bounded rate or given as a
lump amount, the optimal policy is a combination of the threshold policy and the barrier strategy

[5]-

In this paper we consider the compound Poisson dual risk model with the following dividend
policy: Above a given horizontal barrier a certain part of each gain (or from the part of a gain
which brings the surplus above the barrier) is paid out as dividends or as taxes. Thus it differs
from the barrier strategy since not all the overflow above the barrier is paid as dividends and it
differs from the threshold policy since dividends are not paid continuously. As an example consider
R&D, pharmaceutical or petroleum companies, where whenever there is a gain and the surplus of
the company is high it gives some bonus or dividends to its employees or shareholders from each
gain. Alternatively, especially in the petroleum industry, a company might pay tax from each gain
to the regulator. Our main results are expressions for the joint Laplace-Stieltjes transform of the
time to ruin and the amount of dividends, and for the expected discounted dividends until ruin.

The paper is organized as follows. Section 2 contains a model description and some results about
scale functions that will be used later on. Section 3 is devoted to the case that a fixed proportion
of the gain above a certain threshold is paid out as dividend, while Section 4 considers a general
function of the gain. In both cases, we derive expressions for the joint Laplace-Stieltjes transform of
the time to ruin and the total dividend until ruin; we also discuss the expected discounted dividends.

2 Preliminaries

2.1 The model

Let U(t) be the surplus process of the dual risk model without dividend payments:

N(t)
Ut)=U(0) —ct+ »_Yi, (2.1)
i=1
where ¢ > 0, N(t) is a Poisson process with rate A and Y;, i = 1,2,..., are i.i.d. positive random

variables with distribution G and Laplace-Stieltjes transform Ly (-). U(t) can also represent the
work in process in an M/G/1 queue or the inventory level in a storage model or dam model with
occasional inflow and a constant demand rate. It is well-known that

E[e~0UO-U0)] = £(0) (2.2)
where
P(f) =cl — X+ ALy (0); (2.3)
1(0) is the Laplace exponent of the process. Let ®(6) be the biggest solution to
»(f) = 6. (2.4)



It is well-known that when ¢’(0) > 0 then ®(0) = 0, otherwise ®(0) > 0. When ¢/(0) > 0 the busy
period in the M/G/1 queue is finite with probability 1, or in the dual risk model ruin occurs with
probability 1. Otherwise the busy period can be infinite with positive probability or equivalently,
the ruin probability is less than 1.

We consider a horizontal barrier b > 0. From each gain of size x that occurs while the process
is above b or from each overshoot of size x of a gain that brings the surplus above b, a dividend of
size I(x) is paid. We assume that 0 < I(x) < z.

Thus above b the process behaves as U, where
dU(t) = —cdt + dS(t), (2.5)

where S(t) = ZZZ\;(P(YZ — I(Y;)). Throughout the paper we assume that ¢ = 1, and we denote by
L 4 the Laplace-Stieltjes transform of a random variable A.

The Laplace exponent of U(¢) is 11(#), where
Let @1 be the inverse of 1)1. We denote by X the spectrally negative risk process with dX;(t) =
—dU(t). Let U be the net surplus process, i.e., after dividends payout. Our aim is to obtain the

Laplace-Stieltjes transform of the total dividends and the expected discounted dividend paid until
ruin.

2.2 Scale function
In this subsection we review some fundamental results for the exit times for spectrally negative Lévy
processes in terms of scale functions; these results are used in the rest of the paper.

Let X (t) be a spectrally negative Lévy process, and more specifically,

N(t)
X(t)=X(0)+t— > Y. (2.7)
=1

In our context X (¢) =b— U(t), thus X(0) = b — U(0). Hence, cf. (2.2),

E[/X(O-XO)] — b o)

)

where 1 is as in Equation (2.3).

For the following notations and definitions we refer the reader to Chapter 8 in [8]. The g-scale
function, W@ (x), is the unique right-continuous function whose Laplace transform is given by
oe 1
=Bz (a) _
e PPW\ (z)dr = , for B> ®(q).
/ =SB = @
We also define the function Z(@ (x,6) by:
20G.0) = (1= w0 -a) [ WOwy). (2.9

0
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(see also Eq. (4)-(5) in [1]). For # = 0 we get the function Z(9(z),
29@) =1+q [ WOy, (2.9)
0

Let 7,7 = inf{t : X(t) = b} and let 7, = inf{t : X(¢) < a}. Then for 0 < z < b the following hold:
(by E, we denote the conditional expectation given that X (0) = x):

Bole™ 1 ogy) = ¢, (2.10)
E, e 1 _ W) 2.11
o L)l = W) (211)
It is known (see e.g. (5) in [1] and (8) in [10]) that:
- - W@ (g
E,[e 7 /X(T0 ’17(;«;] = Z9D(2,0) — Wq((b))z(q>(b, 0). (2.12)

In the sequel we need also the derivative of Z(?(x, ) with respect to :

d%Z(” (,0) = 22D (x,0)+¢* <w’<e> / e~ W@ (y)dy + (¥ (6) — ) / ye YW@ <y>dy>
0 0
(2.13)
Letting # = 0 in (2.8) we obtain that
_ W@ (z)
—q, — 7@ () - 7@
E.[e"90 1{To_<Tb+ | =29 (x) — Z'9(b) W@ () (2.14)
We shall also use the g-resolvent measure, which has a density u(9 (z,y) where
u(q) (‘Ta y>dy = EJJ/O 67qt1Xt€dy,t<7'(;/\7';L dt
W@ ()W @D (b —y) (
_ WDy —
= ( W) WD (x —y) | dy. (2.15)

3 The joint Laplace-Stieltjes transform of the total dividends and
the time to ruin — the case I(z) = (1 — o)z

In this section we restrict ourselves to the case that a dividend of size I(z) = (1 — )z is paid from
each gain of size x that occurs while the process is above b and from each overshoot of size x of
a gain that brings the surplus above b. We devote a section to this special case because it is an
important case, and because it allows us to introduce the key arguments which will, in Section 4,
also enable us to handle the general I(z) case. In Subsection 3.1 we determine the Laplace-Stieltjes
transform of the total dividend in one cycle. Subsection 3.2 is devoted to the derivation of the joint
Laplace-Stieltjes transform of the time to ruin and the dividends until ruin. In Subsection 3.3 we
consider the expected discounted dividends for the case I(x) = (1 — a)z.



3.1 The Laplace-Stieltjes transform of the total dividends in one cycle

Assume that U(0) = b+y, y > 0. Let Dy, be the total dividends paid until the process reaches b.
Let D be the total dividends paid until the process reaches b when U(0) =b+ Y.

Denote by B a busy period of an M/G/1 queue with workload described in (2.1), but with the
ith gain equalling oY}, so the service time equals a;.

We have the following equation for Lp,,  and Lp.

Proposition 3.1.
Lp,,,(0) =exp (—{0(1 — a) + Aa(l — Lp(0))}y) - (3.1)

Proof. Given that U(0) = b+ y then (1 — )y is paid immediately as dividend and the net surplus
is b+ ay. Assume that during time ay there are exactly n Poisson arrivals. Each one of the arrivals
starts a regular busy period (which can also be infinite). Let B; and D; be, respectively, the ith
busy period and the amount of dividends paid in the ith busy period. Those busy periods are
independent, and distributed as the busy period in an M/G/1 queue with arrival rate A and service
time distributed as aY . Thus, given that N(ay) = n > 0, using a well-known branching argument
that has been developed for the busy period LST in an M/G/1 queue (cf. pp. 60-61 of [11]),

Efexp(~0Dp4,)1p,., <ol N (0) = n] = 2023 (0). (32)
By unconditioning,
_ - —0(1—a — o ()‘O‘y)n n
Lp,,,(0) = nz_:oe (1=a)ye P Lp(0)
=exp (—{0(1 — ) + Aa(1 — Lp(0))}y) . (3.3)
O

Proposition 3.2. For Re 0 > 0, Lp(0) satisfies the following equation:
Lp(0) =Ly (0(1 —a)+ Aa(l — Lp(H))) . (3.4)

It is the unique solution of the equation x = Ly (0(1 — a) + Aa(1 — x)) with |z| < 1 if Re # > 0 and
if Re 0 > 0 and \aE[Y] < 1, i.e., if ®1(0) = 0; if ®1(0) > 0, then Lp(0) = 1 is the unique solution
of the equation with |x| < 1.

Proof. To show that Lp(0) satisfies (3.4), we replace y by the random variable Y in (3.3) and take
expectations. The uniqueness follows by an application of Rouché’s theorem (see, e.g., the proof of
a very similar result for the LST of the busy period in the M/G/1 queue on pp. 47-48 of [11]). O

3.2 The joint Laplace-Stieltjes transform of the time to ruin and the dividends
until ruin

Let Dggt) be the total dividends paid until ruin when the initial surplus is u and let Pt(;? be the
time until ruin when the initial surplus is u. In this section we obtain their joint Laplace-Stieltjes

transform E[e—eDt(Zt)—BPE;‘t)], expressed in the function Z(9)(z, ) that was defined in (2.8).



Let C, be the time until the U process upcrosses b given that the initial surplus is u, and let
R, be the overshoot when this event occurs. Let P, be the period that starts when U overshoots b
and ends when it again reaches b, given that ¢/(0) = u. Let H,, be the time the process reaches 0
starting at uw. For future use we introduce

v(0) :=0(1 —a)+ Aa(l — Lp(6)). (3.5)
Proposition 3.3. (i) Foru <b,

ZO) (b —u,v({% +0))

(u) (u)
E[e_eptot _Bptot ] — - (36)
Z®) (b, v({£% +9))
(i) Foru >1b,
u . —v(£%+0) (u—b)
E[e?Phl 8Pl = € . (3.7)
ZB) (b, v({% +6))
Proof. (i) U(0) =u <D
—oDY) Py —BH —B(Cu+Pu)—0D —op{%) —pPL)
E[e tot tot ] = E[e u]'{Hu<Cu}] —+ E[e u u b+Ry 1{Cu<Hu}]E[e tot tot:l‘
Notice that o
Py = 1=—Diin,, (3.8)
thus, by (3.3) and (3.5),
_ - —BCu—v (£ +6
E[e B(Cu+Pu)—0Dpy R, ]‘{Cu<Hu}‘Ru = y] = E[e B v(i=at )yl{C’u<Hu}]‘ (3.9>
Hence, by (3.9) and the strong Markov property:
E [Q—GDEZQ —BP) ]
— (B (b) (b)
e E[e_ﬁHu 1{Hu<Cu}] + E[e 5071, (1[3,(1 +9)Db+Ru 1{Cu<Hu}]E[6—0Dtgt—ﬂptgt]
_ (B (b) (b)
= Ele P 1y, <o) + Ble POVt o gy Bl P fPi] (3.10)

Cy is the same as 7, — the time to ruin in the classical risk model with initial surplus b — u,
similarly, H,, is the same as 7'b+ — the first time to reach b starting at b — v in the classical risk
model X (see below (2.9)). Thus,

E[e—eDﬁfﬁt) —57’52?]

_ —Bry
= Epule™™ 1 oy

B

FEy_y[e P70 EETOX () -

(b)
{TO_<T;_}]E[€_9DtOt BPM]

= 7W(5)(b) +(Z (b—u,y(1 —
ZB) (b, v({£2 +9))
W& (b)

+0))

_ WO (b — ) JE[e—0Pioi—5Pial), (3.11)
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b b
E[e‘eDgol_ﬁpéoz] is obtained by substituting v = b in (3.11):

E[G_Q/Dggi_ﬁpt(gz} = 1 .
Z®) (b, v({£2 +9))

Thus (3.6) follows.

(i) U(0) =u > b.
In this case C;, = 0 and R, = v — b. By (3.3) and (3.8),

—v(£2% +6)(u—b)

«@

E[efevgggfﬁpﬁg‘t)] _ 6—'/(%Jr@)(u—b)[g[e*”gi*ﬁpfft)] = :
Z®) (b, v({£2 +9))

Remark 3.1. The LST’s of Pt(g;) and of Dgt) immediately follow from the theorem:
ForU(0) =u <b,

w.  ZO(b—u,v({£L))

Ee_ﬁptot — l-a ,
b))
[e—BDigg] — Z(O)(b ) V(9 )’
Z0(b, v(0))
and for U(0) = u > b,
. V(£ (u—b)
]E[e_ﬂlpgot)] = © : ,
20 (b,v({5))
—v(0)(u—b
el = <

205, v(6))

Next, we obtain the ruin probability for this model. Recall that above b the surplus process
behaves as U, with Laplace exponent 17 with inverse ®;. The Laplace-Stieltjes transform of B can

also be written as follows:
Lz(0) = E[e®10Y] = £+ (D1(6)). (3.12)

Corollary 3.1. The ruin probability for the dual model U with I(x) = (1 — a)x is 1 if ¥} (0) > 0.
Otherwise it equals

Z(b—u a(1— Loy (21(0))) -
Z(b,)\a(lfﬁay)(ii)l(lo))) if u<b,

(3.13)
Zipat- L@y 4>
Proof. Substitute § = § = 0 and notice that
v(0) = Aa(l — Lp(0)) = Aa(1 — L5(0)) = Aa(l — Loy (P1(0))). (3.14)
Now observe that ®1(0) = 0 if ¢{(0) > 0 (i.e., if AaE[Y] < 1) and ®1(0) > 0 if ¢/{(0) <0 . O



3.3 The expected discounted dividends for I(z) = (1 — a)x

Let V(@ (u, b) be the expected discounted dividends until the process U reaches b the first time from
above.

Proposition 3.4. (i) LetU(0) =u=>b+y,y > 0. Then

V0 u,b) = (1= @)y + V(@) (1 — exp(—any)), (3.15)
where \
V(g) =EV@D(b+Y,b)] = (1 — a)E[Y] + V(q)ﬁ(l — Ly (an)), (3.16)
1.€., B (1 B a)E[Y]
Vig)=1— X1 Ly(an)’ (3.17)
and
n=q+A1-Ls(q)) (3.18)

(ii) Let U(0) = u < b then

b—u
VO(u,0) = ~(1 =) [~ 0200~ ) = (1= XYW 0 - w) —g [ WOy

WD (b — u) . -y b ,
~—vom (bz( )(b) — (1 = AE[Y]) WD (b) — q/o y W )(y)dy)]
A 4 WD (b—u) .
+V(q); (Z( )(b —u) — WZ( )(b))
A q WD (b —u) .
vy (Z( (b~ u,0m) - WZ( (o, an)) : (3.19)

where W (9 (b) = fob WD (z)dzx.

Proof. (i) U(0) =u=b+y,y > 0.

First we prove (3.15). (1 —a)y is taken from the overshoot of size y. If there is no gain during
the period ay then this is the amount of dividends. Assume that there are n gain arrivals
during time ay. Each such arrival starts a busy period (which might be finite or infinite) of an
M/G/1 queue with arrival rate A and service time distributed as oY (recall that we assumed
that ¢ = 1). Let N(ay) be the number of arrivals during ay. The dividends in the different
busy periods are i.i.d. and the expected discounted (to the beginning of the busy period)
dividend in such a busy period is V(g). Given that N(ay) = n, let T(;) be the time of the
ith arrival that starts such a busy period. Thus, we have to discount the dividends in the ith
busy period by eﬂmiﬁz}; Bi) " Given that N(ay) =n > 1, the density function of T(; is as
the ith order statistic from a uniform distribution on (0, ay). Thus:



VD (b+y,b) = (1-a)y
L e (a\y)" L ay N v oo v
+3 Sy S 1) [Ty - Ly
n=1

n! oy ay ay

u=0 m!

1 0 «a me—al
=1-a)y+ V(q)oz)\y/ (Z </\y)—y(u£3(q) +1- u)me_q“"‘y) du

m=0

1
=(l-a)y+ V(q)osz/O exp(—uayq + ary(ulp(q) — u))du
— (1= )y + V(@) (1 - exp(—amy)). (3.20)

(3.16) is obtained by replacing y with Y and taking expectation.

(i) U(0) =u <b.

Until the process U reaches b it behaves as U. In terms of the process X = b—U, the overshoot
above b is the same as —X (7, ), i.e., the absolute value of the deficit in the process X. Thus,
using (3.15), the expected discounted dividends until ¢ reaches b (or X reaches 0), V(9 (u, b)
is:

g - A _

Ep_y [e 7o 1{To_<7b+} (—(1 —a)X (15 )+ V(q)g(l — exp(anX (7, )))>] . (3.21)

By (2.12),
—qry ,omX (15 W@ (b —u

Ep—fe™ 0 X (T )1{7(;<Tb+}] = Z19(b—u,an) - W(q(b))Z(Q)(b, an). (3.22)

By (2.14),
- W@ —q
By ule™ 70 1 hy] = Z\D(b—u) - W((q)(b))Z(Q)(b)- (3.23)

By (2.12), (2.13), (2.9) and substituting ¢’(0) = 1 — AE[Y] (since ¢ = 1):

_ (@) (p —
Ep_ufe~ 70 X (75)1 = % (Z(’I)(b —u,0) — MZ@)((,’ 3)) lo—o

Ty <T;']

Wa(b)

b—u
— (b= wZD (b~ u) — (1~ XEY)WD(b—u) g /0 YW@ (y)dy

b

AR <bz<q)(b) — (1= XE[Y])W D (b) — ¢ / yWw @ (y)dy> : (3.24)
0

W (@) (b)
(3.22)-(3.24) yield (3.19).

Substituting « = b and Z(9(0,0) = 1 in (3.19) we obtain that:



(@) ~ b
VO (b,0) = (1 - a) [;Vmgg; (6290) - (@~ ABIYDWO@) g [ i (y)dy)]
A W@ (0) A W@ (0)
+V(q)5 (1 W) Z(q)(b)> -~ V(q); (1 - W) 7D (b, om)) : (3.25)

Next we derive Vt(gt) (u) — the total discounted dividends given that the initial surplus is u.

PI‘OpOSitiOH 3.5. Foru > b,
( )

Viet(u) = V9 (u, b) , (3.26)
1— 6
where
5, = e~ Prl@atu=b). (3.27)
Foru <b,
(q) _
b0 = ZD (b — u, a1 (q)) — @ = W) 2@, 0, (g)). (3.28)

W(q)(b

Proof. 9, is the discounted time until the process U reaches b from above. When u > b, U behaves
as U. Since (1 — «a)(u — b) is paid as dividends, and the time to reach b is distributed as the time
that X; = a(u — b) — U reaches u — b starting at 0. Thus, (3.27) follows from (2.10). For u < b
the time until U reaches b is Cy, + P,. C, is the same as the time to ruin 7; for the risk process
X =b—U. P, is the same as the time to reach —X(7,") by the process X; which behaves as —U
starting at 0. (2.12) and (2.10) yield that:

bu = Ele™ MOt P10, ] = Byl 70 P @X (0 )]
WD (b — u)

— 7@ (b—u,a®(q)) — W (@) (b)

Z9D (b, a®1(q)). (3.29)

Substituting « = b and W@ (0) = 1 yields that

51) — }E[e_q(cbd—"_vaj)] — Eo[e—qm_ e‘bl(Q)aX(To_)]
1

-1 _ WT)(b)Z(q)(b, a®i(q)).

Viot(u), the expected total discounted dividends until ruin, is given by

5. VD (b, b)

Vior () = VO (u,b) + 6,V @ (b,5) > 55 = V@ (u,b) + s

n=0

(3.30)

4 General dividends

In this section we generalize the previous results, assuming that from each gain of size x which
arrives when the surplus is above b or from each overshoot of size x of a gain that brings the surplus
above b, the dividend paid is I(x), where 0 < I(x) < x.

10



4.1 The Laplace-Stieltjes transform of the time to ruin and the total dividends
paid

Assume U(0) = u + y (or that the overshoot is y). Let Bpiy, Dyty, be respectively the time to
reach b from above and the total dividends paid until this time, given that before paying dividends
U(0) =b+y. B and D are similarly defined with y replaced by Y. Notice that B is a busy period
in an M/G/1 queue with Poisson arrivals at rate A and service distributed as Y — I(Y'), and D is
the dividends paid during this period. Let

['Bb+y7Db+y (57 6) = E[eiﬂBber*e'Dber]
be the joint Laplace-Stieltjes transform of By, and Dy,,. Then

Proposition 4.1. For Re 3,0 > 0, the joint LST of B and D satisfies the following equation:
Lzp(8,0) = Ele”BHA—Asp(B.0)Y =(0-B- L5 p(BI(Y)] (4.1)
It is the unique solution of the equation x = E[e~0!()=(B+AA=2))(Y=I)] with |z| < 1 if Re B > 0,

Re 6 >0 and if Re >0, Re 0§ > 0 and NE(Y — I(Y)) < 1, i.e., if ®1(0) = 0; if 1(0) > 0, then
Lpp(0) =1 is the unique solution of the equation with |x| < 1.

Proof. First assume that the overshoot over b is y. In this case the amount of dividends withdrawn
immediately is I(y), and the net jump is y — I(y). The time until the process reaches b is y — I(y) +

S NWTW) B, where B; are i.i.d. distributed as B. Similarly, the amount of dividends paid until the
process reaches b when the overshoot is y is I(y) + Zﬁ(g —1w) D;, where D; are i.i.d. distributed as

D. Thus the joint Laplace-Stieltjes transform of the time until the process hits b and the dividends
paid up to this time given that the overshoot is y, Lg,,, p,.,(8,0), is:

L5,,, Dy, (5, 8) = E[e=P—Tw)=016)=258 " (3B, +0D0)

o0

-7 J .
— e B TW)=PI0) § 6—A(y—f(y>>W(£3,D(ﬁ, 0))
=0 '
_ o~ By—1W)=01(y)~Ay—I1(u)(1-L5.p(5.0)) (4.2)

Assuming now that the overshoot is a random variable Y and replacing y by Y in (4.2), yields (4.1).
The uniqueness follows again by Rouché’s theorem, cf. the proof of Proposition 3.2. O

Let U(0) = u, 0 < u < b, thus X(0) = b — u. First we consider the joint Laplace-Stieltjes
transform of the time until the process reaches b when it upcrosses b before ruin, and the total
dividends paid until this time.

Theorem 4.1. Let U(0) = u < b. Then

E[e—ﬁ(cwpu) lo,<m, EBu(cu) Ducen) (3,0)]

b o)
A A R P SO T X (43
z=y

11



Proof. X(t) = b —U(t) is a spectrally negative Lévy process and for U(0) = u, C,, and H, are
the same as the first time that X = b — U downcrosses 0 or hits b respectively. We apply the
definition of the density u(®(-,-) of the B-resolvent measure given in (2.15). u®(b—u,y)AdF,(2) is
the Laplace transform of the time until the process X (starting at b—wu) reaches y before hitting b or
downcrossing 0, and then downcrosses 0 due to a claim of size z > y. It is the same as the Laplace
transform of the time until U (starting at u) reaches b — y before hitting 0 or before upcrossing b,
and then upcrosses b due to a gain of size z > y. Multiplying it by Lg,, . p,,. ,(8,0) yields the
result. O
(u)

To obtain the joint Laplace-Stieltjes transform of D}, and P,,/ we write similar equations as

(3.8) and (3.10).

Proposition 4.2. (i) Let u < b then

u u B (p —
E[e—GDEOQ—ﬁPt(of] _ Wb~

b 0o
_ap®) _ap®)
[ 0= 0 NP ) (8. 0)dy BEPEIP a
z=y

where E[efepgzifﬁpt(gt)] is obtained by substituting u = b in (4.4).
(ii) Letu=>b+y, y > 0. Then

(w) (w) (b) (b)
Ele~"Pist =P} = L, p, (8, 0)E[e~"Piot=Piet] (45)

Proof. (i) Similar arguments as in the proof of Proposition 3.3 yield that the Laplace-Stieltjes
transform of the time until U reaches 0 before hitting b (and thus ruin occurs before dividends

are paid) is %12;;0. According to the definition (2.15), u'®) (b — u,y)AdFy (2)dy is the
Laplace-Stieltjes transform of the time until the process equals b—y, and a claim of size z > y
occurs. Multiplying it by Lg,, . p,.. ,(B,0) gives the joint Laplace-Stieltjes transform of
the time until the process reaches b from above and the dividends paid until this time. Due
to the strong Markov property, multiplying it by the joint Laplace-Stieltjes transform of the

time to ruin and the dividends paid until ruin, starting at b, yields (4.4).

(ii) Lg,p.(B,0) is the joint Laplace transform of the time until reaching b from above and the
total dividends paid up to this time. Thus, (4.5) holds due to the strong Markov property.

O

Below we find the ruin probability for this case.

Corollary 4.1. The ruin probability for the dual model U with general I(x) is 1 if ¢{(0) > 0, i.e.,
if AE(Y — I(Y)) < 1. Otherwise it equals
WOG—a) i Jo S, 800~ w By (2)e X TE0-Er 0 E0))gy

(4.6
W) (b) 1— fé’ fzoiy u®(0, y)AdFy (z)e Ny LG 0=Ly—1v) (21(0) gy, (4.6)
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ifu <band
me—A(u—b—I(u—b))(1—ﬁyff(y)(‘Pl(o)))dy

1— fob fzoiy u©) (0, y)AdFy (z)e My~ 1E=9))(1=Ly —10v) (®1(0)) gy,

(4.7)
if u>b.

Proof. Solving (4.1) for L5 p(0,0) yields that
Lpp(0,0) = Ly_1(v)(®1(0)). (4.8)

As seen in Proposition 4.1, L5 p(0,0) = 1 when ¢1(0) < 0 and ®;(0) = 0. In this case Lp, , p,,,(0,0) =
1. Notice that,

b proo
/ / uO (b — u, y) AdFy (2)dy
0 Jz=y

ZO)(b)
W) (b)

WO (b — u)
W) (b)

=700 —u) - Wb —u)=1- (4.9)
The first line in (4.9) is the probability that X; dowcrosses 0 before reaching b starting at b — u.

Due to (2.14) the first equality holds. The last equality holds since Z(®) = 1.

Substituting u = b and solving (4.4) for the ruin probability starting at b yields that the ruin
probability starting at b is 1, and thus the ruin probability starting at u is 1.

In the case that 1] (0) > 0, i.e., ®1(0) > 0, (4.8) yields that Lgp(0,0) < 1. Substituting (4.8)
in (4.4) and solving for u = b and noticing that W) (0) = 1 (see Lemma 8.6 in [8]) yields that the
ruin probability starting at b is

1

wO®) . (4.10)
1— fé’ f::y w©)(0, y)AdFy (2)eFv= 1) (1=Ly —1v)(21(0) gy
Substituting § = = 0 and (4.10) in (4.4) and (4.5) gives (4.6) and (4.7). O

4.2 The expected discounted dividends

The analysis of the expected discounted dividends for general I(x) is similar to the analysis for the
case where I(z) = (1 — a)z. Let V@ (u,b) be the expected discounted dividends until ¢ reaches b
given that U(0) = w as defined in Section 3.3, but where the dividend that is taken from a gain of
size x is I(x), and B is the generic busy period in a M/G/1 queue with arrival rate A and service
time distributed as Y — I(Y’). Thus in the general case 7 is defined as in (3.18) with B as defined
above.

Proposition 4.3. (i) LetU(0) =u=>b+y,y > 0. Then
A
VO (u,b) = 1) + V()7 (1 - exp(~(y = 1(y))n), (4.11)

where V(q) = E[V@(Y +b,b)] is given by
E[I(Y) |
1 —2(1 — Elexp(—n(Y — I(Y)))])

Vig) = (4.12)
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(ii) Let U(0) = u < b then

b 0o
V@ (u,b) = / / wD (b —u, y)V (b + 2z — y, b)AdF (z)dy, (4.13)
y=0Jz=y

where VO (b + z — y,b) is given by (4.11).

Proof. (i) The proof of (4.11) is the same as the proof of (3.15).
(ii) (4.13) is straightforward from the definition of the potential measure u(9(-,-) in (2.15).
O
Now we obtain the expected discounted dividends for the general case. The proof of the following
proposition is similar to the proof of Proposition 3.5.

Proposition 4.4.
5. V9D (b, b)

Viot(u) = V9 (u,b) + , (4.14)
1—dy
where
5, = e~ 21D (u=b=I(u=b)) (4.15)
foru>b, and
b oo
8y = / / wD (b — u, y)e 21 DEY=IEV) \GF(2)dy (4.16)
y=0Jz=y

foru <'b.

Proof. (4.14) is similar to (3.30). For w > b the discount factor in (4.15) is obtained similarly to
(3.27).

The discounted time until the process reaches b from above when U(0) = u < b is

by = [e 9CutPI 0 ] = Ey_y[e 970 17_6<Tb+eq)l(Q)(X(TE)*I(X(TJ)))]_ (4.17)

To evaluate (4.17) we use the ¢g-potential measure again:

b 00
— / / D (b — u,y)e” P DEY=IEVNGF (2)dy. (4.18)
y=0Jz

=Y

The mean of the total discounted dividends is obtained as in (3.30).
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Remark 4.1. Substituting I(y) = (1 —a)y in (4.15) immediately yields (3.27). Substituting I(y) =
(1 —a)y in (4.16)gives

b 00
y=0Jz=y

The definition of u'® in (2.15) yields that the expression in (4.19) equals Ey_,[e~90 176 <rt e®1(@)aX (g )]
as in (3.29).
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