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Abstract

We study queue-based activation protocols in random-access networks. The network
is modelled as an interference graph. Each node of the graph represents a server with a
queue. Packets arrive at the nodes as independent Poisson processes and have independent
exponentially distributed sizes. Each node can be either active or inactive. When a node
is active, it deactivates at unit rate. When a node is inactive, it activates at a rate that
depends on its current queue length, provided none of its neighbouring nodes is active.
Thus, two nodes that are connected by a bond cannot be active simultaneously. This
situation arises in random-access wireless networks where, due to interference, servers
that are close to each other cannot use the same frequency band. In the limit as the queue
lengths at the nodes become very large, we compute the transition time between the two
states where one half of the network is active and the other half is inactive.

We compare the transition time with that of a network in which the activation rates
are not controlled by the queue length but are externally driven, a situation that was dealt
with in an earlier paper. Namely, we first sandwich the transition time between that of
two networks in which the activation rates are small perturbations of a certain prescribed
function of the mean queue length. After that we show that, as the perturbation tends
to zero, the two transition times become asymptotically similar. We focus on a complete
bipartite network : we identify the scale of the transition time in terms of the model pa-
rameters and we show that its law on the scale of its mean has a trichotomy depending on
the aggressiveness of the activation rates. Our aim in future work is to use similar compar-
ison techniques for more general bipartite networks and for more complicated queue-based
activation protocols.
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1 Introduction

Section 1.1 provides motivation and background. Section 1.2 formulates the mathematical
model. Section 1.3 states the main theorems. Section 1.4 offers a brief discussion of these
theorems, as well as an outline of the remainder of the paper.

1.1 Motivation and background

In the present paper we investigate metastability properties and transition time asymptotics of
queue-based random-access protocols in wireless networks. Specifically, we consider a stylised
stochastic model for a wireless network (see Fig. 1 below), represented in terms of an undirected
graph G = (N,B), referred to as the interference graph. The set of nodes N labels the servers
and the set of bonds B indicates which pairs of servers interfere and are therefore prevented
from simultaneous activity. We denote by X(t) ∈ X the joint activity state at time t, with
state space

X =
{
x ∈ {0, 1}N : xixj = 0 ∀ (i, j) ∈ B

}
, (1.1)

where xi = 0 means that node i is inactive and xi = 1 that it is active.

Figure 1: A random-access network. Each node represents a server with a queue. Packets arrive that
require a random service time.

We assume that packets arrive at the nodes as independent Poisson processes and have
independent exponentially distributed sizes. When a packet arrives at a node, it joins the
queue at that node and the queue length undergoes an instantaneous jump equal to the size of
the arriving packet. The queue decreases at a constant rate c (as long as it is positive) when
the node is active. We denote by Q(t) ∈ RN+ the joint queue size vector at time t, with Qi(t)
representing the queue size at node i at time t. When node i is inactive at time t, it activates
at a time-dependent exponential rate ri(Qi(t)), provided none of its neighbours is active, where
q 7→ ri(q) is some increasing function. Activity durations are exponentially distributed with
unit mean, i.e., when a node is active it deactivates at rate 1. Thus, (X(t), Q(t))t≥0 evolves
as a time-inhomogeneous Markov process with state space X × RN+ .

The activity process (X(t))t≥0 may be viewed as a hard-core interaction model with state-
dependent activation rates. The state not only depends on the history of the stochastic process
of the packet arrivals (which cause upward jumps in the queue sizes), but also on the past
evolution of the activity process itself (through the gradual reduction in queue sizes during
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activity periods). The state-dependent nature of the activation rates raises interesting and
challenging issues from a methodological perspective. We will in particular examine metasta-
bility properties and transition times of the activity process in an asymptotic regime where
the initial queue sizes Qi(0), i ∈ N , grow large in some suitable sense.

The metastable behaviour is not only of significant methodological interest, it is also
relevant for analysing the spatio-temporal dynamics of random-access algorithms in wireless
networks, in particular, so-called queue-based Carrier Sense Multiple-Access (CSMA) policies.
In conventional CSMA policies, the various nodes activate at fixed rates, which gives rise to
classical hard-core interaction models. Metastability properties of the latter models provide
fundamental insight into performance characteristics of wireless networks. In particular, for
high activation rates, the stationary distribution of the activity process concentrates on states
where the maximum number of nodes is simultaneously active, with extremely slow transitions
between them, a situation that was studied in [1] and [8]. This ensures high overall efficiency,
but from the perspective of an individual node it induces prolonged periods of starvation,
possibly interspersed with long sequences of transmissions in rapid succession, resulting in
severe build-up of queues and long delays.

In queue-based CSMA policies, the activation rates are chosen to be functions of the queue
lengths at the various nodes, with the aim to provide greater transmission opportunities to
nodes with longer queues. Specifically, the activation rate is an increasing function of the
queue length of the node itself, and possibly a decreasing function of the queue lengths of
its neighbours. Thus, these rates vary over time as queues build up or drain when packets
are generated or transmitted. For suitable activation rate functions, queue-based CSMA
policies have been shown to achieve maximum stability, i.e., provide stable queues whenever
it feasible to do so at all (see [9, 5, 7, 10] and reference therein). Hence these policies have the
capability to match the optimal throughput performance of centralised scheduling strategies,
while requiring less computation and operating in a distributed fashion. On the downside, the
very activation rate functions required for ensuring maximum stability tend to result in long
queues and poor delay performance [2, 4]. As alluded to above, metastability properties play
a pivotal role, and analysing transition times for the activity process (X(t))t≥0 is critical in
understanding, and possibly improving, the delay performance of queue-based CSMA policies.

In the present paper we focus on complete bipartite interference graphs G: the node set
can be partitioned into two nonempty sets U and V such that the bond set is the product of
U and V , i.e., two nodes interfere if and only if one belongs to U and the other belongs to V .
Thus, the collection of all independent sets of G consists of all the subsets of U and all the
subsets of V . For convenience, we assume that the activation rate functions are of the form

ri(t) =

{
gU (Qi(t)), i ∈ U,
gV (Qi(t)), i ∈ V, (1.2)

where q 7→ gU (q) and q 7→ gV (q) are increasing functions such that limq→∞ gU (q) = ∞,
limq→∞ gV (q) and gU (q) = gV (q) = 0 when q < 0. We denote by u ∈ X and v ∈ X the joint
activity states where all the nodes in either U or V are active, respectively.

We will examine the distribution of the time until state v is reached,

τv = inf{t ≥ 0: X(t) = v}, (1.3)

when the system starts from state u at time t = 0. We consider an asymptotic regime where
the initial queue sizes Qi(0), i ∈ U , grow large in some suitable sense. As it turns out,
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the metastable behaviour and asymptotic distribution of τv are closely related to those in
a scenario where the activation rates are not governed by the random queue sizes, but are
deterministic and of the form

ri(t) =

{
hU (t), i ∈ U,
hV (t), i ∈ V, (1.4)

for suitable functions t 7→ hU (t) and t 7→ hV (t).
Specifically, when the initial activity state is u and the initial queue sizes Qi(0) are large

for all i ∈ U , all the nodes in U will initially be active virtually all the time, preventing any
of the nodes in V to become active. Consequently, the queue sizes of the nodes in U will tend
to decrease at rate c− ρU > 0, while the queue sizes of the nodes in V will tend to increase at
rate ρV > 0, where ρU and ρV denote the common traffic intensity of the nodes in U and V ,
respectively.

While the packet arrivals and activity periods are governed by random processes, the
trajectories of the queue sizes will be roughly linear when viewed on the long time scales of
interest. This suggests that if we assume identical initial queue sizes Qi(0) ≡ QU (0), i ∈ U , and
Qi(0) ≡ QV (0), i ∈ V , within the sets U and V , respectively, then the asymptotic distribution
of τv in (1.3) in the model with queue-dependent activation rates defined in (1.2) should be
close to that in the model with deterministic activation rates defined in (1.4) when we choose

hU (t) = gU
(
QU (0)− (c− ρU )t

)
, hV (t) = gV

(
QV (0) + ρV t

)
. (1.5)

The asymptotic distribution of τv in the latter scenario was characterised in [1], with the help
of the metastability analysis for hard-core interaction models developed in [6].

1.2 Mathematical model

We consider the case where G = (N,B) is a complete bipartite graph, i.e., N = U ∪ V and B
is the set of all bonds that connect a node in U to a node in V (see Fig. 2).

Figure 2: A complete bipartite graph with |U | = 3 and |V | = 4. At time t = 0, square-shaped nodes
are active and circle-shaped nodes are inactive.
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Definition 1.1 (State of a node). A node in the network can be active or inactive. The
state of node i at time t is described by a Bernoulli random variable Xi(t) ∈ {0, 1}, defined
as

Xi(t) =

{
0, if i is inactive at time t,

1, if i is active at time t.
(1.6)

The joint activity state X(t) at time t is an element of the set X defined in (1.1): the feasible
configurations of the network correspond to the collection of independent sets of G. We denote
by u ∈ X (v ∈ X ) the configuration where all the nodes in U are active (inactive) and all the
nodes in V are inactive (active).

Definition 1.2 (Pre-transition time and transition time). The following two times are
the main objects of interest in the present paper.

• The pre-transition time τ̄v is the first time a node in V turns active, i.e.,

τ̄v = inf{t > 0: Xi(t) = 1 ∃ i ∈ V }. (1.7)

• The transition time τv is the first time configuration v is hit, i.e.,

τv = min
{
t ≥ 0: Xi(t) = 0 ∀ i ∈ U, Xi(t) = 1 ∀ i ∈ V

}
. (1.8)

We are interested in the distribution of τ̄v and τv given that X(0) = u. The pre-transition
time plays an important role in our analysis of the transition time, because the evolution of
the network is simpler on the interval [0, τ̄v] than on the interval [τ̄v, τv]. However, we will see
that τv − τ̄v � τ̄v when the initial queue lengths are large, so that both times have the same
asymptotic scaling behaviour.

Figure 3: Left : initial configuration u. Center : pre-transition configuration. Right : final configuration
v.

An active node i turns inactive according to a deactivation Poisson clock: when the clock
ticks, the node switches itself off. Vice versa, an inactive node i attempts to become active at
the ticks of an activation Poisson clock: an attempt at time t is successful when no neighbours
of i are active at time t−. Different models can be studied depending on the choice of the
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activation and deactivation rates of the clocks. Models where these rates are deterministic
functions of t are called external models. In the present paper we are interested in what are
called internal models, where the clock rates at node i depend on the queue length at node i
at time t.

Definition 1.3 (Queue length at a node). Let Qi(t) ∈ R+ denote the queue length at
node i at time t, defined as

Qi(t) = Qi(0) +Q+
i (t)−Q−i (t) = Qi(0) +

Ni(t)∑
j=0

Yij − cTi(t), (1.9)

where Qi(0) is the initial queue length, the input process t 7→ Q+
i (t) describes packets arriving

according to a Poisson process t 7→ N(t) = Poisson(λt) and having i.i.d. exponential service
times Yj = Exp(µ), j ∈ N, and the output process t 7→ Q−i (t) represents the cumulative
amount of work that is processed in the time interval [0, t] at rate c.

In order to ensure that the queue length remains non-negative, we let a node switch itself
off when its queue length hits zero. The initial queue lengths are assumed to be

Qi(0) =

{
γUr, i ∈ U,
γV r, i ∈ V, (1.10)

where γU ≥ γV > 0, and r is a parameter that tends to infinity. Thus, the initial queue lengths
are of order r, i.e., Qi(0) � r, and the ones at the nodes in U are larger than the ones at the
nodes in V . Note that both the pre-transition and the transition time grow to infinity with r,
since the larger the initial queue lengths are, the longer it takes for the transition to occur.

For each node i, the input process t 7→ Q+
i (t) =

∑Ni(t)
j=0 Yij is a compound Poisson process.

In the time interval [0, t] packets arrive according to a Poisson process t 7→ Ni(t) with a
rate λU or λV , depending on whether the node is in U or V . Moreover, each packet j
brings the information of its service time: the service time Yij of the j-th packet at node i is
exponentially distributed with parameter µ. Hence the expected value of Q+

i (t) for a node in
U is the product of the expected value E[Ni(t)] = λU t and the expected value E[Yj ] = 1/µ, i.e.,
E[Q+

i (t)] = λU
µ t = ρU t. Analogously, for a node in V we have E[Q+

i (t)] = ρV t. We assume that
all the service times are i.i.d. random variables, and are independent of the Poisson process
t 7→ Ni(t).

For each node i, the output process is t 7→ Q−i (t) = cTi(t) = c
∫ t

0 Xi(u)du, where the
activity process t 7→ Ti(t) represents the cumulative amount of active time of node i in the
time interval [0, t]. This is not independent of the input process. Intuitively, the average queue
length increases when the node is inactive and decreases when the node is active, which means
that packets are being served at a rate c larger than their arrival rate, i.e., c > ρU , ρV > 0.
Since all nodes in V are initially inactive, for some time the queue length of these nodes in
V is not affected by their output process. However, as soon as a vertex in V turns active, we
have to consider its output process as well.

The choice of functions gU , gV in (1.2) determines the transition time of the network, since
the activation rates of the nodes depend on them. We will assume that gU , gV fall in the
following class of functions:

G =
{
g : R→ R≥0 : g non-decreasing and globally Lipschitz, g(R≤0) = 0, lim

x→∞
g(x) =∞

}
.

(1.11)
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Definition 1.4 (Models). Let gU , gV ∈ G and δ > 0. Assume (1.10). The four models of
interest in the present paper are the following:

• In the internal model the deactivation Poisson clocks tick at rate 1, while the activation
Poisson clocks tick at rate

rint
i (t) =

{
gU (Qi(t)), i ∈ U,
gV (Qi(t)), i ∈ V, t ≥ 0. (1.12)

• In the external model the deactivation Poisson clocks tick at rate 1, while the activation
Poisson clocks tick at rate

rext
i (t) =

{
gU (γUr − (c− ρU )t), i ∈ U,
gV (γV r + ρV t), i ∈ V, t ≥ 0. (1.13)

• In the lower external model the deactivation Poisson clocks tick at rate 1, while the
activation Poisson clocks tick at rate

rlow
i (t) =

{
gU (γUr − (c− ρU )t− δr), i ∈ U,
gV (γV r + ρV t+ δr), i ∈ V, t ≥ 0. (1.14)

• In the upper external model the deactivation Poisson clocks tick at rate 1, while the
activation Poisson clocks tick at rate

rupp
i (t) =

{
gU (γUr − (c− ρU )t+ 2δr), i ∈ U,
gV (γV r + ρV t− δr), i ∈ V, t ≥ 0. (1.15)

Note that in the external models the rates depend on time via certain fixed parameters, while
in the internal model the rates depend on time via the actual queue lengths at the nodes.
In the lower external model the activation rates in U tend to be less aggressive than in the
internal model (i.e., the activation clocks tick less frequently), while the activation rates in V
tend to be more aggressive. In the upper external model the reverse is true: the activation
rates in U are more aggressive and the activation rates in V are less aggressive. For simplicity,
when considering the external model we sometimes write

rU (t) and rV (t) (1.16)

for the activation rate at time t of a node in U and a node in V . We will see that the upper
external model is actually defined only for t ∈ [0, TU ] with TU = γU

c−ρU r (see Section 2 for
details). However, the transition occurs with high probability before time TU .

1.3 Main theorems

The main goal of the present paper is to compare the transition time of the internal model
with that of the two external models. Through a large-deviation analysis of the queue length
process at each of the nodes, we define a notion of good behaviour that allows us to define
perturbed models with externally driven rates that sandwich the queue lengths of the internal
model and its transition time. We show with the help of coupling that with high probability
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the asymptotic behaviour of the mean transition time for the internal model is the same as
for the external model.

The metastable behaviour and the transition time τv of a network in which the activation
rates are time-dependent in a deterministic way was characterised in [1], and the asymptotic
distribution of τv was studied in detail. For s ≥ 0, let

ν(s) =
1

Eu[τv](s)
(1.17)

be the inverse mean transition time of the time-homogeneous model where the activation rates
are equal to

rext
i (s) =

{
rU (s), i ∈ U,
rV (s), i ∈ V. (1.18)

Then, for any time scale M = M(r) and any threshold x ∈ [0,∞),

lim
r→∞

Pu
(
τv
M

> x

)
=


0, if Mν(Mx) � 1,

e−
∫ x
0 Mν(Ms)ds, if Mν(Mx) � 1,

1, if Mν(Mx) ≺ 1.

(1.19)

(Here, a � b means b = o(a), a ≺ b means a = o(b), while a � b means a = Θ(b).) If we let
Mc be the unique solution of the equation

Mν(M) = 1, (1.20)

then the transition occurs on the time scale Mc, in the sense that Pu(τv > t) ≈ 1 for t ≺ Mc

and Pu(τv > t) ≈ 0 for t � Mc. On the critical time scale Mc, the transition time follows
an exponential law with time-varying rate. It was proven in [6] that, for a complete bipartite
graph and s ∈ [0,∞),

Eu[τv](s) =
1

|U |
rU (s)|U |−1 [1 + o(1)], r →∞. (1.21)

We want the nodes in V to be more aggressive than the nodes in U , so that the transition
from u to v can be viewed as the crossover from a “metastable state” to a “stable state”.
Therefore we assume from now on that

lim
x→∞

gV (x)

gU (x)
=∞, (1.22)

and we focus on activation rates for nodes in U of the form gU (x) ∼ Gxβ when x → ∞ (see
Remark 4.1 in Section 4 for more general activation rates gU ). The following two theorems
will be proven in Sections 4.1–4.2 with the help of (1.17)–(1.21).

Theorem 1.5 (Critical time scale in the external model). Suppose that gU (x) ∼ Gxβ

with β,G ∈ (0,∞). Then

Mc = Fcr
1∨β(|U |−1) [1 + o(1)], r →∞, (1.23)

with

Fc =


γ
β(|U|−1)
U

|U |G−(|U|−1) , if β ∈ (0, 1
|U |−1),

γU
|U |G−(|U|−1)+(c−ρU )

, if β = 1
|U |−1 ,

γU
c−ρU , if β = ( 1

|U |−1 ,∞).

(1.24)

9



Theorem 1.6 (Transition time in the external model). Suppose that gU (x) = Gxβ with
β,G ∈ (0,∞). Then

Eu[τ ext
v ] = Fcr

1∨β(|U |−1) [1 + o(1)], r →∞. (1.25)

and

lim
r→∞

Pu
(

τ ext
v

Eu[τ ext
v ]

> x

)
= P(x), x ∈ [0,∞), (1.26)

with

P(x) =



e−x, if β ∈ (0, 1
|U |−1), x ∈ [0,∞),

(1− Cx)
1−C
C , if β = 1

|U |−1 , x ∈ [0, 1
C ),

0, if β = 1
|U |−1 , x ∈ [ 1

C ,∞),

1, if β ∈ ( 1
|U |−1 ,∞), x ∈ [0, 1),

0, if β ∈ ( 1
|U |−1 ,∞), x ∈ [1,∞),

(1.27)

and C = Fc(c−ρU )
γU

∈ (0, 1).

In other words, the mean transition time scales like Mc, while the distribution of the transition
time divided by its mean is exponential, truncated polynomial, respectively, deterministic (see
Fig. 4).

x

P(x)

x

P(x)

1
C

r x

P(x)

1
r

Figure 4: Trichotomy for x 7→ P(x): β ∈ (0, 1
|U |−1 ] (left); β = 1

|U |−1 (middle); β ∈ ( 1
|U |−1 ,∞) (right).

The curve in the middle is convex when C ∈ (0, 12 ) and concave when C ∈ ( 1
2 , 1). The curve on the

right is the limit of the curve in the middle as C ↑ 1.

As shown in Remark 4.1, we can even include the case β = 0, and get that if gU (x) = L̂(x)
with limx→∞ L̂(x) =∞, then

Eu[τ ext
v ] = Mc [1 + o(1)], Mc =

1

|U |
L̂(γUr)

|U |−1 [1 + o(1)], r →∞, (1.28)

and P(x) = e−x, x ∈ [0,∞). Similar properties hold for the lower and the upper external
model, with perturbed F low

c,δ and F upp
c,δ satisfying

lim
δ↓0

F low
c,δ = lim

δ↓0
F upp
c,δ = Fc. (1.29)

The main result in the present paper is the following sandwich of τ int
v between τ low

v and
τupp
v , for which we already know the asymptotic behaviour. Because of this sandwich we can

deduce the asymptotics of the transition time in the internal model.
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Theorem 1.7 (Transition time in the internal model). For δ > 0 small enough, there
exists a coupling such that

lim
r→∞

P̂u
(
τ low
v ≤ τ int

v ≤ τupp
v

)
= 1, (1.30)

where P̂u is the joint law induced by the coupling, with all three models starting from the
configuration u. Consequently, if gU (x) ∼ Gxβ with β,G ∈ (0,∞), then

Eu[τ int
v ] = Fcr

1∨β(|U |−1) [1 + o(1)], r →∞, (1.31)

and

lim
r→∞

Pu
(

τ int
v

Eu[τ int
v ]

> x

)
= P(x), x ∈ [0,∞). (1.32)

1.4 Discussion and outline

Theorems. Theorem 1.6 gives us the leading-order asymptotics of the transition time in the
external model, including the lower and the upper external model. Theorem 1.7 is the main
result of our paper and provides the leading-order asymptotics of the transition time in the
internal model, via the coupling in (1.30) and the continuity property in (1.29). Equations
(1.24)–(1.25) identify the scaling of the transition time in terms of the model parameters. The
trichotomy between β ∈ (0, 1

|U |−1), β = 1
|U |−1 and β ∈ ( 1

|U |−1 ,∞) is particularly interesting,
and leads to different limit laws for the transition time on the scale of its mean.

Interpretation of trichotomy. In order to interpret the above trichotomy, observe first of
all that the activation rates of each of the nodes in U remain of order rβ almost all the way
up TU . Specifically, in the absence of the nodes in V , by time yTU , y ∈ [0, 1), the queue
lengths of the nodes in U have decreased by roughly a fraction y, and their activation rates
are approximately G(1− y)βrβ. Hence the fraction of joint inactivity time of the nodes in U
is of order (1/rβ)|U | = r−β|U |, and all nodes in U are simultaneously inactive for the first time
after a period of order r−β/r−β|U | = rβ(|U |−1), which is o(r) when β < 1

|U |−1 . With the nodes
in V actually present, these then all activate and the transition occurs almost immediately
with high probability (see Section 4.3). Note that the queue lengths of the nodes in U have
only decreased by an amount of order rβ(|U |−1) = o(r), and hence are still of order r. In
contrast, when β = 1

|U |−1 , the probability that all nodes in U become simultaneously inactive

before time yTU is approximately π(y) with π(y) = 1− (1− y)(1−C)/C , y ∈ [0, 1) (see (1.27)).
Again, the nodes in V then all activate and the transition occurs almost immediately with
high probability. Note that the queue lengths in the nodes in U have then dropped by a
non-negligible fraction, but are still of order r. A potential scenario is that the nodes in U
are not all simultaneously inactive until their activation rates have become of a smaller order
than rβ, due to the queue lengths no longer being of order r just before time TU . However,
the fact that π(y) ↑ 1 as y ↑ 1 implies that this scenario has negligible probability in the limit.
In contrast, this scenario does occur when β > 1

|U |−1 , implying that the crossover occurs in a

narrow window around TU (see Sections 4.1–4.2 for details). We will see that this window has
size O(r1/β(|U |−1)) = o(r). In particular, the window gets narrower as the activation rate for
nodes in U increases.

Proofs. We look at a single-node queue length process t 7→ Q(t) and prove that with high
probability it follows a path that lies in a narrow tube around its mean path (see Fig. 5). We
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study separately the input process t 7→ Q+(t) and the output process t 7→ Q−(t): we use
Mogulskii’s theorem (a pathwise large-deviation principle) for the first, and Cramér’s theorem
(a pointwise large-deviation principle) for the second. We derive upper and lower bounds for
the queue length process and we use these bounds to construct two couplings that allow us to
compare the different models.

t

Qi(t)

LB

UB
γUr δr

slope = c− ρU

TU t

Qj(t)

UB

LB slope = ρVγV r

δr

Figure 5: Sketches of the tubes around the mean of the queue length processes, respectively, for a
node i ∈ U and a node j ∈ V .

Dependent packet arrivals. Our large-deviation estimates are so sharp that we can actually
allow the Poisson processes of packet arrivals at the different nodes to be dependent. Indeed,
as long at the marginal processes are Poisson, our large-deviation estimates are valid at every
single node, and since the network is finite a simple union bound shows that they are also valid
for all nodes simultaneously, at the expense of a negligible factor that is equal to the number of
nodes. For modelling purposes independent arrivals are natural, but it is interesting to allow
for dependent arrivals when we want to study activation protocols that are more involved.

Open problems. If we want to understand how small the term o(1) in (1.31) actually is,
then we need to derive sharper estimates in the coupling. One possibility would be to study
moderate deviations for the queue length processes and to look at shrinking tubes. We do
not pursue such refinements here. Our main focus for the future will be to extend the model
to more complicated settings, where the activation rate at node i depends also on the queue
length at the neighbouring nodes of i. We want to be able to compare models with (externally
driven) time-dependent rates and models with (internally driven) queue-dependent rates, and
show again that their metastable behaviour is similar. We also want to move away from the
complete bipartite interference graph and consider more general graphs that capture more
realistic wireless networks.

Other models. There are other ways to define an internal model. We mention a few
examples.

(i) A simple variant of our model is obtained by fixing the activation rates, but letting the
rate at time t of the Poisson deactivation clock of node i depend on the reciprocal of
the queue length at time t, i.e., 1/gi(Qi(t)) for some gi ∈ G. This can be equivalently
seen as a unit-rate Poisson deactivation clock, where node i either deactivates with a
probability reciprocal to gi(Qi(t)), or starts a second activity period. Nodes with a large
queue length are more likely to remain active for a long time before switching off, while
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nodes with a short queue length have extremely short activity periods. If at time t the
activation clock of an inactive node with Qi(t) = 0 ticks, then the node does not become
active. On the other hand, if during an activity period the queue length of an active node
hits zero, then the server switches itself off independently of the deactivation rate. For
fixed activation and deactivation rates, this model and our internal model are equivalent
up to a time scaling factor. In particular, they have similar stationary distributions.

(ii) An alternative approach is to use a discrete notion of queue length, namely, Qi(t) =
Ni(t) − Si(t), where Ni(t) is a Poisson process with rate λ, denoting the number of
packets arriving at node i during [0, t], while Si(t) indicates the total number of times
node i turns active (or inactive) during [0, t] (we may use λU and λV to represent
different arrival rates for the two sets U and V ). The processes t 7→ Si(t) and t 7→ Ni(t)
are assumed to be independent. We can define a model where each time a node turns
active it serves exactly one packet and then switches off again. The activation clocks
still have rates gi(Qi(t)) with gi ∈ G. We can establish results similar to our internal
model by adapting the arguments to the discrete setting.

Outline. The remainder of the paper is organised as follows. In Section 2 we state large-
deviation bounds for the input and the output process, which allow us to show that the queue
length process at every node has specific lower and upper bounds that hold with very high
probability. The proofs of these bounds are deferred to Appendices A and B. In Section 3
we use the bounds to couple the lower and the upper external model (with rates (1.14) and
(1.15), respectively) to the internal model (with rates (1.12)). In Section 4 we derive the scaling
results for the external model, and combine these with the coupling to derive Theorem 1.7 (as
stated in Section 1.3).

2 Bounds for the input and output processes

In this section we state the main results of our analysis of the input process and the output
process at a fixed node. With the help of path-large-deviation techniques, we show that with
high probability the input process lies in a narrow tube around the deterministic path t 7→ λ

µ t
(Proposition 2.1). For simplicity, we suppress the index for the arrival rates λU and λV , and
consider a general rate λ. The same holds for ρ = λ

µ . We study the output process only for
nodes in U , and we give lower and upper bounds (Equation (2.4) and Proposition 2.5). We
look at a single node and suppress its index, since the queues are independent of each other
as long as the servers remain active or inactive. The proofs of the propositions below for the
input process and the output process are given in Appendices A and B, respectively.

Proposition 2.1 (Tube for the input process). For δ > 0 small enough and time horizon
S > 0, let

ΓS,δS =

{
γ ∈ L∞([0, S]) :

λ

µ
s− δS < γ(s) <

λ

µ
s+ δS ∀ s ∈ [0, S]

}
. (2.1)

With high probability the input process lies inside ΓS,δS as S →∞, namely,

P
(
Q+([0, S]) /∈ ΓS,δS

)
= e−KδS [1+o(1)], S →∞. (2.2)
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Kδ = (λ+ δµ) + λ− 2
√
λ(λ+ δµ) ∈ (0,∞). (2.3)

(Note that ΓS,δS contains negative values. This is of no concern because the path is always
non-negative.)

We want to derive lower and upper bounds for the output process for a node in U . The
upper bound is trivial by definition, namely,

Q−(t) ≤ ct, t ≥ 0. (2.4)

For the lower bound there are some complications, which is why we need to introduce an
auxiliary model.

Definition 2.2 (Isolated model). In the isolated model the activation of nodes in U is not
affected by the activity states of nodes in V , i.e., they behave as if they were in isolation. On
the other hand, nodes in V are still affected by nodes in U , i.e., they cannot activate until
every node in U has become inactive. Nodes in V have zero output process.

We will see later that the internal model behaves in exactly the same way as the isolated
model up to the pre-transition time, in particular, the pre-transition times in the internal and
the isolated model coincide in distribution.

We next define an auxiliary time that will be useful in our analysis.

Definition 2.3 (Auxiliary time TU). Given the initial queue length Q(0) = γUr for a node
in U , define TU to be the expected time at which the queue length hits zero. We can write

TU = TU (r) ∼ αr, r →∞, (2.5)

with
α =

γu
c− ρU

. (2.6)

Remark 2.4. The quantity αr is the expected time at which the queue length hits zero when
the node is always active. Since the total inactivity time of a node in U before time TU will
turn out to be negligible compared to αr, we have TU ∼ αr as r →∞.

We study the output process for the isolated model up to time TU . We will see later in
Corollary 4.3 that the transition time in the internal model occurs with high probability
before TU , so it is enough to look at the time interval [0, TU ]. In the rare case when the
transition does not occur before TU , we expect it to occur in a very short time after TU .

We are now ready to give the lower bound for the output process.

Proposition 2.5 (Lower bound for the output process in the isolated model). Con-
sider a node in U . For δ, ε, ε1, ε2 > 0 small enough, the output process satisfies

P
(
Q−(t) < ct− εr ∀t ∈ [0, TU ]

)
≤ e−Kδαr [1+o(1)] + e−K1r [1+o(1)]

+ e
−
(
K2r+K3

r
gU (r)

+K4r log gU (r)
)

[1+o(1)]
, r →∞,

(2.7)
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with

K1 =

(
γU −

2δα

c− ρU

)
ε1 − log(1 + ε1)

1 + ε1
,

K2 =

(
γU −

2δα

c− ρU

)
(1 + ε1)

(
− 1− log

(
ε2(

γU − 2δα
c−ρU

)
(1 + ε1)

))
,

K3 = ε2,

K4 =

(
γU −

2δα

c− ρU

)
(1 + ε1),

(2.8)

satisfying K1,K2,K3,K4 ∈ (0,∞).

By combining the bounds for the input process and the output process, and picking δ = ε
and S = r, we obtain lower and upper bounds for the queue length process Q(t) of a node in
U .

Corollary 2.6 (Bounds for the queue length process in the isolated model). For
δ > 0 small enough, the following bounds hold with high probability when r → ∞ for a node
in U :

(LB)U : Q(t) ≥ QLB
U (t) = γUr − (c− ρU )t− δr, t ≥ 0,

(UB)U : Q(t) ≤ QUB
U (t) = γUr − (c− ρU )t+ 2δr, t ∈ [0, TU ].

(2.9)

Similarly, the following bounds hold with high probability when r →∞ for a node in V :

(LB)V : Q(t) ≥ QLB
V (t) = γV r + ρV t− δr, t ≥ 0,

(UB)V : Q(t) ≤ QUB
V (t) = γV r + ρV t+ δr, t ≥ 0.

(2.10)

Proof. The claims follow directly from Propositions 2.1 and 2.5 in combination with (2.4).

3 Coupling the internal and the external model

In Sections 3.1 and 3.2 we use the bounds defined in Section 2 to construct two couplings
that allow us to compare the internal and the external model (Proposition 3.5, respectively,
Proposition 3.7 and Corollary 3.8). Throughout the sequel we assume that the deactivation
rates are fixed, i.e., the deactivation Poisson clocks ring at rate 1. A node becomes active if
and only if all its neighbours are inactive. If a node is inactive, then the activation Poisson
clocks ring at rates that vary over time in a deterministic way, or as functions of the queue
lengths.

We are interested in coupling the models in the time interval [0, TU ] and on the following
event.

Definition 3.1 (Good behaviour). Let Eδ be the event that the queue length processes all
have good behaviour in the interval [0, TU ], in the sense that

Eδ =
{
QLB
U (t) ≤ Qi(t) ≤ QUB

U (t) ∀ t ∈ [0, TU ] ∀ i ∈ U
}

∪
{
QLB
V (t) ≤ Qi(t) ≤ QUB

V (t) ∀ t ∈ [0, TU ] ∀ i ∈ V
}
,

(3.1)

i.e., the paths lie between their respectively lower and upper bounds for nodes in U and V .
This event depends on the perturbation parameter δ.

15



Lemma 3.2. For δ > 0 small enough,

lim
r→∞

P(Eδ) = 1. (3.2)

Proof. This follows directly from Corollary 2.6.

In what follows we couple on the event Eδ only. The coupling can be extended in an
arbitrary way off the event Eδ. The way this is done is irrelevant because of Lemma 3.2.

3.1 Coupling the internal model and the lower external model

The lower external model defined in (1.14) can also be described in the following way. At time
t ≥ 0 the activation rates are

rlow
i (t) =

{
gU (QLB

U (t)), i ∈ U,

gV (QUB
V (t)), i ∈ V.

(3.3)

Remark 3.3. Note that when the lower bound QLB
U (t) becomes negative the activation rate

gU is zero by definition. In this way we are able extend the coupling to any time t ≥ 0, even
though we consider only the interval [0, TU ].

Lemma 3.4. With high probability when r → ∞, the transition time in the lower external
model is smaller than TU , i.e.,

lim
r→∞

Pu(τ low
v ≤ TU ) = 1. (3.4)

Proof. As we will see in Section 4.2, with high probability the transition time in the external
model is smaller than TU . Since the lower external model is defined for an arbitrarily small
perturbation δ > 0, we conclude by using the continuity of gU , gV .

We introduce a system Hlow that allows us to couple the internal model with the lower
external model.

• (Hlow) Suppose that hi(t) ≥ max{QUB
U (t), QUB

V (t)} for all i ∈ U ∪ V and all t ∈ [0, TU ].
Consider a system Hlow where clocks are associated with each node in the following way:

– A Poisson deactivation clock ticks at rate 1. Both the nodes in the lower external
model and in the internal model are governed by this clock:

– if both nodes are active, then they become inactive together;

– if only one node is active, then it becomes inactive;

– if both nodes are inactive, then nothing happens.

– A Poisson activation clock ticks at rate gU (hi(t)) at time t for a node i ∈ U . Both
the nodes in the lower external model and in the internal model are governed by
this clock:

– if both nodes are active, or both are inactive but have active neighbours, then
nothing happens;
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– if the node in the internal model is active and the node in the lower external
model is not, then the latter node becomes active (if it can) with probability

rlow
i (t)

gU (hi(t))
; (3.5)

– if both nodes are inactive but can be activated, then this happens with prob-
abilities

rlow
i (t)

gU (hi(t))
for the lower external model,

rint
i (t)

gU (hi(t))
for the internal model,

(3.6)

where
rlow
i (t)

gU (hi(t))
≤ rint

i (t)

gU (hi(t))
, (3.7)

in such a way that if the node in the lower external model activates, then it
also activates in the internal model.

– A Poisson activation clock ticks at rate gV (hi(t)) at time t for a node i ∈ V . The
same happens as for the nodes in U , but the activation probabilities are

rlow
i (t)

gV (hi(t))
for the lower external model,

rint
i (t)

gV (hi(t))
for the internal model,

(3.8)

where
rlow
i (t)

gU (hi(t))
≥ rint

i (t)

gU (hi(t))
, (3.9)

in such a way that if the node in the internal model activates, then it also activates
in the lower external model.

With the constructions above, we are now able to compare the transition times of the two
models.

Proposition 3.5 (Comparison between internal and lower external models).

(i) Under the coupling Hlow, the joint activity processes in the internal and in the lower
external model are ordered for all t ∈ [0, TU ], i.e.,

X low
i (t) ≤ X int

i (t), i ∈ U,
X int
i (t) ≤ X low

i (t), i ∈ V.
(3.10)

(ii) With high probability when r → ∞, the transition time τ int
v in the internal model is at

least as large as the transition time τ low
v in the lower external model, i.e.,

lim
r→∞

P̂u(τ low
v ≤ τ int

v ) = 1, (3.11)

where P̂u is the joint law induced by the coupling with starting configuration u.
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Proof. (i) For each node i ∈ U and for all t ∈ [0, TU ], QLB
i (t) ≤ Qi(t) and gU (QLB

i (t)) ≤
gU (Qi(t)) by the monotonicity of the function gU . On the other hand, for each node
i ∈ V , Qi(t) ≤ QUB

i (t) and gV (Qi(t)) ≤ gV (QUB
i (t)) by the monotonicity of the function

gV . Under the system Hlow, at any moment the random variable describing the state of
a node i ∈ U in the lower external model is dominated by the one in the internal model,
i.e., by (3.7) for all t ∈ [0, TU ],

X low
i (t) ≤ X int

i (t). (3.12)

On the other hand, the random variable describing the state of a node j ∈ V in the lower
external model dominates the one in the internal model, i.e., by (3.9) for all t ∈ [0, TU ],

X int
i (t) ≤ X low

i (t). (3.13)

Hence the joint activity processes in the two models are ordered.

(ii) By construction of the coupling and the ordering above, on the event Eδ the nodes in U
in the lower external model turn off earlier than in the internal model, and also nodes
in V turn on earlier in the lower external model. Hence the transition occurs earlier in
the lower external model.

Note that we are able to compare the transition times only when τ low
v ≤ TU , so we look

at the coupling also on the event {τ low
v ≤ TU}, which has high probability when r →∞

(Lemma 3.4). On this event we have τ low
v ≤ τ int

v . Therefore

1 = lim
r→∞

P̂u(Eδ, τ low
v ≤ TU , τ low

v ≤ τ int
v ) = lim

r→∞
P̂u(τ low

v ≤ τ int
v ). (3.14)

3.2 Coupling the isolated model and the upper external model

The upper external model defined in (1.15) can also be described in the following way. At
time t ∈ [0, TU ] the activation rates are

rupp
i (t) =

{
gU (QUB

U (t)), i ∈ U,

gV (QLB
V (t)), i ∈ V.

(3.15)

Lemma 3.6. With high probability when r → ∞, the transition time in the upper external
model is smaller than TU , i.e.,

lim
r→∞

Pu(τupp
v ≤ TU ) = 1. (3.16)

This statement is to be read as follows. Let δ be the perturbation parameter in the upper
external model appearing in (1.15). Then for every δ > 0 there exists a δ′(δ) > 0, satisfying
limδ↓0 δ

′(δ) = 0, such that limr→∞ Pu(τupp
v ≤ [1 + δ′(δ)]TU ) = 1.

Proof. Analogous to the proof of Lemma 3.4.

We introduce a system Hupp that allows us to couple the isolated model with the upper
external model up to time τ̄ iso

v .
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• (Hupp) Suppose that hi(t) ≥ max{QUB
U (t), QUB

V (t)} for all i ∈ U ∪ V and all t ∈ [0, τ̄ iso
v ].

Couple the processes in the same way as for Hlow, but with different activation proba-
bilities. The probabilities for the isolated model and for the upper external model are
such that

riso
i (t)

gU (hi(t))
≤

rupp
i (t)

gU (hi(t))
, i ∈ U,

rupp
i (t)

gV (hi(t))
≤ riso

i (t)

gV (hi(t))
, i ∈ V,

(3.17)

where for t ∈ [0, τ̄ iso
v ]

riso
i (t) =

{
gU (Qi(t)), i ∈ U,

gV (Qi(t)), i ∈ V.
(3.18)

Note that when τ̄ iso
v ≤ TU , the isolated model behaves exactly as the internal model in

the interval [0, τ̄ iso
v ], as shown in Appendix B.2. Moreover, the coupling is defined only when

τ̄ iso
v ≤ TU . We look then at the coupling also on the event {τupp

v ≤ TU}, which has high
probability when r → ∞ (Lemma 3.6). In the following proposition we see how this ensures
that the coupling is well defined, and we compare the pre-transition times of the two models.

Proposition 3.7 (Comparison between isolated and upper external model).

(i) Under the coupling Hupp, the joint activity processes in the isolated model and in the
upper external models are ordered up to time τ̄ iso

v , i.e., for all t ∈ [0, τ̄ iso
v ],

X iso
i (t) ≤ Xupp

i (t), i ∈ U,
Xupp
i (t) ≤ X iso

i (t), i ∈ V.
(3.19)

(ii) With high probability when r → ∞, the pre-transition time τ̄upp
v in the upper external

model is at least as large as the pre-transition time τ̄ iso
v in the isolated model, i.e.,

lim
r→∞

P̂u(τ̄ iso
v ≤ τ̄upp

v ) = 1, (3.20)

where P̂u is the joint law induced by the coupling with starting configuration u.

Proof. (i) The proof is analogous to that of Proposition 3.5, but this time we use the system
Hupp up to time τ̄ iso

v and all the inequalities are reversed.

(ii) By construction of the coupling and the ordering above, on the event Eδ ∩ {τupp
v ≤ TU}

the nodes in U in the isolated model turn off earlier than in the upper external model,
and also the first node in V turns on earlier in the isolated model. Hence the pre-
transition occurs earlier in the isolated model, and we have τ̄ iso

v ≤ τ̄upp
v ≤ τupp

v ≤ TU .
Therefore the coupling is well defined and

1 = lim
r→∞

P̂u(Eδ,TU , τ
upp
v ≤ TU , τ̄ iso

v ≤ τ̄upp
v ) = lim

r→∞
P̂u(τ̄ iso

v ≤ τ̄upp
v ). (3.21)
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Corollary 3.8. With high probability when r → ∞, the transition time τupp
v in the upper

external model is at least as large as the pre-transition time τ̄ int
v in the internal model, i.e.,

lim
r→∞

P̂u(τ̄ int
v ≤ τupp

v ) = 1. (3.22)

Proof. Since limr→∞ P(τ̄ iso
v ≤ TU ) = 1, we have, as shown in Proposition B.6 in Appendix B.2,

that the pre-transition times in the isolated model and in the internal model coincide. Hence

1 = lim
r→∞

P̂u(τ̄ iso
v ≤ τ̄upp

v ) = lim
r→∞

P̂u(τ̄ int
v ≤ τ̄upp

v ) ≤ lim
r→∞

P̂u(τ̄ int
v ≤ τupp

v ). (3.23)

4 Transition times

The goal of this section is to identify the asymptotic behaviour of the transition time in the
internal model. In Sections 4.1 and 4.2 we look at the external model and prove Theorems 1.5
and Theorem 1.6, respectively. In Section 4.3 we show that the difference between the transi-
tion time and the pre-transition time is negligible for all the models considered in the paper.
In Section 4.4 we put these results together to prove Theorem 1.7.

4.1 Critical time scale in the external model

In this section we prove Theorem 1.5. Below, a(r) ∼ b(r) means that limr→∞ a(r)/b(r) = 1,
while a(r) � b(r) means that 0 < lim infr→∞ a(r)/b(r) ≤ lim supr→∞ a(r)/b(r) <∞.

Proof. In order to compute the critical time scale Mc, we must solve the equation Mν(M) = 1
in (1.20). We know from (1.17) and (1.21) that

ν(s) ∼ |U |rU (s)1−|U |, r →∞. (4.1)

We want to identify how the transition time is related to the choice of the activation function
gU (x) = Gxβ with β,G ∈ (0,∞). Consider the time scale Mc = Fcr

γ , where γ ∈ (0, 1] and
Fc ∈ (0,∞). For r →∞ we have

1 = r0 = Mcν(Mc) = Fcr
γ ν(Fcr

γ) ∼ Fcrγ |U |rU (Fcr
γ)−(|U |−1)

= Fcr
γ |U |gU

(
γUr − (c− ρU )Fcr

γ
)−(|U |−1)

= Fcr
γ |U |G−(|U |−1)

(
γUr − (c− ρU )Fcr

γ
)−β(|U |−1)

.

(4.2)

Recall from (2.6) that α = γU
c−ρU . We consider three cases:

• Case γ ∈ (0, 1) and Fc ∈ (0,∞). For r →∞ the criterion in (4.2) reads

1 = r0 ∼ Fcrγ |U |G−(|U |−1)(γUr)
−β(|U |−1). (4.3)

In order for the exponents of r to match, we need

β =
γ

|U | − 1
. (4.4)
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Inserting (4.4) into (4.3), we get

Fc|U |G−(|U |−1)γ
−β(|U |−1)
U = 1, (4.5)

which gives

Fc =
γ
β(|U |−1)
U G(|U |−1)

|U |
. (4.6)

Hence

Mc =
(GγβU )|U |−1

|U |
rβ(|U |−1). (4.7)

• Case γ = 1 and Fc ∈ (0, α). For r →∞ the criterion in (4.2) reads

1 = r0 ∼ Fc|U |G−(|U |−1)(γU − (c− ρU )Fc)
−β(|U |−1)r1−β(|U |−1). (4.8)

In order for the exponents of r to match, we need

β =
1

|U | − 1
. (4.9)

Inserting (4.9) into (4.8), we get

Fc|U |G−(|U |−1)

γU − (c− ρU )Fc
= 1, (4.10)

which gives

Fc =
γU

|U |G−(|U |−1) + (c− ρU )
. (4.11)

Hence
Mc =

γU
|U |G−(|U |−1) + (c− ρU )

r. (4.12)

Recall from (2.5) that TU ∼ αr is the expected time at which the queue length at a
node in U hits zero. We will see in Section 4.2 that the transition in the external model
typically occurs before the queues are empty.

• Case γ = 1 and Fc = α−Dr−δ, δ ∈ (0, 1). For r →∞ the criterion in (4.2) reads

1 = r0 ∼ αr|U |G−(|U |−1)
(
(c− ρU )Dr1−δ)−β(|U |−1)

. (4.13)

In order for the exponents of r to match, we need

β =
1

(1− δ)(|U | − 1)
. (4.14)

Inserting (4.14) into (4.13), we get

α|U |G−(|U |−1)((c− ρU )D)−β(|U |−1) = 1, (4.15)

which gives

D =
(α|U |G−(|U |−1))1/β(|U |−1)

c− ρU
. (4.16)
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Hence

Mc = αr − (α|U |G−(|U |−1))1/β(|U |−1)

c− ρU
r1/β(|U |−1), (4.17)

and so the crossover takes place in a window of size O(r1/β(|U |−1)) = o(r) around αr.
Note that this window gets narrower as β increases, i.e., as the activation rate for nodes
in U increases.

Remark 4.1 (Modulation with slowly varying functions). We may consider the more general
case where the activation function is gU (x) = xβL̂(x) with β ∈ (0,∞) and L̂(x) a slowly
varying function (i.e., limx→∞ L̂(ax)/L̂(x) = 1 for all a > 0). Let Mc = rγL(r) with γ ∈ (0, 1)
and L(r) a slowly varying function. When r →∞, we have

1 = r0 ∼ rγL(r)|U |
(
γUr − (c− ρU )rγL(r)

)−β(|U |−1)L̂(γUr − (c− ρU )rγL(r))−(|U |−1)

∼ rγL(r)|U |(γUr)−β(|U |−1)L̂(γUr)
−(|U |−1).

(4.18)

In order for the exponents of r to match, we again need

β =
γ

|U | − 1
. (4.19)

We get

L(r) =
γ
β(|U |−1)
U

|U |
L̂(γUr)

|U |−1. (4.20)

Hence

Mc =
γ
β(|U |−1)
U

|U |
rβ(|U |−1)L̂(γUr)

|U |−1. (4.21)

We can even include the case β = 0, and get that if gU (x) = L̂(x) with limx→∞ L̂(x) = ∞,
then

Mc =
1

|U |
L̂(γUr)

|U |−1. (4.22)

4.2 Transition time in the external model

In this section we prove Theorem 1.6. We already know that the transition occurs on the
critical time scale Mc computed in Section 4.2.

Proof. Knowing the critical time scale Mc, we can compute the mean transition time from
(1.19):

Eu[τ ext
v ] =

∫ ∞
0

Pu(τ ext
v > x) dx = Mc

∫ ∞
0

Pu
(
τ ext
v

Mc
> x

)
dx

∼Mc

∫ ∞
0

e−
∫ x
0 Mcν(Mcs) ds dx = Mc

∫ ∞
0

e
−

∫ x
0
Mcν(Mcs)
Mcν(Mc)

ds
dx

=Mc

∫ ∞
0

e
−

∫ x
0

(
γUr−(c−ρU )Mcs

γUr−(c−ρU )Mc

)−β(|U|−1)
ds
dx, r →∞,

(4.23)

where the choice of β is important.

22



• Case β ∈ (0, 1
|U |−1), Mc = Fcr

γ, γ ∈ (0, 1).
We have (

γUr − (c− ρU )Mcs

γUr − (c− ρU )Mc

)−β(|U |−1)

→ 1, r →∞. (4.24)

Hence

Eu[τ ext
v ] ∼Mc

∫ ∞
0

e−
∫ x
0 ds dx = Mc

∫ ∞
0

e−x dx = Mc, r →∞. (4.25)

The law of τ ext
v is exponential, i.e.,

lim
r→∞

Pu
(

τ ext
v

Eu[τ ext
v ]

> x

)
= e−x, x ∈ [0,∞). (4.26)

• Case β = 1
|U |−1 , Mc = Fcr, Fc ∈ (0, α). We have

(
γUr − (c− ρU )Fcrs

γUr − (c− ρU )Fcr

)−β(|U |−1)

=
γU − (c− ρU )Fc
γU − (c− ρU )Fcs

=
1− c−ρU

γU
Fc

1− c−ρU
γU

Fcs

=
1− Fc

α

1− Fc
α s

=
1− C
1− Cs

,

(4.27)

with C = Fc
α . Hence

Eu[τ ext
v ] ∼Mc

∫ 1/C

0
e−

∫ x
0

1−C
1−Csds dx = Mc

∫ 1/C

0
e− log(1−Cx)−

1−C
C dx

= Mc

∫ 1/C

0
(1− Cx)

1−C
C dx = Mc

[
(1− Cx)1+ 1−C

C
1

(1 + 1−C
C )(−C)

]1/C

0

= Mc

[
− (1− Cx)

1
C

]1/C

0

= Mc, r →∞.

(4.28)

Here, the integral must be truncated at x = 1
C because for larger x the integrand becomes

negative. Indeed, note that when x = 1
C = α

Fc
, which corresponds to time TU = αr, we

have

lim
r→∞

Pu
(
τ ext
v > TU

)
= lim
r→∞

Pu
(
τ ext
v >

α

Fc
Fcr

)
= lim

r→∞
Pu
(
τ ext
v

Mc
>

α

Fc

)
=

(
1− C α

Fc

) 1−C
C

= 0,

(4.29)

because C = Fc
α . This means that, with high probability when r → ∞, the transition

occurs before time TU . The law of τ ext
v is truncated polynomial:

lim
r→∞

Pu
(

τ ext
v

Eu[τ ext
v ]

> x

)
=

{
(1− Cx)

1−C
C , x ∈ [0, 1

C ),

0, x ∈ [ 1
C ,∞).

(4.30)
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• Case β ∈ ( 1
|U |−1 ,∞), Mc = αr. This case corresponds to the limit C ↑ 1 of the previous

case. In this limit, (4.30) becomes

lim
r→∞

Pu
(

τ ext
v

Eu[τ ext
v ]

> x

)
=

{
1, x ∈ [0, 1),

0, x ∈ [1,∞).
(4.31)

4.3 Negligible gap in the internal model

In this section we focus on the internal model and estimate the length of the interval [τ̄ int
v , τ int

v ],
which turns out to be very small with high probability. This implies that the transition time
has the same asymptotic behaviour as the pre-transition time.

We know that the queue at a node i ∈ V is of order r at time τ̄ int
v , i.e., Qi(τ̄

int
v ) � r, since

it starts at γV r, with γV > 0, and only the input process is present until this time. Hence all
the activation Poisson clocks at nodes in V tick at a very aggressive rate. The idea is that
within the activation period (which has an exponential distribution with mean 1) of the first
node activating in V , all the other nodes in V become active because they are not “blocked”
by any node in U . Consequently, the system quickly reaches the configuration v.

Theorem 4.2 (Negligible gap). In the internal model

lim
r→∞

Pu
(
τ int
v − τ̄ int

v = o

(
1

gV (r)

))
= 1. (4.32)

Proof. Starting from τ̄ int
v , a node x ∈ V remains inactive for an exponential period with mean

1
rintx (τ̄v)

= 1
gV (Q(τ̄v)) �

1
gV (r) . Denote by Wx the length of an inactivity period for a node x ∈ V .

We have i.i.d. inactivity periods Wx ' Exp(gV (Q(τ̄v))) for all x ∈ V \ {x1}, where x1 is the
first node activating in V . We label the remaining nodes x2, . . . , x|V | in an arbitrary way. We
also have i.i.d. activity periods Zx ' Exp(1) for all x ∈ V .

Consider a time t1 = o
(

1
gV (r)

)
. With high probability all the nodes in V activate before

time t1, i.e.,

P
(
Wxi < t1, ∀ i = 2, . . . , |V |

)
= P

(
Wx2 < t1

)|V |−1
=
(
1− e−gV (Q(τ̄v))t1

)|V |−1 −−−→
r→∞

1. (4.33)

Moreover, with high probability, once activated, all nodes in V stay active for a period of
length at least t2 � 1

gV (r) > t1, i.e.,

P
(
Zxi > t2 ∀ i = 1, . . . , |V |

)
= P

(
Zx1 > t2

)|V |
= (e−t2)|V | −−−→

r→∞
1. (4.34)

In conclusion, when r → ∞, with high probability every node in V activates before time t1
and remains active for at least a time t2 > t1. This ensure that the transition occurs before
time t2. In particular, it occurs when the last node in V activates (which occurs even before
time t1), so that τ int

v − τ̄ int
v = o

(
1

gV (r)

)
.

Note that this argument extends to any “external” model with activation rates that tend
to infinity with r, in particular, to all the models considered in this paper. The transition
always happens quickly after the pre-transition, due to the high level of aggressiveness of nodes
in V .
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Corollary 4.3. With high probability when r →∞, the transition time in the internal model
is smaller than TU , i.e.,

lim
r→∞

Pu(τ int
v ≤ TU ) = 1. (4.35)

Proof. This follows immediately from Lemma 3.6, Corollary 3.8 and Theorem 4.2.

4.4 Transition time in the internal model

In this section we prove Theorem 1.7. First we derive the sandwich of the transition times
in the lower external, the internal and the upper external model. After that we identify the
asymptotics of the transition time for the internal model by using the results for the external
models.

Proof. Using Proposition 3.5, Corollary 3.8 and Theorem 4.2, we have that there exists a
coupling such that

1 = lim
r→∞

P̂u
(
τ low
v ≤ τ int

v , τ int
v = τ̄ int

v + o

(
1

gV (r)

)
, τ̄ int
v ≤ τupp

v

)
= lim

r→∞
P̂u
(
τ low
v ≤ τ int

v ≤ τupp
v + o

(
1

gV (r)

))
= lim

r→∞
P̂u
(
τ low
v ≤ τ int

v ≤ τupp
v

)
,

(4.36)

where P̂u is the joint law of the three models on the same probability space all three starting
from configuration u.

By Theorem 1.6, we know the law of the transition time in the external model. By
construction, we have Eu[τ low

v ] ≤ Eu[τ ext
v ] ≤ Eu[τupp

v ]. When considering the lower and the
upper external models, the transition time asymptotics are controlled by the prefactors F low

c,δ

and F upp
c,δ , respectively, which are perturbations of the prefactor Fc due to the perturbations of

the activation rates. In particular, we know from (1.29) that limδ↓0 F
low
c,δ = limδ↓0 F

upp
c,δ = Fc.

Hence, for all ε > 0,

Eu[τ int
v ] = (Fc ± ε)rβ(|U |−1) [1 + o(1)], r →∞, (4.37)

and since ε can be taken arbitrarily small, it may be absorbed into the o(1)-term, as

Eu[τ int
v ] = Fcr

β(|U |−1) [1 + o(1)], r →∞. (4.38)

The same kind of argument applies to the law of the transition time, since for any x ∈ [0,∞),

lim
r→∞

Pu(τ low
v > x) ≤ lim

r→∞
Pu(τ int

v > x) ≤ lim
r→∞

Pu(τupp
v > x). (4.39)
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A Appendix: the input process

The main target of this appendix is to prove Proposition 2.1 in Section 2. We use path large-
deviation techniques. For simplicity, we suppress the index for the arrival rates λU and λV ,
and consider a general rate λ. We show that with high probability the input process lies in a
narrow tube around the deterministic path t 7→ λ

µ t.
Consider a single queue, and for simplicity suppress its index. For T > 0, define the scaled

process

Q+
n (t) =

1

n
Q+(nt) =

1

n

N(nt)∑
j=1

Yj , t ∈ [0, T ], (A.1)

with Q+
n (0) = 0. We have

E[Q+
n (t)] =

1

n

λnt

µ
=
λ

µ
t, (A.2)

and, by the strong law of large numbers, Q+
n (t)→ λ

µ t almost surely for every t as n→∞.

When studying the process t 7→ Q+
n (t), we need to take into account that this is a com-

bination of the arrival process t 7→ N(nt) and the service times Yj , j ∈ N. Two different
types of fluctuations can occur: packets arrive at a slower/faster rate than λ, respectively,
shorter/longer service times occur for each packet. Both need to be considered for a proper
large-deviation analysis.

A.1 LDP for the two components

Definition A.1 (Space of paths). Consider the space L∞([0, T ]) of essentially bounded
functions in [0, T ], with the norm ‖f ||∞ = ess supx∈[0,T ] |f(x)| called the essential norm. A
function f is essentially bounded, i.e. f ∈ L∞([0, T ]), when there is a measurable function g on
[0, T ] such that f = g except on a set of measure zero and g is bounded. Let ACT ⊂ L∞([0, T ])
denote the space of absolutely continuous functions f : [0, T ]→ R such that f(0) = 0.

Given the Poisson arrival process t 7→ N(nt) with rate λ, define the scaled process t 7→
Zn(t) by

Zn(t) =
1

n
N(nt) =

1

n

[nt]∑
i=1

Xi, t ∈ [0, T ], (A.3)

where Xi = Poisson(λ) are i.i.d. random variables. Note that N(nt) = Poisson(λnt). Let
νn be the law of (Zn(t))t∈[0,T ] on L∞([0, T ]). Note that Zn(t) is asymptotically equivalent to
N(t) with mean E[Zn(t)] = λt, and (Zn(t))t∈[0,T ] → (λt)t∈[0,T ] as n→∞.

Lemma A.2 (LDP for arrival process). The family of probability measures (νn)n∈N sat-
isfies the LDP on L∞([0, T ]) with rate n and with good rate function IN given by

IN (η) =

{ ∫ T
0 Λ∗N (η̇(t)) dt, η ∈ ACT ,
∞, otherwise,

(A.4)

where Λ∗N (x) = x log(xλ)− x+ λ, x ∈ R+.

Proof. Apply Mogulskii’s theorem ([3, Theorem 5.1.2]). Use that Λ∗N is the Fenchel-Legendre
transform of the cumulant generating function Λ defined by Λ(θ) = logE(eθX1), θ ∈ R.
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The LDP implies that if Γ ⊂ L∞([0, T ]) is an IN -continuous set, i.e., IN (Γ) = IN (int(Γ)) =
IN (cl(Γ)), then

lim
n→∞

1

n
logP

(
Zn([0, T ]) ∈ Γ

)
= −IN (Γ). (A.5)

Informally, the LDP reads as the approximate statement

P
(
Zn([0, T ]) ≈ η([0, T ]

)
= e−nIN (η)[1+o(1)], n→∞, (A.6)

where ≈ stands for close in the essential norm. Informally, on this event we may approximate

Q+
n (t) =

1

n

N(nt)∑
j=1

Yj =
1

n

nZn(t)∑
j=1

Yj ≈
1

n

nη(t)∑
j=1

Yj ≈
1

n

[nη(t)]∑
j=1

Yj , t ∈ [0, T ], (A.7)

where ≈ now stands for close in the Euclidean norm. Given η ∈ L∞([0, T ]), let µηn denote the
law of (Q+

n (t))t∈[0,T ] on L∞([0, T ]).

Lemma A.3 (LDP for input process conditional on arrival process). Given η ∈
L∞([0, T ]), the family of probability measures (µηn)n∈N satisfies the LDP on L∞([0, T ]) with
rate n and with good rate function IηQ given by

IηQ(φ) =

{ ∫ T
0 Λ∗Q

(
dφ(t)
dη(t)

)
dη(t), φ ∈ ACT ,

∞, otherwise,
(A.8)

where Λ∗Q(x) = xµ− 1− log(xµ), x ∈ R+.

Proof. Again apply Mogulskii’s theorem, this time with η(t) as the time index. Use that Λ∗

is the Fenchel-Legendre transform of the cumulant generating function Λ defined by Λ(θ) =
logE(eθY1), θ ∈ R.

A.2 Measures in product spaces

The rate function IηQ describes the large deviations of the sequence of processes (Q+
n (t))t∈[0,T ]

given the path η. To derive the LDP averaged over η, we need a small digression into measures
in product spaces.

Definition A.4 (Product measures). Define the family of probability measures (ρn)n∈N
such that ρn = νnµ

η
n. These measures are defined on the product space L∞([0, T ])×L∞([0, T ])

given by the Cartesian product of the space L∞([0, T ]) with itself, equipped with the product
topology,

The open sets in the product topology are unions of sets of the form U1 × U2 with U1, U2

open in L∞([0, T ]). Moreover, the product of base elements of L∞([0, T ]) gives a basis for the
product space L∞([0, T ])×L∞([0, T ]). Define the projections Pri : L∞([0, T ])×L∞([0, T ])→
L∞([0, T ]), i = 1, 2, onto the first and the second coordinates, respectively. The product
topology on L∞([0, T ]) × L∞([0, T ]) is the topology generated by sets of the form Pr−1

i (Ui),
i = 1, 2, where and U1, U2 are open subsets of L∞([0, T ]).

Lemma A.5 (Product LDP). The family of probability measures (ρn)n∈N satisfies the LDP
on L∞([0, T ])× L∞([0, T ]) with rate n and with good rate function I given by

I(φ, η) =

{ ∫ T
0 Λ∗Q

(
dφ(t)
dη(t)

)
dη(t) +

∫ T
0 Λ∗N (η̇(t)) dt, φ, η ∈ ACT ,

∞, otherwise.
(A.9)
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A.3 LDP for the input process

The Contraction Principle allows us to derive the LDP averaged over η. Indeed, let X =
L∞([0, T ])×L∞([0, T ]) and Y = L∞([0, T ]), let (ρn)n∈N be a sequence of product measures on
X , and consider the projection Pr1 onto Y, which is a continuous map. Then the sequence of
induced measures (µn)n∈N given by µn = ρn Pr−1

1 satisfies the LDP on L∞([0, T ]) with good
rate function

ĨQ(φ) = inf
(φ,η)∈Pr−1

1 ({φ})
I(φ, η) = inf

η∈L∞([0,T ])
I(φ, η). (A.10)

We can now state the LDP for the input process (Q+
n (t))t∈[0,T ].

Proposition A.6 (LDP for the input process). The family of probability measures (µn)n∈N
satisfies the LDP on L∞[0, T ] with rate n and with good rate function Î given by

ÎQ(Γ) = inf
φ∈Γ

ĨQ(φ). (A.11)

In particular, if Γ is ÎQ-continuous, i.e., ÎQ(Γ) = ÎQ(int(Γ)) = ÎQ(cl(Γ)), then

lim
n→∞

1

n
logP

(
Q+
n ([0, T ]) ∈ Γ

)
= −ÎQ(Γ). (A.12)

It is interesting to look at a specific subset of L∞([0, T ]) that gives good bounds for the
input process. We are now in a position to prove Proposition 2.1.

Proof. Computing the Fenchel-Legendre transforms Λ∗Q and Λ∗N , and picking η(t) = λt and

φ(t) = 1
µη(t) = 1

µλt, we easily check that the rate function attains its minimal value zero.
Hence with high probability the input process is close to this deterministic path.

We can now estimate the probability of the scaled input process to go outside ΓT,δ, which
represents a tube of width 2δ around the mean path in the interval [0, T ]. More precisely,

ΓT,δ =

{
γ ∈ L∞([0, T ]) :

λ

µ
t− δ < γ(t) <

λ

µ
t+ δ ∀ t ∈ [0, T ]

}
. (A.13)

We may set T = 1 for simplicity and look at the scaled input process in the time interval
[0, 1]. We have

ÎQ((Γ1,δ)
c) = ÎQ(int((Γ1,δ))

c) = ÎQ(cl((Γ1,δ))
c). (A.14)

Hence (Γ1,δ)
c is ÎQ-continuous, and so according to (A.12),

lim
n→∞

1

n
logP

(
Q+
n ([0, 1]) /∈ Γ1,δ

)
= −ÎQ((Γ1,δ)

c). (A.15)

Since

lim
n→∞

1

n
logP

(
Q+
n ([0, 1]) /∈ Γ1,δ

)
= lim

n→∞

1

n
logP

({
λ

µ
t− δ < Q+

n (t) <
λ

µ
t+ δ ∀ t ∈ [0, 1]

}c)
= lim

S→∞

1

S
logP

({
λ

µ
s− δS < Q+(s) <

λ

µ
s+ δS ∀ s ∈ [0, S]

}c)
,

(A.16)
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where we put s = nt and S = n, we conclude that the probability to go out of ΓS,δS is

P
({

λ

µ
s−δS < Q+(s) <

λ

µ
s+δS ∀ s ∈ [0, S]

}c)
= e−S ÎQ((Γ1,δ)

c) [1+o(1)], S →∞. (A.17)

Because IQ is convex, to compute ÎQ((Γ1,δ)
c) it suffices to minimise over the linear paths.

The minimiser turns out to be one of the two linear paths that go from the origin (0, 0) to
(1, λµ ± δ), i.e., γ∗(t) = kt with k = 1

µ(λ ± δµ). By construction, ÎQ((Γ1,δ)
c) = ĨQ(γ∗) =

infη∈L∞([0,1]) I(γ∗, η), where

I(γ∗, η) =

∫ 1

0
Λ∗Q

(
dγ∗(t)

dη(t)

)
dη(t) +

∫ 1

0
Λ∗N (η̇(t)) dt. (A.18)

We want to minimise the sum over all paths η such that η(0) = 0. Both integrals are convex
as a function of γ∗ and η, hence they are minimised by linear paths. Our choice of γ∗(t) = kt
is linear, so we set η(t) = ct with some constant c > 0. We can then write

I(γ∗, η) =

∫ η(1)

0
Λ∗Q

(
dγ∗(t)

cdt

)
cdt+

∫ 1

0
Λ∗N (η̇(t)) dt

=

∫ c

0
Λ∗Q

(
k

c

)
cdt+

∫ 1

0
Λ∗N (c) dt

= c

[
k

c
µ− 1− log

(
kµ

c

)]
+ c log

( c
λ

)
− c+ λ.

(A.19)

The value of c that minimises the right-hand side is c =
√
λkµ. Substituting this into the

formula above, we get

Kδ = ĨQ(γ∗) = kµ+ λ− 2
√
λkµ = (λ+ δµ) + λ− 2

√
λ(λ+ δµ). (A.20)

Note that Kδ > 0 for all δ > 0 and limδ↓0Kδ = 0. This proves the claim.

B Appendix: the output process

The main goal of this appendix is to prove Proposition 2.5 in Section 2. In Section B.1 we
show a lower bound for the output process for the nodes in U , in a setting where the nodes
in U are not influenced by the nodes in V . We study the system up to time TU .

In Section B.2 we show that, until the pre-transition time, the system in the internal model
behaves actually as we described.

B.1 The output process in the isolated model

Recall that in the isolated model a node in U keeps activating and deactivating independently
of the nodes in V , until its queue length hits zero. We again consider a single queue for a
node in U and for simplicity suppress its index. In order to show that the output process t 7→
Q−(t) = cT (t) when properly rescaled is close to a deterministic path with high probability,
we will provide a lower bound for the output process. The upper bound Q−(t) ≤ ct is trivial
and holds for any t ≥ 0, by the definition of output process.
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Lemma B.1 (Auxiliary output process). For all δ > 0 and T large:

(i) With high probability the process

QLB,T (t) = γUr + ρU t− δT − ct, t ∈ [0, T ], (B.1)

is a lower bound for the actual queue length process (Q(t))t∈[0,T ].

(ii) The probability of the lower bound in (i) failing is

1

2
e−KδT [1+o(1)], T →∞, (B.2)

with Kδ = (λ+ δµ) + λ− 2
√
λ(λ+ δµ).

Proof. (i) By Proposition 2.1, with high probability we have Q+(t) ≥ ρU t− δT for any δ > 0.
Trivially, Q−(t) ≤ ct. It is therefore immediate that with high probability QLB,T (t) ≤ Q(t).
(ii) The exponentially small probability of Q+(t) going below the lower bound is half of the
probability given by Proposition 2.1, i.e.,

1

2
e−KδT [1+o(1)], T →∞, (B.3)

with Kδ = (λ+ δµ) + λ− 2
√
λ(λ+ δµ).

We study the system up to time TU defined in Definition 2.3, the expected time a single
node queue takes to hit zero. We will prove in Appendix B.2 that the pre-transition time in
the internal model with high probability coincides in distribution with the pre-transition time
in the isolated model, which occurs with high probability before TU . Hence it is enough to
study the isolated model up to TU .

Definition B.2 (Auxiliary times). We next define two times that will be useful in our
analysis.

(T ∗U ) Consider the auxiliary output process QLB,TU (t) up to time TU . We define T ∗U as the
time needed for the process to hit zero, i.e.,

T ∗U = T ∗U (r) =
γur − δTU
c− ρU

=
γu − δα
c− ρU

r = α′r � r, (B.4)

with α′ = γu−δα
c−ρU . The difference TU − T ∗U = δα

c−ρU r is of order r. The queue length at
time T ∗U is not zero, but still of order r.

(T ∗∗U ) We define a smaller time T ∗∗U such that, not only Q(T ∗∗U ) � r, but also QLB,TU (T ∗∗U ) � r,
i.e.,

T ∗∗U = T ∗∗U (r) = TU − 2(TU − T ∗U ) =

(
γU − 2δα

c− ρU

)
r = α′′r � r, (B.5)

with α′′ = γU−2δα
c−ρU .

Definition B.3 (Inactivity process). Define the inactivity process by setting W (t) = t −
T (t), which equals the total amount of inactivity time until time t.
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Recall that the service process t 7→ Q−(t) with Q−(0) = 0 is an alternating sequence of
activity periods and inactivity periods. The activity periods Zi, i ∈ N, are i.i.d. exponential
random variables with mean 1. The inactivity periods Wm, m ∈ N, are exponential random
variables with a mean that depends on the actual queue length at the time when each of these

periods starts, namely, if Wm =
[
t
(i)
m , t

(f)
m

]
, then Wm = Exp(gU (Q(t

(i)
m )) + O(1

r )). The queue
length during this inactivity intervals is actually increasing, but we are considering very small
intervals, whose lengths are of order 1

r , so that the queue length does not change much and
the error is then O(1

r ).
To state our lower bound on the output process, we need the following two lemmas.

Lemma B.4 (Upper bound on number of activity periods). Let M(t) be the number
of activity periods that end before time t. Then, for all ε1 > 0 and r large:

(i) With high probability
M(T ∗∗U ) ≤ (1 + ε1)T ∗∗U . (B.6)

(ii) The probability of the upper bound in (i) failing is

e−K1r [1+o(1)] +
1

2
e−Kδαr [1+o(1)], r →∞, (B.7)

with K1 = α′′ ε1−log(1+ε1)
1+ε1

, Kδ as in Lemma B.1

Proof. (i) Note that M(T ∗∗U ) counts the number of activity periods before time T ∗∗U , each of
which has an average duration 1. Since activity periods alternate with inactivity periods, we
expect M(T ∗∗U ) to be less than T ∗∗U . Assume now, for small ε1 > 0, that M(T ∗∗U ) > (1+ε1)T ∗∗U ,
which means that the number of activity periods before T ∗∗U is greater than the length of the
interval [0, T ∗∗U ]. This implies that the average length of each activity period before time T ∗∗U
is strictly less than 1, namely, that 1

T ∗∗U

∑T ∗∗U
i=1 Zi ≤

1
1+ε1

. According to Cramér’s theorem, we

can compute the probability of this last event as

P

T ∗∗U∑
i=1

Zi ≤
(

1

1 + ε1

)
T ∗∗U

 = e
−T ∗∗U I

(
1

1+ε1

)
[1+o(1)]

, r →∞, (B.8)

with rate function I(x) = x log(x) − x + 1. Therefore, it occurs with exponentially small
probability. Hence M(T ∗∗U ) > (1 + ε1)T ∗∗U must also occur with a probability which is also
exponentially small. With high probability we then have that

M(T ∗∗U ) ≤ (1 + ε1)T ∗∗U . (B.9)

Recall that T ∗∗U = α′′r. The counting of alternating activity and inactivity periods gets affected
when the queue length hits zero, since then the node is forced to switch itself off and the lengths
of the activity periods are not regular anymore. Since at time T ∗∗U with high probability the
queue length is still of order r, the probability that it hits zero at any time in the interval
[0, T ∗∗U ] is very small, since this event would imply the node to have a queue length that is
below the lower bound, Q(T ∗∗U ) ≤ QLB,TU (T ∗∗U ) = γUr + ρUT

∗∗
U − δTU − cT ∗∗U , which happens

with an exponentially small probability by Lemma B.1.
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(ii) We can write

P(M(T ∗∗U ) > (1 + ε1)T ∗∗U ) ≤ e−T
∗∗
U I
(

1
1+ε1

)
[1+o(1)]

+
1

2
e−KδTU [1+o(1)]

= e−K1r [1+o(1)] +
1

2
e−Kδαr [1+o(1)], r →∞,

(B.10)

with K1 = α′′I
(

1
1+ε1

)
= α′′ ε1−log(1+ε1)

1+ε1
, Kδ as in Lemma B.1.

Lemma B.5 (Upper bound on inactivity process). For all δ, ε1, ε2 > 0 small and r large:

(i) With high probability
W (T ∗∗U ) ≤ ε2r. (B.11)

(ii) The probability of upper bound in (i) failing is

P
(
W (T ∗∗U ) ≤ ε3T ∗∗U

)
≤ e−Kδαr [1+o(1)] + e−K1r [1+o(1)]

+ e
−
(
K2r+K3

r
gU (r)

+K4r log gU (r)
)

[1+o(1)]
, r →∞,

(B.12)

with K2 = α′′(1 + ε1)
(
− 1− log

(
ε2

α′′(1+ε1)

))
,K3 = ε2,K4 = α′′(1 + ε1).

Proof. (i) Since M(t) counts the number of activity periods, and we start with an active node
(in the starting configuration u all nodes in U are active), we have

W (T ∗∗U ) ≤
M(T ∗∗U )∑
m=1

Wm ≤
M(T ∗∗U )∑
m=1

Ŵm, (B.13)

where Ŵm are i.i.d. exponential random variables with rate gU (QLB,TU (T ∗∗∗U )), and T ∗∗∗U is the
starting point of the last inactivity period before time T ∗∗U . By the construction of T ∗∗U , we
know that QLB,TU (T ∗∗∗U ) is of order r. The last inactivity period is expected to be longer than
the previous ones, since the rates depend on the actual queue length, which is decreasing in
time. To make the inactivity periods Ŵm longer, we consider the lower bound QLB,TU (t) for
the actual queue length given in Lemma B.1.

By Lemma B.4, with high probability M(T ∗∗U ) ≤ (1 + ε1)T ∗∗U , and so

W (T ∗∗U ) ≤
M(T ∗∗U )∑
m=1

Ŵm ≤
(1+ε1)T ∗∗U∑
m=1

Ŵm. (B.14)

Define n = [(1 + ε1)T ∗∗U ]. By Cramér’s theorem, for small ε3 > 0,

P

(1+ε1)T ∗∗U∑
m=1

Ŵm ≥ ε3T ∗∗U

 ≤ P

(
n∑

m=1

Ŵm ≥
ε3

1 + ε1
n

)

= e
−nI
(

ε3
1+ε1

)
[1+o(1)]

= e
−T ∗∗U (1+ε1)I

(
ε3

1+ε1

)
[1+o(1)]

, n→∞,
(B.15)
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where I is the rate function given by

I(x) =
x

gU (QLB,TU (T ∗∗∗U ))
− 1− log x+ log gU (QLB,TU (T ∗∗∗U )). (B.16)

In order to apply Cramér’s theorem, take ε3 > (1+ε1)/gU (QLB,TU (T ∗∗∗U )) � 1/gU (r) arbitrarily
small. Combining (B.14)–(B.15), we obtain that with high probability

W (T ∗∗U ) ≤ ε3T ∗∗U = ε3α
′′r = ε2r, (B.17)

where ε2 = ε3α
′′ can be taken arbitrarily small.

(ii) For large r,

P

(1+ε1)T ∗∗U∑
m=1

Ŵm ≥ ε3T ∗∗U

 = e
−T ∗∗U (1+ε1)I

(
ε3

1+ε1

)
[1+o(1)]

� e−α
′′r(1+ε1)

(
ε3

(1+ε1)gU (r)
−1−log

(
ε3

1+ε1

)
+log gU (r)

)
[1+o(1)]

= e
−
[
α′′(1+ε1)

(
−1−log

(
ε3

1+ε1

))
r+ε3α′′

r
gU (r)

+α′′(1+ε1)r log(gU (r))
]

[1+o(1)]

= e
−
(
K2r+K3

r
gU (r)

+K4r log gU (r)
)

[1+o(1)]
, r →∞,

(B.18)

where K2 = α′′(1 + ε1)

(
−1− log

(
ε2

α′′(1+ε1)

))
,K3 = ε3α

′′ = ε2,K4 = α′′(1 + ε1). We also

have to consider the probabilities computed in (B.2) and (B.7). Hence we have

P
(
W (T ∗∗U ) ≤ ε3T ∗∗U

)
≤ e−Kδαr [1+o(1)] + e−K1r [1+o(1)]

+ e
−
(
K2r+K3

r
gU (r)

+K4r log gU (r)
)

[1+o(1)]
, r →∞.

(B.19)

We are now in a position to prove Proposition 2.5.

Proof. The equation Q−(t) ≥ ct − εr can be read as T (t) ≥ t − εr
c . This is equivalent to

saying that W (t) ≤ εr
c for all t ∈ [0, TU ]. By taking ε2 = 1

3
ε
c in Lemma B.5, we know that,

for all t ∈ [0, T ∗∗U ], W (t) ≤W (T ∗∗U ) ≤ 1
3
εr
c . Moreover, in the interval [T ∗∗U , TU ], the cumulative

amount of inactivity time is trivially bounded from above by the length of the interval, which
is 2δr

c−ρU ≤
2
3
εr
c , and ε can be taken arbitrarily small, since δ can be taken arbitrarily small.

Putting the two bounds together, we find that with high probability

W (t) ≤ ε2r +
2δr

c− ρU
≤ 1

3

εr

c
+

2

3

εr

c
=
εr

c
, t ∈ [0, TU ]. (B.20)

It is immediate to see that the probability of this not happening is given by (B.12).

The above lower bound Q−(t) ≥ ct − εr and the trivial upper bound Q−(t) ≤ ct imply
that with high probability the output process Q−(t) stays close to the path c 7→ ct by sending
ε to zero. In other words, the node stays almost always active all the time before TU .
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B.2 The output process in the internal model

In this section we want to couple the isolated model and the internal model and show that they
have identical behaviour in the time interval [0, τ̄ int

v ]. Hence it follows that the output process
in the internal model for nodes in U actually behaves as in the isolated model described in
Section B.1, until the pre-transition time.

Proposition B.6. Let X int
i (t) and X iso

i (t) denote the activity state of a node i at time t in
the internal and the isolated model, respectively. Then

lim
r→∞

Pu
(
X int
i (t) = X iso

i (t) ∀ i ∈ U ∪ V ∀ t ∈ [0, τ̄ int
v ]
)

= 1. (B.21)

Consequently, with high probability the pre-transition times in the internal and the isolated
model coincide, i.e.,

lim
r→∞

Pu(τ̄ int
v = τ̄ iso

v ) = 1. (B.22)

Proof. In Section B.1 we determined upper and lower bounds for the output process for nodes
in U in the isolated model up to time TU . Assume now that τ̄ int

v ≤ TU . When considering the
internal model and the set of nodes in V , we immediately see that these bounds are not true
for the whole interval [0, TU ], since at time τ̄ int

v already some nodes in V start to activate and
influence the behaviour of nodes in U .

If we look at the interval [0, τ̄ int
v ], then we note that the queue length process for a node

i ∈ U is not affected by nodes in V , and so it behaves in exactly the same way as if the node
were isolated. The activation and deactivation Poisson clocks at node i are synchronized,
and are ticking at the same time in the isolated model and in the internal model, so that
X int
i (t) = X iso

i (t). Moreover, the activity states of nodes in V are always equal to 0 in both
models. Hence we conclude that the activity states of every node coincide up to the pre-
transition time τ̄ int

v . Consequently, the pre-transition times in the internal and the isolated
model coincide on the event {τ̄ int

v ≤ TU}, which can then be written as the event {τ̄ iso
v ≤ TU}.

For the latter we know that it has a high probability when r →∞ (see proof of Proposition 3.7
in Section 3).
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