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Abstract

We analyze the performance of large-scale symmetric polling systems where the number
of queues grows large, motivated by emerging Internet-of-Things (IoT) applications and smart
building environments. We consider a scenario in which the total arrival rate is kept fixed and
the individual switch-over time and service time distributions remain the same. This asymptotic
regime leads to cycles of infinite length and queue lengths with non-trivial distributions. We
show that for most traditional service policies the scaled cycle times converge to a deterministic
value in the limit, which in turn implies that the queue lengths at the various nodes become
asymptotically independent. Using these insights, we find that the behavior of individual queues
simplifies to that of a discrete-time bulk service queue in the limit, so that the marginal queue
length and waiting-time distributions become considerably easier to analyze. Additionally, we
propose a new flexible k-limited service discipline aimed at striking a good balance between short
mean queue lengths and predictable cycle times for deadline-critical applications.

Keywords: Polling models, queue lengths, cycle times, flexible k-limited service.

1 Introduction

In the present paper we investigate the performance of large-scale symmetric polling systems. Polling
systems provide canonical models for evaluating the delay performance of systems where multiple
queues contend for access to a shared resource and are served in an alternating manner. These
models find applications in a wide range of domains, e.g., in computer-communications, production
and transportation, and many results are available in the literature [3]. However, asymptotic regimes
where the number of queues grows large appear to have received hardly any attention so far. Such
scenarios are of strong interest in the context of emerging Internet-of-Things (IoT) applications and
smart building environments. In building automation and control systems, efficient and economic
networking solutions are required in order to transmit and exchange many kinds of monitoring,
control, maintenance and management data through the network [12, 21]. Typically the number
of devices and sensors in these scenarios is quite large, and it is critical that the end-to-end delay
of the data transmitted satisfies predetermined deadlines in order for these systems to meet their
performance and functional requirements.

The particular application that motivated the present study is the so-called BACnet (Building Au-
tomation and Control networks) protocol, which is specifically designed to meet the communication
needs of the latter building automation and control systems [7]. BACnet relies on token-passing
algorithms for its medium access control. Token-passing algorithms ensure orderly access to a com-
munication channel by passing a token in a cyclic fashion along all nodes in the network. Only when
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a node holds the token, it is allowed to send messages to other nodes, before it has to pass on the
token to the next node. The token-passing algorithm determines when and to which node the token
has to be passed on. Since there is only a single token in the network, only one device can be trans-
mitting at any given time and no data collisions occur. Access to the network is thus guaranteed,
and deadline-critical applications can be supported. Another well-known communication protocol
that uses token-passing for its medium access control is the Token Ring mechanism [18]. The delay
performance of such token-passing algorithms is typically analyzed using polling models.

In view of the usually sizeable number of nodes in BACnet deployments, we focus in the present
paper on the performance of polling systems in an asymptotic regime where the number of queues
grows large. Many-queue asymptotics of polling systems have been studied before, but only when
the mean switch-over times go to zero as the number of queues grows large. In the limit, such a
scenario behaves as a “continuous” spatial polling system where a single server moves at a constant
rate along a closed tour, stopping to perform services wherever it encounters requests, which appear
at locations independently and uniformly distributed over the tour [9, 13]. In this asymptotic regime,
the mean cycle time remains finite and queues have either length zero or one with high probability.
In contrast, we consider a regime where the distribution of the individual switch-over times remains
the same when the number of queues grows large. This regime gives rise to cycles of infinite length
and queue lengths with non-trivial distributions. Performance metrics of interest are the asymptotic
queue length, cycle time and waiting-time distributions as the number of queues grows large.

We will first focus on so-called branching-type service disciplines, such as the exhaustive and
gated service disciplines. In the exhaustive service policy the server only switches to the next queue
if the current queue is empty. It is well known that the exhaustive service discipline minimizes the
total amount of work in the system among all cyclic service policies [15], but the disadvantage is that
it does not put any restrictions on the cycle times. For this reason, the exhaustive service discipline
is ill-suited for deadline-critical applications.

A more suitable service policy for deadline-critical applications is a k-limited service policy, which
will be our second focus. Such a policy ensures that the number of customers that are served at each
queue does not exceed k, thus to some extent bounding the cycle time. However, a major drawback
of a k-limited service policy is the fact that if the server reaches a very long queue, it will still serve at
most k customers, even though it possibly did not have to serve any customers at previously visited
queues. In order to overcome this drawback, we introduce a flexible k-limited service discipline,
which exploits the fact that the server sometimes visits a queue which has less than k customers and
essentially has time to spare.

As key contributions of this paper, we give explicit results for the covariance of queue lengths,
the covariance of visit times and the variance of the cycle time for symmetric polling systems when
the server uses a branching-type service discipline. Additionally, we derive the corresponding many-
queue limits. Furthermore, we show that in the many-queue regime each individual queue behaves
asymptotically as a discrete-time bulk service queue, which significantly simplifies the analysis of
the marginal queue length and waiting-time distributions for many service disciplines, including the
k-limited service discipline. Finally, we introduce the flexible k-limited service discipline and show
how to approximate its performance.

The remainder of this paper is organized as follows. We provide a model description in Sec-
tion 2. In Section 3 we analyze the many-queue asymptotic performance of branching-type service
disciplines, such as the exhaustive, gated and binomial disciplines, which admit a detailed analysis.
We then briefly consider general non-idling service policies in Section 4, with a focus on the 1-limited
service discipline. In Section 5 we propose the flexible k-limited service policy and provide a way to
approximate its asymptotic performance. Finally, in Section 6, we use simulations to compare the
performance of the various service disciplines and we investigate how well our asymptotic results
can approximate networks of finite size. We summarize our results in Section 7.
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2 Model description and preliminaries

We consider n ≥ 1 queues Q1, ...,Qn being served by a single unit-rate server. The server visits the
queues in a cyclic non-idling manner. We assume that customers arrive at each Q i according to
independent Poisson processes of rate λi . We assume that customers at Q i have i.i.d. service times
with first moment βi , second moment β (2)i and Laplace-Stieltjes transform (LST) Bi(·). We define
Λ =

∑n
i=1λi , ρi = λiβi and ρ =

∑n
i=1ρi . The switch-over times of the server for moving between

Q i and the next queue are i.i.d. random variables with first moment si , second moment s(2)i and LST
Si(·). All interarrival, service and switch-over times are assumed to be independent.

In addition to the Poisson arrivals, we also allow that after a customer receives service, it remains
in the system and joins a new queue or that additional customers instantaneously join the system.
Specifically, we assume that the service completion of a customer at Q i leads to Mi, j additional
customers joining Q j , where we assume the Mi, j to be independent for all i and j. This allows that
after a customer has received service, with some probability, it remains in the system and is routed to
join another queue, which could arise for example in communication networks where some packets
are routed in a multi-hop manner. Additionally, it allows that multiple customers simultaneously join
the system, after a customer has received service. Again, one can think of communication networks
where some packets may require a response from several nodes.

Let a cycle be defined as the time between two consecutive visits of the server to the same queue.
We define the following random variables:

V (k)i : The length of the k’th server visit to Q i .

S(k)i : The length of the k’th switch-over time between Q i and Q i+1.

C (k)i : The length of the k’th cycle starting at a visit beginning at Q i , i.e.

C (k)i :=
∑n

j=i

�

V (k)j + S(k)j

�

+
∑i−1

j=1

�

V (k+1)
j + S(k+1)

j

�

.

C∗(k)i : The length of the k’th cycle starting at a visit completion at Q i , i.e.

C∗(k)i := S(k)i +
∑n

j=i+1

�

V (k)j + S(k)j

�

+
∑i−1

j=1

�

V (k+1)
j + S(k+1)

j

�

+ V (k+1)
i .

I (k)i : The length of the k’th intervisit time of Q i , i.e. I (k)i := C (k)i − V (k)i .

Additionally, let Vi , Si , Ci , C∗i and Ii denote their steady-state limits for k → ∞, assuming these
exist. For ease of notation we will write V := V1, S := S1, C := C1, C∗ := C∗1 and I := I1.

Lastly, let X i
j denote the steady-state queue length of Q j at a visit beginning at Q i and writeFi(z),

z = (z1, ..., zn), for the probability generating function (PGF) of the steady-state joint queue lengths
at a visit beginning at Q i .

3 Branching-type service disciplines

In this section we will consider polling systems using branching-type service disciplines. A service
discipline is said to be of the branching-type when the system satisfies the following property [16]:

Property 1. If there are ki customers present at Q i at the start of a server visit, then during the course
of the visit, each of these ki customers will effectively be replaced in an i.i.d. manner by a random
population having PGF hi(z1, ..., zn).

Note that while the exhaustive service discipline satisfies Property 1, the k-limited service disci-
pline does not.

Consider now a subclass of polling systems which in addition to Property 1 satisfy the following

Property 2. Mi, j = 0 for all i 6= j.
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Property 2 essentially puts certain restrictions on the branching functions hi(z1, ..., zn), as it im-
plies the following

hi(z1, ..., zi−1, 1, zi+1, ..., zn) = θi

 

∑

j 6=i

λ j(1− z j)

!

, (1)

where θi(·) is the LST of the time that the server spends at Q i due to the presence of one customer
there, i.e. the time it spends serving that customer and its descendants during that visit, see [16]
and [20] where this is referred to as a sub-busy period. For example, this prohibits that a customer,
after it has received service, is routed to receive service at a different queue. However, it does
permit that a customer immediately returns to the queue where it has just received service. Note
that systems using a classical service discipline such as the exhaustive, gated and binomial service
disciplines without routing all satisfy Property 2.

For systems satisfying Properties 1 and 2, we now relate the joint LST of Vi + Si , i = 1, ..., n,
to the joint PGF F1(·), extending Corollary 3.1 of [6], which deals with the LST of the cycle time
C =

∑n
i=1(Vi + Si). In the following subsections, we will use this result to determine the cycle time

variance.

Proposition 1. Write ω = (ω1, ...,ωn). In case Properties 1 and 2 hold, the joint LST of Vi + Si ,
i = 1, ..., n, is given by

E



e
−

n
∑

i=1
ωi(Vi+Si)



=F1(θ1(γ1(ω)), ...,θn(γn(ω)))
n
∏

i=1

Si(γi(ω)), (2)

where γn(ω) =ωn and, for 1≤ i ≤ n− 1,

γi(ω) :=ωi +
n
∑

j=i+1

λ j(1− θ j(γ j(ω))). (3)

Proof. Let X = (X 1
1 , ..., X 1

n) and m = (m1, ..., mn). It is sufficient to show that

E



e
−

n
∑

i=1
ωi(Vi+Si)

�

�

�

�

X =m



=
n
∏

i=1

Si(γi(ω))θ
mi
i (γi(ω)).

First, notice that, because of Properties 1 and 2, the PGF of the number of customers joining Q j
during a visit plus switch-over time of Q i of length x , where i 6= j, is given by

E
�

zX i+1
j −X i

j

�

�

�

�

Vi + Si = x

�

= e−λ j x(1−z),

which implies that the LST of the time the server spends at Q j during its next visit because of these
customers is given by e−λ j x(1−θ j(ω j)).

This then allows us to write

E



e
−

n
∑

i=1
ωi(Vi+Si)

�

�

�

�

X =m





= Sn(ωn)θ
mn
n (ωn)E



e
−

n−1
∑

i=1
(ωi+λn(1−θn(ωn)))(Vi+Si)

�

�

�

�

X =m





= Sn(ωn)θ
mn
n (ωn)Sn−1(γn−1(ω))θ

mn−1
n−1 (γn−1(ω))

·E



e
−

n−2
∑

i=1
(ωi+λn−1(1−θn−1(γn−1(ω)))+λn(1−θn(ωn)))(Vi+Si)

�

�

�

�

X =m



 .

Performing this procedure n times and deconditioning gives the desired result.
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In Appendix A, we generalize Proposition 1 to systems where the restrictive Property 2 is relaxed.
However, it is not at all straightforward to extend all other results of this section to this more general
case.

Note that by substituting ωi = u for i = 1, ..., n in Equation (2), we readily find the LST of the
cycle time C , as shown by the following corollary.

Corollary 1. The LST of the cycle time is given by

E
�

e−uC
�

=F1(θ1(γ1(u, ...,u)), ...,θn(γn(u, ..., u)))
n
∏

i=1

Si(γi(u, ..., u)).

In the remainder of this paper, we will focus on symmetric systems, i.e. λi = λ = Λ/n, si = s,
s(2)i = s(2), βi = β and β (2)i = β (2), hi(z1, ..., zn) = h1(zi , ..., zn, z1, .., zi−1) and θi(u) = θ (u) for all
i = 1, ..., n. Additionally, we assume that the Mi, j are independent and identically distributed for all
i and j 6= i, i.e. all queues that are not being served are treated equally. In Subsection 3.2 we will
use Proposition 1 to derive ri := E[Vi + Si] and ri, j := Cov[Vi + Si , Vj + S j], and obtain an explicit
expression for Var[C]. However, in preparation for this, we first determine in Subsection 3.1 explicit
expressions for E[X 1

i ] and Cov[X 1
i , X 1

j ].

3.1 Queue length covariance

In this subsection we will derive li := E[X 1
i ] and li, j := E[X 1

i X 1
j ] for polling systems satisfying

Property 1, which will give us Var[X 1
i ] and Cov[X 1

i , X 1
j ].

Recall that Fi(z) is the PGF of the joint queue lengths at a visit beginning at Q i . In [16] it is
shown that the following relation holds for all polling systems satisfying Property 1:

Fi+1(z) =Fi(z1, . . . , zi−1, hi(z), zi+1, . . . , zn)Si

 

n
∑

j=1

λ j(1− z j)

!

.

For a symmetric system, this gives

F1(z) =F1(h1(zn, z1, . . . , zn−1), z1, . . . , zn−1)S

 

n
∑

j=1

λ(1− z j)

!

. (4)

We define
∂

∂ zi
h1(z)

�

�

z=(1,...,1) :=

¨

φ, i = 1,

ψ, i 6= 1.

In the polling literature 1 − φ is called the exhaustiveness of a (branching-type) service discipline,
introduced by Van der Mei and Levy [20].

Differentiating (4) with respect to zi , we find

li =

¨

li+1 +ψl1 +λs, i 6= n,

φl1 +λs, i = n.

Solving gives

li =
nsλ

1−φ − (n− 1)ψ

�

1−
i − 1

n
(1−φ +ψ)

�

. (5)

Note that the stability condition for the system is φ + (n − 1)ψ < 1, see [16]. For the most
common service disciplines satisfying Properties 1 and 2 including (binomial) gated and (binomial)
exhaustive, we have φ = y +ψ and ψ = µΛ/n for y := E[M1,1] (which is zero for standard gated
and exhaustive service) and µ := − d

duθ (u)|u=0. For the systems considered in this paper, neither y
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nor µ depends on n, meaning that the total workload arriving to the system per time unit is equal to
φ + (n− 1)ψ = y +µΛ, which does not depend on n either. It also follows that l1 does not depend
on n.

Now, define

∂ 2

∂ zi∂ z j
h1(z)

�

�

z=(1,...,1) :=



















φ(2), i = 1, j = 1,

ψ
(2)
1 , i = j, i 6= 1,

ψ
(2)
2 , i 6= 1, j 6= 1, i 6= j,

χ, i = 1, j 6= 1.

Differentiating Equation (4) with respect to zi and z j gives for i 6= n, j 6= n, i 6= j:

li, j = li+1, j+1 +ψ(l1,i+1 + l1, j+1) +ψ
2l1,1 +λs(li+1 + l j+1)

+ (ψ(2)2 −ψ
2 + 2λsψ)l1 +λ

2s(2); (6)

for i < n and j = n:

li,n = φl1,i+1 +φψl1,1 +λsli+1 + (χ −φψ+λs(φ +ψ))l1 +λ
2s(2); (7)

for i = j and i < n:

li,i = li − li+1 + li+1,i+1 + 2ψl1,i+1 +ψ
2l1,1 + 2λsli+1

+ (ψ(2)1 −ψ
2 + 2λsψ)l1 +λ

2s(2); (8)

and finally for i = j = n:

ln,n = ln +φ
2l1,1 + (φ

(2) −φ2 + 2λsφ)l1 +λ
2s(2). (9)

Consider Equation (6). By subtracting li, j+1, we find for j + 1 6= n and i 6= j + 1:

li, j − li, j+1 = li+1, j+1 − li+1, j+2 +ψ(l1, j+1 − l1, j+2) +λs(l j+1 − l j+2).

Notice that the last term is independent of j, suggesting that li, j depends linearly on j for fixed i < j.
Similarly, subtracting li+1, j from both sides of Equation (6) gives

li, j − li+1, j = li+1, j+1 − li+2, j+1 +ψ(l1,i+1 − l1,i+2) +λs(li+1 − li+2),

suggesting that li, j also depends linearly on i for fixed j > i. Together with Equations (7) and (9),
assuming li, j = ai+ b j(i−1)+ ci( j−1) then allows us to express bi and ci in terms of b1, c1 and l1,1.
Similarly, rewriting Equation (8), we have

li,i − li+1,i+1 = li − li+1 + 2ψl1,i+1 +ψ
2l1,1 + 2λsli+1,

which suggests that li,i is a quadratic function in i. Writing li,i = l1,1 + b(i − 1) + c(i − 1)2 and
substituting then allows us to solve the resulting equations and determine the remaining unknowns,
confirming the linear and quadratic relations alluded to above.

We find, after a substantial amount of algebraic manipulation and simplification, that the com-
plete solution is of the form

Var[X 1
i ] = li,i − l2

i = α1 +α2 −α3((i − 1)(φ −ψ)− (n− i + 1)(1− (i − 1)ψ))−α4(i − 1), (10)

and, for i < j,

Cov[X 1
i , X 1

j ] = li, j − li l j = α1 −α3((i − 1)(φ −ψ)− (n− j + 1)(1− (i − 1)ψ)), (11)
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where

α1 =
nλ2(φ −ψ)(s(2) − s2)

(1+φ)(1−φ − (n− 1)ψ)

+
nsλ(φ −ψ)ψ(φ(2) + (n− 1)ψ(2)1 )

(1+φ)(1−φ +ψ)(1−φ − (n− 1)ψ)2

+
nsλχ(1−φ2 − (n− 1)ψ2 − nψ(1−φ))
(1+φ)(1−φ +ψ)(1−φ − (n− 1)ψ)2

−
nsλψ(2)2 (1−φ

2 − (n− 1)ψ2 − nφ(1−φ))
(1+φ)(1−φ +ψ)(1−φ − (n− 1)ψ)2

, (12)

α2 =
nsλ(1+ψ)(1+φ(2) −χ + (n− 1)

�

ψ
(2)
1 −ψ

(2)
2

�

)

(1+φ)(1−φ +ψ)(1−φ − (n− 1)ψ)

+
nsλφ(ψ−φ +ψ(2)2 −χ)

(1+φ)(1−φ +ψ)(1−φ − (n− 1)ψ)
, (13)

α3 =
nsλ

�

ψ2φ(2) + 2(1−φ)ψχ + (1−φ)2ψ(2)2 + (n− 1)ψ2
�

ψ
(2)
1 −ψ

(2)
2

��

(1+φ)(1−φ +ψ)(1−φ − (n− 1)ψ)2

+
λ2(1−φ +ψ)(s(2) − s2)
(1+φ)(1−φ − (n− 1)ψ)

, (14)

and

α4 =
sλ
�

1−φ +ψ+ n(ψ(2)1 −ψ
(2)
2 )
�

1−φ − (n− 1)ψ
.

3.2 Station-time covariance

We will now use Proposition 1 to derive the mean ri := E[Vi + Si] and covariance ri, j := Cov[Vi +
Si , Vj + S j] of the station time (sum of the visit time at a queue and switch-over time to the next
queue), expressing them in terms of Var[X 1

i ] and Cov[X 1
i , X 1

j ], cf. Equations (10) and (11). This
will then allow us to give an explicit expression for Var[C]. Since we will rely on Proposition 1, we
restrict ourselves to systems satisfying both Properties 1 and 2 for the remainder of this section.

Define µ(2) := d2

du2θ (u)
�

�

u=0. First, note that by differentiating (3), we have

Γ
j

i :=
∂

∂ωi
γ j(ω)

�

�

�

�

ω=(0,...,0)
= 1[i = j] +µλ

i
∑

k= j+1

Γ k
i .

Solving gives

Γ
j

i =











1, i = j,

µλ (1+µλ)i− j−1 , j < i,

0, otherwise.

(15)

Differentiating (2) with respect to ωi yields, as expected,

ri =
i
∑

j=1

(s+µl j)Γ
j

i = s+µl1,

where the second equality follows from the fact that for service disciplines satisfying Property 2 we
have ψ= µλ, see Equation (1). Additionally, it follows that

E[C] = nri =
ns(1−φ +ψ)

1−φ − (n− 1)ψ
.
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Differentiating (2) with respect to ω1 and ωi and subtracting r1ri =
∑i

j=1 Γ
j

i (s + µl1)(s + µl j)
from both sides gives

r1,i = Γ
1
i (s
(2) − s2 + l1(µ

(2) −µ2)) +µ2
i
∑

j=1

Γ
j

i

�

l1, j − l1l j

�

.

Using Equation (15), some manipulation yields

r1,i =











s(2) − s2 + l1(µ(2) −µ2) +µ2Var[X 1
1], i = 1,

µλr1,1 +µ2Cov[X 1
1 , X 1

2], i = 2,

(1+µλ) r1,i−1 −µ2Cov[X 1
1 , X 1

i−1 − X 1
i ], i > 2.

(16)

Equation (11) then tells us that Cov[X 1
1 , X 1

i−1 − X 1
i ] = α3 for all i > 2, hence

r1,i =







s(2) − s2 +
nsλ(µ(2) −µ2)

1−φ − (n− 1)ψ
+µ2(α1 +α2 + nα3), i = 1,

µ

λ
α3 +

µ

λ
(1+µλ)i−2(λ2r1,1 +α1µλ− (1− (n− 1)µλ)α3), i ≥ 2.

(17)

Note that in general it may not hold that r1,i > 0. As we will see in the next section however,
r1,i will be positive for traditional branching-type service policies, such as the binomial-gated and
binomial-exhaustive service disciplines, as n grows large.

Finally, we find an explicit formula for the variance of the cycle time as follows

Var[C] =
n
∑

i=1

n
∑

j=1

ri, j = nr1,1 + 2
n−1
∑

i=1

(n− i)r1,1+i

= 2(1+µλ)n
� r1,1

µλ
+
α1

λ2
−
α3

µλ3
(1− (n− 1)µλ)

�

−
2+ nµλ
µλ

r1,1

−
2(1+ nµλ)

λ2
α1 +

2+µλ(2− n(n− 1)µλ)
λ3µ

α3. (18)

Remark 1. For some service disciplines, for example exhaustive service (cf. [2, 22]), it is more natural to
consider C∗, the time between successive visit completions at Q1. Obviously it holds that E[C] = E[C∗],
but higher moments generally differ. For the variance, it is readily seen that

Var[C∗] = Var[S1 + V2 + S2 + · · ·+ Sn + Vn+1] = Var[C] + 2
n
∑

i=1

Cov[S1, Vi+1].

Following the exact same steps as in the proof of Proposition 1 it is possible to find the joint LST of
S1, V2, S2, . . . , Sn, Vn+1 which, after differentiation, yields

Cov[S1, Vi+1] = (s
(2) − s2)λµ(1+λµ)i−1,

for i = 1, . . . , n. Finally, we obtain

Var[C∗] = Var[C] + 2(s(2) − s2)
�

(1+λµ)n − 1
�

, (19)

which is strictly greater than Var[C] unless Var[S] = 0.

3.3 Many-queue asymptotics

We will now apply the results of the previous subsections to analyze the limiting behavior of sym-
metric polling systems satisfying Properties 1 and 2 as the number of queues grows large. To this
end, we will consider a sequence of polling systems where the total arrival rate is kept constant, i.e.
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we now assume λ= Λ/n with Λ fixed, so λ ↓ 0 as n→∞. The goal is to give an explicit expression
for the limit of the scaled cycle time variance nVar[C/n].

First, define the following limiting values

lim
n→∞

φ = Φ, lim
n→∞

nψ= Ψ, lim
n→∞

µ= m, lim
n→∞

µ(2) = m(2). (20)

Additionally, define

lim
n→∞

φ(2) = Φ(2), lim
n→∞

nψ(2)1 = Ψ(2)1 , lim
n→∞

n2ψ
(2)
2 = Ψ(2)2 , lim

n→∞
nχ =X . (21)

Note that the limits in (20) should exist by the stability condition φ + (n− 1)ψ < 1. However,
the stability condition does not guarantee the existence of the limits in (21), but their existence is
necessary for the existence of a finite limiting value of nVar[C/n].

Additionally, since we limit ourselves to service disciplines satisfying Property 2, we know from
Equation (1) that Ψ = mΛ and Ψ(2)1 = 0.

Remark 2. Note that Φ(2), Ψ(2)2 and X need not be zero, as illustrated by the following example. Con-
sider a system in which the queues get served according to the usual gated service discipline, but whenever
a customer completes its service, Y new customers join the same queue at which the customer received
its service, where Y is a non-negative integer-valued random variable with PGF GY (z). The branching
function is then given by

h(z) = GY (z1)B

�

Λ

n

n
∑

i=1

(1− zi)

�

.

Consequently, for such a system, we find Φ(2) = E[Y (Y − 1)], Ψ(2)2 = Λ2m(2), and X = ΛmE[Y ] with
stability condition E[Y ] +Λm< 1.

We will now derive the limiting value of nVar[C/n] as n grows large. From Equations (3.2)
and (5) we find

lim
n→∞
E[C/n] =

s
1−Φ−Ψ

,

lim
n→∞

lbxnc =
Λs

1−Φ−Ψ
(1− x(1−Φ)) .

Furthermore, write

A1 := lim
n→∞

nα1 =
Λ2Φ(s(2) − s2)

(1+Φ)(1−Φ−Ψ)
+
Λs(1+Φ−Ψ)X
(1+Φ)(1−Φ−Ψ)2

+
ΛsΨΦΦ(2)

(1−Φ2)(1−Φ−Ψ)2
+

ΛsΦΨ(2)2

(1+Φ)(1−Φ−Ψ)2
,

A2 := lim
n→∞

α2 =
Λs

1−Φ−Ψ

�

1+
Φ(2)

1−Φ2

�

,

A3 := lim
n→∞

n2α3 =
Λ2(1−Φ)(s(2) − s2)
(1+Φ)(1−Φ−Ψ)

+
2ΛsΨX

(1+Φ)(1−Φ−Ψ)2

+
ΛsΨ2Φ(2)

(1−Φ2)(1−Φ−Ψ)2
+

2ΛsΨ(2)2 (1−Φ)
(1+Φ)(1−Φ−Ψ)2

,

and

A4 := lim
n→∞

nα4 =
Λs(1−Φ)
1−Φ−Ψ

.
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Then taking limits in Equations (10) and (11) we find

lim
n→∞

Var[X 1
bxnc] = A2 − xA4,

and, for x 6= y ,
lim

n→∞
nCov[X 1

bxnc, X 1
bync] = A1 + (1− xΦ− y(1−Ψ x))A3.

Similarly,

R1,1 := lim
n→∞

r1,1 = s(2) − s2 +
sΛ

1−Φ−Ψ
(m(2) −m2) +m2A2,

and
lim

n→∞
nr1,bxnc =

m
Λ

A3 +
m
Λ
(Λ2R1,1 +mΛA1 − (1−mΛ)A3)e

mΛx .

Finally, for the scaled variance of the cycle time we find

lim
n→∞

nVar[C/n] =
1

mΛ3
((2−m2Λ2)A3 −Λ2(2+mΛ)R1,1 − 2mΛ(1+mΛ)A1)

+
2

mΛ3
(Λ2R1,1 +mΛA1 − (1−mΛ)A3)e

mΛ. (22)

For C∗, the cycle time starting at a visit completion, taking n→∞ in Equation (19) gives

lim
n→∞

(Var[C∗]− Var[C]) = 2(s(2) − s2)(emΛ − 1),

from which it follows that
lim

n→∞
nVar[C∗/n] = lim

n→∞
nVar[C/n].

Remark 3. It is noteworthy that for some service disciplines, the mean waiting time can be expressed in
terms of the mean residual cycle time. For example, with ρ1 = Λβ/n, we have

E[Wgated] = (1+ρ1)
�

Var[C]
2E[C]

+
E[C]

2

�

,

E[Wexhaustive] = (1−ρ1)
�

Var[C∗]
2E[C]

+
E[C]

2

�

.

As n →∞, we see that in both cases the scaled mean waiting time W/n converges to a scaled mean
residual cycle time:

lim
n→∞
E[Wgated/n] = lim

n→∞
(1+Λβ/n)

�

Var[C/n]
2E[C/n]

+
E[C/n]

2

�

=
s

2(1−ρ)
,

lim
n→∞
E[Wexhaustive/n] = lim

n→∞
(1−Λβ/n)

�

Var[C∗/n]
2E[C/n]

+
E[C/n]

2

�

=
s

2(1−ρ)
.

3.4 Binomial service

As an example we will examine the binomial-gated and binomial-exhaustive service disciplines. Un-
der the binomial-gated service discipline, when the server finds m customers present at the start of
a visit period of a queue, it will serve N ∼ Bin(m, p), 0 < p ≤ 1, of these customers before switch-
ing to the next queue. Under the binomial-exhaustive service discipline, the server not only serves
these N customers but also any additional customers that arrive to the queue during its visit. The
branching functions for the binomial-gated and binomial-exhaustive disciplines are given by

h(z) = (1− p)z1 + pB

�

Λ

n

n
∑

i=1

(1− zi)

�

10



and

h(z) = (1− p)z1 + pPn

�

Λ

n

n
∑

i=2

(1− zi)

�

,

respectively. Here B(·) is the LST of the service time distribution as before and Pn(·) the LST of a
busy-period distribution in an M/G/1 queue with arrival rate Λ/n and the same service time distri-
bution.

We now make the observation that for both policies we have the following limits: m = pβ ,
m(2) = pβ (2), Φ = 1− p, Ψ = pΛβ , Φ(2) = Ψ(2)1 =X = 0 and Ψ(2)2 = pΛ2β (2). Hence, for the second
moment of the cycle time, Equation (22) tells us that in the limit for n→∞ we see no distinction
between the binomial-gated or binomial-exhaustive service disciplines.

We find, with ρ = Λβ ,

R1,1 = s(2) − s2 +
Λs

1−ρ
β (2)

and

lim
n→∞

nVar[C/n] =
p

(2− p)(1−ρ)
R1,1 +

2(1− p)
p(2− p)ρ

(epρ − 1)R1,1. (23)

Also note that, using Equation (16), one can show that, for x > 0,

lim
n→∞

nr1,bxnc =
1+ (1− p)(1−ρ)epρx

(2− p)(1−ρ)

�

pρ(s(2) − s2) +
pρsΛβ (2)

1−ρ

�

.

This shows that in the special case p = 1 this limit does not depend on x and limn→∞ nr1,i =
limn→∞ nr1, j for all i 6= 1 and j 6= 1. For other values of p the covariance of the visit times increases
as a function of x .

Besides giving an explicit expression for the limiting value of the scaled cycle time variance,
Equation (23) has another interesting consequence. It reveals that, since Var[C/n] is of order 1/n, the
scaled cycle time C/n converges in probability to a deterministic value equal to s/(1−ρ). Therefore,
denoting by X i

i ( j) the queue length of Q i at the start of the j’th server visit to Q i , this suggests that
as n→∞:

X i
i ( j + 1)

d
= Yi(X

i
i ( j), j) + Ai( j),

where Yi(m j , j) ∼ Bin(m j , 1− p) are independent binomially distributed random variables with pa-
rameters m j and 1− p, and Ai( j) are independent Poisson distributed random variables with param-
eter Λs/(1−ρ), j = 1,2, . . . . In particular, letting j→∞, we conclude that the steady-state queue
length X i

i at the start of a visit to Q i satisfies the distributional property

X i
i

d
= Yi(X

i
i ) + Ai , (24)

where Yi(m) ∼ Bin(m, 1 − p) is a Binomially distributed random variable with parameters m and
1− p, and Ai is a Poisson distributed random variable with parameter Λs/(1−ρ).

Now observe that if X is Poisson distributed with parameter α and given X = x , the random
variable Y is binomially distributed with parameters x and q, then Y is Poisson distributed with pa-
rameter αq. Hence, we conclude from (24) that X i

i is Poisson distributed with parameter γ satisfying
γ= (1− p)γ+Λs/(1−ρ), i.e., γ= Λs

p(1−ρ) :

X i
i ∼ Poi

�

Λs
p(1−ρ)

�

. (25)

In fact, as will also be seen in the following sections, this convergence of the scaled cycle time
suggests that we can approximate the steady-state distribution of the queue length at the beginning
of a visit for many service disciplines, not necessarily of branching-type, by examining a relation of
the form

X i
i

d
= f (X i

i ) + Ai , (26)
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where the two terms on the right-hand side are independent, the (possibly random) function f (·)
is determined by the actual service discipline, and Ai is a Poisson distributed random variable with
parameter Λs

1−ρ . For example, in the case of exhaustive service f (x) = 0 and in the case of k-limited
service f (x) = (x − k)+, as will be seen in Section 4.2.

This means that, in the limit, for many large-scale polling systems the analysis of the marginal
queue length distribution simplifies to the analysis of a simpler discrete-time queueing model with
i.i.d. arrivals. Often, such a model is much easier to analyze than the pre-limit polling system.

Remark 4. In the case of branching-type service, where each customer is treated equally, one can write

f (X i
i ) =

∑X i
i

j=1 U j ,where the U j are i.i.d. random variables. For this case, rewriting (26) in terms of
PGFs GX i

i
(z) and GU(z) and iterating, gives

GX i
i
(z) = GX i

i
(GU(z)) e

Λs
1−ρ (z−1) = lim

j→∞
GX i

i
(G( j)U (z))e

Λs
1−ρ

∑ j−1
k=0

�

G(k)U −1
�

,

where G( j)U (z) = GU(G
( j−1)
U (z)) denotes the j’th iterate of GU(z). Assuming that E[U] < 1, which is

necessary for stability of the system, we have that lim j→∞ G( j)U (z) = 1, which gives

GX i
i
(z) = e

∑∞
k=0

Λs
1−ρ

�

G(k)U (z)−1
�

.

We close this subsection by considering the mean waiting time for binomial-gated service. As
shown in [14],

E[W ] =
l1,1

l1

n(2− p) + pρ
2Λ

,

which gives the following limit

lim
n→∞
E[W/n] =

�

1
2
+

1− p
p

�

s
1−ρ

. (27)

Indeed, in the limit for n →∞, the scaled waiting time is given by a residual cycle time plus
an additional geometrically distributed number of cycle times. Note that the same limit holds for
binomial-exhaustive service, since the probability that a customer joins a queue while the server is
serving that queue, is negligible for large n.

Examining Equations (23) and (27), we see that when choosing p, there is actually a trade-off
between a small variance of the cycle time and short mean waiting times. For example, consider
the case in which both the service times and switch-over times are exponentially distributed with
β = s = 1 and Λ = 4/5. Then setting p = 2/3 will give a mean waiting time of one full cycle
compared to half a cycle for p = 1. However, it will also reduce the scaled variance of the cycle time
from 48 to 28.4.

It is important to note, however, that this increase of the waiting times is of order n and the
decrease of the standard deviation of the unscaled cycle time is of order

p
n. While in very large

systems this trade-off might not seem so attractive, it could be of importance in somewhat smaller
systems with deadline-critical applications, requiring a predictable return time of the server.

4 General non-idling service disciplines

We will now briefly consider general non-idling service disciplines, which are not necessarily of the
branching-type. The goal of this section is to show that in general C/n may be expected to converge
to a deterministic quantity for many polling systems, even if they do not satisfy Property 1.

We continue to concentrate on symmetric systems with λ= Λ/n and throughout this section we
assume that Property 2 holds, i.e. Mi, j = 0 for all i and j. Let L, Lb and Le denote the steady-state

12



queue length at Q1 at an arbitrary epoch, a visit beginning at Q1 and a visit completion at Q1, respec-
tively. Furthermore, for a random variable U with CDF F(u) and finite mean and second moment,
let UR denote the overshoot of U with PDF (1− F(u))/E[U] and mean E[UR] = E[U2]/(2E[U]).

The pseudo-conservation law for cyclic service systems [5] gives:

ρE[W ] =
ρΛβ (2)

2(1−ρ)
+
ρ(s(2) − s2) +ρns2

2s
+

ρ2ns
2(1−ρ)

−
ρ2s

2(1−ρ)
+ nβE[Le]. (28)

Applying Little’s law and simplifying shows

E[L − Le] =
Λ

n

�

ρ

1−ρ
β (2)

2β
+

s(2)

2s
−

s
2(1−ρ)

�

+
Λs

2(1−ρ)
. (29)

Consider now a tagged customer arriving at Q1 during an intervisit period. We define L I to be the
queue length of Q1 at an arbitrary epoch during an intervisit time and let L̃b and L̃e be the queue
length of Q1 at the start and end of the server visit contained in the cycle in which the customer
arrives. Conditioning on the length of the intervisit period in which the tagged customer arrived, we
find

E[ L̃e] =
1
E[I]

∫ ∞

x=0

xE[Le | I = x]dP[I ≤ x] =
E[Le I]
E[I]

=
Cov[Le, I]
E[I]

+E[Le]. (30)

Also note that a similar relationship holds for E[ L̃b]. The PASTA property implies that the expected
queue length of Q1 just before the arrival of the tagged customer equals E[L I]. Considering the
change in the queue length of Q1 since the last visit completion at Q1, we can write

E[L I] = E[ L̃e] +
Λ

n
E[IR] =

�

Cov[Le, I]
E[I]

+E[Le]
�

+
Λ

n
E[IR]. (31)

Moreover, the Fuhrmann-Cooper decomposition [10] tells us that

E[L I] = E[L]−
Λ

n
Λβ (2)

2n(1−ρ/n)
. (32)

Equating (31) and (32) and multiplying by n, we find

nE[L − Le]−
Λ

n
Λβ (2)

2(1−ρ/n)
−

Cov[Le, I]
E[I/n]

=
Λ

2

�

nVar[I/n]
E[I/n]

+E[I]
�

,

which, together with Equation (29), gives

lim
n→∞

nVar[C/n] =
Λs

(1−ρ)2
β (2) +

s(2) − s2

1−ρ
−

2
Λ

lim
n→∞

Cov[Le, I]. (33)

Hence, we can express the asymptotic variance of the scaled cycle time in terms of Cov[Le, I]. There-
fore, if one is able to show that the limit of Cov[Le, I] exists, this implies that C/n will converge in
probability to a deterministic value, as was the case for binomial service disciplines.

4.1 Binomial service

Consider again the binomial-gated and binomial-exhaustive service disciplines of Section 3.4. Com-
bining Equations (23) and (33) we find

lim
n→∞

Cov[Le, I] = Λ
�

1− p
(2− p)(1−ρ)

−
1− p

p(2− p)ρ
(epρ − 1)

�

R1,1.
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4.2 Limited service

Consider now the well-known k-limited service discipline. Under this discipline, during a visit, the
server keeps serving customers until either k customers have been served or the queue becomes
empty, whichever occurs first.

A major benefit of the k-limited service discipline is that it in a way bounds the cycle time, which
can be of vital importance for deadline-critical applications. However, the k-limited service discipline
does not satisfy Property 1, making it notoriously difficult to analyze.

Indeed, also the evaluation of the limiting value of Cov[Le, I] in Equation (33) is difficult, even
for k = 1, see Appendix B. However, while not giving explicit results, the calculations in Appendix B
do suggest that also for the limited service discipline the limit of nVar[C/n] exists. Consequently,
it is plausible that in symmetric polling systems with a k-limited service discipline, the scaled cycle
time C/n will again converge in probability to a deterministic value of s/(1−ρ), as was also the case
for the binomial service discipline.

Based on this result, we conjecture that as n grows large, the steady-state queue length at the
start of a server visit satisfies the following relation, similar to Equations (24) and (26):

X i
i

d
= (X i

i − k)+ + Ai ,

where Ai is a Poisson distributed random variable with parameter Λs
1−ρ . We find that each individual

queue asymptotically behaves as an M/D/1 queue with bulk service and fixed capacity as studied
in [1].

For this M/D/1 bulk service queue, let πi be the steady-state probability that the queue length at
the start of a visit equals i and define Π(z) =

∑∞
i=0πiz

i and ν= Λs/(1−ρ). Then in [1] it is shown
that

Π(z) =
(k− ν)(z − 1)

∏k−1
i=1 (z − zi)/(1− zi)

zkeν(1−z) − 1
, (34)

where the zi are the zeros of the denominator within the unit circle. Moreover, one can deduce that

E[Lb] =
k− (k− ν)2

2(k− ν)
+

k−1
∑

i=1

1
1− zi

. (35)

We conclude that analyzing the marginal queue length and waiting-time distributions for the k-
limited service discipline becomes considerably easier in large polling systems. In Section 6 we will
investigate through simulations how well this approach approximates the queue length distribution
for finite n.

5 Flexible k-limited service

We have already discussed that the k-limited service discipline achieves a more predictable cycle
time compared to the exhaustive and gated service disciplines, making it more suitable for deadline-
critical applications. However, it is also known that the waiting times of a system with the k-limited
service discipline can be large compared to the exhaustive and gated service disciplines. This is
mostly caused by the fact that if the server reaches a very long queue, it will still serve at most
k customers, even though it possibly did not have to serve any customers at the previously visited
queues.

In order to reduce the effect of this drawback, we introduce a flexible k-limited service discipline.
This discipline works the same as the k-limited service discipline, except that when the server serves
less than k customers at a queue, we allow the server to use this ‘lost’ capacity during the visits
to the next queues. This has the following benefit. If by chance there is a single abnormally large
queue, while the queues before it are almost empty, the server is allowed to spend more time on the
abnormally large queue, reducing waiting times.
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More specifically, the flexible k-limited service discipline works as follows. Denote by S(i, j) the
number of served customers during the j’th visit of the server to Q(i−1 mod n)+1. Then upon reaching
Q i for the j’th time, the server will serve at most K(i, j) customers, where

K(i, j) = k+

�

`k−
∑̀

l=1

S(i − l, j −1[i − l < 1])

�+

,

with k ∈ N and ` ∈ {1, ..., n − 1}. Note that the server will always be allowed to serve at least k
and at most (`+ 1)k customers during a visit and that for ` = 0 the flexible k-limited service policy
coincides with the traditional k-limited policy. Furthermore, it is easily seen that during a cycle at
most (n + `)k customers will be served: the server serves (` + 1)k customers at some queue and
k customers at the following n− 1 queues.

In the following subsection we will analyze the flexible k-limited service policy and focus our
attention on large systems with many queues.

5.1 Performance for large systems

Again let the arrival rate to each queue λi equal Λ/n. Our analysis in the previous sections suggests
that C/n→ s/(1−ρ) as n→∞, and therefore the number of customers that join a queue between
two consecutive visit beginnings tends to a Poisson distributed random variable with meanΛs/(1−ρ)
as n grows large. Therefore, we can argue that, under the flexible k-limited service discipline, each
individual queue asymptotically behaves as an M/D/1 queue with bulk service and varying capacity.
That is, again denoting by Lb(i, j) the queue length of Q i at the start of the j’th server visit, we have
as n→∞:

Lb(i, j + 1) = (Lb(i, j)− K(i, j))+ + A(i, j), (36)

where the A(i, j) are i.i.d. Poi(Λs/(1−ρ)) random variables.
In order to analyze the limiting behavior of Equation (36) as j→∞, we treat {K(i, j)}∞j=1 as an

i.i.d. sequence of random variables. Note that generally these variables will not be strictly indepen-
dent, since a node having a low K value in a given cycle is more likely to have a low K value in the
following cycle as well. However, if the sequence {K(i, j)}∞j=1 is treated as i.i.d. with pm = P[K = m]
and Pm = P[K ≥ m], we can determine the steady-state distribution of the Markov chain given
by (36) as shown in [11].

Letπi again denote the steady-state probability that the queue length at the start of a visit equals i
and define Π(z) =

∑∞
i=0πiz

i . Furthermore, write φi(z) =
∑k(`+1)

j=k(`+1)−i p jz
− j . Writing again ν =

Λs/(1−ρ), we then have, see [11],

Π(z) =

∑k(`+1)−1
i=0 πi(Pi − z iφk(`+1)−i(z))

eν(1−z) −φk(`+1)(z)
.

Multiplying both the numerator and the denominator by zk(`+1), we know by Rouché’s theorem
that, in addition to the zero in z = 1, the denominator has exactly k(`+ 1)− 1 zeros within the unit
disk denoted by z1, ..., zk(`+1)−1. Moreover, since Π(z) is analytic for |z| < 1, these zeros should also
be the zeros of the numerator. Hence,

Π(z) =
c(z − 1)

∏k(`+1)−1
i=1 (z − zi)

zk(`+1)(eν(1−z) −φk(`+1)(z))
.

Using the fact that Π(1) = 1, we find

c = (E[K]− ν)
k(`+1)−1
∏

i=1

1
1− zi

.

Here the probabilities pi determining the function φk(`+1)(z) and the zeros zi remain to be found.

15



5.1.1 The case `= 1

Consider the simplest case ` = 1 in which the server is allowed to serve at most 2k customers at
a queue. Supported by our analysis in Section 3, we assume asymptotic independence between
the queue lengths of two neighboring queues. Since each time the server visits an empty queue it
follows that the next queue is allowed to serve up to 2k customers, we should have π0 = p2k. More
generally, we require πi = p2k−i , for i = 0, ..., k − 1, and pk = 1−

∑k−1
i=0 πi . Hence, this tells us that

q(z) = z2kφ2k(z) is the moment generating function of (2k− K). Substituting, we find

Π(z) =
(E[K]− ν)(z − 1)

∏2k−1
i=1

z−zi
1−zi

z2keν(1−z) − q(z)
. (37)

Since the coefficients of the function q(z) are given in terms of the πi , we can not directly find
the roots zi to determine the probabilities πi . However, it is possible to determine them using the
following iterative approach.

We start with initial estimates for πi , i = 0, ..., k − 1, which then also give estimates for the
probabilities pi and hence the generating function q(z). Using these estimates, one can determine
the roots zi of the denominator of (37), giving a new estimate for the generating function Π(z) and
the probabilities πi . Iterating this process will give estimates for the true values of πi and pi .

Implementing this approach gives good and fast results for reasonable values of k (k < 20) and
ν not too close to k, converging after only a few iterations. In the next section we will investigate
how well the actual queue length distribution is approximated using this approach.

Finally, note that the simplest case k = 1 allows a more direct treatment. Using the fact that
Π(0) = π0 = p2 allows us to find the relation

p2
2 = −(E[K]− ν)

z1

1− z1
. (38)

Using Equation (38), we can write z1 as a function of p2 as follows

z1(p2) :=
p2

2

p2
2 − (E[K]− ν)

=
p2

2

p2
2 − (1+ p2 − ν)

.

Therefore, p2 can be determined as the zero of

z1(p2)
2eν(1−z1(p2)) − (1− p2)z1(p2)− p2,

also giving p1. Additionally, one can deduce that

E[Lb] =
2− (2− ν)2

2(1+ p2 − ν)
+

1
1− z1

. (39)

5.1.2 The case ` > 1

Consider now the case ` > 1. This case can be treated similarly to the case ` = 1, but it does
require solving some combinatorial problems. For example, consider the case ` = 2 and k = 1. Let
X−3, X−2 and X−1 denote the number of customers the server found at the last three queues that it
visited and let K−3, K−2 and K−1 denote the K values at those queues during those visits. If we again
assume that queue lengths of neighboring queues are independent as n→∞, then the only way the
current queue can have K = 3 is if its two predecessors did not have any customers waiting, hence
p3 = P[X−2 = X−1 = 0] = π2

0. Similarly, the probability that a queue has K = 2 is given by

p2 = P[X−2 + X−1 = 1] + P[X3 > 1, K−3 > 1, X−2 = 0, X−1 > 1]

+ P[X−2 > 1, K−2 = 1, X−1 = 0]

= 2π0π1 + (1−π0 −π1)(1− p1)π0(1−π0 −π1) + (1−π0 +π1)p1π0.
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One can imagine that as ` and k become larger, expressing the probabilities pi in terms of the π j
becomes more difficult. However, in practice, using moderate values of ` should suffice.

Note that in order to avoid dependencies between queue lengths and K ’s of neighboring queues
and to simplify the analysis, one could also consider a randomized flexible k-limited service policy.
By randomized we mean that instead of looking at how many customers were served during the
last ` visits, the service limit K(i, j) is determined by how many customers were served at ` random
visits during the last cycle. Specifically, let X i, j = {X i, j

1 , ..., X i, j
`
} be i.i.d. randomly chosen subsets of

{1, ..., n}\{i}, then

K(i, j) = k+

�

`k−
∑̀

l=1

S(X i, j
l , j −1[X i, j

l > i])

�+

.

Such a policy admits an easier analysis, since the probabilities pi can be expressed more easily in
terms of the π j . Moreover, there should be weaker dependencies between K(i, j) and K(i, j + 1).

6 Numerical results

In this section we will evaluate how well the limiting many-queue results of the previous sections for
the marginal queue length distribution can serve as approximations for polling systems of finite size.
We focus on the binomial-gated, k-limited and flexible k-limited service disciplines. Additionally, we
will compare these disciplines with respect to the mean queue length and the cycle time variance.

6.1 Marginal queue length distribution convergence

We first consider the binomial-gated service discipline by investigating how well Equation (25) ap-
proximates the steady-state queue length at the start of a server visit for finite n. To this end, we simu-
late a polling system with n= 10, 20,50, 100,200, 500 for 108 cycles. The results for binomial-gated
service are obtained by an exact analysis, using the PGF and LST inversion algorithms by Choudhury
and Whitt [8]. We assume that service and switch-over times are exponentially distributed with
mean 2/3 and 1, respectively. Additionally, we set Λ= 1.

n p = 1/4 p = 1/2 p = 3/4 p = 1
10 5.3× 10−4 1.0× 10−3 1.7× 10−3 3.× 10−3

20 1.5× 10−4 2.9× 10−4 5.1× 10−4 9.2× 10−4

50 2.6× 10−5 5.1× 10−5 9.2× 10−5 1.7× 10−4

100 6.7× 10−6 1.3× 10−5 2.4× 10−5 4.4× 10−5

200 1.7× 10−6 3.4× 10−6 6.1× 10−6 1.1× 10−5

500 2.7× 10−7 5.4× 10−7 9.9× 10−7 1.9× 10−6

Table 1: Binomial-gated service: Squared error between limiting and exact queue length distribu-
tions.

In Table 1 we show the squared error between the PDF of the limiting queue length distribution
at cycle beginnings, given by Equation (25), and the corresponding exact results. The squared error
between two PDFs f (·) and g(·) is defined as

∑∞
i=0( f (i) − g(i))2. We find that even for small n

the limiting distribution given by Equation (25) already approximates the steady-state queue length
distribution well. In fact, as we can expect from the analysis of Section 3, the squared error is of
order 1/n2. Additionally, we see that as p becomes smaller, the approximation tends to become more
accurate.

Consider now the traditional k-limited service discipline without flexibility. In Table 2 we show
the squared error between the PDF of the limiting queue length defined by the PGF of Equation (34)
and the corresponding simulation results for several values of k, where we have used the same
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n k = 4 k = 5 k = 6
10 3.18× 10−3 3.88× 10−3 4.60× 10−3

20 9.42× 10−4 1.13× 10−3 1.33× 10−3

50 1.70× 10−4 2.01× 10−4 2.37× 10−4

100 4.46× 10−5 5.25× 10−5 6.15× 10−5

200 1.21× 10−5 1.38× 10−5 1.57× 10−5

500 2.02× 10−6 2.26× 10−6 2.57× 10−6

Table 2: k-limited service: Squared error between limiting and simulated queue length distributions.

parameter settings as before. Also here we find fast convergence to the limiting queue length dis-
tribution. For this case, however, the choice of k does not appear to have a big influence on the
convergence rate.

n k = 4 k = 5 k = 6
10 3.62× 10−3 2.93× 10−3 2.91× 10−3

20 1.13× 10−3 8.96× 10−4 8.97× 10−4

50 2.22× 10−4 1.66× 10−4 1.66× 10−4

100 6.56× 10−5 4.41× 10−5 4.34× 10−5

200 2.00× 10−5 1.14× 10−5 1.12× 10−5

500 4.95× 10−6 1.74× 10−6 1.93× 10−6

Table 3: Flexible k-limited service with `= 1: Squared error between limiting and simulated queue
length distributions.

Finally, we consider the flexible k-limited service discipline with ` = 1. We compare simulation
results with the PDF of the limiting queue length defined by the PGF of Equation (37), which we
determine by the iterative procedure described in Section 5.1. Results can be found in Table 3. As
before, we find fast convergence to the limiting queue length distribution. To get a better impression
of how well the actual queue length distribution is approximated by the limiting distribution, we
have created a plot to compare them. Figure 1 shows the queue length distributions for systems
with n = 10 and n = 50 queues, respectively, with flexible k-limited service (k = 4 and ` = 1).
Comparing these probabilities with the limiting distribution, also visualized in Figure 1, we see that
the general shape is quite similar for n = 10, but the individual probabilities are not very close yet.
For n = 50 the differences have almost disappeared and the limiting probabilities would be a very
good approximation for the true distribution.

6.2 Comparison of service disciplines

In the previous subsection, we used simulations to examine how well asymptotic results can be used
to approximate the performance of polling systems of finite size. In this subsection, we will compare
the performance of the binomial-gated, k-limited and flexible k-limited service discipline.

We focus our attention on the cycle time variance and the mean queue length. In practice, one
seeks a service discipline which minimizes the mean queue length, as this will also decrease the mean
waiting time of customers. However, as we shall see, lowering the mean queue length usually comes
at the price of increased cycle time variance. This trade-off is particularly important for deadline-
critical applications, where upon returning to a queue, the server might find a high-priority customer
which needs to be served immediately. In such a system a predictable return time of the server is
necessary in order to guarantee that these high-priority customers with high probability do not have
to wait longer than some predefined threshold.
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Figure 1: Queue-length distributions for flexible k-limited service with k = 4 and `= 1.

n p = 1/4 p = 1/2 p = 3/4 p = 1
10 4.91 6.37 8.12 10.3
20 4.95 6.47 8.31 10.6
50 4.98 6.53 8.42 10.9
100 4.98 6.55 8.46 10.9
200 4.99 6.56 8.48 11.0
500 4.99 6.56 8.50 11.0
∞ 4.99 6.57 8.50 11.0

Table 4: Binomial-gated service: Scaled variance of the cycle time distribution.

n p = 1/4 p = 1/2 p = 3/4 p = 1
10 12 6 4 3
∞ 12 6 4 3

Table 5: Binomial-gated service: Mean queue length at the start of a server visit.

In Tables 4 and 5 we show the variance of the cycle time and the mean queue length for the
binomial-gated service discipline obtained by an exact analysis. The last row of both tables corre-
sponds to the exact asymptotic results from Section 3.4. We find that, as predicted by Equation (23),
we can actually decrease the cycle time variance by decreasing p. As expected (see the remark below
Equation (5)), Table 5 shows that the mean queue length does not depend on the number of queues.

`= 0 `= 1
n k = 4 k = 5 k = 6 k = 4 k = 5 k = 6

10 5.03 7.37 9.01 5.82 8.05 9.27
20 5.19 7.70 9.34 6.26 8.75 9.93
50 5.30 7.93 9.57 6.61 9.28 10.38
100 5.33 8.02 9.65 6.75 9.49 10.54
200 5.35 8.06 9.69 6.82 9.60 10.62
500 5.36 8.09 9.71 6.86 9.68 10.67

Table 6: k-limited and flexible k-limited service: Scaled variance of the simulated cycle time distri-
bution.

Consider now the k-limited and the flexible k-limited service disciplines. In Tables 6 and 7 we
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`= 0 `= 1
n k = 4 k = 5 k = 6 k = 4 k = 5 k = 6

10 4.21 3.25 2.98 3.72 3.19 3.06
20 4.00 3.22 3.02 3.49 3.11 3.03
50 3.88 3.20 3.04 3.36 3.07 3.01
100 3.84 3.20 3.05 3.31 3.06 3.01
200 3.82 3.20 3.05 3.29 3.05 3.01
500 3.81 3.20 3.06 3.28 3.05 3.01
∞ 3.80 3.20 3.06 3.26 3.04 3.01

Table 7: k-limited and flexible k-limited service: Simulated mean queue length at the start of a server
visit.

show estimates of the variance of the cycle time and the mean queue length for both disciplines.
Recall that the setting ` = 0 corresponds to the k-limited service discipline without flexibility. Com-
paring with the results in Tables 4 and 5, we find that the k-limited service discipline is better at
reducing the cycle time variance than the binomial-gated service discipline, without increasing the
mean queue length too much when compared with the gated service discipline, i.e. p = 1.

If we now compare the results for the flexible k-limited service discipline with k = 4 with the
results for the k-limited service discipline without flexibility and the gated service discipline, we find
that the flexible k-limited service discipline is able to achieve the best of both worlds. Compared to
the gated service discipline, it achieves almost a 40% decrease in scaled cycle time variance, while
only increasing the mean queue length by roughly 10%. Compared to the k-limited service discipline
without flexibility, it reduces the mean queue length by 15%, while only increasing the scaled cycle
time variance by approximately 25%.

20 40 60 80 100 120
c

0.01

0.02

0.03

0.04

k-limited

flexible k-limited

gated

Figure 2: Cycle time PDFs for the k-limited, flexible k-limited and gated service disciplines for n= 20
and k = 4.

In Figure 2 we visualize this trade-off by plotting the cycle time PDFs of the gated service dis-
cipline and (simulations for) the k-limited service discipline with and without flexibility and k = 4.
Indeed, the flexible k-limited service discipline is able to guarantee a server return time smaller than
85 time units for 99% of the cycles, while the gated service discipline can only guarantee this for
95% of the cycles. Finally, we see that the distributions for the k-limited service disciplines with and
without flexibility are very similar.

7 Conclusion

We have studied the performance of symmetric polling systems in an asymptotic regime with a large
number of queues. In contrast to “continuous” polling models, the distribution of the individual

20



switch-over times is assumed to remain the same as the number of queues grows large. We showed
that for most classical service policies the scaled cycle times converge to a deterministic value in
the limit, which in turn implies that the queue lengths at the various nodes become asymptoti-
cally independent. Using these insights, we demonstrated that each individual queue behaves as
a discrete-time bulk-service queue in the limit, so that the analysis of the marginal queue length
and waiting-time distributions greatly simplifies. Finally, we proposed and analyzed a new flexible
k-limited service discipline aimed at achieving a good trade-off between short mean queue lengths
and predictable cycle times. Our results provide insight in the delay performance of token-passing
algorithms such as the BACnet protocol in deployment scenarios with a large number of nodes and
deadline-critical applications which require short delays and guaranteed token return times.
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Appendix

A Extension of Proposition 1

In this appendix we generalize Proposition 1 to find the cycle time for branching-type polling systems
that do not satisfy Property 2. Denote by Ci, j(z) the PGF of Mi, j as introduced in Section 2. For
simplicity, we assume that the Mi, j are independent, but at the end of this section we briefly discuss
the case with dependencies. A visit period at Q i starting with m customers present at Q i is considered
to consist of m sub-busy periods, each having LST θi(·). Additionally, let θ̃i(z,ω) denote the joint
transform of the number of customers that are served during a sub-busy period visit to Q i and the
length of the sub-busy period. Lastly, we define Li as the number of service completions at Q i during
a visit in steady state.

Proposition 2. Write z = (z1, ..., zn) andω= (ω1, ...,ωn). In case Property 1 holds, the joint transform
of Li and Vj + S j , i = 1, ..., n, j = 1, ..., n, is given by

E





� n
∏

i=1

zLi
i

�

e
−

n
∑

j=1
ω j(Vj+S j)



=F1(κ̃1(z,ω), ..., κ̃n(z,ω))
n
∏

i=1

Si(γ̃i(z,ω)), (40)

where γ̃n(z,ω) =ωn, κ̃n(z,ω) = θ̃n(zn,ωn) and, for 1≤ i ≤ n− 1,

γ̃i(z,ω) =ωi +
n
∑

j=i+1

λ j(1− θ̃ j(z j , γ̃ j(z,ω))), (41)

and

κ̃i(z,ω) = θ̃i

 

zi

n
∏

j=i+1

Ci, j

�

κ̃ j(z,ω)
�

, γ̃i(z,ω)

!

. (42)

Proof. We define

Zi := extra work introduced at Q i during V1 + S1,

Hi := extra customers introduced at Q i during V1 + S1.
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Consider first the 2-queue case. Then

E
�

zL1
1 zL2

2 exp (−ω1(V1 + S1)−ω2(V2 + S2)) | X = (m1, m2)
�

= θ̃2(z2,ω2)
m2S2(ω2)E

�

zL1
1 zH2

2 exp (−ω1(V1 + S1)−ω2Z2) | X = (m1, m2)
�

= θ̃1

�

z1C1,2

�

θ̃2(z2,ω2)
�

,ω1 +λ2(1− θ̃2(z2,ω2))
�m1 θ̃2(z2,ω2)

m2

· S1(ω1 +λ2(1− θ̃2(z2,ω2)))S2(ω2),

where for the second equality, we have used that

E
�

zH2
2 e−ω2Z2

�

� L1 = l
�

= θ̃1

�

C1,2

�

θ̃2(z2,ω2)
�

,λ2(1− θ̃2(z2,ω2)
�l S1(λ2(1− θ̃2(z2,ω2))).

It follows that

E
�

zL1
1 zL2

2 e−ω1(V1+S1)−ω2(V2+S2)
�

= F1

�

θ̃1

�

z1C1,2

�

θ̃2(z2,ω2)
�

,ω1 +λ2(1− θ̃2(z2,ω2))
�

, θ̃2(z2,ω2)
�

· S1(ω1 +λ2(1− θ̃2(z2,ω2)))S2(ω2).

Consider now n queues. Generalizing the analysis of the 2-queue example, we deduce

E





� n
∏

i=1

zLi
i

�

e
−

n
∑

j=1
ω j(Vj+S j)

�

�

�

�

X =m





= Sn(γ̃n(z,ω)) (κ̃n(zn,ωn))
mn

·E





�n−1
∏

i=1

�

ziCi,n(κ̃n(z,ω))
�Li

�

e
−

n−1
∑

i=1
(ωi+λn(1−θ̃n(zn,ωn)))(Vi+Si)

�

�

�

�

X =m





= Sn(γ̃n(z,ω)) (κ̃n(z,ω))mn Sn−1(γ̃n−1(z,ω))(κ̃n−1(z,ω))mn−1

·E
�

�n−2
∏

i=1

�

ziCi,n−1(κ̃n−1(z,ω))Ci,n(κ̃n(z,ω))
�Li

�

· e
−

n−2
∑

i=1
(ωi+λn−1(1−θ̃n−1(zn−1,γ̃n−1(z,ω)))+λn(1−θ̃n(zn,ωn)))(Vi+Si)

�

�

�

�

X =m

�

.

Iterating, we find

E





� n
∏

i=1

zLi
i

�

e
−

n
∑

j=1
ω j(Vj+S j)

�

�

�

�

X =m



=
n
∏

i=1

κ̃i(z,ω)miSi(γ̃i(z,ω)).

Consequently,

E





� n
∏

i=1

zLi
i

�

e
−

n
∑

j=1
ω j(Vj+S j)



=F1(κ̃1(z,ω), ..., κ̃n(z,ω))
n
∏

i=1

Si(γ̃i(z,ω)).

In particular, this implies that the LST of the cycle time is given by

E
�

e−uC
�

=F1(κ1(u), ...,κn(u))
n
∏

i=1

Si(γi(u, . . . , u)), (43)
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where κn(u) = θn(u) and, for 1≤ i ≤ n− 1,

κi(u) = θ̃i

�

n
∏

j=i+1

Ci, j

�

κ j(u)
�

,γi(u, . . . , u)
�

. (44)

Remark 5. As indicated, we have assumed that the Mi, j ’s are independent. However, the results can
easily be extended to the case with dependencies by introducing Ci(z) as the joint PGF of Mi,1, . . . , Mi,n.
It can be verified that the only difference would be that in (42) and (44), the product needs to be replaced
by this joint PGF. For example, in (44) one would obtain

κi(u) = θ̃i

�

Ci(1, 1, . . . , 1,κi+1(u),κi+2(u), . . . ,κn(u)),γi(u, . . . , u)
�

.

In fact, by taking Ci(z) = pi,0+
∑n

j=1 pi, jz j we obtain a polling system with customer routing, as studied
in [4, 17], where pi, j denotes the probability that a customer finishing service at Q i is routed to Q j . For
that particular choice of Ci(z), our result agrees with the cycle time LST found in [4, Proposition 3.1].

B 1-limited service

We consider the 1-limited service discipline. The goal of this appendix is to analyze the limiting
value of Cov[Le, I] as n grows large and demonstrate why this is difficult. Furthermore, we intend
to provide arguments that support the conjecture that the variance of the scaled cycle time is of
order 1/n.

Let g := P[Lb > 0] = Λs/(1−ρ). Note that, since switch-over times during an intervisit time are
independent of Le, by additivity of the covariance function

Cov[Le, I] =
n
∑

i=2

Cov[Le, Vi].

Furthermore, we can write

E[LeVi] = E[Le]β − P[Q i is found empty]E[Le | Q i is found empty]β .

Notice that P[Q i is found empty] = 1− g. Using E[Vi] = gβ , we conclude

Cov[Le, I] = β(1− g)
n
∑

i=2

(E[Le]−E[Le | Q i is found empty]) . (45)

Hence, it remains to find E[Le] and E[Le | Q i is found empty].
WriteF (z) for the PGF of the joint queue lengths at the start of a visit to Q1. For 1-limited service

it is well known (see for example [19]) that the following relation holds

F (z1, ..., zn) =

 

1
zn
(F (zn, z1, ..., zn−1)−F (0, z1, ..., zn−1))B

 

n
∑

j=1

Λ

n
(1− z j)

!

+F (0, z1, ..., zn−1)

!

S

 

n
∑

j=1

Λ

n
(1− z j)

!

. (46)

Differentiating once gives

li =

¨

li+1 + gρ/n+ sΛ/n= li+1 − g/n, i 6= n,

l1 − g(1−ρ/n) + sΛ/n= l1 − (1− 1/n) g, i = n.
(47)
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Summing gives
n
∑

i=1

li = nl1 − (n− 1)g/2. (48)

Setting zi = z for all i in Equation (46), we find

F (z, ..., z) =
S (Λ(1− z))(z −B(Λ(1− z))
z −S (Λ(1− z))B(Λ(1− z))

F (0, z, ..., z). (49)

We define Gi(z) := F (1, ...1, z, 1, ..., 1) and G 0
i (z) := F (0, 1, ..., 1, z, 1, ..., 1), where z is the i’th ar-

gument and G 0
1 := 1− g, and let l0

i := ∂
∂ zi
G 0

i (z)
�

�

z=(1,...,1). Differentiating (49) then gives

n
∑

i=1

li =
1

1− g

n
∑

i=1

l0
i +

g
1− g

+
Λ2

(1− g)(1−ρ)

�

s(2) − s2 +
1
2
(gβ (2) − s(2))

�

. (50)

For a third equation, summing Equation (46) over all i, we find

n
∑

i=1

Gi(z) =
S
�

Λ
n (1− z)

�

(1−B
�

Λ
n (1− z)

�

)

1−S
�

Λ
n (1− z)

�

B
�

Λ
n (1− z)

�

n
∑

i=1

G 0
i (z)

−
�

1−
1
z

� S
�

Λ
n (1− z)

�

B
�

Λ
n (1− z)

�

1−S
�

Λ
n (1− z)

�

B
�

Λ
n (1− z)

�(G1(z)−G 0
1 (z)).

Differentiating and simplifying gives

n
∑

i=1

li =
1

ρ(1− g) + g

�

nl1 +
n
∑

i=1

l0
i

�

−
Λ2(s(2) − 2s2 + gβ (2))− 2gρ + 2ng

2(ρ(1− g) + g)
. (51)

Finally, solving Equations (48), (50) and (51), we find (see also [19])

n
∑

i=1

li =
1

1− g

�

Λ2s(2) − 2Λ2s2 + (n+ 1)Λs
2(1−ρ)

+
Λ3sβ (2)

2(1−ρ)2

�

,

n
∑

i=2

l0
i =
(n− 1)Λs
2(1−ρ)

= (n− 1)
g
2

,

and

li =
g(2− g)
2(1− g)

+
1
n
Λ2(s(2) − s2) +Λ2 g(βs+ β (2))

2(1−ρ)(1− g)
−

i − 1
n

g.

Additionally, we find

l0
i =

g(2− g)
2

−
i − 1

n
g(1− g).

It is then easily seen that
E[Le] = l1 − (1−ρ/n)g.

Consider now a special cycle C0 =
∑n

i=1

�

V 0
i + S0

i

�

in which the server at the end of the cycle
returns to find Q1 empty. Then, by symmetry, we can write

E[Le | Qn−i+2 is found empty] =
1

1− g
l0
i −
Λ

n
E



S0
i +

n
∑

j=i+1

�

V 0
j + S0

j

�



 .

Now, write
E[S0

i ] = s− s0(i) and E[V 0
i ] = gβ − v0(i).
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Then combining all results we find

Cov[Le, I] =
n− 1
2n

�

Λ2(s(2) − s2 + gβ (2))
1−ρ

+ρg2

�

+ (1− g)
Λ

n

 

n
∑

i=2

(i − 1)s0(i) +
n
∑

j=3

( j − 2)v0( j)

!

,

and, taking limits and simplifying even further,

lim
n→∞

nVar[C/n] = s(2) − s2 + gβ (2) − g2β2

− (1− g) lim
n→∞

2
n

 

n
∑

i=2

(i − 1)s0(i) +
n
∑

j=3

( j − 2)v0( j)

!

.

Disregarding the last term, this result already has the desired property that, as g ↑ 1, the scaled
variance converges to Var[S] + Var[B] and, as g ↓ 0, the scaled variance converges to Var[S].

It remains to determine s0(i) and v0( j), which turns out to be non-trivial. However, since both
s0(i) and v0( j) are most likely of order 1/n, we conjecture that the variance of the scaled cycle time
will also be of order 1/n. Hence, also for 1-limited service, the scaled cycle time will converge in
probability to a deterministic value, which we can exploit to determine the steady-state queue length
distribution at visit beginnings.

References

[1] N. T. J. Bailey. On queueing processes with bulk service. Journal of the Royal Statistical Society.
Series B (Methodological), 16(1):80–87, 1954.

[2] M. A. A. Boon, I. J. B. F. Adan, and O. J. Boxma. A polling model with multiple priority levels.
Performance Evaluation, 67:468–484, 2010.

[3] M. A. A. Boon, R. D. van der Mei, and E. M. M. Winands. Applications of polling systems.
Surveys in Operations Research and Management Science, 16(2):67–82, 2011.

[4] M. A. A. Boon, R. D. van der Mei, and E. M. M. Winands. Waiting times in queueing networks
with a single shared server. Queueing Systems, 74(4):403–429, 2013.

[5] O. J. Boxma and W. P. Groenendijk. Pseudo-conservation laws in cyclic-service systems. Journal
of Applied Probability, 24(4):949–964, 1987.

[6] O. J. Boxma, J. Bruin, and B. Fralix. Sojourn times in polling systems with various service
disciplines. Performance Evaluation, 66(11):621–639, 2009.

[7] S. T. Bushby. BACnetTM: A standard communication infrastructure for intelligent buildings.
Automation in Construction, 6(5):529–540, 1997.

[8] G. L. Choudhury and W. Whitt. Computing distributions and moments in polling models by
numerical transform inversion. Performance Evaluation, 25(4):267–292, 1996.

[9] E. Coffman and E. Gilbert. A continuous polling system with constant service times. IEEE
Transactions on Information Theory, 32(4):584–591, 1986.

[10] S. W. Fuhrmann and R. B. Cooper. Stochastic decompositions in the M/G/1 queue with gener-
alized vacations. Operations Research, 33(5):1117–1129, 1985.

25



[11] N. K. Jaiswal. A bulk-service queueing problem with variable capacity. Journal of the Royal
Statistical Society. Series B (Methodological), 23(1):143–148, 1961.

[12] W. Kastner, G. Neugschwandtner, S. Soucek, and H. Newmann. Communication systems for
building automation and control. Proceedings of the IEEE, 93(6):1178–1203, 2005.

[13] D. P. Kroese and V. Schmidt. A continuous polling system with general service times. Annals of
Applied Probability, 2(4):906–927, 1992.

[14] H. Levy. Binomial-gated service: a method for effective operation and optimization of polling
systems. IEEE Transactions on Communications, 39(9):1341–1350, 1991.

[15] H. Levy, M. Sidi, and O. J. Boxma. Dominance relations in polling systems. Queueing Systems,
6(1):155–171, 1990.

[16] J. A. C. Resing. Polling systems and multitype branching processes. Queueing Systems, 13(4):
409–426, 1993.

[17] M. Sidi, H. Levy, and S. W. Fuhrmann. A queueing network with a single cyclically roving server.
Queueing Systems, 11:121–144, 1992.

[18] N. C. Strole. The IBM token-ring network - A functional overview. IEEE Network, 1(1):23–30,
1987.

[19] H. Takagi. Mean message waiting times in symmetric multi-queue systems with cyclic service.
Performance Evaluation, 5(4):271–277, 1985.

[20] R. D. van der Mei and H. Levy. Polling systems in heavy traffic: Exhaustiveness of service
policies. Queueing Systems, 27(3–4):227–250, 1997.

[21] S. Wang. Intelligent Buildings and Building Automation. Taylor & Francis, New York, 2009.

[22] E. M. M. Winands, I. J. B. F. Adan, and G.-J. van Houtum. Mean value analysis for polling
systems. Queueing Systems, 54:35–44, 2006.

26


